Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review
Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currentl...
Saved in:
Published in | Geoderma Vol. 343; pp. 235 - 246 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs.
Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing.
•DOM has clear potential as heavy metal (HM) extractant in remediation of polluted soils.•DOM is a naturally occurring HM complexant (ligand).•DOM can extract cationic as well as anionic HMs.•DOM may improve soil fertility and plant growth.•DOM is a promising but yet rather unconfirmed polluted soil remediator. |
---|---|
AbstractList | Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs.Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing. Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs. Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing. •DOM has clear potential as heavy metal (HM) extractant in remediation of polluted soils.•DOM is a naturally occurring HM complexant (ligand).•DOM can extract cationic as well as anionic HMs.•DOM may improve soil fertility and plant growth.•DOM is a promising but yet rather unconfirmed polluted soil remediator. |
Author | Holm, Peter E. Borggaard, Ole K. Strobel, Bjarne W. |
Author_xml | – sequence: 1 givenname: Ole K. surname: Borggaard fullname: Borggaard, Ole K. email: okb@plen.ku.dk – sequence: 2 givenname: Peter E. surname: Holm fullname: Holm, Peter E. – sequence: 3 givenname: Bjarne W. surname: Strobel fullname: Strobel, Bjarne W. |
BookMark | eNqFkEtvGyEUhVGUSHUef6FimUqeKTAehqm6qOW-IuW1SDfdIAKXCIsBF7DT_vsQOd1kk8XR1ZXOdxbfMToMMQBC7ylpKaH847p9gGggTaplhI4tYS1Z0AM0o2JgDWf9eIhmpDabgXD6Dh3nvK7vQBiZod1tLBCKUx5Hi43LOfodGBzTgwpO40mVAgmff725-oBLxPC3JKULXuY5XpmaWJNqtnN87eb49h6rYPDvgG2KE95E77el7uXofP6ElzjBzsHjKTqyymc4e7kn6Nf3b3ern83lzY-L1fKyUYtuURprYCRCiE5zMvRkpJb0rBvVwHqwvWZCacEHw7VRlmkjRgFA7zW31CrgQLoTdL7f3aT4Zwu5yMllDd6rAHGbJWPd0DO-GESt8n1Vp5hzAis3yU0q_ZOUyGfRci3_i5bPoiVhsoqu4OdXoHZFFRdDVeX82_iXPQ7VQ3WTZNYOggbjEugiTXRvTTwBa8Wetg |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2022_116340 crossref_primary_10_1038_s41598_021_95441_5 crossref_primary_10_1016_j_scitotenv_2022_155076 crossref_primary_10_1080_15226514_2023_2221740 crossref_primary_10_1007_s11356_021_15476_z crossref_primary_10_1016_j_scitotenv_2024_177020 crossref_primary_10_3389_fmicb_2022_1084097 crossref_primary_10_53623_tebt_v1i1_224 crossref_primary_10_1007_s00128_024_03989_5 crossref_primary_10_1016_j_ecoenv_2022_113488 crossref_primary_10_1016_j_envint_2024_108491 crossref_primary_10_1080_15567036_2022_2146237 crossref_primary_10_1007_s10098_024_02767_5 crossref_primary_10_1007_s40726_022_00222_x crossref_primary_10_1080_26395940_2024_2367429 crossref_primary_10_3390_agronomy11122453 crossref_primary_10_1021_acsestengg_1c00483 crossref_primary_10_1016_j_envpol_2024_124382 crossref_primary_10_1016_j_scitotenv_2021_150198 crossref_primary_10_1016_j_jece_2024_112689 crossref_primary_10_1016_j_scitotenv_2021_145685 crossref_primary_10_1016_j_chemosphere_2022_134738 crossref_primary_10_1016_j_molliq_2024_125661 crossref_primary_10_1016_j_ecoenv_2021_112813 crossref_primary_10_1016_j_envpol_2022_120221 crossref_primary_10_1016_j_heliyon_2024_e32559 crossref_primary_10_1016_j_jhazmat_2022_130053 crossref_primary_10_1016_j_scitotenv_2020_140378 crossref_primary_10_1016_j_jhazmat_2023_133105 crossref_primary_10_1016_j_scitotenv_2023_165037 crossref_primary_10_1016_j_envadv_2022_100218 crossref_primary_10_1016_j_jece_2021_105258 crossref_primary_10_1016_j_jhazmat_2019_121795 crossref_primary_10_1016_j_watres_2024_121241 crossref_primary_10_1016_j_scitotenv_2024_171689 crossref_primary_10_1016_j_chemosphere_2022_134581 crossref_primary_10_1016_j_scitotenv_2021_150622 crossref_primary_10_1080_09593330_2023_2187319 crossref_primary_10_1016_j_heliyon_2022_e10221 crossref_primary_10_3390_ma16186189 crossref_primary_10_1016_j_jenvman_2022_116560 crossref_primary_10_1016_j_scitotenv_2024_170451 crossref_primary_10_1016_j_geoderma_2023_116335 crossref_primary_10_1007_s11104_025_07315_8 crossref_primary_10_1016_j_jenvman_2021_113174 crossref_primary_10_1016_j_envres_2020_109659 crossref_primary_10_1016_j_chemosphere_2023_140870 crossref_primary_10_1016_j_jclepro_2021_126278 crossref_primary_10_1007_s11356_022_21485_3 crossref_primary_10_1007_s11356_024_32010_z crossref_primary_10_1016_j_jenvman_2021_112118 crossref_primary_10_1016_j_ecoenv_2021_112811 crossref_primary_10_1016_j_trac_2024_117639 crossref_primary_10_1016_j_envpol_2021_118516 crossref_primary_10_1016_j_geoderma_2023_116737 crossref_primary_10_1016_j_jhazmat_2024_134725 crossref_primary_10_3390_land11091376 crossref_primary_10_1039_D2RA07095B crossref_primary_10_1016_j_envres_2022_114482 crossref_primary_10_5793_kankyo_49_3_2 crossref_primary_10_3390_agriculture13091684 crossref_primary_10_1016_j_eti_2024_103726 crossref_primary_10_1016_j_scitotenv_2021_148216 crossref_primary_10_1016_j_wasman_2024_02_045 crossref_primary_10_3390_su16114870 crossref_primary_10_1016_j_jhazmat_2024_134435 crossref_primary_10_1016_j_chemosphere_2022_137556 crossref_primary_10_2139_ssrn_4167469 crossref_primary_10_1016_j_scitotenv_2020_137423 crossref_primary_10_1016_j_scitotenv_2020_139569 crossref_primary_10_3390_land14010176 crossref_primary_10_1016_j_scitotenv_2023_169171 crossref_primary_10_1007_s40899_023_00909_z crossref_primary_10_21272_jes_2024_11_1__h2 crossref_primary_10_1002_ldr_4076 crossref_primary_10_1016_j_aca_2020_07_007 crossref_primary_10_1016_j_ecoenv_2025_117766 crossref_primary_10_1016_j_scitotenv_2024_170275 crossref_primary_10_1016_j_csag_2024_100036 crossref_primary_10_2139_ssrn_4166084 crossref_primary_10_1007_s11356_023_29660_w crossref_primary_10_1016_j_envpol_2020_114801 crossref_primary_10_3390_su13137052 crossref_primary_10_3390_agronomy14071401 crossref_primary_10_3390_f13101528 crossref_primary_10_1016_j_jclepro_2021_127664 crossref_primary_10_1016_j_envres_2020_109554 crossref_primary_10_1007_s11356_022_23429_3 crossref_primary_10_1016_j_ecoenv_2020_111545 crossref_primary_10_3390_w16081112 crossref_primary_10_3390_nano13101671 crossref_primary_10_1007_s11368_020_02744_7 crossref_primary_10_1016_j_scitotenv_2021_151908 crossref_primary_10_1016_j_scitotenv_2022_158832 crossref_primary_10_1007_s10653_023_01833_z crossref_primary_10_1016_j_wasman_2019_05_032 crossref_primary_10_1007_s11783_024_1847_9 crossref_primary_10_1016_j_jclepro_2022_132294 crossref_primary_10_1016_j_ejsobi_2024_103706 crossref_primary_10_1016_j_envres_2024_118719 crossref_primary_10_1016_j_marenvres_2023_105943 crossref_primary_10_1016_j_scitotenv_2022_154339 crossref_primary_10_1016_j_jenvman_2024_120511 crossref_primary_10_1016_j_watres_2022_118671 crossref_primary_10_1007_s42773_025_00441_7 crossref_primary_10_1016_j_heliyon_2022_e09790 crossref_primary_10_1016_j_jenvman_2023_118556 crossref_primary_10_1016_j_jhazmat_2021_125977 crossref_primary_10_1016_j_scitotenv_2024_178046 crossref_primary_10_1016_j_envpol_2022_120420 crossref_primary_10_3389_fenvs_2023_1267463 crossref_primary_10_1016_j_jece_2021_106146 crossref_primary_10_1007_s11783_020_1380_4 crossref_primary_10_1016_j_envpol_2020_115196 crossref_primary_10_1016_j_scitotenv_2020_138252 crossref_primary_10_1007_s42773_024_00313_6 crossref_primary_10_1016_j_emcon_2022_100200 crossref_primary_10_1016_j_jhazmat_2023_133027 crossref_primary_10_1016_j_scitotenv_2022_160882 crossref_primary_10_1016_j_scitotenv_2023_161431 crossref_primary_10_1007_s11356_020_08223_3 crossref_primary_10_1016_j_psep_2025_106957 crossref_primary_10_1002_aoc_6190 crossref_primary_10_1515_ract_2023_0248 crossref_primary_10_1016_j_seppur_2024_128735 crossref_primary_10_2139_ssrn_4149198 crossref_primary_10_3390_ijerph191912128 crossref_primary_10_1016_j_jenvman_2024_121599 crossref_primary_10_1038_s41598_021_89458_z crossref_primary_10_1007_s11356_022_21791_w crossref_primary_10_1016_j_envpol_2023_121002 crossref_primary_10_7717_peerj_14162 crossref_primary_10_1016_j_jenvman_2023_119030 crossref_primary_10_1016_j_envpol_2022_119402 crossref_primary_10_1016_j_scitotenv_2020_143117 crossref_primary_10_1016_j_chemosphere_2023_138755 crossref_primary_10_1016_j_envpol_2022_118834 crossref_primary_10_1016_j_seh_2024_100112 crossref_primary_10_1016_j_chemosphere_2024_141636 crossref_primary_10_1016_j_envpol_2025_125915 crossref_primary_10_1016_j_jhazmat_2022_129368 crossref_primary_10_3390_app12031114 crossref_primary_10_1016_j_chemosphere_2021_132572 crossref_primary_10_1016_j_scitotenv_2022_153985 crossref_primary_10_1016_j_chemosphere_2024_141137 crossref_primary_10_3390_ijerph192416653 crossref_primary_10_1016_j_jhazmat_2022_128325 crossref_primary_10_1007_s11270_023_06463_w crossref_primary_10_1021_acs_estlett_3c00545 crossref_primary_10_1002_fes3_248 crossref_primary_10_1007_s11368_022_03298_6 crossref_primary_10_2139_ssrn_4119265 crossref_primary_10_1016_j_envint_2019_105439 crossref_primary_10_1016_j_ecoenv_2024_116904 crossref_primary_10_1016_j_chemosphere_2022_137118 crossref_primary_10_1016_j_ecoenv_2021_112842 crossref_primary_10_1016_j_jece_2023_109877 crossref_primary_10_1061__ASCE_EE_1943_7870_0002000 crossref_primary_10_1016_j_jhazmat_2022_130076 crossref_primary_10_1007_s11356_021_17312_w crossref_primary_10_1016_j_seh_2024_100124 crossref_primary_10_1016_j_ecoenv_2020_111179 crossref_primary_10_1007_s11771_025_5861_2 crossref_primary_10_1016_j_envpol_2022_119376 crossref_primary_10_3390_ijerph17176220 crossref_primary_10_1007_s11356_021_13450_3 crossref_primary_10_1016_j_scitotenv_2021_152502 crossref_primary_10_1016_j_chemgeo_2021_120523 crossref_primary_10_1021_acs_est_3c05140 crossref_primary_10_3390_toxics11080654 |
Cites_doi | 10.1007/s13762-013-0433-7 10.1016/j.jhazmat.2011.04.054 10.1021/es0348750 10.1016/j.gca.2011.02.027 10.1046/j.1365-2389.1998.4930397.x 10.1021/es5047099 10.1111/j.1365-2389.2007.00958.x 10.1016/0016-7037(92)90158-F 10.1021/es062166r 10.1080/10643389.2010.520234 10.1016/j.scitotenv.2018.03.161 10.1111/j.1365-2389.2009.01142.x 10.1080/00380768.2018.1440938 10.1016/j.envpol.2007.06.054 10.1007/s11270-008-9693-0 10.1016/j.scitotenv.2015.10.122 10.1016/j.earscirev.2017.06.005 10.1016/j.jhazmat.2007.10.043 10.1016/j.jhazmat.2012.10.060 10.1016/j.jconhyd.2016.01.009 10.1016/j.chemosphere.2008.04.083 10.1016/S0045-6535(03)00155-3 10.1016/j.chemosphere.2007.01.062 10.1016/S1002-0160(15)60017-0 10.1016/j.envint.2015.12.017 10.1016/S1002-0160(15)60032-7 10.1016/j.envpol.2004.10.006 10.1007/s11270-008-9767-z 10.1016/j.jhazmat.2013.12.018 10.1016/j.chemosphere.2015.03.083 10.1016/j.geoderma.2009.01.016 10.1016/j.jenvman.2005.09.007 10.1016/S0043-1354(97)00202-9 10.1016/j.jhazmat.2015.01.062 10.1016/S0016-7061(00)00102-6 10.1016/S0160-4120(03)00048-5 10.1016/j.jece.2015.04.029 10.1021/es061057+ 10.1080/15320380902799326 10.1016/j.envpol.2008.10.024 10.1021/es9026248 10.1016/j.geoderma.2014.07.004 10.1023/A:1005251915165 10.1080/15320380903390539 10.1080/15226514.2017.1365340 10.1080/10643380802586857 10.1007/s11356-017-8660-y 10.1016/j.jhazmat.2015.08.015 10.1016/j.jhazmat.2008.04.081 10.1016/j.envpol.2004.04.004 10.2134/jeq2006.0081 10.1016/S0003-2670(01)00924-2 10.1016/j.ecolind.2016.08.051 10.2134/jeq2009.0292 10.17221/3549-PSE 10.1016/j.scitotenv.2017.06.030 10.1007/s11356-014-3737-3 10.1007/s10653-012-9461-3 10.1016/S1002-0160(17)60337-0 10.1016/j.envpol.2006.01.017 10.1111/j.1365-2389.1987.tb02140.x 10.1021/es103532a 10.1016/j.jhazmat.2010.09.082 10.1016/j.envpol.2018.02.070 10.1021/es0604919 10.1016/j.soilbio.2004.11.028 10.1016/j.chemgeo.2013.12.020 10.1016/S1002-0160(18)60026-8 10.1016/j.geoderma.2016.06.010 10.1016/j.jhazmat.2016.03.038 10.1007/s11368-009-0083-z 10.4161/psb.5.6.11211 10.1007/s11356-014-3216-x 10.1021/ac50043a017 10.1080/10643389.2016.1275417 10.1016/j.chemosphere.2004.06.010 10.1002/1522-2624(200012)163:6<563::AID-JPLN563>3.0.CO;2-0 10.3891/acta.chem.scand.28a-0121 10.1016/j.chemgeo.2015.01.020 10.1016/j.envpol.2015.07.025 10.1111/j.1365-2389.2004.00661.x 10.1080/16226510590950423 10.1016/j.jhazmat.2009.09.113 10.1097/SS.0b013e31827ba23f 10.1016/j.envpol.2007.11.015 10.1016/S0045-6535(00)00498-7 10.1007/s11356-017-9139-6 10.1016/j.soilbio.2015.02.019 10.1007/s11270-005-8219-2 10.1007/s11104-012-1429-7 10.1021/es301015p 10.2134/jeq2003.1380 10.1016/S0043-1354(02)00203-8 10.1007/s11356-013-1820-9 10.1007/s11270-007-9564-0 10.1016/S0016-7061(02)00361-0 10.1021/es0200084 10.1016/j.chemosphere.2013.01.075 10.1016/j.gca.2009.11.007 10.1016/j.chemosphere.2006.04.039 10.1007/s11356-013-2300-y 10.1080/15320383.2011.609198 10.1007/BF03326158 10.1021/es102931p 10.1016/j.envpol.2013.02.034 10.2174/1570193X14666161130163034 10.1016/S0269-7491(01)00150-6 10.1016/j.chemosphere.2018.01.004 10.1080/15226510802100515 10.1021/es0110170 10.1016/j.ecoenv.2005.01.006 10.1016/j.jhazmat.2013.01.048 10.1021/es803112a 10.1080/15320383.2014.852511 10.1016/j.envpol.2018.06.034 10.1016/j.envpol.2004.08.011 10.1016/j.procbio.2005.07.005 10.1016/j.envpol.2005.06.017 10.1016/S0045-6535(03)00185-1 10.1023/A:1005067404259 10.1016/S0883-2927(02)00018-5 10.1016/j.chemosphere.2005.05.020 10.1016/S0269-7491(00)00158-5 10.1016/S0304-3894(99)00010-2 10.1139/S07-004 10.1016/j.jhazmat.2012.01.060 10.1016/S0016-7037(00)00602-5 10.1016/j.geoderma.2004.03.005 10.1016/j.gexplo.2015.01.001 10.1023/A:1011934929379 10.1002/ep.670190415 10.1016/j.jhazmat.2015.08.022 10.1021/es9907764 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.02.041 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 246 |
ExternalDocumentID | 10_1016_j_geoderma_2019_02_041 S0016706118308103 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a434t-fde908883c6075091f05239a725ef5c28ac867d6cdaf2cd898ee1bc6f1fae6e03 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 02:17:51 EDT 2025 Tue Jul 01 04:04:49 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:27:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil remediation Fulvic acid LMWOA Soil washing Heavy metals Phytoextraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a434t-fde908883c6075091f05239a725ef5c28ac867d6cdaf2cd898ee1bc6f1fae6e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2237526478 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2237526478 crossref_primary_10_1016_j_geoderma_2019_02_041 crossref_citationtrail_10_1016_j_geoderma_2019_02_041 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_02_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chiu, Cheng, Lin, Juang, Lee (bb0150) 2009; 161 Manning, Fendorf, Bostick, Suarez (bb0395) 2002; 36 Chiang, Tong, Chiou, Lin, Wang, Liu (bb0145) 2016; 301 Rõmkens, Bouwman, Japenga, Draaisma (bb0495) 2002; 116 Conte, Agretto, Spaccini, Piccolo (bb0170) 2005; 135 Gu, Yeung (bb0235) 2011; 191 Bassi, Prashe, Simpson (bb0060) 2000; 19 Jensen, Holm, Nejrup, Larsen, Borggaard (bb0280) 2009; 157 Lwin, Seo, Kim, Owens, Kim (bb0385) 2018; 64 Soil Survey Staff (bb0530) 2014 Sheoran, Sheoran, Poonia (bb0515) 2016; 26 Hu, Huang, Borggaard, Ye, Tian, Zhang, Holm (bb0260) 2018; 241 Buschmann, Kappeler, Lindauer, Kistler, Berg, Sigg (bb0125) 2006; 40 Hu, Wang, Dong, Huang, Borggaard, Hansen, Holm (bb0255) 2018; 237 Borggaard, Holm, Jensen, Soleimani, Strobel (bb0100) 2011; B61 Kulikowska, Gusiatin, Bulkowska, Kierklo (bb0330) 2015; 136 Wiszniewska, Hanus-Fajerska, Muszynska, Ciarkowska (bb0655) 2016; 26 Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (bb0070) 2014; 266 Wu, Kang, Zhang, Shao, Chu, Ruan (bb0660) 2010; 174 Tandy, Bossart, Mueller, Ritschel, Hauser, Schulin, Nowack (bb0575) 2004; 38 Weng, Temminghoff, Lofts, Tipping, Van Riemsdijk (bb0640) 2002; 36 Ali, Khan, Sajad (bb0005) 2013; 91 Doumett, Lamperi, Checchini, Azzarello, Mugnai, Mancuso, Petruzzelli, Del Bubba (bb0210) 2008; 72 Tao, Zhang, Jian, Yuan, Shan (bb0580) 2006; 65 Evangelou, Ebel, Schaeffer (bb0220) 2007; 68 Robinson, Anderson, Dickinson (bb0490) 2015; 151 Borggaard, O.K. (1990) Dissolution and Adsorption Properties of Soil Iron Oxides. DSc-thesis, Royal Veterinary and Agricultural University (now University of Copenhagen), Denmark. Das, Chou, Jean, Liu, Yang (bb0185) 2016; 542 Soleimani, Hajabbasi, Afyuni, Akbar, Jensen, Holm, Borggaard (bb0535) 2010; 39 Yang, Ratté, Smets, Pignatello, Grasso (bb0670) 2001; 43 Dai, Li, Zhou, Zhao (bb0180) 2017; 24 Labanowski, Monna, Bermond, Cambier, Fernandez, Lamy, van Oort (bb0345) 2008; 152 Sun, Zhou, An, Liu, Liu (bb0565) 2009; 150 Tipping, Hurley (bb0595) 1992; 56 Kulikowska, Gusiatin, Bulkowska, Klik (bb0325) 2015; 300 Kumpiene, Lagerkvist, Maurice (bb0335) 2008; 28 WHO (bb0650) 2017 Wang, Mulligan (bb0625) 2013; 35 Nowack, Schulin, Robinson (bb0430) 2006; 40 Qin, Shan, Wei (bb0460) 2004; 57 Strobel, Borggaard, Hansen, Andersen, Raulund-Rasmussen (bb0550) 2001; 65 Qiu, Zou, Zhao, Zhang, Zhang, Dong, Wei (bb0465) 2010; 10 Zsolnay (bb0715) 2003; 113 Liu, Li, Song, Guo (bb0375) 2018; 633 Zhou, Haynes (bb0705) 2010; 40 Khan, Khan, Khan, Alam (bb0305) 2017; 601-602 Borggaard (bb0085) 1987; 38 Rasmussen, Jensen, Borggaard (bb0475) 2015; 3 Cheng, Allen (bb0140) 2006; 80 Yun, Kang, Kim, Kim (bb0675) 2015; 287 Jiang, Bauer, Paul, Kappler (bb0290) 2009; 43 Kirpichtchikova, Manceau, Spadini, Panfili, Marcus, Jacquet (bb0315) 2006; 70 Van Schaik, Kleja, Gustafsson (bb0615) 2010; 74 Ren, Tella, Bravin, Comans, Garnier, Sivry, Doelsch, Straathof, Benedetti (bb0485) 2015; 398 Clarholm, Skyllberg, Rosling (bb0165) 2015; 84 Christiansen, Borggaard, Holm, Vijver, Hauschild, Peijnenburg (bb0160) 2015; 22 Baken, Degryse, Verheyen, Merckx, Smolders (bb0045) 2011; 25 Wuana, Okieimen, Imborvungu (bb0665) 2010; 7 Li, Xing, Torello (bb0355) 2005; 134 Tiberg, Sjöstedt, Gustafsson (bb0590) 2018; 196 Karna, Luxton, Bronstein, Redmon, Scheckel (bb0300) 2017; 47 Bronick, Lal (bb0110) 2005; 124 Sarathy, Allen (bb0500) 2005; 61 Elliott, Shastri (bb0215) 1999; 110 Bose, Sharma (bb0105) 2002; 36 Trevisan, Francioso, Quaggiotti, Nardi (bb0605) 2010; 5 Carbonaro, Atalay, Di Toro (bb0130) 2011; 75 Tsang, Hartley (bb0610) 2014; 21 Dhal, Thatoi, Das, Pandey (bb0200) 2013; 250-251 Loganathan, Vigneswaran, Kandasamy, Naidu (bb0380) 2012; 42 Buekers, Van Laer, Amery, Van Buggenhout, Maes, Smolders (bb0115) 2007; 58 Strobel, Hansen, Borggaard, Andersen, Raulund-Rasmussen (bb0555) 2001; 56 Amery, Degryse, Degeling, Smolders, Merckx (bb0015) 2007; 41 Tessier, Campbell, Bisson (bb0585) 1979; 51 Ding, Song, Feng, Guo (bb0205) 2014; 11 Park, Lamb, Paneerselvam, Choppala, Bolan, Chung (bb0440) 2011; 185 Leštan, Luo, Li (bb0350) 2008; 153 Smedley, Kinniburgh (bb0520) 2002; 17 Halim, Conte, Piccolo (bb0240) 2003; 52 Ng, Juhasz, Smith, Naidu (bb0425) 2015; 22 Toth, Hermann, Da Silva, Montanarella (bb0600) 2016; 88 Zhao, Wei, Zhang, Wen, Xi, Zhao, Zhang, Wei (bb0700) 2017; 72 Ash, Tejnecky, Boruvka, Drabek (bb0035) 2016; 187 Zhang, Gao, Xiong (bb0685) 2017; 24 Chen, Lin, Lin, Liu, Wang (bb0135) 2014; 235-236 Amir, Hafidi, Lemee, Merlina, Guiresse, Pinelli, Revel, Bailly, Ambles (bb0020) 2006; 41 Liu, Lin (bb0365) 2013; 178 Barona, Aranguiz, Elias (bb0055) 2001; 113 Hartley, Tsang, Olds, Weber (bb0245) 2014; 23 Wasay, Barrington, Tokunaga (bb0630) 2001; 127 Owsianiak, Holm, Fantke, Christiansen, Borggaard, Hauschild (bb0435) 2015; 206 Polettini, Pomi, Calcagnoli (bb0450) 2009; 196 Borggaard, Hansen, Holm, Jensen, Rasmussen, Sabiene, Steponkaite, Strobel (bb0095) 2009; 18 Zhu, Yao, Zhang, Wu (bb0710) 2014; 21 Wasay, Barrington, Tokunaga, Prasher (bb0635) 2007; 6 Degryse, Smolders, Parker (bb0190) 2009; 60 Strobel (bb0545) 2001; 99 Borggaard, O.K. (1974) Titrimetric determination of acidity and pK values of humic acid. Acta Chem. Scand. A28, 121–122. Craven, Aiken, Ryan (bb0175) 2012; 46 Liu, Fernandez, Cai (bb0370) 2011; 45 Zhang, Li, Shan, Lu, Zhou (bb0680) 2005; 167 Dermont, Bergeron, Mercier, Richer-Laflèche (bb0195) 2008; 152 Gjettermann, Styczen, Hansen, Borggaard, Hansen (bb0230) 2007; 36 Raulund-Rasmussen, Borggaard, Hansen, Olsson (bb0480) 1998; 49 Venegas, Rigol, Vidal (bb0620) 2016; 279 Antoniadis, Levizou, Shaheen, Ok, Sebastian, Baum, Prasad, Wenzel, Rinklebe (bb0030) 2017; 171 Liu, Chen (bb0360) 2013; 244-245 Wenzel, Kirchbaumer, Prohaska, Stingeder, Lombi, Adriano (bb0645) 2001; 436 Neupane, Donahoe, Arai (bb0420) 2014; 368 Bianchi, Masciandaro, Giraldi, Ceccanti, Iannelli (bb0065) 2008; 193 Zhao, Ma, Zhu, Tang, McGrath (bb0695) 2015; 49 Puschenreiter, Horak, Friesl, Hartl (bb0455) 2005; 51 Meers, Tack, Van Slycken, Ruttens, Du Laing, Vangronsveld, Verloo (bb0405) 2008; 10 Bahemmat, Farahbakhsh, Kianirad (bb0040) 2016; 312 Christensen, Jensen, Grøn, Filip, Christensen (bb0155) 1998; 32 Meers, Lesage, Lamsal, Hopgood, Vervaeke, Tack, Verloo (bb0400) 2005; 7 Kumpiene, Giagnoni, Marschner, Denys, Mench, Adriaensen, Vangronsveld, Puschenreiter, Renella (bb0340) 2017; 27 Nascimento, Amarasiriwardena, Xing (bb0415) 2006; 140 Strobel, Borggaard, Hansen, Andersen, Raulund-Rasmussen (bb0560) 2005; 56 Sparks (bb0540) 2000; 163 Kos, Leštan (bb0320) 2004; 132 Shahid, Pinelli, Dumat (bb0510) 2012; 219-220 Banks, Schwab, Henderson (bb0050) 2006; 62 Sauvé, Hendershot, Allen (bb0505) 2000; 34 Kim, Lee, Ong (bb0310) 2003; 51 Almaroai, Usman, Ahmad, Kim, Moon, Lee, Ok (bb0010) 2012; 177 Smith, Bell, Kramer (bb0525) 2002; C133 Amofah, Maurice, Bhattacharya (bb0025) 2010; 19 Husson (bb0270) 2013; 362 Suriyagoda, Dittert, Lambers (bb0570) 2018; 28 IUSS Working Group WRB (bb0275) 2006 Peters (bb0445) 1999; 66 Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (bb0075) 2010; 44 Burges, Alkorta, Epelde, Garbisu (bb0120) 2018; 20 Jensen, Holm, Borggaard, Nejrup (bb0285) 2011; 20 Makino, Sigahara, Sakurai, Takano, Kamiya, Sasaki, Itou, Sekiya (bb0390) 2006; 144 Rao, Sahuquillo, Lopez Sanchez (bb0470) 2008; 189 Miljøstyrelsen (bb0410) 2015 Gao, He, Ling, Hu, Liu (bb0225) 2003; 29 Hubová, Tejnecký, Ash, Boruvka, Drábek (bb0265) 2017; 14 Holm, Rootzen, Borggaard, Møberg, Christensen (bb0250) 2003; 32 Kalbitz, Schwesig, Rethemeyer, Matzner (bb0295) 2005; 37 Rasmussen (10.1016/j.geoderma.2019.02.041_bb0475) 2015; 3 Tessier (10.1016/j.geoderma.2019.02.041_bb0585) 1979; 51 Clarholm (10.1016/j.geoderma.2019.02.041_bb0165) 2015; 84 Dhal (10.1016/j.geoderma.2019.02.041_bb0200) 2013; 250-251 Amofah (10.1016/j.geoderma.2019.02.041_bb0025) 2010; 19 Kalbitz (10.1016/j.geoderma.2019.02.041_bb0295) 2005; 37 Dai (10.1016/j.geoderma.2019.02.041_bb0180) 2017; 24 Zhou (10.1016/j.geoderma.2019.02.041_bb0705) 2010; 40 Amir (10.1016/j.geoderma.2019.02.041_bb0020) 2006; 41 Hartley (10.1016/j.geoderma.2019.02.041_bb0245) 2014; 23 Antoniadis (10.1016/j.geoderma.2019.02.041_bb0030) 2017; 171 Toth (10.1016/j.geoderma.2019.02.041_bb0600) 2016; 88 Ren (10.1016/j.geoderma.2019.02.041_bb0485) 2015; 398 Dermont (10.1016/j.geoderma.2019.02.041_bb0195) 2008; 152 Li (10.1016/j.geoderma.2019.02.041_bb0355) 2005; 134 Sauvé (10.1016/j.geoderma.2019.02.041_bb0505) 2000; 34 Wiszniewska (10.1016/j.geoderma.2019.02.041_bb0655) 2016; 26 Kulikowska (10.1016/j.geoderma.2019.02.041_bb0330) 2015; 136 10.1016/j.geoderma.2019.02.041_bb0090 Makino (10.1016/j.geoderma.2019.02.041_bb0390) 2006; 144 Husson (10.1016/j.geoderma.2019.02.041_bb0270) 2013; 362 Elliott (10.1016/j.geoderma.2019.02.041_bb0215) 1999; 110 Gao (10.1016/j.geoderma.2019.02.041_bb0225) 2003; 29 Barona (10.1016/j.geoderma.2019.02.041_bb0055) 2001; 113 Nowack (10.1016/j.geoderma.2019.02.041_bb0430) 2006; 40 Kumpiene (10.1016/j.geoderma.2019.02.041_bb0335) 2008; 28 10.1016/j.geoderma.2019.02.041_bb0080 Meers (10.1016/j.geoderma.2019.02.041_bb0405) 2008; 10 Hu (10.1016/j.geoderma.2019.02.041_bb0260) 2018; 241 Jiang (10.1016/j.geoderma.2019.02.041_bb0290) 2009; 43 Tiberg (10.1016/j.geoderma.2019.02.041_bb0590) 2018; 196 Karna (10.1016/j.geoderma.2019.02.041_bb0300) 2017; 47 Polettini (10.1016/j.geoderma.2019.02.041_bb0450) 2009; 196 Jensen (10.1016/j.geoderma.2019.02.041_bb0285) 2011; 20 Cheng (10.1016/j.geoderma.2019.02.041_bb0140) 2006; 80 Meers (10.1016/j.geoderma.2019.02.041_bb0400) 2005; 7 Liu (10.1016/j.geoderma.2019.02.041_bb0370) 2011; 45 Miljøstyrelsen (10.1016/j.geoderma.2019.02.041_bb0410) 2015 Strobel (10.1016/j.geoderma.2019.02.041_bb0545) 2001; 99 Liu (10.1016/j.geoderma.2019.02.041_bb0360) 2013; 244-245 Doumett (10.1016/j.geoderma.2019.02.041_bb0210) 2008; 72 Sarathy (10.1016/j.geoderma.2019.02.041_bb0500) 2005; 61 Zsolnay (10.1016/j.geoderma.2019.02.041_bb0715) 2003; 113 Kumpiene (10.1016/j.geoderma.2019.02.041_bb0340) 2017; 27 Peters (10.1016/j.geoderma.2019.02.041_bb0445) 1999; 66 Buschmann (10.1016/j.geoderma.2019.02.041_bb0125) 2006; 40 Soleimani (10.1016/j.geoderma.2019.02.041_bb0535) 2010; 39 Tandy (10.1016/j.geoderma.2019.02.041_bb0575) 2004; 38 Degryse (10.1016/j.geoderma.2019.02.041_bb0190) 2009; 60 Khan (10.1016/j.geoderma.2019.02.041_bb0305) 2017; 601-602 Bahemmat (10.1016/j.geoderma.2019.02.041_bb0040) 2016; 312 Nascimento (10.1016/j.geoderma.2019.02.041_bb0415) 2006; 140 Chiang (10.1016/j.geoderma.2019.02.041_bb0145) 2016; 301 Robinson (10.1016/j.geoderma.2019.02.041_bb0490) 2015; 151 Labanowski (10.1016/j.geoderma.2019.02.041_bb0345) 2008; 152 Manning (10.1016/j.geoderma.2019.02.041_bb0395) 2002; 36 Chiu (10.1016/j.geoderma.2019.02.041_bb0150) 2009; 161 Christensen (10.1016/j.geoderma.2019.02.041_bb0155) 1998; 32 Das (10.1016/j.geoderma.2019.02.041_bb0185) 2016; 542 Raulund-Rasmussen (10.1016/j.geoderma.2019.02.041_bb0480) 1998; 49 Kirpichtchikova (10.1016/j.geoderma.2019.02.041_bb0315) 2006; 70 Smedley (10.1016/j.geoderma.2019.02.041_bb0520) 2002; 17 Baken (10.1016/j.geoderma.2019.02.041_bb0045) 2011; 25 Jensen (10.1016/j.geoderma.2019.02.041_bb0280) 2009; 157 Wu (10.1016/j.geoderma.2019.02.041_bb0660) 2010; 174 Lwin (10.1016/j.geoderma.2019.02.041_bb0385) 2018; 64 Trevisan (10.1016/j.geoderma.2019.02.041_bb0605) 2010; 5 Kim (10.1016/j.geoderma.2019.02.041_bb0310) 2003; 51 Halim (10.1016/j.geoderma.2019.02.041_bb0240) 2003; 52 Evangelou (10.1016/j.geoderma.2019.02.041_bb0220) 2007; 68 Bianchi (10.1016/j.geoderma.2019.02.041_bb0065) 2008; 193 Hu (10.1016/j.geoderma.2019.02.041_bb0255) 2018; 237 Wang (10.1016/j.geoderma.2019.02.041_bb0625) 2013; 35 Rao (10.1016/j.geoderma.2019.02.041_bb0470) 2008; 189 IUSS Working Group WRB (10.1016/j.geoderma.2019.02.041_bb0275) 2006 Zhao (10.1016/j.geoderma.2019.02.041_bb0700) 2017; 72 Bose (10.1016/j.geoderma.2019.02.041_bb0105) 2002; 36 Venegas (10.1016/j.geoderma.2019.02.041_bb0620) 2016; 279 Borggaard (10.1016/j.geoderma.2019.02.041_bb0100) 2011; B61 Christiansen (10.1016/j.geoderma.2019.02.041_bb0160) 2015; 22 Bassi (10.1016/j.geoderma.2019.02.041_bb0060) 2000; 19 Kulikowska (10.1016/j.geoderma.2019.02.041_bb0325) 2015; 300 Qin (10.1016/j.geoderma.2019.02.041_bb0460) 2004; 57 Suriyagoda (10.1016/j.geoderma.2019.02.041_bb0570) 2018; 28 Liu (10.1016/j.geoderma.2019.02.041_bb0375) 2018; 633 Tipping (10.1016/j.geoderma.2019.02.041_bb0595) 1992; 56 Buekers (10.1016/j.geoderma.2019.02.041_bb0115) 2007; 58 Yang (10.1016/j.geoderma.2019.02.041_bb0670) 2001; 43 Borggaard (10.1016/j.geoderma.2019.02.041_bb0085) 1987; 38 Amery (10.1016/j.geoderma.2019.02.041_bb0015) 2007; 41 Gu (10.1016/j.geoderma.2019.02.041_bb0235) 2011; 191 Hubová (10.1016/j.geoderma.2019.02.041_bb0265) 2017; 14 Zhu (10.1016/j.geoderma.2019.02.041_bb0710) 2014; 21 Conte (10.1016/j.geoderma.2019.02.041_bb0170) 2005; 135 Bronick (10.1016/j.geoderma.2019.02.041_bb0110) 2005; 124 Burges (10.1016/j.geoderma.2019.02.041_bb0120) 2018; 20 Gjettermann (10.1016/j.geoderma.2019.02.041_bb0230) 2007; 36 Tsang (10.1016/j.geoderma.2019.02.041_bb0610) 2014; 21 Banks (10.1016/j.geoderma.2019.02.041_bb0050) 2006; 62 Zhao (10.1016/j.geoderma.2019.02.041_bb0695) 2015; 49 Ash (10.1016/j.geoderma.2019.02.041_bb0035) 2016; 187 Weng (10.1016/j.geoderma.2019.02.041_bb0640) 2002; 36 Ding (10.1016/j.geoderma.2019.02.041_bb0205) 2014; 11 Leštan (10.1016/j.geoderma.2019.02.041_bb0350) 2008; 153 Rõmkens (10.1016/j.geoderma.2019.02.041_bb0495) 2002; 116 Almaroai (10.1016/j.geoderma.2019.02.041_bb0010) 2012; 177 Kos (10.1016/j.geoderma.2019.02.041_bb0320) 2004; 132 Borch (10.1016/j.geoderma.2019.02.041_bb0075) 2010; 44 Sheoran (10.1016/j.geoderma.2019.02.041_bb0515) 2016; 26 Strobel (10.1016/j.geoderma.2019.02.041_bb0550) 2001; 65 Loganathan (10.1016/j.geoderma.2019.02.041_bb0380) 2012; 42 Ng (10.1016/j.geoderma.2019.02.041_bb0425) 2015; 22 Owsianiak (10.1016/j.geoderma.2019.02.041_bb0435) 2015; 206 Soil Survey Staff (10.1016/j.geoderma.2019.02.041_bb0530) 2014 Park (10.1016/j.geoderma.2019.02.041_bb0440) 2011; 185 Wenzel (10.1016/j.geoderma.2019.02.041_bb0645) 2001; 436 Wasay (10.1016/j.geoderma.2019.02.041_bb0630) 2001; 127 Ali (10.1016/j.geoderma.2019.02.041_bb0005) 2013; 91 Wasay (10.1016/j.geoderma.2019.02.041_bb0635) 2007; 6 Neupane (10.1016/j.geoderma.2019.02.041_bb0420) 2014; 368 Sun (10.1016/j.geoderma.2019.02.041_bb0565) 2009; 150 Bolan (10.1016/j.geoderma.2019.02.041_bb0070) 2014; 266 Qiu (10.1016/j.geoderma.2019.02.041_bb0465) 2010; 10 Wuana (10.1016/j.geoderma.2019.02.041_bb0665) 2010; 7 Zhang (10.1016/j.geoderma.2019.02.041_bb0680) 2005; 167 Sparks (10.1016/j.geoderma.2019.02.041_bb0540) 2000; 163 Zhang (10.1016/j.geoderma.2019.02.041_bb0685) 2017; 24 Borggaard (10.1016/j.geoderma.2019.02.041_bb0095) 2009; 18 Strobel (10.1016/j.geoderma.2019.02.041_bb0560) 2005; 56 WHO (10.1016/j.geoderma.2019.02.041_bb0650) 2017 Liu (10.1016/j.geoderma.2019.02.041_bb0365) 2013; 178 Carbonaro (10.1016/j.geoderma.2019.02.041_bb0130) 2011; 75 Smith (10.1016/j.geoderma.2019.02.041_bb0525) 2002; C133 Holm (10.1016/j.geoderma.2019.02.041_bb0250) 2003; 32 Van Schaik (10.1016/j.geoderma.2019.02.041_bb0615) 2010; 74 Shahid (10.1016/j.geoderma.2019.02.041_bb0510) 2012; 219-220 Chen (10.1016/j.geoderma.2019.02.041_bb0135) 2014; 235-236 Strobel (10.1016/j.geoderma.2019.02.041_bb0555) 2001; 56 Tao (10.1016/j.geoderma.2019.02.041_bb0580) 2006; 65 Craven (10.1016/j.geoderma.2019.02.041_bb0175) 2012; 46 Puschenreiter (10.1016/j.geoderma.2019.02.041_bb0455) 2005; 51 Yun (10.1016/j.geoderma.2019.02.041_bb0675) 2015; 287 |
References_xml | – volume: 65 start-page: 1281 year: 2006 end-page: 1287 ident: bb0580 article-title: Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat publication-title: Chemosphere – volume: 58 start-page: 1514 year: 2007 end-page: 1524 ident: bb0115 article-title: Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils publication-title: Eur. J. Soil Sci. – volume: 368 start-page: 31 year: 2014 end-page: 38 ident: bb0420 article-title: Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface publication-title: Chem. Geol. – volume: 29 start-page: 613 year: 2003 end-page: 618 ident: bb0225 article-title: Effects of organic acids on copper and cadmium desorption from contaminated soils publication-title: Environ. Int. – volume: 178 start-page: 97 year: 2013 end-page: 101 ident: bb0365 article-title: Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge publication-title: Environ. Pollut. – volume: 132 start-page: 333 year: 2004 end-page: 339 ident: bb0320 article-title: Chelator induced phytoextraction and in situ soil washing of Cu publication-title: Environ. Pollut. – volume: 152 start-page: 693 year: 2008 end-page: 701 ident: bb0345 article-title: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environ publication-title: Pollut. – volume: 24 start-page: 15260 year: 2017 end-page: 15269 ident: bb0180 article-title: Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement publication-title: Environ. Sci. Pollut. Res. – volume: 24 start-page: 9506 year: 2017 end-page: 9514 ident: bb0685 article-title: Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent publication-title: Environ. Sci. Pollut. Res. – volume: 287 start-page: 429 year: 2015 end-page: 437 ident: bb0675 article-title: Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study publication-title: J. Hazard. Mat. – volume: 312 start-page: 307 year: 2016 end-page: 318 ident: bb0040 article-title: Humic substances-enhanced electroremediation of heavy metals contaminated soil publication-title: J. Hazard. Mat. – volume: 32 start-page: 138 year: 2003 end-page: 145 ident: bb0250 article-title: Correlation of cadmium distribution coefficients to soil characteristics publication-title: J. Environ. Qual. – volume: 110 start-page: 335 year: 1999 end-page: 346 ident: bb0215 article-title: Extractive decontamination of metal-polluted soils using oxalate publication-title: Water Air Soil Pollut. – volume: 40 start-page: 5225 year: 2006 end-page: 5232 ident: bb0430 article-title: Critical assessment of chelant-enhanced metal phytoextraction publication-title: Environ. Sci. Technol. – volume: 135 start-page: 515 year: 2005 end-page: 522 ident: bb0170 article-title: Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils publication-title: Environ. Pollut. – volume: 34 start-page: 1125 year: 2000 end-page: 1131 ident: bb0505 article-title: Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter publication-title: Environ. Sci. Technol. – volume: 41 start-page: 2277 year: 2007 end-page: 2281 ident: bb0015 article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedure publication-title: Environ. Sci. Technol. – volume: 144 start-page: 2 year: 2006 end-page: 10 ident: bb0390 article-title: Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals publication-title: Environ. Pollut. – volume: 37 start-page: 1319 year: 2005 end-page: 1331 ident: bb0295 article-title: Stabilization of dissolved organic matter by sorption to the mineral soil publication-title: Soil Biol. Biochem. – volume: 57 start-page: 253 year: 2004 end-page: 263 ident: bb0460 article-title: Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils publication-title: Chemosphere – volume: 127 start-page: 301 year: 2001 end-page: 314 ident: bb0630 article-title: Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns publication-title: Water Air Soil Pollut. – volume: 150 start-page: 106 year: 2009 end-page: 112 ident: bb0565 article-title: Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with hyperaccumulator plant ( publication-title: Geoderma – volume: 99 start-page: 169 year: 2001 end-page: 198 ident: bb0545 article-title: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review publication-title: Geoderma – volume: 52 start-page: 265 year: 2003 end-page: 275 ident: bb0240 article-title: Potential availability of heavy metals by phytoextraction from contaminated soils induced by exogenous humic substances publication-title: Chemosphere – volume: 38 start-page: 229 year: 1987 end-page: 238 ident: bb0085 article-title: Influence of iron oxides on cobalt adsorption by soils publication-title: J. Soil Sci. – volume: 20 start-page: 777 year: 2011 end-page: 789 ident: bb0285 article-title: A laboratory assessment of potentials and limitations of using EDTA, rhamnolipids and compost derived humic substances (HS) in enhanced phytoextraction of copper and zinc polluted calcareous soils publication-title: Soil Sediment Contam. – volume: 40 start-page: 6015 year: 2006 end-page: 6020 ident: bb0125 article-title: Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminium publication-title: Environ. Sci. Technol. – year: 2014 ident: bb0530 article-title: Keys to Soil Taxonomy – volume: 41 start-page: 410 year: 2006 end-page: 422 ident: bb0020 article-title: Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry publication-title: Process Biochem. – volume: 601-602 start-page: 1591 year: 2017 end-page: 1605 ident: bb0305 article-title: Soil contamination with cadmium, consequences and remediation using organic amendments publication-title: Sci. Total Environ. – volume: 10 start-page: 390 year: 2008 end-page: 414 ident: bb0405 article-title: Chemical assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals publication-title: Int. J. Phytorem. – volume: 191 start-page: 144 year: 2011 end-page: 149 ident: bb0235 article-title: Desorption of cadmium from natural Shanghai clay using citric acid industrial wastewater publication-title: J. Hazard. Mat. – volume: 74 start-page: 1391 year: 2010 end-page: 1406 ident: bb0615 article-title: Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution publication-title: Geochim. Cosmochim. Acta – volume: 51 start-page: 1 year: 2005 end-page: 11 ident: bb0455 article-title: Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review publication-title: Plant Soil Environ. – volume: 174 start-page: 1 year: 2010 end-page: 8 ident: bb0660 article-title: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities publication-title: J. Hazard. Mat. – volume: 49 start-page: 750 year: 2015 end-page: 759 ident: bb0695 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. – volume: 542 start-page: 642 year: 2016 end-page: 652 ident: bb0185 article-title: Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem publication-title: Sci. Total Environ. – volume: 134 start-page: 187 year: 2005 end-page: 194 ident: bb0355 article-title: Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching publication-title: Environ. Pollut. – volume: 47 start-page: 65 year: 2017 end-page: 129 ident: bb0300 article-title: State of the science review: potential for beneficial use of by-products for in situ remediation of metal-contaminated soil and sediment publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 26 start-page: 1 year: 2016 end-page: 12 ident: bb0655 article-title: Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress publication-title: Pedosphere – volume: 35 start-page: 111 year: 2013 end-page: 118 ident: bb0625 article-title: Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings publication-title: Environ. Geochem. Health – volume: C133 start-page: 65 year: 2002 end-page: 74 ident: bb0525 article-title: Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites publication-title: Comp. Biochem. Phys. – volume: 40 start-page: 909 year: 2010 end-page: 977 ident: bb0705 article-title: Sorption of heavy metals by inorganic and organic components of soil wastes: significance to use wastes of low-cost adsorbents and immobilizing agents publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 22 start-page: 5283 year: 2015 end-page: 5292 ident: bb0160 article-title: Experimental determinations of soil cupper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils publication-title: Environ. Sci. Pollut. Res. – volume: 64 start-page: 156 year: 2018 end-page: 167 ident: bb0385 article-title: Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality – a critical review publication-title: Soil Sci. Plant Nutr. – volume: 80 start-page: 222 year: 2006 end-page: 229 ident: bb0140 article-title: Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters publication-title: J. Environ. Manag. – volume: 163 start-page: 563 year: 2000 end-page: 570 ident: bb0540 article-title: New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface publication-title: J. Plant Nutr. Soil Sci. – volume: 167 start-page: 111 year: 2005 end-page: 122 ident: bb0680 article-title: Effects of low molecular weight organic anions on the release of arsenite and arsenate from contaminated soil publication-title: Water Air Soil Pollut. – volume: 27 start-page: 389 year: 2017 end-page: 406 ident: bb0340 article-title: Assessment of methods for determining bioavailability of trace elements in soils: a review publication-title: Pedosphere – volume: 196 start-page: 183 year: 2009 end-page: 198 ident: bb0450 article-title: Assisted washing for heavy metal and metalloid removal from contaminated dredged materials publication-title: Water Air Soil Pollut. – volume: 17 start-page: 517 year: 2002 end-page: 568 ident: bb0520 article-title: A review of the source, behavior and distribution of arsenic in natural waters publication-title: Appl. Geochem. – volume: 633 start-page: 206 year: 2018 end-page: 219 ident: bb0375 article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability publication-title: Sci. Total Environ. – volume: 28 start-page: 363 year: 2018 end-page: 382 ident: bb0570 article-title: Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: a review publication-title: Pedosphere – volume: 279 start-page: 132 year: 2016 end-page: 140 ident: bb0620 article-title: Changes in heavy metals extractability from contaminated soils remediated with organic waste or biochar publication-title: Geoderma – volume: 46 start-page: 9948 year: 2012 end-page: 9955 ident: bb0175 article-title: Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model publication-title: Environ. Sci. Technol. – volume: 61 start-page: 337 year: 2005 end-page: 344 ident: bb0500 article-title: Copper complexation by dissolved organic matter from surface water and wastewater effluent publication-title: Ecotoxicol. Environ. Saf. – volume: 22 start-page: 8802 year: 2015 end-page: 8825 ident: bb0425 article-title: Assessing the bioavailability and bioaccessibility of metals and metalloids publication-title: Environ. Sci. Pollut. Res. – volume: 39 start-page: 855 year: 2010 end-page: 862 ident: bb0535 article-title: Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriactetic acid as washing agents of a heavy metal-polluted soil publication-title: J. Environ. Qual. – volume: 72 start-page: 1481 year: 2008 end-page: 1490 ident: bb0210 article-title: Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents publication-title: Chemosphere – volume: 42 start-page: 489 year: 2012 end-page: 533 ident: bb0380 article-title: Cadmium sorption and desorption in soils: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 185 start-page: 549 year: 2011 end-page: 574 ident: bb0440 article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils publication-title: J. Hazard. Mat. – volume: 171 start-page: 621 year: 2017 end-page: 645 ident: bb0030 article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation – a review publication-title: Earth-Sci. Rev. – volume: 44 start-page: 15 year: 2010 end-page: 23 ident: bb0075 article-title: Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci publication-title: Technol. – reference: Borggaard, O.K. (1990) Dissolution and Adsorption Properties of Soil Iron Oxides. DSc-thesis, Royal Veterinary and Agricultural University (now University of Copenhagen), Denmark. – volume: 43 start-page: 3630 year: 2009 end-page: 3645 ident: bb0290 article-title: Arsenic redox changes by microbial and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone publication-title: Environ. Sci. Technol. – volume: 19 start-page: 275 year: 2000 end-page: 282 ident: bb0060 article-title: Extraction of metals from a contaminated sandy soil using citric acid publication-title: Environ. Prog. – year: 2017 ident: bb0650 article-title: Guidelines for Drinking-water Quality – volume: 157 start-page: 931 year: 2009 end-page: 937 ident: bb0280 article-title: The potential of willow for remediation of metal polluted calcareous urban soils publication-title: Environ. Pollut. – volume: 237 start-page: 650 year: 2018 end-page: 661 ident: bb0255 article-title: Source identification of heavy metals in peri-urban soils of southeast China: An integrated approach publication-title: Environ. Pollut. – volume: B61 start-page: 577 year: 2011 end-page: 581 ident: bb0100 article-title: Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids publication-title: Acta Agric. Scand. – volume: 3 start-page: 3020 year: 2015 end-page: 3023 ident: bb0475 article-title: A laboratory test of NOM-assisted remediation of arsenic and copper contaminated soils publication-title: J. Environ. Chem. Eng. – volume: 189 start-page: 291 year: 2008 end-page: 333 ident: bb0470 article-title: A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials publication-title: Water Air Soil Pollut. – volume: 116 start-page: 109 year: 2002 end-page: 121 ident: bb0495 article-title: Potential and drawbacks pf chelate-enhanced phytoremediation of soils publication-title: Environ. Pollut. – volume: 91 start-page: 869 year: 2013 end-page: 881 ident: bb0005 article-title: Phytoremediation of heavy metals – concepts and applications publication-title: Chemosphere – volume: 19 start-page: 142 year: 2010 end-page: 159 ident: bb0025 article-title: Extraction of arsenic from soils contaminated with wood preservation chemicals publication-title: Soil Sediment Contam. – volume: 18 start-page: 369 year: 2009 end-page: 382 ident: bb0095 article-title: Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils publication-title: Soil Sediment Contam. – volume: 177 start-page: 655 year: 2012 end-page: 663 ident: bb0010 article-title: Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize ( publication-title: Soil Sci. – volume: 193 start-page: 323 year: 2008 end-page: 333 ident: bb0065 article-title: Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances publication-title: Water Air Soil Pollut. – volume: 11 start-page: 33 year: 2014 end-page: 42 ident: bb0205 article-title: Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils publication-title: Int. J. Environ. Sci. Technol. – volume: 26 start-page: 148 year: 2016 end-page: 166 ident: bb0515 article-title: Factors affecting phytoextraction: a review publication-title: Pedosphere – volume: 25 start-page: 2584 year: 2011 end-page: 2590 ident: bb0045 article-title: Metal complexation properties of dissolved organic matter are explained by its aromaticity and anthropogenic ligands publication-title: Environ. Sci. Technol. – volume: 5 start-page: 635 year: 2010 end-page: 643 ident: bb0605 article-title: Humic substances biological activity at the plant-soil interface publication-title: Plant Signal. Behav. – volume: 219-220 start-page: 1 year: 2012 end-page: 12 ident: bb0510 article-title: Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands publication-title: J. Hazard. Mat. – volume: 28 start-page: 215 year: 2008 end-page: 225 ident: bb0335 article-title: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review publication-title: Water Manage. – volume: 56 start-page: 3627 year: 1992 end-page: 3641 ident: bb0595 article-title: A unifying model of cation binding by humic substances publication-title: Geochim. Cosmochim. Acta – volume: 21 start-page: 12684 year: 2014 end-page: 12692 ident: bb0710 article-title: Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw publication-title: Environ. Sci. Pollut. Res. – volume: 362 start-page: 389 year: 2013 end-page: 417 ident: bb0270 article-title: Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview to integrative opportunities for agronomy publication-title: Plant Soil – volume: 301 start-page: 100 year: 2016 end-page: 105 ident: bb0145 article-title: Reclamation of zinc-contaminated soil using a dissolve organic carbon solution prepared using liquid fertilizer from food waste composting publication-title: J. Hazard. Mat. – volume: 14 start-page: 75 year: 2017 end-page: 84 ident: bb0265 article-title: Low-molecular-mass-organic acids in the forest soil environment publication-title: Mini-Rev. Org. Chem. – volume: 51 start-page: 845 year: 2003 end-page: 853 ident: bb0310 article-title: Factors affecting EDTA extraction of lead from lead-contaminated soils publication-title: Chemosphere – volume: 23 start-page: 599 year: 2014 end-page: 613 ident: bb0245 article-title: Soil washing enhanced by humic substances and biodegradable chelating agents publication-title: Soil Sediment Contam. – volume: 72 start-page: 473 year: 2017 end-page: 480 ident: bb0700 article-title: Roles of composts in soil based on assessment of humification degree of fulvic acids publication-title: Ecol. Indic. – year: 2006 ident: bb0275 article-title: World Reference Base for Soil Resources 2006. World Soil Resources Reports No 103 – volume: 20 start-page: 384 year: 2018 end-page: 397 ident: bb0120 article-title: From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites publication-title: Int. J. Phytorem. – volume: 113 start-page: 187 year: 2003 end-page: 209 ident: bb0715 article-title: Dissolved organic matter: artefacts, definitions, and functions publication-title: Geoderma – volume: 65 start-page: 1233 year: 2001 end-page: 1242 ident: bb0550 article-title: Cadmium and copper release kinetics in relation to afforestation of cultivated soils publication-title: Geochim. Cosmoschim. Acta – year: 2015 ident: bb0410 article-title: Liste over kvalitetskriterier i relation til forurenet jord og kvalitetskriterier for drikkevand (in Danish) publication-title: Available – volume: 250-251 start-page: 272 year: 2013 end-page: 291 ident: bb0200 article-title: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review publication-title: J. Hazard. Mat. – volume: 152 start-page: 1 year: 2008 end-page: 31 ident: bb0195 article-title: Soil washing for metal removal: a review of physical/chemical technologies and field applications publication-title: J. Hazard. Mat. – volume: 151 start-page: 34 year: 2015 end-page: 40 ident: bb0490 article-title: Phytoextraction: where's the action? publication-title: J. Geochem. Exp. – volume: 153 start-page: 3 year: 2008 end-page: 13 ident: bb0350 article-title: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ publication-title: Pollut. – volume: 56 start-page: 1 year: 2001 end-page: 26 ident: bb0555 article-title: Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type publication-title: Biogeochem. – volume: 140 start-page: 114 year: 2006 end-page: 123 ident: bb0415 article-title: Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil publication-title: Environ. Pollut. – volume: 62 start-page: 255 year: 2006 end-page: 264 ident: bb0050 article-title: Leaching and reduction of chromium in soil as affected by soil organic content and plants publication-title: Chemosphere – volume: 113 start-page: 79 year: 2001 end-page: 85 ident: bb0055 article-title: Metal associations in soils before and after EDTA extractive decontamination: implications for effectiveness of further clean-up procedures publication-title: Environ. Pollut. – volume: 436 start-page: 309 year: 2001 end-page: 323 ident: bb0645 article-title: Arsenic fractionation in soils using an improved sequential extraction procedure publication-title: Anal. Chim. Acta – volume: 36 start-page: 4916 year: 2002 end-page: 4926 ident: bb0105 article-title: Role of iron in controlling speciation and mobilization of arsenic in subsurface environment publication-title: Water Res. – volume: 75 start-page: 2499 year: 2011 end-page: 2511 ident: bb0130 article-title: Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charge oxygen donor atoms publication-title: Geochim. Cosmochim. Acta – volume: 36 start-page: 753 year: 2007 end-page: 763 ident: bb0230 article-title: Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil publication-title: J. Environ. Qual. – volume: 187 start-page: 18 year: 2016 end-page: 30 ident: bb0035 article-title: Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil publication-title: J. Contam. Hydrol. – volume: 43 start-page: 1013 year: 2001 end-page: 1021 ident: bb0670 article-title: Mobilization of soil organic matter by complexing agents and implications for polycyclic hydrocarbon desorption publication-title: Chemosphere – volume: 235-236 start-page: 233 year: 2014 end-page: 239 ident: bb0135 article-title: Remediation of lead-contaminated soil using dissolved organic carbon solutions prepared by wine-producing waste sludge publication-title: Geoderma – volume: 49 start-page: 397 year: 1998 end-page: 406 ident: bb0480 article-title: Effect of natural organic soil solutes on weathering rates of soil minerals publication-title: Eur. J. Soil Sci. – volume: 7 start-page: 129 year: 2005 end-page: 142 ident: bb0400 article-title: Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil publication-title: Int. J. Phytorem. – volume: 66 start-page: 151 year: 1999 end-page: 210 ident: bb0445 article-title: Chelant extraction of heavy metals from contaminated soils publication-title: J. Hazard. Mat. – volume: 88 start-page: 299 year: 2016 end-page: 309 ident: bb0600 article-title: Heavy metals in agricultural soils of European Union with implications for food safety publication-title: Environ. Int. – volume: 7 start-page: 485 year: 2010 end-page: 496 ident: bb0665 article-title: Removal of heavy metals from a contaminated soil using organic chelating acids publication-title: Int. J. Environ. Sci. Tech. – volume: 84 start-page: 168 year: 2015 end-page: 176 ident: bb0165 article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model publication-title: Soil Biol. Biochem. – volume: 70 start-page: 2163 year: 2006 end-page: 2190 ident: bb0315 article-title: Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction and thermodynamic modeling. Geochim. Cosmochim publication-title: Acta – volume: 398 start-page: 61 year: 2015 end-page: 69 ident: bb0485 article-title: Effect of dissolved organic matter on metal speciation in soil solutions publication-title: Chem. Geol. – volume: 68 start-page: 989 year: 2007 end-page: 1003 ident: bb0220 article-title: Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents publication-title: Chemosphere – volume: 36 start-page: 976 year: 2002 end-page: 981 ident: bb0395 article-title: Arsenic(III) oxidation and arsenic(V) reactions on synthetic birnessite publication-title: Environ. Sci. Technol. – volume: 124 start-page: 3 year: 2005 end-page: 22 ident: bb0110 article-title: Soil structure and management: a review publication-title: Geoderma – volume: 161 start-page: 1239 year: 2009 end-page: 1244 ident: bb0150 article-title: The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils publication-title: J. Hazard. Mat. – volume: 244-245 start-page: 645 year: 2013 end-page: 653 ident: bb0360 article-title: Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge publication-title: J. Hazard. Mat. – volume: 6 start-page: 611 year: 2007 end-page: 622 ident: bb0635 article-title: Kinetics of heavy metal desorption from three soils using citric acid, tartaric acid, and EDTA publication-title: J. Environ. Eng. Sci. – volume: 266 start-page: 141 year: 2014 end-page: 166 ident: bb0070 article-title: Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize publication-title: J. Hazard. Mat. – volume: 38 start-page: 937 year: 2004 end-page: 944 ident: bb0575 article-title: Extraction of heavy metals from soils using biodegradable chelating agents publication-title: Environ. Sci. Technol. – volume: 60 start-page: 590 year: 2009 end-page: 612 ident: bb0190 article-title: Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review publication-title: Eur. J. Soil Sci. – volume: 21 start-page: 3987 year: 2014 end-page: 3995 ident: bb0610 article-title: Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances publication-title: Environ. Sci. Pollut. Res. – reference: Borggaard, O.K. (1974) Titrimetric determination of acidity and pK values of humic acid. Acta Chem. Scand. A28, 121–122. – volume: 136 start-page: 42 year: 2015 end-page: 49 ident: bb0330 article-title: Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil publication-title: Chemosphere – volume: 32 start-page: 125 year: 1998 end-page: 135 ident: bb0155 article-title: Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater publication-title: Water Res. – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: bb0585 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. – volume: 36 start-page: 4804 year: 2002 end-page: 4810 ident: bb0640 article-title: Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil publication-title: Environ. Sci. Technol. – volume: 45 start-page: 3210 year: 2011 end-page: 3216 ident: bb0370 article-title: Complexation of arsenite with humic acid in the presence of ferric iron publication-title: Environ. Sci. Technol. – volume: 56 start-page: 189 year: 2005 end-page: 196 ident: bb0560 article-title: Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil publication-title: Eur. J. Soil Sci. – volume: 196 start-page: 556 year: 2018 end-page: 565 ident: bb0590 article-title: Metal sorption to Spodosol Bs horizons: organic matter complexes publication-title: Chemosphere – volume: 241 start-page: 922 year: 2018 end-page: 929 ident: bb0260 article-title: Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: implications for safe food production publication-title: Environ. Pollut. – volume: 206 start-page: 400 year: 2015 end-page: 410 ident: bb0435 article-title: Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: the influence of aging and emission source publication-title: Environ. Pollut. – volume: 300 start-page: 882 year: 2015 end-page: 891 ident: bb0325 article-title: Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time publication-title: J. Hazard. Mat. – volume: 10 start-page: 45 year: 2010 end-page: 53 ident: bb0465 article-title: Removal of trace and major metals by soil washing with Na publication-title: J. Soils Sediments – volume: 11 start-page: 33 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0205 article-title: Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0433-7 – volume: 191 start-page: 144 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0235 article-title: Desorption of cadmium from natural Shanghai clay using citric acid industrial wastewater publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2011.04.054 – volume: 38 start-page: 937 year: 2004 ident: 10.1016/j.geoderma.2019.02.041_bb0575 article-title: Extraction of heavy metals from soils using biodegradable chelating agents publication-title: Environ. Sci. Technol. doi: 10.1021/es0348750 – volume: 75 start-page: 2499 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0130 article-title: Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charge oxygen donor atoms publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.02.027 – volume: 49 start-page: 397 year: 1998 ident: 10.1016/j.geoderma.2019.02.041_bb0480 article-title: Effect of natural organic soil solutes on weathering rates of soil minerals publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.1998.4930397.x – volume: 49 start-page: 750 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0695 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. doi: 10.1021/es5047099 – volume: 58 start-page: 1514 year: 2007 ident: 10.1016/j.geoderma.2019.02.041_bb0115 article-title: Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2007.00958.x – volume: 28 start-page: 215 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0335 article-title: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review publication-title: Water Manage. – volume: 56 start-page: 3627 year: 1992 ident: 10.1016/j.geoderma.2019.02.041_bb0595 article-title: A unifying model of cation binding by humic substances publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(92)90158-F – volume: 41 start-page: 2277 year: 2007 ident: 10.1016/j.geoderma.2019.02.041_bb0015 article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedure publication-title: Environ. Sci. Technol. doi: 10.1021/es062166r – volume: 42 start-page: 489 year: 2012 ident: 10.1016/j.geoderma.2019.02.041_bb0380 article-title: Cadmium sorption and desorption in soils: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2010.520234 – volume: 633 start-page: 206 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0375 article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.161 – volume: 60 start-page: 590 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0190 article-title: Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01142.x – volume: 64 start-page: 156 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0385 article-title: Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality – a critical review publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2018.1440938 – volume: 152 start-page: 693 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0345 article-title: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environ publication-title: Pollut. doi: 10.1016/j.envpol.2007.06.054 – volume: 193 start-page: 323 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0065 article-title: Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-008-9693-0 – volume: 542 start-page: 642 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0185 article-title: Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.10.122 – volume: 171 start-page: 621 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0030 article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation – a review publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2017.06.005 – volume: 152 start-page: 1 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0195 article-title: Soil washing for metal removal: a review of physical/chemical technologies and field applications publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2007.10.043 – volume: 244-245 start-page: 645 year: 2013 ident: 10.1016/j.geoderma.2019.02.041_bb0360 article-title: Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2012.10.060 – volume: 187 start-page: 18 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0035 article-title: Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2016.01.009 – volume: 72 start-page: 1481 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0210 article-title: Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.04.083 – volume: 51 start-page: 845 year: 2003 ident: 10.1016/j.geoderma.2019.02.041_bb0310 article-title: Factors affecting EDTA extraction of lead from lead-contaminated soils publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00155-3 – volume: 68 start-page: 989 year: 2007 ident: 10.1016/j.geoderma.2019.02.041_bb0220 article-title: Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.01.062 – year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0410 article-title: Liste over kvalitetskriterier i relation til forurenet jord og kvalitetskriterier for drikkevand (in Danish) – volume: 26 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0655 article-title: Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60017-0 – volume: 88 start-page: 299 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0600 article-title: Heavy metals in agricultural soils of European Union with implications for food safety publication-title: Environ. Int. doi: 10.1016/j.envint.2015.12.017 – volume: 26 start-page: 148 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0515 article-title: Factors affecting phytoextraction: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60032-7 – volume: 135 start-page: 515 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0170 article-title: Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.10.006 – volume: 196 start-page: 183 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0450 article-title: Assisted washing for heavy metal and metalloid removal from contaminated dredged materials publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-008-9767-z – volume: 266 start-page: 141 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0070 article-title: Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2013.12.018 – volume: B61 start-page: 577 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0100 article-title: Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids publication-title: Acta Agric. Scand. – volume: 136 start-page: 42 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0330 article-title: Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.083 – volume: 150 start-page: 106 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0565 article-title: Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with hyperaccumulator plant (Sedum alfredii Hance) publication-title: Geoderma doi: 10.1016/j.geoderma.2009.01.016 – volume: 80 start-page: 222 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0140 article-title: Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2005.09.007 – volume: 32 start-page: 125 year: 1998 ident: 10.1016/j.geoderma.2019.02.041_bb0155 article-title: Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater publication-title: Water Res. doi: 10.1016/S0043-1354(97)00202-9 – volume: 287 start-page: 429 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0675 article-title: Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2015.01.062 – volume: 99 start-page: 169 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0545 article-title: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review publication-title: Geoderma doi: 10.1016/S0016-7061(00)00102-6 – volume: 29 start-page: 613 year: 2003 ident: 10.1016/j.geoderma.2019.02.041_bb0225 article-title: Effects of organic acids on copper and cadmium desorption from contaminated soils publication-title: Environ. Int. doi: 10.1016/S0160-4120(03)00048-5 – volume: 3 start-page: 3020 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0475 article-title: A laboratory test of NOM-assisted remediation of arsenic and copper contaminated soils publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2015.04.029 – volume: 40 start-page: 6015 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0125 article-title: Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminium publication-title: Environ. Sci. Technol. doi: 10.1021/es061057+ – volume: 18 start-page: 369 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0095 article-title: Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils publication-title: Soil Sediment Contam. doi: 10.1080/15320380902799326 – volume: 157 start-page: 931 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0280 article-title: The potential of willow for remediation of metal polluted calcareous urban soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.10.024 – year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0530 – volume: 44 start-page: 15 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0075 article-title: Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci publication-title: Technol. doi: 10.1021/es9026248 – volume: 235-236 start-page: 233 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0135 article-title: Remediation of lead-contaminated soil using dissolved organic carbon solutions prepared by wine-producing waste sludge publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.004 – volume: 127 start-page: 301 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0630 article-title: Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns publication-title: Water Air Soil Pollut. doi: 10.1023/A:1005251915165 – volume: 19 start-page: 142 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0025 article-title: Extraction of arsenic from soils contaminated with wood preservation chemicals publication-title: Soil Sediment Contam. doi: 10.1080/15320380903390539 – volume: 20 start-page: 384 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0120 article-title: From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites publication-title: Int. J. Phytorem. doi: 10.1080/15226514.2017.1365340 – volume: 40 start-page: 909 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0705 article-title: Sorption of heavy metals by inorganic and organic components of soil wastes: significance to use wastes of low-cost adsorbents and immobilizing agents publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380802586857 – volume: 24 start-page: 9506 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0685 article-title: Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8660-y – volume: 301 start-page: 100 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0145 article-title: Reclamation of zinc-contaminated soil using a dissolve organic carbon solution prepared using liquid fertilizer from food waste composting publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2015.08.015 – volume: 161 start-page: 1239 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0150 article-title: The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2008.04.081 – volume: 132 start-page: 333 year: 2004 ident: 10.1016/j.geoderma.2019.02.041_bb0320 article-title: Chelator induced phytoextraction and in situ soil washing of Cu publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.04.004 – volume: 36 start-page: 753 year: 2007 ident: 10.1016/j.geoderma.2019.02.041_bb0230 article-title: Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2006.0081 – year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0275 – volume: 436 start-page: 309 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0645 article-title: Arsenic fractionation in soils using an improved sequential extraction procedure publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)00924-2 – volume: 72 start-page: 473 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0700 article-title: Roles of composts in soil based on assessment of humification degree of fulvic acids publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.08.051 – volume: 39 start-page: 855 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0535 article-title: Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriactetic acid as washing agents of a heavy metal-polluted soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0292 – volume: 51 start-page: 1 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0455 article-title: Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review publication-title: Plant Soil Environ. doi: 10.17221/3549-PSE – volume: 601-602 start-page: 1591 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0305 article-title: Soil contamination with cadmium, consequences and remediation using organic amendments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.030 – volume: 22 start-page: 5283 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0160 article-title: Experimental determinations of soil cupper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3737-3 – volume: 35 start-page: 111 year: 2013 ident: 10.1016/j.geoderma.2019.02.041_bb0625 article-title: Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings publication-title: Environ. Geochem. Health doi: 10.1007/s10653-012-9461-3 – volume: 27 start-page: 389 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0340 article-title: Assessment of methods for determining bioavailability of trace elements in soils: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60337-0 – volume: 144 start-page: 2 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0390 article-title: Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.01.017 – volume: 38 start-page: 229 year: 1987 ident: 10.1016/j.geoderma.2019.02.041_bb0085 article-title: Influence of iron oxides on cobalt adsorption by soils publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1987.tb02140.x – year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0650 – volume: 25 start-page: 2584 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0045 article-title: Metal complexation properties of dissolved organic matter are explained by its aromaticity and anthropogenic ligands publication-title: Environ. Sci. Technol. doi: 10.1021/es103532a – volume: 185 start-page: 549 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0440 article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2010.09.082 – volume: 237 start-page: 650 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0255 article-title: Source identification of heavy metals in peri-urban soils of southeast China: An integrated approach publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.070 – volume: 40 start-page: 5225 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0430 article-title: Critical assessment of chelant-enhanced metal phytoextraction publication-title: Environ. Sci. Technol. doi: 10.1021/es0604919 – volume: 37 start-page: 1319 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0295 article-title: Stabilization of dissolved organic matter by sorption to the mineral soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.11.028 – volume: 368 start-page: 31 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0420 article-title: Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2013.12.020 – volume: 28 start-page: 363 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0570 article-title: Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(18)60026-8 – volume: 279 start-page: 132 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0620 article-title: Changes in heavy metals extractability from contaminated soils remediated with organic waste or biochar publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.010 – volume: 312 start-page: 307 year: 2016 ident: 10.1016/j.geoderma.2019.02.041_bb0040 article-title: Humic substances-enhanced electroremediation of heavy metals contaminated soil publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2016.03.038 – volume: 10 start-page: 45 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0465 article-title: Removal of trace and major metals by soil washing with Na2EDTA and oxalate publication-title: J. Soils Sediments doi: 10.1007/s11368-009-0083-z – volume: 5 start-page: 635 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0605 article-title: Humic substances biological activity at the plant-soil interface publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.6.11211 – volume: 21 start-page: 12684 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0710 article-title: Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3216-x – volume: 51 start-page: 844 year: 1979 ident: 10.1016/j.geoderma.2019.02.041_bb0585 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. doi: 10.1021/ac50043a017 – volume: 47 start-page: 65 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0300 article-title: State of the science review: potential for beneficial use of by-products for in situ remediation of metal-contaminated soil and sediment publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2016.1275417 – volume: 57 start-page: 253 year: 2004 ident: 10.1016/j.geoderma.2019.02.041_bb0460 article-title: Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.06.010 – volume: 163 start-page: 563 year: 2000 ident: 10.1016/j.geoderma.2019.02.041_bb0540 article-title: New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/1522-2624(200012)163:6<563::AID-JPLN563>3.0.CO;2-0 – ident: 10.1016/j.geoderma.2019.02.041_bb0080 doi: 10.3891/acta.chem.scand.28a-0121 – volume: 398 start-page: 61 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0485 article-title: Effect of dissolved organic matter on metal speciation in soil solutions publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2015.01.020 – volume: 206 start-page: 400 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0435 article-title: Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: the influence of aging and emission source publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.07.025 – volume: 56 start-page: 189 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0560 article-title: Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2004.00661.x – volume: C133 start-page: 65 year: 2002 ident: 10.1016/j.geoderma.2019.02.041_bb0525 article-title: Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites publication-title: Comp. Biochem. Phys. – volume: 7 start-page: 129 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0400 article-title: Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil publication-title: Int. J. Phytorem. doi: 10.1080/16226510590950423 – volume: 174 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0660 article-title: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2009.09.113 – volume: 177 start-page: 655 year: 2012 ident: 10.1016/j.geoderma.2019.02.041_bb0010 article-title: Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.) publication-title: Soil Sci. doi: 10.1097/SS.0b013e31827ba23f – volume: 153 start-page: 3 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0350 article-title: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ publication-title: Pollut. doi: 10.1016/j.envpol.2007.11.015 – volume: 43 start-page: 1013 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0670 article-title: Mobilization of soil organic matter by complexing agents and implications for polycyclic hydrocarbon desorption publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00498-7 – volume: 24 start-page: 15260 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0180 article-title: Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9139-6 – volume: 84 start-page: 168 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0165 article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.019 – volume: 167 start-page: 111 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0680 article-title: Effects of low molecular weight organic anions on the release of arsenite and arsenate from contaminated soil publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-005-8219-2 – volume: 362 start-page: 389 year: 2013 ident: 10.1016/j.geoderma.2019.02.041_bb0270 article-title: Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview to integrative opportunities for agronomy publication-title: Plant Soil doi: 10.1007/s11104-012-1429-7 – volume: 46 start-page: 9948 year: 2012 ident: 10.1016/j.geoderma.2019.02.041_bb0175 article-title: Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model publication-title: Environ. Sci. Technol. doi: 10.1021/es301015p – volume: 32 start-page: 138 year: 2003 ident: 10.1016/j.geoderma.2019.02.041_bb0250 article-title: Correlation of cadmium distribution coefficients to soil characteristics publication-title: J. Environ. Qual. doi: 10.2134/jeq2003.1380 – volume: 36 start-page: 4916 year: 2002 ident: 10.1016/j.geoderma.2019.02.041_bb0105 article-title: Role of iron in controlling speciation and mobilization of arsenic in subsurface environment publication-title: Water Res. doi: 10.1016/S0043-1354(02)00203-8 – volume: 22 start-page: 8802 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0425 article-title: Assessing the bioavailability and bioaccessibility of metals and metalloids publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1820-9 – volume: 189 start-page: 291 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0470 article-title: A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-007-9564-0 – volume: 113 start-page: 187 year: 2003 ident: 10.1016/j.geoderma.2019.02.041_bb0715 article-title: Dissolved organic matter: artefacts, definitions, and functions publication-title: Geoderma doi: 10.1016/S0016-7061(02)00361-0 – volume: 36 start-page: 4804 year: 2002 ident: 10.1016/j.geoderma.2019.02.041_bb0640 article-title: Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil publication-title: Environ. Sci. Technol. doi: 10.1021/es0200084 – volume: 91 start-page: 869 year: 2013 ident: 10.1016/j.geoderma.2019.02.041_bb0005 article-title: Phytoremediation of heavy metals – concepts and applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.075 – volume: 74 start-page: 1391 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0615 article-title: Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.11.007 – volume: 70 start-page: 2163 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0315 article-title: Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction and thermodynamic modeling. Geochim. Cosmochim publication-title: Acta – volume: 65 start-page: 1281 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0580 article-title: Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.04.039 – volume: 21 start-page: 3987 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0610 article-title: Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-2300-y – volume: 20 start-page: 777 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0285 article-title: A laboratory assessment of potentials and limitations of using EDTA, rhamnolipids and compost derived humic substances (HS) in enhanced phytoextraction of copper and zinc polluted calcareous soils publication-title: Soil Sediment Contam. doi: 10.1080/15320383.2011.609198 – volume: 7 start-page: 485 year: 2010 ident: 10.1016/j.geoderma.2019.02.041_bb0665 article-title: Removal of heavy metals from a contaminated soil using organic chelating acids publication-title: Int. J. Environ. Sci. Tech. doi: 10.1007/BF03326158 – volume: 45 start-page: 3210 year: 2011 ident: 10.1016/j.geoderma.2019.02.041_bb0370 article-title: Complexation of arsenite with humic acid in the presence of ferric iron publication-title: Environ. Sci. Technol. doi: 10.1021/es102931p – volume: 178 start-page: 97 year: 2013 ident: 10.1016/j.geoderma.2019.02.041_bb0365 article-title: Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.02.034 – volume: 14 start-page: 75 year: 2017 ident: 10.1016/j.geoderma.2019.02.041_bb0265 article-title: Low-molecular-mass-organic acids in the forest soil environment publication-title: Mini-Rev. Org. Chem. doi: 10.2174/1570193X14666161130163034 – volume: 116 start-page: 109 year: 2002 ident: 10.1016/j.geoderma.2019.02.041_bb0495 article-title: Potential and drawbacks pf chelate-enhanced phytoremediation of soils publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(01)00150-6 – volume: 196 start-page: 556 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0590 article-title: Metal sorption to Spodosol Bs horizons: organic matter complexes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.004 – volume: 10 start-page: 390 year: 2008 ident: 10.1016/j.geoderma.2019.02.041_bb0405 article-title: Chemical assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals publication-title: Int. J. Phytorem. doi: 10.1080/15226510802100515 – volume: 36 start-page: 976 year: 2002 ident: 10.1016/j.geoderma.2019.02.041_bb0395 article-title: Arsenic(III) oxidation and arsenic(V) reactions on synthetic birnessite publication-title: Environ. Sci. Technol. doi: 10.1021/es0110170 – volume: 61 start-page: 337 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0500 article-title: Copper complexation by dissolved organic matter from surface water and wastewater effluent publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2005.01.006 – volume: 250-251 start-page: 272 year: 2013 ident: 10.1016/j.geoderma.2019.02.041_bb0200 article-title: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2013.01.048 – volume: 43 start-page: 3630 year: 2009 ident: 10.1016/j.geoderma.2019.02.041_bb0290 article-title: Arsenic redox changes by microbial and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone publication-title: Environ. Sci. Technol. doi: 10.1021/es803112a – volume: 23 start-page: 599 year: 2014 ident: 10.1016/j.geoderma.2019.02.041_bb0245 article-title: Soil washing enhanced by humic substances and biodegradable chelating agents publication-title: Soil Sediment Contam. doi: 10.1080/15320383.2014.852511 – ident: 10.1016/j.geoderma.2019.02.041_bb0090 – volume: 241 start-page: 922 year: 2018 ident: 10.1016/j.geoderma.2019.02.041_bb0260 article-title: Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: implications for safe food production publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.06.034 – volume: 134 start-page: 187 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0355 article-title: Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.08.011 – volume: 41 start-page: 410 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0020 article-title: Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry publication-title: Process Biochem. doi: 10.1016/j.procbio.2005.07.005 – volume: 140 start-page: 114 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0415 article-title: Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.06.017 – volume: 52 start-page: 265 year: 2003 ident: 10.1016/j.geoderma.2019.02.041_bb0240 article-title: Potential availability of heavy metals by phytoextraction from contaminated soils induced by exogenous humic substances publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00185-1 – volume: 110 start-page: 335 year: 1999 ident: 10.1016/j.geoderma.2019.02.041_bb0215 article-title: Extractive decontamination of metal-polluted soils using oxalate publication-title: Water Air Soil Pollut. doi: 10.1023/A:1005067404259 – volume: 17 start-page: 517 year: 2002 ident: 10.1016/j.geoderma.2019.02.041_bb0520 article-title: A review of the source, behavior and distribution of arsenic in natural waters publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(02)00018-5 – volume: 62 start-page: 255 year: 2006 ident: 10.1016/j.geoderma.2019.02.041_bb0050 article-title: Leaching and reduction of chromium in soil as affected by soil organic content and plants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.05.020 – volume: 113 start-page: 79 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0055 article-title: Metal associations in soils before and after EDTA extractive decontamination: implications for effectiveness of further clean-up procedures publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(00)00158-5 – volume: 66 start-page: 151 year: 1999 ident: 10.1016/j.geoderma.2019.02.041_bb0445 article-title: Chelant extraction of heavy metals from contaminated soils publication-title: J. Hazard. Mat. doi: 10.1016/S0304-3894(99)00010-2 – volume: 6 start-page: 611 year: 2007 ident: 10.1016/j.geoderma.2019.02.041_bb0635 article-title: Kinetics of heavy metal desorption from three soils using citric acid, tartaric acid, and EDTA publication-title: J. Environ. Eng. Sci. doi: 10.1139/S07-004 – volume: 219-220 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2019.02.041_bb0510 article-title: Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2012.01.060 – volume: 65 start-page: 1233 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0550 article-title: Cadmium and copper release kinetics in relation to afforestation of cultivated soils publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/S0016-7037(00)00602-5 – volume: 124 start-page: 3 year: 2005 ident: 10.1016/j.geoderma.2019.02.041_bb0110 article-title: Soil structure and management: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 151 start-page: 34 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0490 article-title: Phytoextraction: where's the action? publication-title: J. Geochem. Exp. doi: 10.1016/j.gexplo.2015.01.001 – volume: 56 start-page: 1 year: 2001 ident: 10.1016/j.geoderma.2019.02.041_bb0555 article-title: Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type publication-title: Biogeochem. doi: 10.1023/A:1011934929379 – volume: 19 start-page: 275 year: 2000 ident: 10.1016/j.geoderma.2019.02.041_bb0060 article-title: Extraction of metals from a contaminated sandy soil using citric acid publication-title: Environ. Prog. doi: 10.1002/ep.670190415 – volume: 300 start-page: 882 year: 2015 ident: 10.1016/j.geoderma.2019.02.041_bb0325 article-title: Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2015.08.022 – volume: 34 start-page: 1125 year: 2000 ident: 10.1016/j.geoderma.2019.02.041_bb0505 article-title: Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es9907764 |
SSID | ssj0017020 |
Score | 2.6200795 |
SecondaryResourceType | review_article |
Snippet | Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 235 |
SubjectTerms | aluminum oxide arsenic cadmium cations chromium cobalt composting copper dissolved organic matter ecological footprint economic analysis EDTA (chelating agent) environmental factors food waste Fulvic acid fulvic acids guidelines Heavy metals human health lead ligands LMWOA microbial activity moieties nickel phytoaccumulation Phytoextraction pollutants polluted soils salicylic acids soil pollution Soil remediation soil structure Soil washing solubility sorbents vanadium zinc |
Title | Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.02.041 https://www.proquest.com/docview/2237526478 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1CemkOIW0TkjYNU-ihASu2pN2V1JtwG9yWuDkkEHJZVvtRbFzJ2HKO-e2Z0UdoAyWHHvYgsSvEzmjmoZ33hrGPHEGq4JIHorA64IgBglRHLiCpFZEZG4WeCM4XUzm55t9vxM0WG_dcGCqr7GJ_G9ObaN3dGXa7OVzOZsTxDWWC6QidEvNao_jJeUJefnb_WOYRJqNOmjGUAc3-gyU8RxtRw7FGfyjMGu1OHv4rQT0J1U3-Od9jux1whLx9t1dsy5Wv2U7-a9WJZ7g37O6yqqn4B6dVHuikvVrcOQtt5yYDvxstTfj05efFKdQVYFwmjhTk6wGMLY4KxwrHZgDT2QAuC9ClhdsSiIQCS-qKjAAV1tVssf4MObS8l312ff71ajwJur4KgeYxrwNvHVU3pbGRLWDw9G8400kknBcmSrVJZWKlsdpHxqZZ6lxYGOlDr510o_iAbZdV6Q4ZxNzz1PGoiL2gviWFx_wmRBFrbbKssEdM9JupTCc6Tr0vFqqvLpur3giKjKBGkUIjHLHh47plK7vx7Iqst5X6y4EU5oZn137ojavw66IjE126arNWCJ4SEREf9-1_PP8de4lXaVuadsy269XGvUcsUxcnjbOesBf5tx-T6QObZPHo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V6QE4oJaHKBQ6SBxAipXY3l3b3Ky0VUqb0EMrVVxW631UqYIdJU5_PzN-VICEeuCwF3vHsnbWM5-8833D2CeOIFVwyQNRWB1wxABBqiMXkNSKyIyNQk8E59lcTq_5txtxs8MmPReGyiq72N_G9CZad1dG3WqOVosFcXxDmWA6wk2JeY0UP3dJnUoM2G5-dj6dPxwmJONOnTGUARn8RhS-QzdRz7FGgijMGvlOHv4rR_0VrZsUdLrHnnfYEfL29fbZjitfsGf57brTz3Av2f1lVVP9D06rPNBhe7W8dxba5k0GfjZymvD5-PvsC9QVYGgmmhTkmyFMLI4KxxrHdgjzxRAuC9ClhR8lEA8FVtQYGTEqbKrFcvMVcmipL6_Y9enJ1WQadK0VAs1jXgfeOipwSmMjW8zg6fdwppNIOC9MlGqTysRKY7WPjE2z1LmwMNKHXjvpxvFrNiir0r1hEHPPU8ejIvaCWpcUHlOcEEWstcmywh4w0S-mMp3uOLW_WKq-wOxO9U5Q5AQ1jhQ64YCNHuxWrfLGoxZZ7yv1xx5SmB4etf3YO1fhB0anJrp01XajED8lIiJK7tv_eP4RezK9ml2oi7P5-Tv2lO60BWeHbFCvt-49Qpu6-NBt3V_oQfSX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+dissolved+organic+matter+%28DOM%29+to+extract+As%2C+Cd%2C+Co%2C+Cr%2C+Cu%2C+Ni%2C+Pb+and+Zn+from+polluted+soils%3A+A+review&rft.jtitle=Geoderma&rft.au=Borggaard%2C+Ole+K&rft.au=Holm%2C+Peter+E&rft.au=Strobel%2C+Bjarne+W&rft.date=2019-06-01&rft.issn=0016-7061&rft.volume=343+p.235-246&rft.spage=235&rft.epage=246&rft_id=info:doi/10.1016%2Fj.geoderma.2019.02.041&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |