Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review

Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currentl...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 343; pp. 235 - 246
Main Authors Borggaard, Ole K., Holm, Peter E., Strobel, Bjarne W.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs. Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing. •DOM has clear potential as heavy metal (HM) extractant in remediation of polluted soils.•DOM is a naturally occurring HM complexant (ligand).•DOM can extract cationic as well as anionic HMs.•DOM may improve soil fertility and plant growth.•DOM is a promising but yet rather unconfirmed polluted soil remediator.
AbstractList Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs.Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing.
Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs. Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing. •DOM has clear potential as heavy metal (HM) extractant in remediation of polluted soils.•DOM is a naturally occurring HM complexant (ligand).•DOM can extract cationic as well as anionic HMs.•DOM may improve soil fertility and plant growth.•DOM is a promising but yet rather unconfirmed polluted soil remediator.
Author Holm, Peter E.
Borggaard, Ole K.
Strobel, Bjarne W.
Author_xml – sequence: 1
  givenname: Ole K.
  surname: Borggaard
  fullname: Borggaard, Ole K.
  email: okb@plen.ku.dk
– sequence: 2
  givenname: Peter E.
  surname: Holm
  fullname: Holm, Peter E.
– sequence: 3
  givenname: Bjarne W.
  surname: Strobel
  fullname: Strobel, Bjarne W.
BookMark eNqFkEtvGyEUhVGUSHUef6FimUqeKTAehqm6qOW-IuW1SDfdIAKXCIsBF7DT_vsQOd1kk8XR1ZXOdxbfMToMMQBC7ylpKaH847p9gGggTaplhI4tYS1Z0AM0o2JgDWf9eIhmpDabgXD6Dh3nvK7vQBiZod1tLBCKUx5Hi43LOfodGBzTgwpO40mVAgmff725-oBLxPC3JKULXuY5XpmaWJNqtnN87eb49h6rYPDvgG2KE95E77el7uXofP6ElzjBzsHjKTqyymc4e7kn6Nf3b3ern83lzY-L1fKyUYtuURprYCRCiE5zMvRkpJb0rBvVwHqwvWZCacEHw7VRlmkjRgFA7zW31CrgQLoTdL7f3aT4Zwu5yMllDd6rAHGbJWPd0DO-GESt8n1Vp5hzAis3yU0q_ZOUyGfRci3_i5bPoiVhsoqu4OdXoHZFFRdDVeX82_iXPQ7VQ3WTZNYOggbjEugiTXRvTTwBa8Wetg
CitedBy_id crossref_primary_10_1016_j_jenvman_2022_116340
crossref_primary_10_1038_s41598_021_95441_5
crossref_primary_10_1016_j_scitotenv_2022_155076
crossref_primary_10_1080_15226514_2023_2221740
crossref_primary_10_1007_s11356_021_15476_z
crossref_primary_10_1016_j_scitotenv_2024_177020
crossref_primary_10_3389_fmicb_2022_1084097
crossref_primary_10_53623_tebt_v1i1_224
crossref_primary_10_1007_s00128_024_03989_5
crossref_primary_10_1016_j_ecoenv_2022_113488
crossref_primary_10_1016_j_envint_2024_108491
crossref_primary_10_1080_15567036_2022_2146237
crossref_primary_10_1007_s10098_024_02767_5
crossref_primary_10_1007_s40726_022_00222_x
crossref_primary_10_1080_26395940_2024_2367429
crossref_primary_10_3390_agronomy11122453
crossref_primary_10_1021_acsestengg_1c00483
crossref_primary_10_1016_j_envpol_2024_124382
crossref_primary_10_1016_j_scitotenv_2021_150198
crossref_primary_10_1016_j_jece_2024_112689
crossref_primary_10_1016_j_scitotenv_2021_145685
crossref_primary_10_1016_j_chemosphere_2022_134738
crossref_primary_10_1016_j_molliq_2024_125661
crossref_primary_10_1016_j_ecoenv_2021_112813
crossref_primary_10_1016_j_envpol_2022_120221
crossref_primary_10_1016_j_heliyon_2024_e32559
crossref_primary_10_1016_j_jhazmat_2022_130053
crossref_primary_10_1016_j_scitotenv_2020_140378
crossref_primary_10_1016_j_jhazmat_2023_133105
crossref_primary_10_1016_j_scitotenv_2023_165037
crossref_primary_10_1016_j_envadv_2022_100218
crossref_primary_10_1016_j_jece_2021_105258
crossref_primary_10_1016_j_jhazmat_2019_121795
crossref_primary_10_1016_j_watres_2024_121241
crossref_primary_10_1016_j_scitotenv_2024_171689
crossref_primary_10_1016_j_chemosphere_2022_134581
crossref_primary_10_1016_j_scitotenv_2021_150622
crossref_primary_10_1080_09593330_2023_2187319
crossref_primary_10_1016_j_heliyon_2022_e10221
crossref_primary_10_3390_ma16186189
crossref_primary_10_1016_j_jenvman_2022_116560
crossref_primary_10_1016_j_scitotenv_2024_170451
crossref_primary_10_1016_j_geoderma_2023_116335
crossref_primary_10_1007_s11104_025_07315_8
crossref_primary_10_1016_j_jenvman_2021_113174
crossref_primary_10_1016_j_envres_2020_109659
crossref_primary_10_1016_j_chemosphere_2023_140870
crossref_primary_10_1016_j_jclepro_2021_126278
crossref_primary_10_1007_s11356_022_21485_3
crossref_primary_10_1007_s11356_024_32010_z
crossref_primary_10_1016_j_jenvman_2021_112118
crossref_primary_10_1016_j_ecoenv_2021_112811
crossref_primary_10_1016_j_trac_2024_117639
crossref_primary_10_1016_j_envpol_2021_118516
crossref_primary_10_1016_j_geoderma_2023_116737
crossref_primary_10_1016_j_jhazmat_2024_134725
crossref_primary_10_3390_land11091376
crossref_primary_10_1039_D2RA07095B
crossref_primary_10_1016_j_envres_2022_114482
crossref_primary_10_5793_kankyo_49_3_2
crossref_primary_10_3390_agriculture13091684
crossref_primary_10_1016_j_eti_2024_103726
crossref_primary_10_1016_j_scitotenv_2021_148216
crossref_primary_10_1016_j_wasman_2024_02_045
crossref_primary_10_3390_su16114870
crossref_primary_10_1016_j_jhazmat_2024_134435
crossref_primary_10_1016_j_chemosphere_2022_137556
crossref_primary_10_2139_ssrn_4167469
crossref_primary_10_1016_j_scitotenv_2020_137423
crossref_primary_10_1016_j_scitotenv_2020_139569
crossref_primary_10_3390_land14010176
crossref_primary_10_1016_j_scitotenv_2023_169171
crossref_primary_10_1007_s40899_023_00909_z
crossref_primary_10_21272_jes_2024_11_1__h2
crossref_primary_10_1002_ldr_4076
crossref_primary_10_1016_j_aca_2020_07_007
crossref_primary_10_1016_j_ecoenv_2025_117766
crossref_primary_10_1016_j_scitotenv_2024_170275
crossref_primary_10_1016_j_csag_2024_100036
crossref_primary_10_2139_ssrn_4166084
crossref_primary_10_1007_s11356_023_29660_w
crossref_primary_10_1016_j_envpol_2020_114801
crossref_primary_10_3390_su13137052
crossref_primary_10_3390_agronomy14071401
crossref_primary_10_3390_f13101528
crossref_primary_10_1016_j_jclepro_2021_127664
crossref_primary_10_1016_j_envres_2020_109554
crossref_primary_10_1007_s11356_022_23429_3
crossref_primary_10_1016_j_ecoenv_2020_111545
crossref_primary_10_3390_w16081112
crossref_primary_10_3390_nano13101671
crossref_primary_10_1007_s11368_020_02744_7
crossref_primary_10_1016_j_scitotenv_2021_151908
crossref_primary_10_1016_j_scitotenv_2022_158832
crossref_primary_10_1007_s10653_023_01833_z
crossref_primary_10_1016_j_wasman_2019_05_032
crossref_primary_10_1007_s11783_024_1847_9
crossref_primary_10_1016_j_jclepro_2022_132294
crossref_primary_10_1016_j_ejsobi_2024_103706
crossref_primary_10_1016_j_envres_2024_118719
crossref_primary_10_1016_j_marenvres_2023_105943
crossref_primary_10_1016_j_scitotenv_2022_154339
crossref_primary_10_1016_j_jenvman_2024_120511
crossref_primary_10_1016_j_watres_2022_118671
crossref_primary_10_1007_s42773_025_00441_7
crossref_primary_10_1016_j_heliyon_2022_e09790
crossref_primary_10_1016_j_jenvman_2023_118556
crossref_primary_10_1016_j_jhazmat_2021_125977
crossref_primary_10_1016_j_scitotenv_2024_178046
crossref_primary_10_1016_j_envpol_2022_120420
crossref_primary_10_3389_fenvs_2023_1267463
crossref_primary_10_1016_j_jece_2021_106146
crossref_primary_10_1007_s11783_020_1380_4
crossref_primary_10_1016_j_envpol_2020_115196
crossref_primary_10_1016_j_scitotenv_2020_138252
crossref_primary_10_1007_s42773_024_00313_6
crossref_primary_10_1016_j_emcon_2022_100200
crossref_primary_10_1016_j_jhazmat_2023_133027
crossref_primary_10_1016_j_scitotenv_2022_160882
crossref_primary_10_1016_j_scitotenv_2023_161431
crossref_primary_10_1007_s11356_020_08223_3
crossref_primary_10_1016_j_psep_2025_106957
crossref_primary_10_1002_aoc_6190
crossref_primary_10_1515_ract_2023_0248
crossref_primary_10_1016_j_seppur_2024_128735
crossref_primary_10_2139_ssrn_4149198
crossref_primary_10_3390_ijerph191912128
crossref_primary_10_1016_j_jenvman_2024_121599
crossref_primary_10_1038_s41598_021_89458_z
crossref_primary_10_1007_s11356_022_21791_w
crossref_primary_10_1016_j_envpol_2023_121002
crossref_primary_10_7717_peerj_14162
crossref_primary_10_1016_j_jenvman_2023_119030
crossref_primary_10_1016_j_envpol_2022_119402
crossref_primary_10_1016_j_scitotenv_2020_143117
crossref_primary_10_1016_j_chemosphere_2023_138755
crossref_primary_10_1016_j_envpol_2022_118834
crossref_primary_10_1016_j_seh_2024_100112
crossref_primary_10_1016_j_chemosphere_2024_141636
crossref_primary_10_1016_j_envpol_2025_125915
crossref_primary_10_1016_j_jhazmat_2022_129368
crossref_primary_10_3390_app12031114
crossref_primary_10_1016_j_chemosphere_2021_132572
crossref_primary_10_1016_j_scitotenv_2022_153985
crossref_primary_10_1016_j_chemosphere_2024_141137
crossref_primary_10_3390_ijerph192416653
crossref_primary_10_1016_j_jhazmat_2022_128325
crossref_primary_10_1007_s11270_023_06463_w
crossref_primary_10_1021_acs_estlett_3c00545
crossref_primary_10_1002_fes3_248
crossref_primary_10_1007_s11368_022_03298_6
crossref_primary_10_2139_ssrn_4119265
crossref_primary_10_1016_j_envint_2019_105439
crossref_primary_10_1016_j_ecoenv_2024_116904
crossref_primary_10_1016_j_chemosphere_2022_137118
crossref_primary_10_1016_j_ecoenv_2021_112842
crossref_primary_10_1016_j_jece_2023_109877
crossref_primary_10_1061__ASCE_EE_1943_7870_0002000
crossref_primary_10_1016_j_jhazmat_2022_130076
crossref_primary_10_1007_s11356_021_17312_w
crossref_primary_10_1016_j_seh_2024_100124
crossref_primary_10_1016_j_ecoenv_2020_111179
crossref_primary_10_1007_s11771_025_5861_2
crossref_primary_10_1016_j_envpol_2022_119376
crossref_primary_10_3390_ijerph17176220
crossref_primary_10_1007_s11356_021_13450_3
crossref_primary_10_1016_j_scitotenv_2021_152502
crossref_primary_10_1016_j_chemgeo_2021_120523
crossref_primary_10_1021_acs_est_3c05140
crossref_primary_10_3390_toxics11080654
Cites_doi 10.1007/s13762-013-0433-7
10.1016/j.jhazmat.2011.04.054
10.1021/es0348750
10.1016/j.gca.2011.02.027
10.1046/j.1365-2389.1998.4930397.x
10.1021/es5047099
10.1111/j.1365-2389.2007.00958.x
10.1016/0016-7037(92)90158-F
10.1021/es062166r
10.1080/10643389.2010.520234
10.1016/j.scitotenv.2018.03.161
10.1111/j.1365-2389.2009.01142.x
10.1080/00380768.2018.1440938
10.1016/j.envpol.2007.06.054
10.1007/s11270-008-9693-0
10.1016/j.scitotenv.2015.10.122
10.1016/j.earscirev.2017.06.005
10.1016/j.jhazmat.2007.10.043
10.1016/j.jhazmat.2012.10.060
10.1016/j.jconhyd.2016.01.009
10.1016/j.chemosphere.2008.04.083
10.1016/S0045-6535(03)00155-3
10.1016/j.chemosphere.2007.01.062
10.1016/S1002-0160(15)60017-0
10.1016/j.envint.2015.12.017
10.1016/S1002-0160(15)60032-7
10.1016/j.envpol.2004.10.006
10.1007/s11270-008-9767-z
10.1016/j.jhazmat.2013.12.018
10.1016/j.chemosphere.2015.03.083
10.1016/j.geoderma.2009.01.016
10.1016/j.jenvman.2005.09.007
10.1016/S0043-1354(97)00202-9
10.1016/j.jhazmat.2015.01.062
10.1016/S0016-7061(00)00102-6
10.1016/S0160-4120(03)00048-5
10.1016/j.jece.2015.04.029
10.1021/es061057+
10.1080/15320380902799326
10.1016/j.envpol.2008.10.024
10.1021/es9026248
10.1016/j.geoderma.2014.07.004
10.1023/A:1005251915165
10.1080/15320380903390539
10.1080/15226514.2017.1365340
10.1080/10643380802586857
10.1007/s11356-017-8660-y
10.1016/j.jhazmat.2015.08.015
10.1016/j.jhazmat.2008.04.081
10.1016/j.envpol.2004.04.004
10.2134/jeq2006.0081
10.1016/S0003-2670(01)00924-2
10.1016/j.ecolind.2016.08.051
10.2134/jeq2009.0292
10.17221/3549-PSE
10.1016/j.scitotenv.2017.06.030
10.1007/s11356-014-3737-3
10.1007/s10653-012-9461-3
10.1016/S1002-0160(17)60337-0
10.1016/j.envpol.2006.01.017
10.1111/j.1365-2389.1987.tb02140.x
10.1021/es103532a
10.1016/j.jhazmat.2010.09.082
10.1016/j.envpol.2018.02.070
10.1021/es0604919
10.1016/j.soilbio.2004.11.028
10.1016/j.chemgeo.2013.12.020
10.1016/S1002-0160(18)60026-8
10.1016/j.geoderma.2016.06.010
10.1016/j.jhazmat.2016.03.038
10.1007/s11368-009-0083-z
10.4161/psb.5.6.11211
10.1007/s11356-014-3216-x
10.1021/ac50043a017
10.1080/10643389.2016.1275417
10.1016/j.chemosphere.2004.06.010
10.1002/1522-2624(200012)163:6<563::AID-JPLN563>3.0.CO;2-0
10.3891/acta.chem.scand.28a-0121
10.1016/j.chemgeo.2015.01.020
10.1016/j.envpol.2015.07.025
10.1111/j.1365-2389.2004.00661.x
10.1080/16226510590950423
10.1016/j.jhazmat.2009.09.113
10.1097/SS.0b013e31827ba23f
10.1016/j.envpol.2007.11.015
10.1016/S0045-6535(00)00498-7
10.1007/s11356-017-9139-6
10.1016/j.soilbio.2015.02.019
10.1007/s11270-005-8219-2
10.1007/s11104-012-1429-7
10.1021/es301015p
10.2134/jeq2003.1380
10.1016/S0043-1354(02)00203-8
10.1007/s11356-013-1820-9
10.1007/s11270-007-9564-0
10.1016/S0016-7061(02)00361-0
10.1021/es0200084
10.1016/j.chemosphere.2013.01.075
10.1016/j.gca.2009.11.007
10.1016/j.chemosphere.2006.04.039
10.1007/s11356-013-2300-y
10.1080/15320383.2011.609198
10.1007/BF03326158
10.1021/es102931p
10.1016/j.envpol.2013.02.034
10.2174/1570193X14666161130163034
10.1016/S0269-7491(01)00150-6
10.1016/j.chemosphere.2018.01.004
10.1080/15226510802100515
10.1021/es0110170
10.1016/j.ecoenv.2005.01.006
10.1016/j.jhazmat.2013.01.048
10.1021/es803112a
10.1080/15320383.2014.852511
10.1016/j.envpol.2018.06.034
10.1016/j.envpol.2004.08.011
10.1016/j.procbio.2005.07.005
10.1016/j.envpol.2005.06.017
10.1016/S0045-6535(03)00185-1
10.1023/A:1005067404259
10.1016/S0883-2927(02)00018-5
10.1016/j.chemosphere.2005.05.020
10.1016/S0269-7491(00)00158-5
10.1016/S0304-3894(99)00010-2
10.1139/S07-004
10.1016/j.jhazmat.2012.01.060
10.1016/S0016-7037(00)00602-5
10.1016/j.geoderma.2004.03.005
10.1016/j.gexplo.2015.01.001
10.1023/A:1011934929379
10.1002/ep.670190415
10.1016/j.jhazmat.2015.08.022
10.1021/es9907764
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.02.041
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 246
ExternalDocumentID 10_1016_j_geoderma_2019_02_041
S0016706118308103
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a434t-fde908883c6075091f05239a725ef5c28ac867d6cdaf2cd898ee1bc6f1fae6e03
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 02:17:51 EDT 2025
Tue Jul 01 04:04:49 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Fri Feb 23 02:27:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil remediation
Fulvic acid
LMWOA
Soil washing
Heavy metals
Phytoextraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a434t-fde908883c6075091f05239a725ef5c28ac867d6cdaf2cd898ee1bc6f1fae6e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2237526478
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2237526478
crossref_primary_10_1016_j_geoderma_2019_02_041
crossref_citationtrail_10_1016_j_geoderma_2019_02_041
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_02_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chiu, Cheng, Lin, Juang, Lee (bb0150) 2009; 161
Manning, Fendorf, Bostick, Suarez (bb0395) 2002; 36
Chiang, Tong, Chiou, Lin, Wang, Liu (bb0145) 2016; 301
Rõmkens, Bouwman, Japenga, Draaisma (bb0495) 2002; 116
Conte, Agretto, Spaccini, Piccolo (bb0170) 2005; 135
Gu, Yeung (bb0235) 2011; 191
Bassi, Prashe, Simpson (bb0060) 2000; 19
Jensen, Holm, Nejrup, Larsen, Borggaard (bb0280) 2009; 157
Lwin, Seo, Kim, Owens, Kim (bb0385) 2018; 64
Soil Survey Staff (bb0530) 2014
Sheoran, Sheoran, Poonia (bb0515) 2016; 26
Hu, Huang, Borggaard, Ye, Tian, Zhang, Holm (bb0260) 2018; 241
Buschmann, Kappeler, Lindauer, Kistler, Berg, Sigg (bb0125) 2006; 40
Hu, Wang, Dong, Huang, Borggaard, Hansen, Holm (bb0255) 2018; 237
Borggaard, Holm, Jensen, Soleimani, Strobel (bb0100) 2011; B61
Kulikowska, Gusiatin, Bulkowska, Kierklo (bb0330) 2015; 136
Wiszniewska, Hanus-Fajerska, Muszynska, Ciarkowska (bb0655) 2016; 26
Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (bb0070) 2014; 266
Wu, Kang, Zhang, Shao, Chu, Ruan (bb0660) 2010; 174
Tandy, Bossart, Mueller, Ritschel, Hauser, Schulin, Nowack (bb0575) 2004; 38
Weng, Temminghoff, Lofts, Tipping, Van Riemsdijk (bb0640) 2002; 36
Ali, Khan, Sajad (bb0005) 2013; 91
Doumett, Lamperi, Checchini, Azzarello, Mugnai, Mancuso, Petruzzelli, Del Bubba (bb0210) 2008; 72
Tao, Zhang, Jian, Yuan, Shan (bb0580) 2006; 65
Evangelou, Ebel, Schaeffer (bb0220) 2007; 68
Robinson, Anderson, Dickinson (bb0490) 2015; 151
Borggaard, O.K. (1990) Dissolution and Adsorption Properties of Soil Iron Oxides. DSc-thesis, Royal Veterinary and Agricultural University (now University of Copenhagen), Denmark.
Das, Chou, Jean, Liu, Yang (bb0185) 2016; 542
Soleimani, Hajabbasi, Afyuni, Akbar, Jensen, Holm, Borggaard (bb0535) 2010; 39
Yang, Ratté, Smets, Pignatello, Grasso (bb0670) 2001; 43
Dai, Li, Zhou, Zhao (bb0180) 2017; 24
Labanowski, Monna, Bermond, Cambier, Fernandez, Lamy, van Oort (bb0345) 2008; 152
Sun, Zhou, An, Liu, Liu (bb0565) 2009; 150
Tipping, Hurley (bb0595) 1992; 56
Kulikowska, Gusiatin, Bulkowska, Klik (bb0325) 2015; 300
Kumpiene, Lagerkvist, Maurice (bb0335) 2008; 28
WHO (bb0650) 2017
Wang, Mulligan (bb0625) 2013; 35
Nowack, Schulin, Robinson (bb0430) 2006; 40
Qin, Shan, Wei (bb0460) 2004; 57
Strobel, Borggaard, Hansen, Andersen, Raulund-Rasmussen (bb0550) 2001; 65
Qiu, Zou, Zhao, Zhang, Zhang, Dong, Wei (bb0465) 2010; 10
Zsolnay (bb0715) 2003; 113
Liu, Li, Song, Guo (bb0375) 2018; 633
Zhou, Haynes (bb0705) 2010; 40
Khan, Khan, Khan, Alam (bb0305) 2017; 601-602
Borggaard (bb0085) 1987; 38
Rasmussen, Jensen, Borggaard (bb0475) 2015; 3
Cheng, Allen (bb0140) 2006; 80
Yun, Kang, Kim, Kim (bb0675) 2015; 287
Jiang, Bauer, Paul, Kappler (bb0290) 2009; 43
Kirpichtchikova, Manceau, Spadini, Panfili, Marcus, Jacquet (bb0315) 2006; 70
Van Schaik, Kleja, Gustafsson (bb0615) 2010; 74
Ren, Tella, Bravin, Comans, Garnier, Sivry, Doelsch, Straathof, Benedetti (bb0485) 2015; 398
Clarholm, Skyllberg, Rosling (bb0165) 2015; 84
Christiansen, Borggaard, Holm, Vijver, Hauschild, Peijnenburg (bb0160) 2015; 22
Baken, Degryse, Verheyen, Merckx, Smolders (bb0045) 2011; 25
Wuana, Okieimen, Imborvungu (bb0665) 2010; 7
Li, Xing, Torello (bb0355) 2005; 134
Tiberg, Sjöstedt, Gustafsson (bb0590) 2018; 196
Karna, Luxton, Bronstein, Redmon, Scheckel (bb0300) 2017; 47
Bronick, Lal (bb0110) 2005; 124
Sarathy, Allen (bb0500) 2005; 61
Elliott, Shastri (bb0215) 1999; 110
Bose, Sharma (bb0105) 2002; 36
Trevisan, Francioso, Quaggiotti, Nardi (bb0605) 2010; 5
Carbonaro, Atalay, Di Toro (bb0130) 2011; 75
Tsang, Hartley (bb0610) 2014; 21
Dhal, Thatoi, Das, Pandey (bb0200) 2013; 250-251
Loganathan, Vigneswaran, Kandasamy, Naidu (bb0380) 2012; 42
Buekers, Van Laer, Amery, Van Buggenhout, Maes, Smolders (bb0115) 2007; 58
Strobel, Hansen, Borggaard, Andersen, Raulund-Rasmussen (bb0555) 2001; 56
Amery, Degryse, Degeling, Smolders, Merckx (bb0015) 2007; 41
Tessier, Campbell, Bisson (bb0585) 1979; 51
Ding, Song, Feng, Guo (bb0205) 2014; 11
Park, Lamb, Paneerselvam, Choppala, Bolan, Chung (bb0440) 2011; 185
Leštan, Luo, Li (bb0350) 2008; 153
Smedley, Kinniburgh (bb0520) 2002; 17
Halim, Conte, Piccolo (bb0240) 2003; 52
Ng, Juhasz, Smith, Naidu (bb0425) 2015; 22
Toth, Hermann, Da Silva, Montanarella (bb0600) 2016; 88
Zhao, Wei, Zhang, Wen, Xi, Zhao, Zhang, Wei (bb0700) 2017; 72
Ash, Tejnecky, Boruvka, Drabek (bb0035) 2016; 187
Zhang, Gao, Xiong (bb0685) 2017; 24
Chen, Lin, Lin, Liu, Wang (bb0135) 2014; 235-236
Amir, Hafidi, Lemee, Merlina, Guiresse, Pinelli, Revel, Bailly, Ambles (bb0020) 2006; 41
Liu, Lin (bb0365) 2013; 178
Barona, Aranguiz, Elias (bb0055) 2001; 113
Hartley, Tsang, Olds, Weber (bb0245) 2014; 23
Wasay, Barrington, Tokunaga (bb0630) 2001; 127
Owsianiak, Holm, Fantke, Christiansen, Borggaard, Hauschild (bb0435) 2015; 206
Polettini, Pomi, Calcagnoli (bb0450) 2009; 196
Borggaard, Hansen, Holm, Jensen, Rasmussen, Sabiene, Steponkaite, Strobel (bb0095) 2009; 18
Zhu, Yao, Zhang, Wu (bb0710) 2014; 21
Wasay, Barrington, Tokunaga, Prasher (bb0635) 2007; 6
Degryse, Smolders, Parker (bb0190) 2009; 60
Strobel (bb0545) 2001; 99
Borggaard, O.K. (1974) Titrimetric determination of acidity and pK values of humic acid. Acta Chem. Scand. A28, 121–122.
Craven, Aiken, Ryan (bb0175) 2012; 46
Liu, Fernandez, Cai (bb0370) 2011; 45
Zhang, Li, Shan, Lu, Zhou (bb0680) 2005; 167
Dermont, Bergeron, Mercier, Richer-Laflèche (bb0195) 2008; 152
Gjettermann, Styczen, Hansen, Borggaard, Hansen (bb0230) 2007; 36
Raulund-Rasmussen, Borggaard, Hansen, Olsson (bb0480) 1998; 49
Venegas, Rigol, Vidal (bb0620) 2016; 279
Antoniadis, Levizou, Shaheen, Ok, Sebastian, Baum, Prasad, Wenzel, Rinklebe (bb0030) 2017; 171
Liu, Chen (bb0360) 2013; 244-245
Wenzel, Kirchbaumer, Prohaska, Stingeder, Lombi, Adriano (bb0645) 2001; 436
Neupane, Donahoe, Arai (bb0420) 2014; 368
Bianchi, Masciandaro, Giraldi, Ceccanti, Iannelli (bb0065) 2008; 193
Zhao, Ma, Zhu, Tang, McGrath (bb0695) 2015; 49
Puschenreiter, Horak, Friesl, Hartl (bb0455) 2005; 51
Meers, Tack, Van Slycken, Ruttens, Du Laing, Vangronsveld, Verloo (bb0405) 2008; 10
Bahemmat, Farahbakhsh, Kianirad (bb0040) 2016; 312
Christensen, Jensen, Grøn, Filip, Christensen (bb0155) 1998; 32
Meers, Lesage, Lamsal, Hopgood, Vervaeke, Tack, Verloo (bb0400) 2005; 7
Kumpiene, Giagnoni, Marschner, Denys, Mench, Adriaensen, Vangronsveld, Puschenreiter, Renella (bb0340) 2017; 27
Nascimento, Amarasiriwardena, Xing (bb0415) 2006; 140
Strobel, Borggaard, Hansen, Andersen, Raulund-Rasmussen (bb0560) 2005; 56
Sparks (bb0540) 2000; 163
Kos, Leštan (bb0320) 2004; 132
Shahid, Pinelli, Dumat (bb0510) 2012; 219-220
Banks, Schwab, Henderson (bb0050) 2006; 62
Sauvé, Hendershot, Allen (bb0505) 2000; 34
Kim, Lee, Ong (bb0310) 2003; 51
Almaroai, Usman, Ahmad, Kim, Moon, Lee, Ok (bb0010) 2012; 177
Smith, Bell, Kramer (bb0525) 2002; C133
Amofah, Maurice, Bhattacharya (bb0025) 2010; 19
Husson (bb0270) 2013; 362
Suriyagoda, Dittert, Lambers (bb0570) 2018; 28
IUSS Working Group WRB (bb0275) 2006
Peters (bb0445) 1999; 66
Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (bb0075) 2010; 44
Burges, Alkorta, Epelde, Garbisu (bb0120) 2018; 20
Jensen, Holm, Borggaard, Nejrup (bb0285) 2011; 20
Makino, Sigahara, Sakurai, Takano, Kamiya, Sasaki, Itou, Sekiya (bb0390) 2006; 144
Rao, Sahuquillo, Lopez Sanchez (bb0470) 2008; 189
Miljøstyrelsen (bb0410) 2015
Gao, He, Ling, Hu, Liu (bb0225) 2003; 29
Hubová, Tejnecký, Ash, Boruvka, Drábek (bb0265) 2017; 14
Holm, Rootzen, Borggaard, Møberg, Christensen (bb0250) 2003; 32
Kalbitz, Schwesig, Rethemeyer, Matzner (bb0295) 2005; 37
Rasmussen (10.1016/j.geoderma.2019.02.041_bb0475) 2015; 3
Tessier (10.1016/j.geoderma.2019.02.041_bb0585) 1979; 51
Clarholm (10.1016/j.geoderma.2019.02.041_bb0165) 2015; 84
Dhal (10.1016/j.geoderma.2019.02.041_bb0200) 2013; 250-251
Amofah (10.1016/j.geoderma.2019.02.041_bb0025) 2010; 19
Kalbitz (10.1016/j.geoderma.2019.02.041_bb0295) 2005; 37
Dai (10.1016/j.geoderma.2019.02.041_bb0180) 2017; 24
Zhou (10.1016/j.geoderma.2019.02.041_bb0705) 2010; 40
Amir (10.1016/j.geoderma.2019.02.041_bb0020) 2006; 41
Hartley (10.1016/j.geoderma.2019.02.041_bb0245) 2014; 23
Antoniadis (10.1016/j.geoderma.2019.02.041_bb0030) 2017; 171
Toth (10.1016/j.geoderma.2019.02.041_bb0600) 2016; 88
Ren (10.1016/j.geoderma.2019.02.041_bb0485) 2015; 398
Dermont (10.1016/j.geoderma.2019.02.041_bb0195) 2008; 152
Li (10.1016/j.geoderma.2019.02.041_bb0355) 2005; 134
Sauvé (10.1016/j.geoderma.2019.02.041_bb0505) 2000; 34
Wiszniewska (10.1016/j.geoderma.2019.02.041_bb0655) 2016; 26
Kulikowska (10.1016/j.geoderma.2019.02.041_bb0330) 2015; 136
10.1016/j.geoderma.2019.02.041_bb0090
Makino (10.1016/j.geoderma.2019.02.041_bb0390) 2006; 144
Husson (10.1016/j.geoderma.2019.02.041_bb0270) 2013; 362
Elliott (10.1016/j.geoderma.2019.02.041_bb0215) 1999; 110
Gao (10.1016/j.geoderma.2019.02.041_bb0225) 2003; 29
Barona (10.1016/j.geoderma.2019.02.041_bb0055) 2001; 113
Nowack (10.1016/j.geoderma.2019.02.041_bb0430) 2006; 40
Kumpiene (10.1016/j.geoderma.2019.02.041_bb0335) 2008; 28
10.1016/j.geoderma.2019.02.041_bb0080
Meers (10.1016/j.geoderma.2019.02.041_bb0405) 2008; 10
Hu (10.1016/j.geoderma.2019.02.041_bb0260) 2018; 241
Jiang (10.1016/j.geoderma.2019.02.041_bb0290) 2009; 43
Tiberg (10.1016/j.geoderma.2019.02.041_bb0590) 2018; 196
Karna (10.1016/j.geoderma.2019.02.041_bb0300) 2017; 47
Polettini (10.1016/j.geoderma.2019.02.041_bb0450) 2009; 196
Jensen (10.1016/j.geoderma.2019.02.041_bb0285) 2011; 20
Cheng (10.1016/j.geoderma.2019.02.041_bb0140) 2006; 80
Meers (10.1016/j.geoderma.2019.02.041_bb0400) 2005; 7
Liu (10.1016/j.geoderma.2019.02.041_bb0370) 2011; 45
Miljøstyrelsen (10.1016/j.geoderma.2019.02.041_bb0410) 2015
Strobel (10.1016/j.geoderma.2019.02.041_bb0545) 2001; 99
Liu (10.1016/j.geoderma.2019.02.041_bb0360) 2013; 244-245
Doumett (10.1016/j.geoderma.2019.02.041_bb0210) 2008; 72
Sarathy (10.1016/j.geoderma.2019.02.041_bb0500) 2005; 61
Zsolnay (10.1016/j.geoderma.2019.02.041_bb0715) 2003; 113
Kumpiene (10.1016/j.geoderma.2019.02.041_bb0340) 2017; 27
Peters (10.1016/j.geoderma.2019.02.041_bb0445) 1999; 66
Buschmann (10.1016/j.geoderma.2019.02.041_bb0125) 2006; 40
Soleimani (10.1016/j.geoderma.2019.02.041_bb0535) 2010; 39
Tandy (10.1016/j.geoderma.2019.02.041_bb0575) 2004; 38
Degryse (10.1016/j.geoderma.2019.02.041_bb0190) 2009; 60
Khan (10.1016/j.geoderma.2019.02.041_bb0305) 2017; 601-602
Bahemmat (10.1016/j.geoderma.2019.02.041_bb0040) 2016; 312
Nascimento (10.1016/j.geoderma.2019.02.041_bb0415) 2006; 140
Chiang (10.1016/j.geoderma.2019.02.041_bb0145) 2016; 301
Robinson (10.1016/j.geoderma.2019.02.041_bb0490) 2015; 151
Labanowski (10.1016/j.geoderma.2019.02.041_bb0345) 2008; 152
Manning (10.1016/j.geoderma.2019.02.041_bb0395) 2002; 36
Chiu (10.1016/j.geoderma.2019.02.041_bb0150) 2009; 161
Christensen (10.1016/j.geoderma.2019.02.041_bb0155) 1998; 32
Das (10.1016/j.geoderma.2019.02.041_bb0185) 2016; 542
Raulund-Rasmussen (10.1016/j.geoderma.2019.02.041_bb0480) 1998; 49
Kirpichtchikova (10.1016/j.geoderma.2019.02.041_bb0315) 2006; 70
Smedley (10.1016/j.geoderma.2019.02.041_bb0520) 2002; 17
Baken (10.1016/j.geoderma.2019.02.041_bb0045) 2011; 25
Jensen (10.1016/j.geoderma.2019.02.041_bb0280) 2009; 157
Wu (10.1016/j.geoderma.2019.02.041_bb0660) 2010; 174
Lwin (10.1016/j.geoderma.2019.02.041_bb0385) 2018; 64
Trevisan (10.1016/j.geoderma.2019.02.041_bb0605) 2010; 5
Kim (10.1016/j.geoderma.2019.02.041_bb0310) 2003; 51
Halim (10.1016/j.geoderma.2019.02.041_bb0240) 2003; 52
Evangelou (10.1016/j.geoderma.2019.02.041_bb0220) 2007; 68
Bianchi (10.1016/j.geoderma.2019.02.041_bb0065) 2008; 193
Hu (10.1016/j.geoderma.2019.02.041_bb0255) 2018; 237
Wang (10.1016/j.geoderma.2019.02.041_bb0625) 2013; 35
Rao (10.1016/j.geoderma.2019.02.041_bb0470) 2008; 189
IUSS Working Group WRB (10.1016/j.geoderma.2019.02.041_bb0275) 2006
Zhao (10.1016/j.geoderma.2019.02.041_bb0700) 2017; 72
Bose (10.1016/j.geoderma.2019.02.041_bb0105) 2002; 36
Venegas (10.1016/j.geoderma.2019.02.041_bb0620) 2016; 279
Borggaard (10.1016/j.geoderma.2019.02.041_bb0100) 2011; B61
Christiansen (10.1016/j.geoderma.2019.02.041_bb0160) 2015; 22
Bassi (10.1016/j.geoderma.2019.02.041_bb0060) 2000; 19
Kulikowska (10.1016/j.geoderma.2019.02.041_bb0325) 2015; 300
Qin (10.1016/j.geoderma.2019.02.041_bb0460) 2004; 57
Suriyagoda (10.1016/j.geoderma.2019.02.041_bb0570) 2018; 28
Liu (10.1016/j.geoderma.2019.02.041_bb0375) 2018; 633
Tipping (10.1016/j.geoderma.2019.02.041_bb0595) 1992; 56
Buekers (10.1016/j.geoderma.2019.02.041_bb0115) 2007; 58
Yang (10.1016/j.geoderma.2019.02.041_bb0670) 2001; 43
Borggaard (10.1016/j.geoderma.2019.02.041_bb0085) 1987; 38
Amery (10.1016/j.geoderma.2019.02.041_bb0015) 2007; 41
Gu (10.1016/j.geoderma.2019.02.041_bb0235) 2011; 191
Hubová (10.1016/j.geoderma.2019.02.041_bb0265) 2017; 14
Zhu (10.1016/j.geoderma.2019.02.041_bb0710) 2014; 21
Conte (10.1016/j.geoderma.2019.02.041_bb0170) 2005; 135
Bronick (10.1016/j.geoderma.2019.02.041_bb0110) 2005; 124
Burges (10.1016/j.geoderma.2019.02.041_bb0120) 2018; 20
Gjettermann (10.1016/j.geoderma.2019.02.041_bb0230) 2007; 36
Tsang (10.1016/j.geoderma.2019.02.041_bb0610) 2014; 21
Banks (10.1016/j.geoderma.2019.02.041_bb0050) 2006; 62
Zhao (10.1016/j.geoderma.2019.02.041_bb0695) 2015; 49
Ash (10.1016/j.geoderma.2019.02.041_bb0035) 2016; 187
Weng (10.1016/j.geoderma.2019.02.041_bb0640) 2002; 36
Ding (10.1016/j.geoderma.2019.02.041_bb0205) 2014; 11
Leštan (10.1016/j.geoderma.2019.02.041_bb0350) 2008; 153
Rõmkens (10.1016/j.geoderma.2019.02.041_bb0495) 2002; 116
Almaroai (10.1016/j.geoderma.2019.02.041_bb0010) 2012; 177
Kos (10.1016/j.geoderma.2019.02.041_bb0320) 2004; 132
Borch (10.1016/j.geoderma.2019.02.041_bb0075) 2010; 44
Sheoran (10.1016/j.geoderma.2019.02.041_bb0515) 2016; 26
Strobel (10.1016/j.geoderma.2019.02.041_bb0550) 2001; 65
Loganathan (10.1016/j.geoderma.2019.02.041_bb0380) 2012; 42
Ng (10.1016/j.geoderma.2019.02.041_bb0425) 2015; 22
Owsianiak (10.1016/j.geoderma.2019.02.041_bb0435) 2015; 206
Soil Survey Staff (10.1016/j.geoderma.2019.02.041_bb0530) 2014
Park (10.1016/j.geoderma.2019.02.041_bb0440) 2011; 185
Wenzel (10.1016/j.geoderma.2019.02.041_bb0645) 2001; 436
Wasay (10.1016/j.geoderma.2019.02.041_bb0630) 2001; 127
Ali (10.1016/j.geoderma.2019.02.041_bb0005) 2013; 91
Wasay (10.1016/j.geoderma.2019.02.041_bb0635) 2007; 6
Neupane (10.1016/j.geoderma.2019.02.041_bb0420) 2014; 368
Sun (10.1016/j.geoderma.2019.02.041_bb0565) 2009; 150
Bolan (10.1016/j.geoderma.2019.02.041_bb0070) 2014; 266
Qiu (10.1016/j.geoderma.2019.02.041_bb0465) 2010; 10
Wuana (10.1016/j.geoderma.2019.02.041_bb0665) 2010; 7
Zhang (10.1016/j.geoderma.2019.02.041_bb0680) 2005; 167
Sparks (10.1016/j.geoderma.2019.02.041_bb0540) 2000; 163
Zhang (10.1016/j.geoderma.2019.02.041_bb0685) 2017; 24
Borggaard (10.1016/j.geoderma.2019.02.041_bb0095) 2009; 18
Strobel (10.1016/j.geoderma.2019.02.041_bb0560) 2005; 56
WHO (10.1016/j.geoderma.2019.02.041_bb0650) 2017
Liu (10.1016/j.geoderma.2019.02.041_bb0365) 2013; 178
Carbonaro (10.1016/j.geoderma.2019.02.041_bb0130) 2011; 75
Smith (10.1016/j.geoderma.2019.02.041_bb0525) 2002; C133
Holm (10.1016/j.geoderma.2019.02.041_bb0250) 2003; 32
Van Schaik (10.1016/j.geoderma.2019.02.041_bb0615) 2010; 74
Shahid (10.1016/j.geoderma.2019.02.041_bb0510) 2012; 219-220
Chen (10.1016/j.geoderma.2019.02.041_bb0135) 2014; 235-236
Strobel (10.1016/j.geoderma.2019.02.041_bb0555) 2001; 56
Tao (10.1016/j.geoderma.2019.02.041_bb0580) 2006; 65
Craven (10.1016/j.geoderma.2019.02.041_bb0175) 2012; 46
Puschenreiter (10.1016/j.geoderma.2019.02.041_bb0455) 2005; 51
Yun (10.1016/j.geoderma.2019.02.041_bb0675) 2015; 287
References_xml – volume: 65
  start-page: 1281
  year: 2006
  end-page: 1287
  ident: bb0580
  article-title: Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat
  publication-title: Chemosphere
– volume: 58
  start-page: 1514
  year: 2007
  end-page: 1524
  ident: bb0115
  article-title: Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils
  publication-title: Eur. J. Soil Sci.
– volume: 368
  start-page: 31
  year: 2014
  end-page: 38
  ident: bb0420
  article-title: Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface
  publication-title: Chem. Geol.
– volume: 29
  start-page: 613
  year: 2003
  end-page: 618
  ident: bb0225
  article-title: Effects of organic acids on copper and cadmium desorption from contaminated soils
  publication-title: Environ. Int.
– volume: 178
  start-page: 97
  year: 2013
  end-page: 101
  ident: bb0365
  article-title: Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge
  publication-title: Environ. Pollut.
– volume: 132
  start-page: 333
  year: 2004
  end-page: 339
  ident: bb0320
  article-title: Chelator induced phytoextraction and in situ soil washing of Cu
  publication-title: Environ. Pollut.
– volume: 152
  start-page: 693
  year: 2008
  end-page: 701
  ident: bb0345
  article-title: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environ
  publication-title: Pollut.
– volume: 24
  start-page: 15260
  year: 2017
  end-page: 15269
  ident: bb0180
  article-title: Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement
  publication-title: Environ. Sci. Pollut. Res.
– volume: 24
  start-page: 9506
  year: 2017
  end-page: 9514
  ident: bb0685
  article-title: Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent
  publication-title: Environ. Sci. Pollut. Res.
– volume: 287
  start-page: 429
  year: 2015
  end-page: 437
  ident: bb0675
  article-title: Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study
  publication-title: J. Hazard. Mat.
– volume: 312
  start-page: 307
  year: 2016
  end-page: 318
  ident: bb0040
  article-title: Humic substances-enhanced electroremediation of heavy metals contaminated soil
  publication-title: J. Hazard. Mat.
– volume: 32
  start-page: 138
  year: 2003
  end-page: 145
  ident: bb0250
  article-title: Correlation of cadmium distribution coefficients to soil characteristics
  publication-title: J. Environ. Qual.
– volume: 110
  start-page: 335
  year: 1999
  end-page: 346
  ident: bb0215
  article-title: Extractive decontamination of metal-polluted soils using oxalate
  publication-title: Water Air Soil Pollut.
– volume: 40
  start-page: 5225
  year: 2006
  end-page: 5232
  ident: bb0430
  article-title: Critical assessment of chelant-enhanced metal phytoextraction
  publication-title: Environ. Sci. Technol.
– volume: 135
  start-page: 515
  year: 2005
  end-page: 522
  ident: bb0170
  article-title: Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils
  publication-title: Environ. Pollut.
– volume: 34
  start-page: 1125
  year: 2000
  end-page: 1131
  ident: bb0505
  article-title: Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 2277
  year: 2007
  end-page: 2281
  ident: bb0015
  article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedure
  publication-title: Environ. Sci. Technol.
– volume: 144
  start-page: 2
  year: 2006
  end-page: 10
  ident: bb0390
  article-title: Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals
  publication-title: Environ. Pollut.
– volume: 37
  start-page: 1319
  year: 2005
  end-page: 1331
  ident: bb0295
  article-title: Stabilization of dissolved organic matter by sorption to the mineral soil
  publication-title: Soil Biol. Biochem.
– volume: 57
  start-page: 253
  year: 2004
  end-page: 263
  ident: bb0460
  article-title: Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils
  publication-title: Chemosphere
– volume: 127
  start-page: 301
  year: 2001
  end-page: 314
  ident: bb0630
  article-title: Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns
  publication-title: Water Air Soil Pollut.
– volume: 150
  start-page: 106
  year: 2009
  end-page: 112
  ident: bb0565
  article-title: Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with hyperaccumulator plant (
  publication-title: Geoderma
– volume: 99
  start-page: 169
  year: 2001
  end-page: 198
  ident: bb0545
  article-title: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review
  publication-title: Geoderma
– volume: 52
  start-page: 265
  year: 2003
  end-page: 275
  ident: bb0240
  article-title: Potential availability of heavy metals by phytoextraction from contaminated soils induced by exogenous humic substances
  publication-title: Chemosphere
– volume: 38
  start-page: 229
  year: 1987
  end-page: 238
  ident: bb0085
  article-title: Influence of iron oxides on cobalt adsorption by soils
  publication-title: J. Soil Sci.
– volume: 20
  start-page: 777
  year: 2011
  end-page: 789
  ident: bb0285
  article-title: A laboratory assessment of potentials and limitations of using EDTA, rhamnolipids and compost derived humic substances (HS) in enhanced phytoextraction of copper and zinc polluted calcareous soils
  publication-title: Soil Sediment Contam.
– volume: 40
  start-page: 6015
  year: 2006
  end-page: 6020
  ident: bb0125
  article-title: Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminium
  publication-title: Environ. Sci. Technol.
– year: 2014
  ident: bb0530
  article-title: Keys to Soil Taxonomy
– volume: 41
  start-page: 410
  year: 2006
  end-page: 422
  ident: bb0020
  article-title: Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry
  publication-title: Process Biochem.
– volume: 601-602
  start-page: 1591
  year: 2017
  end-page: 1605
  ident: bb0305
  article-title: Soil contamination with cadmium, consequences and remediation using organic amendments
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 390
  year: 2008
  end-page: 414
  ident: bb0405
  article-title: Chemical assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals
  publication-title: Int. J. Phytorem.
– volume: 191
  start-page: 144
  year: 2011
  end-page: 149
  ident: bb0235
  article-title: Desorption of cadmium from natural Shanghai clay using citric acid industrial wastewater
  publication-title: J. Hazard. Mat.
– volume: 74
  start-page: 1391
  year: 2010
  end-page: 1406
  ident: bb0615
  article-title: Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution
  publication-title: Geochim. Cosmochim. Acta
– volume: 51
  start-page: 1
  year: 2005
  end-page: 11
  ident: bb0455
  article-title: Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review
  publication-title: Plant Soil Environ.
– volume: 174
  start-page: 1
  year: 2010
  end-page: 8
  ident: bb0660
  article-title: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities
  publication-title: J. Hazard. Mat.
– volume: 49
  start-page: 750
  year: 2015
  end-page: 759
  ident: bb0695
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
– volume: 542
  start-page: 642
  year: 2016
  end-page: 652
  ident: bb0185
  article-title: Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem
  publication-title: Sci. Total Environ.
– volume: 134
  start-page: 187
  year: 2005
  end-page: 194
  ident: bb0355
  article-title: Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching
  publication-title: Environ. Pollut.
– volume: 47
  start-page: 65
  year: 2017
  end-page: 129
  ident: bb0300
  article-title: State of the science review: potential for beneficial use of by-products for in situ remediation of metal-contaminated soil and sediment
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 26
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0655
  article-title: Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress
  publication-title: Pedosphere
– volume: 35
  start-page: 111
  year: 2013
  end-page: 118
  ident: bb0625
  article-title: Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings
  publication-title: Environ. Geochem. Health
– volume: C133
  start-page: 65
  year: 2002
  end-page: 74
  ident: bb0525
  article-title: Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites
  publication-title: Comp. Biochem. Phys.
– volume: 40
  start-page: 909
  year: 2010
  end-page: 977
  ident: bb0705
  article-title: Sorption of heavy metals by inorganic and organic components of soil wastes: significance to use wastes of low-cost adsorbents and immobilizing agents
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 22
  start-page: 5283
  year: 2015
  end-page: 5292
  ident: bb0160
  article-title: Experimental determinations of soil cupper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils
  publication-title: Environ. Sci. Pollut. Res.
– volume: 64
  start-page: 156
  year: 2018
  end-page: 167
  ident: bb0385
  article-title: Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality – a critical review
  publication-title: Soil Sci. Plant Nutr.
– volume: 80
  start-page: 222
  year: 2006
  end-page: 229
  ident: bb0140
  article-title: Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters
  publication-title: J. Environ. Manag.
– volume: 163
  start-page: 563
  year: 2000
  end-page: 570
  ident: bb0540
  article-title: New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 167
  start-page: 111
  year: 2005
  end-page: 122
  ident: bb0680
  article-title: Effects of low molecular weight organic anions on the release of arsenite and arsenate from contaminated soil
  publication-title: Water Air Soil Pollut.
– volume: 27
  start-page: 389
  year: 2017
  end-page: 406
  ident: bb0340
  article-title: Assessment of methods for determining bioavailability of trace elements in soils: a review
  publication-title: Pedosphere
– volume: 196
  start-page: 183
  year: 2009
  end-page: 198
  ident: bb0450
  article-title: Assisted washing for heavy metal and metalloid removal from contaminated dredged materials
  publication-title: Water Air Soil Pollut.
– volume: 17
  start-page: 517
  year: 2002
  end-page: 568
  ident: bb0520
  article-title: A review of the source, behavior and distribution of arsenic in natural waters
  publication-title: Appl. Geochem.
– volume: 633
  start-page: 206
  year: 2018
  end-page: 219
  ident: bb0375
  article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability
  publication-title: Sci. Total Environ.
– volume: 28
  start-page: 363
  year: 2018
  end-page: 382
  ident: bb0570
  article-title: Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: a review
  publication-title: Pedosphere
– volume: 279
  start-page: 132
  year: 2016
  end-page: 140
  ident: bb0620
  article-title: Changes in heavy metals extractability from contaminated soils remediated with organic waste or biochar
  publication-title: Geoderma
– volume: 46
  start-page: 9948
  year: 2012
  end-page: 9955
  ident: bb0175
  article-title: Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model
  publication-title: Environ. Sci. Technol.
– volume: 61
  start-page: 337
  year: 2005
  end-page: 344
  ident: bb0500
  article-title: Copper complexation by dissolved organic matter from surface water and wastewater effluent
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 22
  start-page: 8802
  year: 2015
  end-page: 8825
  ident: bb0425
  article-title: Assessing the bioavailability and bioaccessibility of metals and metalloids
  publication-title: Environ. Sci. Pollut. Res.
– volume: 39
  start-page: 855
  year: 2010
  end-page: 862
  ident: bb0535
  article-title: Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriactetic acid as washing agents of a heavy metal-polluted soil
  publication-title: J. Environ. Qual.
– volume: 72
  start-page: 1481
  year: 2008
  end-page: 1490
  ident: bb0210
  article-title: Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents
  publication-title: Chemosphere
– volume: 42
  start-page: 489
  year: 2012
  end-page: 533
  ident: bb0380
  article-title: Cadmium sorption and desorption in soils: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 185
  start-page: 549
  year: 2011
  end-page: 574
  ident: bb0440
  article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils
  publication-title: J. Hazard. Mat.
– volume: 171
  start-page: 621
  year: 2017
  end-page: 645
  ident: bb0030
  article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation – a review
  publication-title: Earth-Sci. Rev.
– volume: 44
  start-page: 15
  year: 2010
  end-page: 23
  ident: bb0075
  article-title: Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci
  publication-title: Technol.
– reference: Borggaard, O.K. (1990) Dissolution and Adsorption Properties of Soil Iron Oxides. DSc-thesis, Royal Veterinary and Agricultural University (now University of Copenhagen), Denmark.
– volume: 43
  start-page: 3630
  year: 2009
  end-page: 3645
  ident: bb0290
  article-title: Arsenic redox changes by microbial and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 275
  year: 2000
  end-page: 282
  ident: bb0060
  article-title: Extraction of metals from a contaminated sandy soil using citric acid
  publication-title: Environ. Prog.
– year: 2017
  ident: bb0650
  article-title: Guidelines for Drinking-water Quality
– volume: 157
  start-page: 931
  year: 2009
  end-page: 937
  ident: bb0280
  article-title: The potential of willow for remediation of metal polluted calcareous urban soils
  publication-title: Environ. Pollut.
– volume: 237
  start-page: 650
  year: 2018
  end-page: 661
  ident: bb0255
  article-title: Source identification of heavy metals in peri-urban soils of southeast China: An integrated approach
  publication-title: Environ. Pollut.
– volume: B61
  start-page: 577
  year: 2011
  end-page: 581
  ident: bb0100
  article-title: Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids
  publication-title: Acta Agric. Scand.
– volume: 3
  start-page: 3020
  year: 2015
  end-page: 3023
  ident: bb0475
  article-title: A laboratory test of NOM-assisted remediation of arsenic and copper contaminated soils
  publication-title: J. Environ. Chem. Eng.
– volume: 189
  start-page: 291
  year: 2008
  end-page: 333
  ident: bb0470
  article-title: A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials
  publication-title: Water Air Soil Pollut.
– volume: 116
  start-page: 109
  year: 2002
  end-page: 121
  ident: bb0495
  article-title: Potential and drawbacks pf chelate-enhanced phytoremediation of soils
  publication-title: Environ. Pollut.
– volume: 91
  start-page: 869
  year: 2013
  end-page: 881
  ident: bb0005
  article-title: Phytoremediation of heavy metals – concepts and applications
  publication-title: Chemosphere
– volume: 19
  start-page: 142
  year: 2010
  end-page: 159
  ident: bb0025
  article-title: Extraction of arsenic from soils contaminated with wood preservation chemicals
  publication-title: Soil Sediment Contam.
– volume: 18
  start-page: 369
  year: 2009
  end-page: 382
  ident: bb0095
  article-title: Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils
  publication-title: Soil Sediment Contam.
– volume: 177
  start-page: 655
  year: 2012
  end-page: 663
  ident: bb0010
  article-title: Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (
  publication-title: Soil Sci.
– volume: 193
  start-page: 323
  year: 2008
  end-page: 333
  ident: bb0065
  article-title: Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances
  publication-title: Water Air Soil Pollut.
– volume: 11
  start-page: 33
  year: 2014
  end-page: 42
  ident: bb0205
  article-title: Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 26
  start-page: 148
  year: 2016
  end-page: 166
  ident: bb0515
  article-title: Factors affecting phytoextraction: a review
  publication-title: Pedosphere
– volume: 25
  start-page: 2584
  year: 2011
  end-page: 2590
  ident: bb0045
  article-title: Metal complexation properties of dissolved organic matter are explained by its aromaticity and anthropogenic ligands
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 635
  year: 2010
  end-page: 643
  ident: bb0605
  article-title: Humic substances biological activity at the plant-soil interface
  publication-title: Plant Signal. Behav.
– volume: 219-220
  start-page: 1
  year: 2012
  end-page: 12
  ident: bb0510
  article-title: Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands
  publication-title: J. Hazard. Mat.
– volume: 28
  start-page: 215
  year: 2008
  end-page: 225
  ident: bb0335
  article-title: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review
  publication-title: Water Manage.
– volume: 56
  start-page: 3627
  year: 1992
  end-page: 3641
  ident: bb0595
  article-title: A unifying model of cation binding by humic substances
  publication-title: Geochim. Cosmochim. Acta
– volume: 21
  start-page: 12684
  year: 2014
  end-page: 12692
  ident: bb0710
  article-title: Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw
  publication-title: Environ. Sci. Pollut. Res.
– volume: 362
  start-page: 389
  year: 2013
  end-page: 417
  ident: bb0270
  article-title: Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview to integrative opportunities for agronomy
  publication-title: Plant Soil
– volume: 301
  start-page: 100
  year: 2016
  end-page: 105
  ident: bb0145
  article-title: Reclamation of zinc-contaminated soil using a dissolve organic carbon solution prepared using liquid fertilizer from food waste composting
  publication-title: J. Hazard. Mat.
– volume: 14
  start-page: 75
  year: 2017
  end-page: 84
  ident: bb0265
  article-title: Low-molecular-mass-organic acids in the forest soil environment
  publication-title: Mini-Rev. Org. Chem.
– volume: 51
  start-page: 845
  year: 2003
  end-page: 853
  ident: bb0310
  article-title: Factors affecting EDTA extraction of lead from lead-contaminated soils
  publication-title: Chemosphere
– volume: 23
  start-page: 599
  year: 2014
  end-page: 613
  ident: bb0245
  article-title: Soil washing enhanced by humic substances and biodegradable chelating agents
  publication-title: Soil Sediment Contam.
– volume: 72
  start-page: 473
  year: 2017
  end-page: 480
  ident: bb0700
  article-title: Roles of composts in soil based on assessment of humification degree of fulvic acids
  publication-title: Ecol. Indic.
– year: 2006
  ident: bb0275
  article-title: World Reference Base for Soil Resources 2006. World Soil Resources Reports No 103
– volume: 20
  start-page: 384
  year: 2018
  end-page: 397
  ident: bb0120
  article-title: From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites
  publication-title: Int. J. Phytorem.
– volume: 113
  start-page: 187
  year: 2003
  end-page: 209
  ident: bb0715
  article-title: Dissolved organic matter: artefacts, definitions, and functions
  publication-title: Geoderma
– volume: 65
  start-page: 1233
  year: 2001
  end-page: 1242
  ident: bb0550
  article-title: Cadmium and copper release kinetics in relation to afforestation of cultivated soils
  publication-title: Geochim. Cosmoschim. Acta
– year: 2015
  ident: bb0410
  article-title: Liste over kvalitetskriterier i relation til forurenet jord og kvalitetskriterier for drikkevand (in Danish)
  publication-title: Available
– volume: 250-251
  start-page: 272
  year: 2013
  end-page: 291
  ident: bb0200
  article-title: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review
  publication-title: J. Hazard. Mat.
– volume: 152
  start-page: 1
  year: 2008
  end-page: 31
  ident: bb0195
  article-title: Soil washing for metal removal: a review of physical/chemical technologies and field applications
  publication-title: J. Hazard. Mat.
– volume: 151
  start-page: 34
  year: 2015
  end-page: 40
  ident: bb0490
  article-title: Phytoextraction: where's the action?
  publication-title: J. Geochem. Exp.
– volume: 153
  start-page: 3
  year: 2008
  end-page: 13
  ident: bb0350
  article-title: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ
  publication-title: Pollut.
– volume: 56
  start-page: 1
  year: 2001
  end-page: 26
  ident: bb0555
  article-title: Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type
  publication-title: Biogeochem.
– volume: 140
  start-page: 114
  year: 2006
  end-page: 123
  ident: bb0415
  article-title: Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil
  publication-title: Environ. Pollut.
– volume: 62
  start-page: 255
  year: 2006
  end-page: 264
  ident: bb0050
  article-title: Leaching and reduction of chromium in soil as affected by soil organic content and plants
  publication-title: Chemosphere
– volume: 113
  start-page: 79
  year: 2001
  end-page: 85
  ident: bb0055
  article-title: Metal associations in soils before and after EDTA extractive decontamination: implications for effectiveness of further clean-up procedures
  publication-title: Environ. Pollut.
– volume: 436
  start-page: 309
  year: 2001
  end-page: 323
  ident: bb0645
  article-title: Arsenic fractionation in soils using an improved sequential extraction procedure
  publication-title: Anal. Chim. Acta
– volume: 36
  start-page: 4916
  year: 2002
  end-page: 4926
  ident: bb0105
  article-title: Role of iron in controlling speciation and mobilization of arsenic in subsurface environment
  publication-title: Water Res.
– volume: 75
  start-page: 2499
  year: 2011
  end-page: 2511
  ident: bb0130
  article-title: Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charge oxygen donor atoms
  publication-title: Geochim. Cosmochim. Acta
– volume: 36
  start-page: 753
  year: 2007
  end-page: 763
  ident: bb0230
  article-title: Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil
  publication-title: J. Environ. Qual.
– volume: 187
  start-page: 18
  year: 2016
  end-page: 30
  ident: bb0035
  article-title: Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil
  publication-title: J. Contam. Hydrol.
– volume: 43
  start-page: 1013
  year: 2001
  end-page: 1021
  ident: bb0670
  article-title: Mobilization of soil organic matter by complexing agents and implications for polycyclic hydrocarbon desorption
  publication-title: Chemosphere
– volume: 235-236
  start-page: 233
  year: 2014
  end-page: 239
  ident: bb0135
  article-title: Remediation of lead-contaminated soil using dissolved organic carbon solutions prepared by wine-producing waste sludge
  publication-title: Geoderma
– volume: 49
  start-page: 397
  year: 1998
  end-page: 406
  ident: bb0480
  article-title: Effect of natural organic soil solutes on weathering rates of soil minerals
  publication-title: Eur. J. Soil Sci.
– volume: 7
  start-page: 129
  year: 2005
  end-page: 142
  ident: bb0400
  article-title: Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil
  publication-title: Int. J. Phytorem.
– volume: 66
  start-page: 151
  year: 1999
  end-page: 210
  ident: bb0445
  article-title: Chelant extraction of heavy metals from contaminated soils
  publication-title: J. Hazard. Mat.
– volume: 88
  start-page: 299
  year: 2016
  end-page: 309
  ident: bb0600
  article-title: Heavy metals in agricultural soils of European Union with implications for food safety
  publication-title: Environ. Int.
– volume: 7
  start-page: 485
  year: 2010
  end-page: 496
  ident: bb0665
  article-title: Removal of heavy metals from a contaminated soil using organic chelating acids
  publication-title: Int. J. Environ. Sci. Tech.
– volume: 84
  start-page: 168
  year: 2015
  end-page: 176
  ident: bb0165
  article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model
  publication-title: Soil Biol. Biochem.
– volume: 70
  start-page: 2163
  year: 2006
  end-page: 2190
  ident: bb0315
  article-title: Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction and thermodynamic modeling. Geochim. Cosmochim
  publication-title: Acta
– volume: 398
  start-page: 61
  year: 2015
  end-page: 69
  ident: bb0485
  article-title: Effect of dissolved organic matter on metal speciation in soil solutions
  publication-title: Chem. Geol.
– volume: 68
  start-page: 989
  year: 2007
  end-page: 1003
  ident: bb0220
  article-title: Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents
  publication-title: Chemosphere
– volume: 36
  start-page: 976
  year: 2002
  end-page: 981
  ident: bb0395
  article-title: Arsenic(III) oxidation and arsenic(V) reactions on synthetic birnessite
  publication-title: Environ. Sci. Technol.
– volume: 124
  start-page: 3
  year: 2005
  end-page: 22
  ident: bb0110
  article-title: Soil structure and management: a review
  publication-title: Geoderma
– volume: 161
  start-page: 1239
  year: 2009
  end-page: 1244
  ident: bb0150
  article-title: The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils
  publication-title: J. Hazard. Mat.
– volume: 244-245
  start-page: 645
  year: 2013
  end-page: 653
  ident: bb0360
  article-title: Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge
  publication-title: J. Hazard. Mat.
– volume: 6
  start-page: 611
  year: 2007
  end-page: 622
  ident: bb0635
  article-title: Kinetics of heavy metal desorption from three soils using citric acid, tartaric acid, and EDTA
  publication-title: J. Environ. Eng. Sci.
– volume: 266
  start-page: 141
  year: 2014
  end-page: 166
  ident: bb0070
  article-title: Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize
  publication-title: J. Hazard. Mat.
– volume: 38
  start-page: 937
  year: 2004
  end-page: 944
  ident: bb0575
  article-title: Extraction of heavy metals from soils using biodegradable chelating agents
  publication-title: Environ. Sci. Technol.
– volume: 60
  start-page: 590
  year: 2009
  end-page: 612
  ident: bb0190
  article-title: Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review
  publication-title: Eur. J. Soil Sci.
– volume: 21
  start-page: 3987
  year: 2014
  end-page: 3995
  ident: bb0610
  article-title: Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances
  publication-title: Environ. Sci. Pollut. Res.
– reference: Borggaard, O.K. (1974) Titrimetric determination of acidity and pK values of humic acid. Acta Chem. Scand. A28, 121–122.
– volume: 136
  start-page: 42
  year: 2015
  end-page: 49
  ident: bb0330
  article-title: Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil
  publication-title: Chemosphere
– volume: 32
  start-page: 125
  year: 1998
  end-page: 135
  ident: bb0155
  article-title: Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater
  publication-title: Water Res.
– volume: 51
  start-page: 844
  year: 1979
  end-page: 851
  ident: bb0585
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
– volume: 36
  start-page: 4804
  year: 2002
  end-page: 4810
  ident: bb0640
  article-title: Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 3210
  year: 2011
  end-page: 3216
  ident: bb0370
  article-title: Complexation of arsenite with humic acid in the presence of ferric iron
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 189
  year: 2005
  end-page: 196
  ident: bb0560
  article-title: Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil
  publication-title: Eur. J. Soil Sci.
– volume: 196
  start-page: 556
  year: 2018
  end-page: 565
  ident: bb0590
  article-title: Metal sorption to Spodosol Bs horizons: organic matter complexes
  publication-title: Chemosphere
– volume: 241
  start-page: 922
  year: 2018
  end-page: 929
  ident: bb0260
  article-title: Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: implications for safe food production
  publication-title: Environ. Pollut.
– volume: 206
  start-page: 400
  year: 2015
  end-page: 410
  ident: bb0435
  article-title: Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: the influence of aging and emission source
  publication-title: Environ. Pollut.
– volume: 300
  start-page: 882
  year: 2015
  end-page: 891
  ident: bb0325
  article-title: Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time
  publication-title: J. Hazard. Mat.
– volume: 10
  start-page: 45
  year: 2010
  end-page: 53
  ident: bb0465
  article-title: Removal of trace and major metals by soil washing with Na
  publication-title: J. Soils Sediments
– volume: 11
  start-page: 33
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0205
  article-title: Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0433-7
– volume: 191
  start-page: 144
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0235
  article-title: Desorption of cadmium from natural Shanghai clay using citric acid industrial wastewater
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2011.04.054
– volume: 38
  start-page: 937
  year: 2004
  ident: 10.1016/j.geoderma.2019.02.041_bb0575
  article-title: Extraction of heavy metals from soils using biodegradable chelating agents
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0348750
– volume: 75
  start-page: 2499
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0130
  article-title: Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charge oxygen donor atoms
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.02.027
– volume: 49
  start-page: 397
  year: 1998
  ident: 10.1016/j.geoderma.2019.02.041_bb0480
  article-title: Effect of natural organic soil solutes on weathering rates of soil minerals
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.1998.4930397.x
– volume: 49
  start-page: 750
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0695
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5047099
– volume: 58
  start-page: 1514
  year: 2007
  ident: 10.1016/j.geoderma.2019.02.041_bb0115
  article-title: Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2007.00958.x
– volume: 28
  start-page: 215
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0335
  article-title: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review
  publication-title: Water Manage.
– volume: 56
  start-page: 3627
  year: 1992
  ident: 10.1016/j.geoderma.2019.02.041_bb0595
  article-title: A unifying model of cation binding by humic substances
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(92)90158-F
– volume: 41
  start-page: 2277
  year: 2007
  ident: 10.1016/j.geoderma.2019.02.041_bb0015
  article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062166r
– volume: 42
  start-page: 489
  year: 2012
  ident: 10.1016/j.geoderma.2019.02.041_bb0380
  article-title: Cadmium sorption and desorption in soils: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2010.520234
– volume: 633
  start-page: 206
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0375
  article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.161
– volume: 60
  start-page: 590
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0190
  article-title: Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01142.x
– volume: 64
  start-page: 156
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0385
  article-title: Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality – a critical review
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2018.1440938
– volume: 152
  start-page: 693
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0345
  article-title: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environ
  publication-title: Pollut.
  doi: 10.1016/j.envpol.2007.06.054
– volume: 193
  start-page: 323
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0065
  article-title: Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-008-9693-0
– volume: 542
  start-page: 642
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0185
  article-title: Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.10.122
– volume: 171
  start-page: 621
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0030
  article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation – a review
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2017.06.005
– volume: 152
  start-page: 1
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0195
  article-title: Soil washing for metal removal: a review of physical/chemical technologies and field applications
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2007.10.043
– volume: 244-245
  start-page: 645
  year: 2013
  ident: 10.1016/j.geoderma.2019.02.041_bb0360
  article-title: Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2012.10.060
– volume: 187
  start-page: 18
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0035
  article-title: Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2016.01.009
– volume: 72
  start-page: 1481
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0210
  article-title: Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.04.083
– volume: 51
  start-page: 845
  year: 2003
  ident: 10.1016/j.geoderma.2019.02.041_bb0310
  article-title: Factors affecting EDTA extraction of lead from lead-contaminated soils
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(03)00155-3
– volume: 68
  start-page: 989
  year: 2007
  ident: 10.1016/j.geoderma.2019.02.041_bb0220
  article-title: Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.01.062
– year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0410
  article-title: Liste over kvalitetskriterier i relation til forurenet jord og kvalitetskriterier for drikkevand (in Danish)
– volume: 26
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0655
  article-title: Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60017-0
– volume: 88
  start-page: 299
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0600
  article-title: Heavy metals in agricultural soils of European Union with implications for food safety
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.12.017
– volume: 26
  start-page: 148
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0515
  article-title: Factors affecting phytoextraction: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60032-7
– volume: 135
  start-page: 515
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0170
  article-title: Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.10.006
– volume: 196
  start-page: 183
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0450
  article-title: Assisted washing for heavy metal and metalloid removal from contaminated dredged materials
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-008-9767-z
– volume: 266
  start-page: 141
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0070
  article-title: Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2013.12.018
– volume: B61
  start-page: 577
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0100
  article-title: Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids
  publication-title: Acta Agric. Scand.
– volume: 136
  start-page: 42
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0330
  article-title: Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.03.083
– volume: 150
  start-page: 106
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0565
  article-title: Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with hyperaccumulator plant (Sedum alfredii Hance)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.01.016
– volume: 80
  start-page: 222
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0140
  article-title: Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2005.09.007
– volume: 32
  start-page: 125
  year: 1998
  ident: 10.1016/j.geoderma.2019.02.041_bb0155
  article-title: Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00202-9
– volume: 287
  start-page: 429
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0675
  article-title: Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2015.01.062
– volume: 99
  start-page: 169
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0545
  article-title: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00102-6
– volume: 29
  start-page: 613
  year: 2003
  ident: 10.1016/j.geoderma.2019.02.041_bb0225
  article-title: Effects of organic acids on copper and cadmium desorption from contaminated soils
  publication-title: Environ. Int.
  doi: 10.1016/S0160-4120(03)00048-5
– volume: 3
  start-page: 3020
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0475
  article-title: A laboratory test of NOM-assisted remediation of arsenic and copper contaminated soils
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2015.04.029
– volume: 40
  start-page: 6015
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0125
  article-title: Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminium
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061057+
– volume: 18
  start-page: 369
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0095
  article-title: Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320380902799326
– volume: 157
  start-page: 931
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0280
  article-title: The potential of willow for remediation of metal polluted calcareous urban soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.10.024
– year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0530
– volume: 44
  start-page: 15
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0075
  article-title: Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci
  publication-title: Technol.
  doi: 10.1021/es9026248
– volume: 235-236
  start-page: 233
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0135
  article-title: Remediation of lead-contaminated soil using dissolved organic carbon solutions prepared by wine-producing waste sludge
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.004
– volume: 127
  start-page: 301
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0630
  article-title: Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1005251915165
– volume: 19
  start-page: 142
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0025
  article-title: Extraction of arsenic from soils contaminated with wood preservation chemicals
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320380903390539
– volume: 20
  start-page: 384
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0120
  article-title: From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226514.2017.1365340
– volume: 40
  start-page: 909
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0705
  article-title: Sorption of heavy metals by inorganic and organic components of soil wastes: significance to use wastes of low-cost adsorbents and immobilizing agents
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380802586857
– volume: 24
  start-page: 9506
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0685
  article-title: Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8660-y
– volume: 301
  start-page: 100
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0145
  article-title: Reclamation of zinc-contaminated soil using a dissolve organic carbon solution prepared using liquid fertilizer from food waste composting
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2015.08.015
– volume: 161
  start-page: 1239
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0150
  article-title: The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2008.04.081
– volume: 132
  start-page: 333
  year: 2004
  ident: 10.1016/j.geoderma.2019.02.041_bb0320
  article-title: Chelator induced phytoextraction and in situ soil washing of Cu
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.04.004
– volume: 36
  start-page: 753
  year: 2007
  ident: 10.1016/j.geoderma.2019.02.041_bb0230
  article-title: Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2006.0081
– year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0275
– volume: 436
  start-page: 309
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0645
  article-title: Arsenic fractionation in soils using an improved sequential extraction procedure
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)00924-2
– volume: 72
  start-page: 473
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0700
  article-title: Roles of composts in soil based on assessment of humification degree of fulvic acids
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.08.051
– volume: 39
  start-page: 855
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0535
  article-title: Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriactetic acid as washing agents of a heavy metal-polluted soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0292
– volume: 51
  start-page: 1
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0455
  article-title: Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review
  publication-title: Plant Soil Environ.
  doi: 10.17221/3549-PSE
– volume: 601-602
  start-page: 1591
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0305
  article-title: Soil contamination with cadmium, consequences and remediation using organic amendments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.06.030
– volume: 22
  start-page: 5283
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0160
  article-title: Experimental determinations of soil cupper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3737-3
– volume: 35
  start-page: 111
  year: 2013
  ident: 10.1016/j.geoderma.2019.02.041_bb0625
  article-title: Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-012-9461-3
– volume: 27
  start-page: 389
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0340
  article-title: Assessment of methods for determining bioavailability of trace elements in soils: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60337-0
– volume: 144
  start-page: 2
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0390
  article-title: Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2006.01.017
– volume: 38
  start-page: 229
  year: 1987
  ident: 10.1016/j.geoderma.2019.02.041_bb0085
  article-title: Influence of iron oxides on cobalt adsorption by soils
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1987.tb02140.x
– year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0650
– volume: 25
  start-page: 2584
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0045
  article-title: Metal complexation properties of dissolved organic matter are explained by its aromaticity and anthropogenic ligands
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103532a
– volume: 185
  start-page: 549
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0440
  article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2010.09.082
– volume: 237
  start-page: 650
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0255
  article-title: Source identification of heavy metals in peri-urban soils of southeast China: An integrated approach
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.070
– volume: 40
  start-page: 5225
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0430
  article-title: Critical assessment of chelant-enhanced metal phytoextraction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0604919
– volume: 37
  start-page: 1319
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0295
  article-title: Stabilization of dissolved organic matter by sorption to the mineral soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.11.028
– volume: 368
  start-page: 31
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0420
  article-title: Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2013.12.020
– volume: 28
  start-page: 363
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0570
  article-title: Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(18)60026-8
– volume: 279
  start-page: 132
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0620
  article-title: Changes in heavy metals extractability from contaminated soils remediated with organic waste or biochar
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.010
– volume: 312
  start-page: 307
  year: 2016
  ident: 10.1016/j.geoderma.2019.02.041_bb0040
  article-title: Humic substances-enhanced electroremediation of heavy metals contaminated soil
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2016.03.038
– volume: 10
  start-page: 45
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0465
  article-title: Removal of trace and major metals by soil washing with Na2EDTA and oxalate
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-009-0083-z
– volume: 5
  start-page: 635
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0605
  article-title: Humic substances biological activity at the plant-soil interface
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.6.11211
– volume: 21
  start-page: 12684
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0710
  article-title: Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3216-x
– volume: 51
  start-page: 844
  year: 1979
  ident: 10.1016/j.geoderma.2019.02.041_bb0585
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
  doi: 10.1021/ac50043a017
– volume: 47
  start-page: 65
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0300
  article-title: State of the science review: potential for beneficial use of by-products for in situ remediation of metal-contaminated soil and sediment
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2016.1275417
– volume: 57
  start-page: 253
  year: 2004
  ident: 10.1016/j.geoderma.2019.02.041_bb0460
  article-title: Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.06.010
– volume: 163
  start-page: 563
  year: 2000
  ident: 10.1016/j.geoderma.2019.02.041_bb0540
  article-title: New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/1522-2624(200012)163:6<563::AID-JPLN563>3.0.CO;2-0
– ident: 10.1016/j.geoderma.2019.02.041_bb0080
  doi: 10.3891/acta.chem.scand.28a-0121
– volume: 398
  start-page: 61
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0485
  article-title: Effect of dissolved organic matter on metal speciation in soil solutions
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2015.01.020
– volume: 206
  start-page: 400
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0435
  article-title: Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: the influence of aging and emission source
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.025
– volume: 56
  start-page: 189
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0560
  article-title: Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2004.00661.x
– volume: C133
  start-page: 65
  year: 2002
  ident: 10.1016/j.geoderma.2019.02.041_bb0525
  article-title: Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites
  publication-title: Comp. Biochem. Phys.
– volume: 7
  start-page: 129
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0400
  article-title: Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil
  publication-title: Int. J. Phytorem.
  doi: 10.1080/16226510590950423
– volume: 174
  start-page: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0660
  article-title: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2009.09.113
– volume: 177
  start-page: 655
  year: 2012
  ident: 10.1016/j.geoderma.2019.02.041_bb0010
  article-title: Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.)
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31827ba23f
– volume: 153
  start-page: 3
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0350
  article-title: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ
  publication-title: Pollut.
  doi: 10.1016/j.envpol.2007.11.015
– volume: 43
  start-page: 1013
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0670
  article-title: Mobilization of soil organic matter by complexing agents and implications for polycyclic hydrocarbon desorption
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00498-7
– volume: 24
  start-page: 15260
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0180
  article-title: Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9139-6
– volume: 84
  start-page: 168
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0165
  article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.019
– volume: 167
  start-page: 111
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0680
  article-title: Effects of low molecular weight organic anions on the release of arsenite and arsenate from contaminated soil
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-005-8219-2
– volume: 362
  start-page: 389
  year: 2013
  ident: 10.1016/j.geoderma.2019.02.041_bb0270
  article-title: Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview to integrative opportunities for agronomy
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1429-7
– volume: 46
  start-page: 9948
  year: 2012
  ident: 10.1016/j.geoderma.2019.02.041_bb0175
  article-title: Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301015p
– volume: 32
  start-page: 138
  year: 2003
  ident: 10.1016/j.geoderma.2019.02.041_bb0250
  article-title: Correlation of cadmium distribution coefficients to soil characteristics
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.1380
– volume: 36
  start-page: 4916
  year: 2002
  ident: 10.1016/j.geoderma.2019.02.041_bb0105
  article-title: Role of iron in controlling speciation and mobilization of arsenic in subsurface environment
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00203-8
– volume: 22
  start-page: 8802
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0425
  article-title: Assessing the bioavailability and bioaccessibility of metals and metalloids
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1820-9
– volume: 189
  start-page: 291
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0470
  article-title: A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-007-9564-0
– volume: 113
  start-page: 187
  year: 2003
  ident: 10.1016/j.geoderma.2019.02.041_bb0715
  article-title: Dissolved organic matter: artefacts, definitions, and functions
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00361-0
– volume: 36
  start-page: 4804
  year: 2002
  ident: 10.1016/j.geoderma.2019.02.041_bb0640
  article-title: Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0200084
– volume: 91
  start-page: 869
  year: 2013
  ident: 10.1016/j.geoderma.2019.02.041_bb0005
  article-title: Phytoremediation of heavy metals – concepts and applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.01.075
– volume: 74
  start-page: 1391
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0615
  article-title: Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.11.007
– volume: 70
  start-page: 2163
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0315
  article-title: Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction and thermodynamic modeling. Geochim. Cosmochim
  publication-title: Acta
– volume: 65
  start-page: 1281
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0580
  article-title: Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.04.039
– volume: 21
  start-page: 3987
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0610
  article-title: Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-2300-y
– volume: 20
  start-page: 777
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0285
  article-title: A laboratory assessment of potentials and limitations of using EDTA, rhamnolipids and compost derived humic substances (HS) in enhanced phytoextraction of copper and zinc polluted calcareous soils
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320383.2011.609198
– volume: 7
  start-page: 485
  year: 2010
  ident: 10.1016/j.geoderma.2019.02.041_bb0665
  article-title: Removal of heavy metals from a contaminated soil using organic chelating acids
  publication-title: Int. J. Environ. Sci. Tech.
  doi: 10.1007/BF03326158
– volume: 45
  start-page: 3210
  year: 2011
  ident: 10.1016/j.geoderma.2019.02.041_bb0370
  article-title: Complexation of arsenite with humic acid in the presence of ferric iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102931p
– volume: 178
  start-page: 97
  year: 2013
  ident: 10.1016/j.geoderma.2019.02.041_bb0365
  article-title: Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.02.034
– volume: 14
  start-page: 75
  year: 2017
  ident: 10.1016/j.geoderma.2019.02.041_bb0265
  article-title: Low-molecular-mass-organic acids in the forest soil environment
  publication-title: Mini-Rev. Org. Chem.
  doi: 10.2174/1570193X14666161130163034
– volume: 116
  start-page: 109
  year: 2002
  ident: 10.1016/j.geoderma.2019.02.041_bb0495
  article-title: Potential and drawbacks pf chelate-enhanced phytoremediation of soils
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00150-6
– volume: 196
  start-page: 556
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0590
  article-title: Metal sorption to Spodosol Bs horizons: organic matter complexes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.004
– volume: 10
  start-page: 390
  year: 2008
  ident: 10.1016/j.geoderma.2019.02.041_bb0405
  article-title: Chemical assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226510802100515
– volume: 36
  start-page: 976
  year: 2002
  ident: 10.1016/j.geoderma.2019.02.041_bb0395
  article-title: Arsenic(III) oxidation and arsenic(V) reactions on synthetic birnessite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0110170
– volume: 61
  start-page: 337
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0500
  article-title: Copper complexation by dissolved organic matter from surface water and wastewater effluent
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2005.01.006
– volume: 250-251
  start-page: 272
  year: 2013
  ident: 10.1016/j.geoderma.2019.02.041_bb0200
  article-title: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2013.01.048
– volume: 43
  start-page: 3630
  year: 2009
  ident: 10.1016/j.geoderma.2019.02.041_bb0290
  article-title: Arsenic redox changes by microbial and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803112a
– volume: 23
  start-page: 599
  year: 2014
  ident: 10.1016/j.geoderma.2019.02.041_bb0245
  article-title: Soil washing enhanced by humic substances and biodegradable chelating agents
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320383.2014.852511
– ident: 10.1016/j.geoderma.2019.02.041_bb0090
– volume: 241
  start-page: 922
  year: 2018
  ident: 10.1016/j.geoderma.2019.02.041_bb0260
  article-title: Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: implications for safe food production
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.06.034
– volume: 134
  start-page: 187
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0355
  article-title: Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.08.011
– volume: 41
  start-page: 410
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0020
  article-title: Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2005.07.005
– volume: 140
  start-page: 114
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0415
  article-title: Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.06.017
– volume: 52
  start-page: 265
  year: 2003
  ident: 10.1016/j.geoderma.2019.02.041_bb0240
  article-title: Potential availability of heavy metals by phytoextraction from contaminated soils induced by exogenous humic substances
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(03)00185-1
– volume: 110
  start-page: 335
  year: 1999
  ident: 10.1016/j.geoderma.2019.02.041_bb0215
  article-title: Extractive decontamination of metal-polluted soils using oxalate
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1005067404259
– volume: 17
  start-page: 517
  year: 2002
  ident: 10.1016/j.geoderma.2019.02.041_bb0520
  article-title: A review of the source, behavior and distribution of arsenic in natural waters
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(02)00018-5
– volume: 62
  start-page: 255
  year: 2006
  ident: 10.1016/j.geoderma.2019.02.041_bb0050
  article-title: Leaching and reduction of chromium in soil as affected by soil organic content and plants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.05.020
– volume: 113
  start-page: 79
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0055
  article-title: Metal associations in soils before and after EDTA extractive decontamination: implications for effectiveness of further clean-up procedures
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(00)00158-5
– volume: 66
  start-page: 151
  year: 1999
  ident: 10.1016/j.geoderma.2019.02.041_bb0445
  article-title: Chelant extraction of heavy metals from contaminated soils
  publication-title: J. Hazard. Mat.
  doi: 10.1016/S0304-3894(99)00010-2
– volume: 6
  start-page: 611
  year: 2007
  ident: 10.1016/j.geoderma.2019.02.041_bb0635
  article-title: Kinetics of heavy metal desorption from three soils using citric acid, tartaric acid, and EDTA
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/S07-004
– volume: 219-220
  start-page: 1
  year: 2012
  ident: 10.1016/j.geoderma.2019.02.041_bb0510
  article-title: Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2012.01.060
– volume: 65
  start-page: 1233
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0550
  article-title: Cadmium and copper release kinetics in relation to afforestation of cultivated soils
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/S0016-7037(00)00602-5
– volume: 124
  start-page: 3
  year: 2005
  ident: 10.1016/j.geoderma.2019.02.041_bb0110
  article-title: Soil structure and management: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 151
  start-page: 34
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0490
  article-title: Phytoextraction: where's the action?
  publication-title: J. Geochem. Exp.
  doi: 10.1016/j.gexplo.2015.01.001
– volume: 56
  start-page: 1
  year: 2001
  ident: 10.1016/j.geoderma.2019.02.041_bb0555
  article-title: Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type
  publication-title: Biogeochem.
  doi: 10.1023/A:1011934929379
– volume: 19
  start-page: 275
  year: 2000
  ident: 10.1016/j.geoderma.2019.02.041_bb0060
  article-title: Extraction of metals from a contaminated sandy soil using citric acid
  publication-title: Environ. Prog.
  doi: 10.1002/ep.670190415
– volume: 300
  start-page: 882
  year: 2015
  ident: 10.1016/j.geoderma.2019.02.041_bb0325
  article-title: Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2015.08.022
– volume: 34
  start-page: 1125
  year: 2000
  ident: 10.1016/j.geoderma.2019.02.041_bb0505
  article-title: Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9907764
SSID ssj0017020
Score 2.6200795
SecondaryResourceType review_article
Snippet Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 235
SubjectTerms aluminum oxide
arsenic
cadmium
cations
chromium
cobalt
composting
copper
dissolved organic matter
ecological footprint
economic analysis
EDTA (chelating agent)
environmental factors
food waste
Fulvic acid
fulvic acids
guidelines
Heavy metals
human health
lead
ligands
LMWOA
microbial activity
moieties
nickel
phytoaccumulation
Phytoextraction
pollutants
polluted soils
salicylic acids
soil pollution
Soil remediation
soil structure
Soil washing
solubility
sorbents
vanadium
zinc
Title Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review
URI https://dx.doi.org/10.1016/j.geoderma.2019.02.041
https://www.proquest.com/docview/2237526478
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1CemkOIW0TkjYNU-ihASu2pN2V1JtwG9yWuDkkEHJZVvtRbFzJ2HKO-e2Z0UdoAyWHHvYgsSvEzmjmoZ33hrGPHEGq4JIHorA64IgBglRHLiCpFZEZG4WeCM4XUzm55t9vxM0WG_dcGCqr7GJ_G9ObaN3dGXa7OVzOZsTxDWWC6QidEvNao_jJeUJefnb_WOYRJqNOmjGUAc3-gyU8RxtRw7FGfyjMGu1OHv4rQT0J1U3-Od9jux1whLx9t1dsy5Wv2U7-a9WJZ7g37O6yqqn4B6dVHuikvVrcOQtt5yYDvxstTfj05efFKdQVYFwmjhTk6wGMLY4KxwrHZgDT2QAuC9ClhdsSiIQCS-qKjAAV1tVssf4MObS8l312ff71ajwJur4KgeYxrwNvHVU3pbGRLWDw9G8400kknBcmSrVJZWKlsdpHxqZZ6lxYGOlDr510o_iAbZdV6Q4ZxNzz1PGoiL2gviWFx_wmRBFrbbKssEdM9JupTCc6Tr0vFqqvLpur3giKjKBGkUIjHLHh47plK7vx7Iqst5X6y4EU5oZn137ojavw66IjE126arNWCJ4SEREf9-1_PP8de4lXaVuadsy269XGvUcsUxcnjbOesBf5tx-T6QObZPHo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V6QE4oJaHKBQ6SBxAipXY3l3b3Ky0VUqb0EMrVVxW631UqYIdJU5_PzN-VICEeuCwF3vHsnbWM5-8833D2CeOIFVwyQNRWB1wxABBqiMXkNSKyIyNQk8E59lcTq_5txtxs8MmPReGyiq72N_G9CZad1dG3WqOVosFcXxDmWA6wk2JeY0UP3dJnUoM2G5-dj6dPxwmJONOnTGUARn8RhS-QzdRz7FGgijMGvlOHv4rR_0VrZsUdLrHnnfYEfL29fbZjitfsGf57brTz3Av2f1lVVP9D06rPNBhe7W8dxba5k0GfjZymvD5-PvsC9QVYGgmmhTkmyFMLI4KxxrHdgjzxRAuC9ClhR8lEA8FVtQYGTEqbKrFcvMVcmipL6_Y9enJ1WQadK0VAs1jXgfeOipwSmMjW8zg6fdwppNIOC9MlGqTysRKY7WPjE2z1LmwMNKHXjvpxvFrNiir0r1hEHPPU8ejIvaCWpcUHlOcEEWstcmywh4w0S-mMp3uOLW_WKq-wOxO9U5Q5AQ1jhQ64YCNHuxWrfLGoxZZ7yv1xx5SmB4etf3YO1fhB0anJrp01XajED8lIiJK7tv_eP4RezK9ml2oi7P5-Tv2lO60BWeHbFCvt-49Qpu6-NBt3V_oQfSX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+dissolved+organic+matter+%28DOM%29+to+extract+As%2C+Cd%2C+Co%2C+Cr%2C+Cu%2C+Ni%2C+Pb+and+Zn+from+polluted+soils%3A+A+review&rft.jtitle=Geoderma&rft.au=Borggaard%2C+Ole+K&rft.au=Holm%2C+Peter+E&rft.au=Strobel%2C+Bjarne+W&rft.date=2019-06-01&rft.issn=0016-7061&rft.volume=343+p.235-246&rft.spage=235&rft.epage=246&rft_id=info:doi/10.1016%2Fj.geoderma.2019.02.041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon