Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests

•Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP treatment.•MICP shows pleasurable ecological compatibility and long-term sustainability.•MICP is a promising candidate to mitigate wind erosion of de...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 383; p. 114723
Main Authors Meng, Hao, Gao, Yufeng, He, Jia, Qi, Yongshuai, Hang, Lei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP treatment.•MICP shows pleasurable ecological compatibility and long-term sustainability.•MICP is a promising candidate to mitigate wind erosion of desert soils in drylands. This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on artificial mounds and bare sandy land located in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the MICP method could significantly enhance the bearing capacity and wind erosion resistance of the surficial soil through the formation of soil crusts. The optimal cementation solution (containing equimolar urea and calcium chloride) concentration and spraying volume, were 0.2 M and 4 L/m2, respectively. Under this condition, the soil crusts, with a thickness of 12.5 mm and a calcium carbonate (CaCO3) content of 0.57%, remained intact on the surface of man-made mounds after being exposed to a 30 m/s wind for 2 min. For the sandy land, the soil bearing capacity could reach its maximum of 459.9 kPa (as measured with a 6 mm-diameter handheld penetrometer) within three days, and the depth of wind erosion was approximately zero after 30 days of exposure to the local weather conditions. Furthermore, the biocementation method showed its ecological compatibility at the optimal dosage. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the bridge effect of CaCO3 crystals. Longer-term durability of MICP treatment was evaluated, and the results showed that soil bearing capacity and wind erosion resistance of the sandy land was significantly improved over 180 days. These findings suggest that MICP is a promising candidate to protect desert soils from wind erosion.
AbstractList This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on artificial mounds and bare sandy land located in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the MICP method could significantly enhance the bearing capacity and wind erosion resistance of the surficial soil through the formation of soil crusts. The optimal cementation solution (containing equimolar urea and calcium chloride) concentration and spraying volume, were 0.2 M and 4 L/m², respectively. Under this condition, the soil crusts, with a thickness of 12.5 mm and a calcium carbonate (CaCO₃) content of 0.57%, remained intact on the surface of man-made mounds after being exposed to a 30 m/s wind for 2 min. For the sandy land, the soil bearing capacity could reach its maximum of 459.9 kPa (as measured with a 6 mm-diameter handheld penetrometer) within three days, and the depth of wind erosion was approximately zero after 30 days of exposure to the local weather conditions. Furthermore, the biocementation method showed its ecological compatibility at the optimal dosage. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the bridge effect of CaCO₃ crystals. Longer-term durability of MICP treatment was evaluated, and the results showed that soil bearing capacity and wind erosion resistance of the sandy land was significantly improved over 180 days. These findings suggest that MICP is a promising candidate to protect desert soils from wind erosion.
•Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP treatment.•MICP shows pleasurable ecological compatibility and long-term sustainability.•MICP is a promising candidate to mitigate wind erosion of desert soils in drylands. This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on artificial mounds and bare sandy land located in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the MICP method could significantly enhance the bearing capacity and wind erosion resistance of the surficial soil through the formation of soil crusts. The optimal cementation solution (containing equimolar urea and calcium chloride) concentration and spraying volume, were 0.2 M and 4 L/m2, respectively. Under this condition, the soil crusts, with a thickness of 12.5 mm and a calcium carbonate (CaCO3) content of 0.57%, remained intact on the surface of man-made mounds after being exposed to a 30 m/s wind for 2 min. For the sandy land, the soil bearing capacity could reach its maximum of 459.9 kPa (as measured with a 6 mm-diameter handheld penetrometer) within three days, and the depth of wind erosion was approximately zero after 30 days of exposure to the local weather conditions. Furthermore, the biocementation method showed its ecological compatibility at the optimal dosage. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the bridge effect of CaCO3 crystals. Longer-term durability of MICP treatment was evaluated, and the results showed that soil bearing capacity and wind erosion resistance of the sandy land was significantly improved over 180 days. These findings suggest that MICP is a promising candidate to protect desert soils from wind erosion.
ArticleNumber 114723
Author Meng, Hao
He, Jia
Gao, Yufeng
Hang, Lei
Qi, Yongshuai
Author_xml – sequence: 1
  givenname: Hao
  surname: Meng
  fullname: Meng, Hao
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China
– sequence: 2
  givenname: Yufeng
  surname: Gao
  fullname: Gao, Yufeng
  email: yfgao66@163.com
  organization: Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu, China
– sequence: 3
  givenname: Jia
  surname: He
  fullname: He, Jia
  email: hejia@hhu.edu.cn
  organization: Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu, China
– sequence: 4
  givenname: Yongshuai
  surname: Qi
  fullname: Qi, Yongshuai
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China
– sequence: 5
  givenname: Lei
  surname: Hang
  fullname: Hang, Lei
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China
BookMark eNqFkMFKAzEQhoMoWKuvIDl62Zpkd7OteFDEqqB40XPITiaSkm5qkiq-vSmtFy89DTN8_wzznZDDIQxIyDlnE864vFxMPjAYjEs9EUyUIW86UR-QEZ92opKinR2SEStk1THJj8lJSovSdoUdEfviIIbeae9_qBvMGtBQ0LEPg85IVxHBrVzW2YWB2hDpd4EoxpA2AwhDjsHTYKnBhDHTFJy_onOH3lQJtEeaMeV0So6s9gnPdnVM3uf3b3eP1fPrw9Pd7XOlm7rJVd8aU6OeomzlFKaAsjESmbTAWWdBYNcw4Chk-UaYDmai7wUIkE3bWga2HpOL7d5VDJ_rclktXQL0Xg8Y1kmJthWMyW42K6jcouX_lCJatYpuqeOP4kxtxKqF-hOrNmLVVmwJXv8Lwk5Qjtr5_fGbbRyLhy-HUSVwOBTvrsjOygS3b8UvNJ2c7A
CitedBy_id crossref_primary_10_1016_j_envres_2022_115121
crossref_primary_10_1007_s12010_024_04947_x
crossref_primary_10_1039_D4EE06048B
crossref_primary_10_1007_s11440_021_01334_2
crossref_primary_10_1016_j_jenvman_2024_122745
crossref_primary_10_1080_01490451_2023_2208113
crossref_primary_10_3390_ma15114017
crossref_primary_10_1007_s10064_024_03909_1
crossref_primary_10_1007_s11440_025_02552_8
crossref_primary_10_1007_s12665_023_10899_y
crossref_primary_10_1016_j_mineng_2022_107855
crossref_primary_10_1016_j_geoderma_2022_116231
crossref_primary_10_1016_j_enggeo_2024_107842
crossref_primary_10_1016_j_sandf_2025_101567
crossref_primary_10_1016_j_apt_2021_10_001
crossref_primary_10_1520_JTE20220343
crossref_primary_10_1631_jzus_A2300006
crossref_primary_10_1016_j_jenvman_2022_115929
crossref_primary_10_1016_j_catena_2022_106324
crossref_primary_10_1007_s10064_023_03357_3
crossref_primary_10_1016_j_jenvman_2023_118633
crossref_primary_10_1016_j_jobe_2024_111297
crossref_primary_10_1007_s10064_022_02900_y
crossref_primary_10_1016_j_conbuildmat_2022_127792
crossref_primary_10_1016_j_biteb_2024_101979
crossref_primary_10_1002_ldr_5589
crossref_primary_10_1016_j_ecohyd_2023_11_006
crossref_primary_10_1061_IJGNAI_GMENG_9353
crossref_primary_10_1016_j_geoderma_2023_116504
crossref_primary_10_1016_j_jhydrol_2022_127966
crossref_primary_10_1016_j_procs_2023_08_127
crossref_primary_10_3390_min13040506
crossref_primary_10_1016_j_jclepro_2025_144904
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126656
crossref_primary_10_1007_s11368_024_03888_6
crossref_primary_10_1016_j_rineng_2024_103732
crossref_primary_10_1016_j_jece_2023_111223
crossref_primary_10_1016_j_jece_2025_115349
crossref_primary_10_1061_JMCEE7_MTENG_18815
crossref_primary_10_1007_s11440_024_02494_7
crossref_primary_10_1016_j_jobe_2023_105839
crossref_primary_10_3390_ma16175767
crossref_primary_10_3390_math12203267
crossref_primary_10_3390_min13020185
crossref_primary_10_1016_j_biotechadv_2023_108269
crossref_primary_10_1007_s12517_021_07775_z
crossref_primary_10_1016_j_enggeo_2024_107869
crossref_primary_10_1139_cgj_2022_0416
crossref_primary_10_1007_s12665_024_11568_4
crossref_primary_10_1038_s41598_025_94124_9
crossref_primary_10_1016_j_conbuildmat_2025_140679
crossref_primary_10_3390_land12081503
crossref_primary_10_1038_s41598_024_77613_1
crossref_primary_10_1016_j_apt_2021_11_004
crossref_primary_10_1080_01490451_2024_2401887
crossref_primary_10_3390_su15097622
crossref_primary_10_1016_j_powtec_2021_05_096
crossref_primary_10_1186_s40793_025_00694_6
crossref_primary_10_3390_ma17225420
crossref_primary_10_3389_feart_2022_863357
crossref_primary_10_1061_IJGNAI_GMENG_9257
crossref_primary_10_3390_polym15051107
crossref_primary_10_1016_j_conbuildmat_2023_131365
crossref_primary_10_1021_acs_langmuir_2c01854
crossref_primary_10_1007_s12665_023_10966_4
crossref_primary_10_3390_su15010863
crossref_primary_10_3390_ma16093357
crossref_primary_10_1016_j_rineng_2024_103235
crossref_primary_10_1016_j_bgtech_2023_100002
crossref_primary_10_3390_ma17184508
crossref_primary_10_3390_en15155566
crossref_primary_10_1155_2022_3616473
crossref_primary_10_1016_j_jclepro_2024_143085
crossref_primary_10_1080_1064119X_2022_2055508
crossref_primary_10_1111_rec_14379
crossref_primary_10_1016_j_conbuildmat_2025_139995
crossref_primary_10_1007_s11771_024_5585_8
crossref_primary_10_1016_j_apgeochem_2024_106258
crossref_primary_10_1016_j_procs_2022_11_241
crossref_primary_10_1016_j_sandf_2022_101246
crossref_primary_10_1016_j_jrmge_2023_10_007
crossref_primary_10_3390_jcs6010023
crossref_primary_10_1016_j_heliyon_2023_e19655
crossref_primary_10_1038_s41598_023_37523_0
crossref_primary_10_1016_j_powtec_2025_120710
crossref_primary_10_1007_s40333_022_0017_9
crossref_primary_10_1016_j_jece_2024_114824
crossref_primary_10_1007_s11356_024_35781_7
crossref_primary_10_1007_s11157_023_09674_z
crossref_primary_10_3390_app14072854
crossref_primary_10_1007_s11440_024_02524_4
crossref_primary_10_1016_j_renene_2024_120055
crossref_primary_10_1007_s11356_024_33824_7
crossref_primary_10_1016_j_jrmge_2021_12_008
crossref_primary_10_1007_s11104_022_05803_9
crossref_primary_10_1111_sum_12736
crossref_primary_10_3389_fevo_2023_1189356
crossref_primary_10_1007_s13369_024_08896_9
crossref_primary_10_1007_s11440_023_02008_x
crossref_primary_10_1016_j_enmm_2023_100844
crossref_primary_10_1016_j_ibiod_2023_105728
crossref_primary_10_3390_ma16051949
crossref_primary_10_1016_j_bgtech_2024_100146
crossref_primary_10_1061_JGGEFK_GTENG_11140
crossref_primary_10_1016_j_bgtech_2023_100022
crossref_primary_10_1007_s11356_022_24046_w
crossref_primary_10_1016_j_apor_2021_102972
crossref_primary_10_1080_15324982_2024_2441726
crossref_primary_10_1007_s11440_022_01489_6
crossref_primary_10_1038_s41598_023_33070_w
crossref_primary_10_1061_IJGNAI_GMENG_8817
crossref_primary_10_1016_j_enggeo_2021_106374
crossref_primary_10_1038_s41579_023_00980_5
crossref_primary_10_1016_j_bgtech_2023_100017
crossref_primary_10_1016_j_jenvman_2022_115280
crossref_primary_10_3390_su142012965
crossref_primary_10_1016_j_conbuildmat_2021_125098
crossref_primary_10_1016_j_geoderma_2022_116183
crossref_primary_10_1007_s12665_024_11668_1
crossref_primary_10_1016_j_scitotenv_2023_168048
crossref_primary_10_1016_j_scitotenv_2023_169016
crossref_primary_10_1016_j_jobe_2023_107013
crossref_primary_10_1007_s11440_023_02161_3
crossref_primary_10_12677_hjce_2024_135065
crossref_primary_10_3390_app14146343
crossref_primary_10_1016_j_bgtech_2024_100157
crossref_primary_10_1080_1064119X_2024_2318395
crossref_primary_10_1016_j_apor_2022_103177
crossref_primary_10_1016_j_geoderma_2021_115359
crossref_primary_10_1080_01490451_2023_2283419
crossref_primary_10_3390_app13021010
crossref_primary_10_3390_min12101186
crossref_primary_10_1016_j_catena_2024_107900
crossref_primary_10_1016_j_jobe_2021_102834
crossref_primary_10_3390_cryst11121439
Cites_doi 10.1061/(ASCE)MT.1943-5533.0002774
10.1007/s10295-008-0514-7
10.1016/S0038-0717(99)00082-6
10.1016/j.ecoleng.2016.01.073
10.1016/j.geoderma.2005.06.008
10.1016/j.ecoleng.2006.05.020
10.1016/j.chemosphere.2010.09.066
10.1061/(ASCE)GT.1943-5606.0001559
10.1007/s11157-007-9126-3
10.1007/s11270-013-1631-0
10.1016/j.jhazmat.2011.11.067
10.1680/geot.SIP13.P.019
10.1007/s10811-017-1061-2
10.1061/(ASCE)MT.1943-5533.0003100
10.1089/ind.2010.6.170
10.1016/j.conbuildmat.2013.06.061
10.1016/j.ecoleng.2012.01.013
10.1016/j.ecoleng.2013.06.006
10.1061/41165(397)409
10.1016/j.geoderma.2019.114090
10.1007/s11440-018-0729-3
10.1126/science.1131634
10.1007/s13762-015-0921-z
10.1016/j.geoderma.2018.02.042
10.1016/j.ecoleng.2009.03.026
10.1016/j.micres.2016.03.010
10.1021/acssuschemeng.7b00521
10.1007/s00603-014-0603-z
10.1016/j.ecoleng.2009.01.004
10.1016/j.conbuildmat.2014.10.026
10.1016/j.geoderma.2015.04.006
10.1061/(ASCE)1090-0241(2006)132:11(1381)
10.1016/j.ecoleng.2008.12.029
10.1155/2018/6107656
10.1006/jaer.1995.1080
10.1016/j.powtec.2018.02.003
10.1006/jare.1998.0388
10.1061/(ASCE)GT.1943-5606.0001586
10.1080/01490451.2018.1556750
10.1002/ldr.2297
10.1080/01490450701436505
10.1016/j.aeolia.2019.06.001
10.1016/j.conbuildmat.2014.12.116
10.1007/s11104-013-1616-1
10.1080/01490451.2011.592929
10.1016/j.jenvman.2010.08.012
10.1061/(ASCE)GT.1943-5606.0000666
10.1061/(ASCE)GT.1943-5606.0002111
10.1680/jgeot.15.P.168
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114723
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114723
S0016706120308429
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a434t-b5dd3ea8e6568c8ce64d6e06fc107fc2e740c1e260162d7c92bb2c2c6455f0cf3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 12:01:54 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Tue Jul 01 04:04:54 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Field tests
Microbially induced carbonate precipitation (MICP)
Desert soil
Biocementation
Calcium carbonate
Wind erosion control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a434t-b5dd3ea8e6568c8ce64d6e06fc107fc2e740c1e260162d7c92bb2c2c6455f0cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2552006799
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552006799
crossref_primary_10_1016_j_geoderma_2020_114723
crossref_citationtrail_10_1016_j_geoderma_2020_114723
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Yoshioka, Yamamoto, Soga (b0160) 2016; 90
Harkes, Van Paassen, Booster, Whiffin, van Loosdrecht (b0130) 2010; 36
Peng, Zheng, Huang, Li, Li, Cheng, Liu (b0205) 2017; 29
Bang, S.S., Bang, S., Frutiger, S., Nehl, L.M., Comes, B.L., 2009. Application of Novel Biological Technique in Dust Suppression, Transportation Research Board 88th Annual Meeting, Washington DC, United States, pp. 0831.
Achal, Mukerjee, Reddy (b0015) 2013; 48
DeJong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C., 2010. Bio-mediated soil improvement. Ecol. Eng. 36 (2), 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Yokoi, S., Bressan, R. A., Hasegawa, P. M., 2002. Salt stress tolerance of plants. JIRCAS working report 23(1), 25-33.
Whiffin, Van Paassen, Harkes (b0255) 2007; 24
Achal, Pan, Fu, Zhang (b0020) 2012; 201
Amiraslani, Dragovich (b0040) 2011; 92
Chang, Im, Prasidhi, Cho (b0055) 2015; 74
Zomorodian, Ghaffari, O'Kelly (b0280) 2019; 40
Hessini, Hamed, Gandour, Mejri, Abdelly, Cruz (b0145) 2013; 370
Gomez, M. G., Martinez, B. C., Dejong, J. T., Hunt, C. E., Dworatzek, S. W., 2013. Bio-mediated Soil Improvement Field Study to Stabilize Mine Sands. Proceedings of GeoMontreal 2013, Montreal, Canada.
Montoya, DeJong, Boulanger (b0190) 2013; 63
Nafisi, Safavizadeh, Montoya (b0195) 2019; 145
Okwadha, Li (b0200) 2010; 81
Gao, Tang, Chu, He (b0120) 2019; 36
Al-Thawadi (b0035) 2008
DeJong, Fritzges, Nüsslein (b0100) 2006; 132
Telysheva, Shulga (b0225) 1995; 62
Ciantia, Castellanza, Di Prisco (b0090) 2015; 48
Van Paassen, Harkes, Van Zwieten, Van der Zon, Van der Star, Van Loosdrecht (b0235) 2009
He, Gao, Gu, Chu, Wang (b0140) 2020; 32
Achal, Mukherjee, Basu, Reddy (b0005) 2009; 36
Al Qabany, Soga, Santamarina (b0030) 2012; 138
Yoosathaporn, Tiangburanatham, Bovonsombut, Chaipanich, Pathom-Aree (b0265) 2016; 186
Wang, Zhang, Ding, Lu, Jin (b0250) 2018; 2018
Al-Hashemi, Al-Amoudi (b0025) 2018; 330
Chang, Prasidhi, Im, Cho (b0060) 2015; 77
Zhang, Wang, Jiao, Zhao, Zhang, Li (b0270) 2013; 58
Van Paassen, Daza, Staal, Sorokin, Der Zon, Van Loosdrecht (b0230) 2010; 36
Hamdan, Kavazanjian (b0135) 2016; 66
Cheng, Cord-Ruwisch (b0070) 2012; 42
Achal, Mukherjee, Reddy (b0010) 2010; 6
Li, Xiao, He, Zhang (b0170) 2006; 28
Cheng, Shahin, Mujah (b0075) 2017; 143
Reynolds, Smith, Lambin, Turner, Mortimore, Batterbury, Downin, Dowlatabadi, Fernández, Herrick, Huber-Sannwald, Jiang, Leemans, Lynam, Maestre, Ayarza, Walker (b0210) 2007; 16
Gao, Hang, He, Chu (b0115) 2019; 14
Maleki, Ebrahimi, Asadzadeh, Tabrizi (b0180) 2016; 13
Lo, Tirkolaei, Hua, De Rosa, Carlson, Kavazanjian, He (b0175) 2020; 361
Colazo, Buschiazzo (b0095) 2015; 26
Kheirabadi, Mahmoodabadi, Jalali, Naghavi (b0165) 2018; 323
Venda Oliveira, Neves (b0245) 2019; 31
Zhang, Wang, Wang, Yang, Zhang (b0275) 2006; 132
Jiang, Soga, Kuo (b0155) 2017; 143
Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control. GSP 211. ASCE, Reston, VA, USA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409.
Choi, Chu, Brown, Wang, Wen (b0080) 2017; 5
Chu, Stabnikov, Ivanov (b0085) 2012; 29
Ivanov, Chu (b0150) 2008; 7
Belnap, Gillette (b0050) 1998; 39
Stocks-Fischer, Galinat, Bang (b0220) 1999; 31
Stabnikov, Chu, Myo, Ivanov (b0215) 2013; 224
Chang, Prasidhi, Im, Shin, Cho (b0065) 2015; 253
Whiffin (10.1016/j.geoderma.2020.114723_b0255) 2007; 24
DeJong (10.1016/j.geoderma.2020.114723_b0100) 2006; 132
Amiraslani (10.1016/j.geoderma.2020.114723_b0040) 2011; 92
Reynolds (10.1016/j.geoderma.2020.114723_b0210) 2007; 16
Venda Oliveira (10.1016/j.geoderma.2020.114723_b0245) 2019; 31
Al-Hashemi (10.1016/j.geoderma.2020.114723_b0025) 2018; 330
Chang (10.1016/j.geoderma.2020.114723_b0065) 2015; 253
Wang (10.1016/j.geoderma.2020.114723_b0250) 2018; 2018
Cheng (10.1016/j.geoderma.2020.114723_b0070) 2012; 42
Achal (10.1016/j.geoderma.2020.114723_b0015) 2013; 48
Telysheva (10.1016/j.geoderma.2020.114723_b0225) 1995; 62
10.1016/j.geoderma.2020.114723_b0105
Chang (10.1016/j.geoderma.2020.114723_b0055) 2015; 74
Cheng (10.1016/j.geoderma.2020.114723_b0075) 2017; 143
Al Qabany (10.1016/j.geoderma.2020.114723_b0030) 2012; 138
Hamdan (10.1016/j.geoderma.2020.114723_b0135) 2016; 66
10.1016/j.geoderma.2020.114723_b0185
Ciantia (10.1016/j.geoderma.2020.114723_b0090) 2015; 48
Hessini (10.1016/j.geoderma.2020.114723_b0145) 2013; 370
10.1016/j.geoderma.2020.114723_b0260
Jiang (10.1016/j.geoderma.2020.114723_b0160) 2016; 90
Jiang (10.1016/j.geoderma.2020.114723_b0155) 2017; 143
Van Paassen (10.1016/j.geoderma.2020.114723_b0235) 2009
Choi (10.1016/j.geoderma.2020.114723_b0080) 2017; 5
Harkes (10.1016/j.geoderma.2020.114723_b0130) 2010; 36
Kheirabadi (10.1016/j.geoderma.2020.114723_b0165) 2018; 323
Gao (10.1016/j.geoderma.2020.114723_b0115) 2019; 14
Li (10.1016/j.geoderma.2020.114723_b0170) 2006; 28
Zhang (10.1016/j.geoderma.2020.114723_b0270) 2013; 58
Montoya (10.1016/j.geoderma.2020.114723_b0190) 2013; 63
Nafisi (10.1016/j.geoderma.2020.114723_b0195) 2019; 145
Zomorodian (10.1016/j.geoderma.2020.114723_b0280) 2019; 40
Chang (10.1016/j.geoderma.2020.114723_b0060) 2015; 77
Yoosathaporn (10.1016/j.geoderma.2020.114723_b0265) 2016; 186
Belnap (10.1016/j.geoderma.2020.114723_b0050) 1998; 39
Van Paassen (10.1016/j.geoderma.2020.114723_b0230) 2010; 36
Okwadha (10.1016/j.geoderma.2020.114723_b0200) 2010; 81
Colazo (10.1016/j.geoderma.2020.114723_b0095) 2015; 26
Achal (10.1016/j.geoderma.2020.114723_b0020) 2012; 201
Stocks-Fischer (10.1016/j.geoderma.2020.114723_b0220) 1999; 31
He (10.1016/j.geoderma.2020.114723_b0140) 2020; 32
Gao (10.1016/j.geoderma.2020.114723_b0120) 2019; 36
Achal (10.1016/j.geoderma.2020.114723_b0010) 2010; 6
10.1016/j.geoderma.2020.114723_b0125
10.1016/j.geoderma.2020.114723_b0045
Peng (10.1016/j.geoderma.2020.114723_b0205) 2017; 29
Ivanov (10.1016/j.geoderma.2020.114723_b0150) 2008; 7
Al-Thawadi (10.1016/j.geoderma.2020.114723_b0035) 2008
Achal (10.1016/j.geoderma.2020.114723_b0005) 2009; 36
Chu (10.1016/j.geoderma.2020.114723_b0085) 2012; 29
Lo (10.1016/j.geoderma.2020.114723_b0175) 2020; 361
Stabnikov (10.1016/j.geoderma.2020.114723_b0215) 2013; 224
Zhang (10.1016/j.geoderma.2020.114723_b0275) 2006; 132
Maleki (10.1016/j.geoderma.2020.114723_b0180) 2016; 13
References_xml – volume: 36
  start-page: 366
  year: 2019
  end-page: 375
  ident: b0120
  article-title: Microbially induced calcite precipitation for seepage control in sandy soil
  publication-title: Geomicrobiol. J.
– volume: 26
  start-page: 62
  year: 2015
  end-page: 70
  ident: b0095
  article-title: The impact of agriculture on soil texture due to wind erosion
  publication-title: Land Degrad. Dev.
– year: 2008
  ident: b0035
  article-title: High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria
– volume: 7
  start-page: 139
  year: 2008
  end-page: 153
  ident: b0150
  article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ
  publication-title: Rev. Environ. Sci. Bio.
– volume: 143
  start-page: 04016100
  year: 2017
  ident: b0155
  article-title: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures
  publication-title: J. Geotech. Geoenviron.
– volume: 29
  start-page: 544
  year: 2012
  end-page: 549
  ident: b0085
  article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil
  publication-title: Geomicrobiol. J.
– volume: 16
  start-page: 847
  year: 2007
  end-page: 851
  ident: b0210
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
– volume: 77
  start-page: 430
  year: 2015
  end-page: 438
  ident: b0060
  article-title: Soil strengthening using thermo-gelation biopolymers
  publication-title: Constr. Build. Mater.
– volume: 224
  start-page: 1631
  year: 2013
  ident: b0215
  article-title: Immobilization of sand dust and associated pollutants using bioaggregation
  publication-title: Water Air Soil Poll.
– volume: 36
  start-page: 168
  year: 2010
  end-page: 175
  ident: b0230
  article-title: Potential soil reinforcement by biological denitrification
  publication-title: Ecol. Eng.
– volume: 361
  year: 2020
  ident: b0175
  article-title: Durable and ductile double-network material for dust control
  publication-title: Geoderma
– volume: 31
  start-page: 1563
  year: 1999
  end-page: 1571
  ident: b0220
  article-title: Microbiological precipitation of CaCO
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: 417
  year: 2007
  end-page: 423
  ident: b0255
  article-title: Microbial carbonate precipitation as a soil improvement technique
  publication-title: Geomicrobiol. J.
– volume: 42
  start-page: 64
  year: 2012
  end-page: 72
  ident: b0070
  article-title: In situ soil cementation with ureolytic bacteria by surface percolation
  publication-title: Ecol. Eng.
– volume: 90
  start-page: 96
  year: 2016
  end-page: 104
  ident: b0160
  article-title: Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)
  publication-title: Ecol. Eng.
– volume: 13
  start-page: 937
  year: 2016
  end-page: 944
  ident: b0180
  article-title: Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil
  publication-title: Int. J. Environ. Sci. Te.
– volume: 63
  start-page: 302
  year: 2013
  end-page: 312
  ident: b0190
  article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation
  publication-title: Géotechnique
– volume: 81
  start-page: 1143
  year: 2010
  end-page: 1148
  ident: b0200
  article-title: Optimum conditions for microbial carbonate precipitation
  publication-title: Chemosphere
– volume: 40
  start-page: 34
  year: 2019
  end-page: 41
  ident: b0280
  article-title: Stabilisation of crustal sand layer using biocementation technique for wind erosion control
  publication-title: Aeolian Res.
– volume: 201
  start-page: 178
  year: 2012
  end-page: 184
  ident: b0020
  article-title: Biomineralization based remediation of As (III) contaminated soil by
  publication-title: J. Hazard. Mater.
– volume: 92
  start-page: 1
  year: 2011
  end-page: 13
  ident: b0040
  article-title: Combating desertification in Iran over the last 50 years: an overview of changing approaches
  publication-title: J. Environ. Manage.
– reference: Bang, S.S., Bang, S., Frutiger, S., Nehl, L.M., Comes, B.L., 2009. Application of Novel Biological Technique in Dust Suppression, Transportation Research Board 88th Annual Meeting, Washington DC, United States, pp. 0831.
– volume: 48
  start-page: 441
  year: 2015
  end-page: 461
  ident: b0090
  article-title: Experimental study on the water-induced weakening of calcarenites
  publication-title: Rock Mech. Rock Eng.
– volume: 39
  start-page: 133
  year: 1998
  end-page: 142
  ident: b0050
  article-title: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance
  publication-title: J. Arid Environ.
– volume: 66
  start-page: 546
  year: 2016
  end-page: 555
  ident: b0135
  article-title: Enzyme-induced carbonate mineral precipitation for fugitive dust control
  publication-title: Géotechnique
– volume: 28
  start-page: 149
  year: 2006
  end-page: 157
  ident: b0170
  article-title: Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions
  publication-title: Ecol. Eng.
– volume: 62
  start-page: 221
  year: 1995
  end-page: 227
  ident: b0225
  article-title: Silicon-containing polycomplexes for protection against wind erosion of sandy soil
  publication-title: J. Agr. Eng. Res.
– volume: 5
  start-page: 5183
  year: 2017
  end-page: 5190
  ident: b0080
  article-title: Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass
  publication-title: ACS Sustain. Chem. Eng.
– volume: 132
  start-page: 1381
  year: 2006
  end-page: 1392
  ident: b0100
  article-title: Microbially induced cementation to control sand response to undrained shear
  publication-title: J. Geotech. Geoenviron.
– reference: Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control. GSP 211. ASCE, Reston, VA, USA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409.
– volume: 36
  start-page: 112
  year: 2010
  end-page: 117
  ident: b0130
  article-title: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement
  publication-title: Ecol. Eng.
– start-page: 2328
  year: 2009
  end-page: 2333
  ident: b0235
  article-title: Scale up of BioGrout: a biological ground reinforcement method
  publication-title: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering
– volume: 6
  start-page: 170
  year: 2010
  end-page: 174
  ident: b0010
  article-title: Biocalcification by
  publication-title: Ind. Biotech.
– volume: 74
  start-page: 65
  year: 2015
  end-page: 72
  ident: b0055
  article-title: Effects of Xanthan gum biopolymer on soil strengthening
  publication-title: Constr. Build. Mater.
– reference: Gomez, M. G., Martinez, B. C., Dejong, J. T., Hunt, C. E., Dworatzek, S. W., 2013. Bio-mediated Soil Improvement Field Study to Stabilize Mine Sands. Proceedings of GeoMontreal 2013, Montreal, Canada.
– reference: Yokoi, S., Bressan, R. A., Hasegawa, P. M., 2002. Salt stress tolerance of plants. JIRCAS working report 23(1), 25-33.
– volume: 29
  start-page: 1421
  year: 2017
  end-page: 1428
  ident: b0205
  article-title: Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage
  publication-title: J. Appl. Phycol.
– volume: 323
  start-page: 22
  year: 2018
  end-page: 30
  ident: b0165
  article-title: Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution
  publication-title: Geoderma
– reference: DeJong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C., 2010. Bio-mediated soil improvement. Ecol. Eng. 36 (2), 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
– volume: 138
  start-page: 992
  year: 2012
  end-page: 1001
  ident: b0030
  article-title: Factors affecting efficiency of microbially induced calcite precipitation
  publication-title: J. Geotech. Geoenviron.
– volume: 145
  start-page: 06019008
  year: 2019
  ident: b0195
  article-title: Influence of microbe and enzyme-induced treatments on cemented sand shear response
  publication-title: J. Geotech. Geoenviron.
– volume: 132
  start-page: 441
  year: 2006
  end-page: 449
  ident: b0275
  article-title: The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China
  publication-title: Geoderma
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0250
  article-title: Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation
  publication-title: Adv. Mater. Sci. Eng.
– volume: 330
  start-page: 397
  year: 2018
  end-page: 417
  ident: b0025
  article-title: A review on the angle of repose of granular materials
  publication-title: Powder Technol.
– volume: 370
  start-page: 163
  year: 2013
  end-page: 173
  ident: b0145
  article-title: Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium?
  publication-title: Plant Soil
– volume: 14
  start-page: 697
  year: 2019
  end-page: 707
  ident: b0115
  article-title: Mechanical behaviour of biocemented sands at various treatment levels and relative densities
  publication-title: Acta Geotech.
– volume: 31
  start-page: 04019121
  year: 2019
  ident: b0245
  article-title: Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils
  publication-title: J. Mater. Civil Eng.
– volume: 186
  start-page: 132
  year: 2016
  end-page: 138
  ident: b0265
  article-title: A cost effective cultivation medium for biocalcification of
  publication-title: Microbiol. Res.
– volume: 48
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0015
  article-title: Biogenic treatment improves the durability and remediates the cracks of concrete structures
  publication-title: Constr. Build. Mater.
– volume: 253
  start-page: 39
  year: 2015
  end-page: 47
  ident: b0065
  article-title: Soil treatment using microbial biopolymers for anti-desertification purposes
  publication-title: Geoderma
– volume: 58
  start-page: 91
  year: 2013
  end-page: 98
  ident: b0270
  article-title: Physiological response of a submerged plant (
  publication-title: Ecol. Eng.
– volume: 32
  start-page: 04020071
  year: 2020
  ident: b0140
  article-title: Characterization of crude bacterial urease for CaCO
  publication-title: J. Mater. Civil Eng.
– volume: 143
  start-page: 04016083
  year: 2017
  ident: b0075
  article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization
  publication-title: J. Geotech. Geoenviron.
– volume: 36
  start-page: 433
  year: 2009
  end-page: 438
  ident: b0005
  article-title: Lactose mother liquor as an alternative nutrient source for microbial concrete production by
  publication-title: Microbiol. Biotechnol.
– start-page: 2328
  year: 2009
  ident: 10.1016/j.geoderma.2020.114723_b0235
  article-title: Scale up of BioGrout: a biological ground reinforcement method
– volume: 31
  start-page: 04019121
  issue: 7
  year: 2019
  ident: 10.1016/j.geoderma.2020.114723_b0245
  article-title: Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils
  publication-title: J. Mater. Civil Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002774
– volume: 36
  start-page: 433
  year: 2009
  ident: 10.1016/j.geoderma.2020.114723_b0005
  article-title: Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii
  publication-title: Microbiol. Biotechnol.
  doi: 10.1007/s10295-008-0514-7
– ident: 10.1016/j.geoderma.2020.114723_b0045
– volume: 31
  start-page: 1563
  issue: 11
  year: 1999
  ident: 10.1016/j.geoderma.2020.114723_b0220
  article-title: Microbiological precipitation of CaCO3
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00082-6
– ident: 10.1016/j.geoderma.2020.114723_b0125
– volume: 90
  start-page: 96
  year: 2016
  ident: 10.1016/j.geoderma.2020.114723_b0160
  article-title: Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.01.073
– volume: 132
  start-page: 441
  issue: 3–4
  year: 2006
  ident: 10.1016/j.geoderma.2020.114723_b0275
  article-title: The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.06.008
– volume: 28
  start-page: 149
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2020.114723_b0170
  article-title: Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2006.05.020
– volume: 81
  start-page: 1143
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2020.114723_b0200
  article-title: Optimum conditions for microbial carbonate precipitation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.09.066
– volume: 143
  start-page: 04016100
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2020.114723_b0155
  article-title: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0001559
– volume: 7
  start-page: 139
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2020.114723_b0150
  article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ
  publication-title: Rev. Environ. Sci. Bio.
  doi: 10.1007/s11157-007-9126-3
– volume: 224
  start-page: 1631
  issue: 9
  year: 2013
  ident: 10.1016/j.geoderma.2020.114723_b0215
  article-title: Immobilization of sand dust and associated pollutants using bioaggregation
  publication-title: Water Air Soil Poll.
  doi: 10.1007/s11270-013-1631-0
– year: 2008
  ident: 10.1016/j.geoderma.2020.114723_b0035
– volume: 201
  start-page: 178
  year: 2012
  ident: 10.1016/j.geoderma.2020.114723_b0020
  article-title: Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.11.067
– volume: 63
  start-page: 302
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2020.114723_b0190
  article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation
  publication-title: Géotechnique
  doi: 10.1680/geot.SIP13.P.019
– volume: 29
  start-page: 1421
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2020.114723_b0205
  article-title: Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-017-1061-2
– volume: 32
  start-page: 04020071
  issue: 5
  year: 2020
  ident: 10.1016/j.geoderma.2020.114723_b0140
  article-title: Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand
  publication-title: J. Mater. Civil Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003100
– volume: 6
  start-page: 170
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2020.114723_b0010
  article-title: Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source
  publication-title: Ind. Biotech.
  doi: 10.1089/ind.2010.6.170
– volume: 48
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2020.114723_b0015
  article-title: Biogenic treatment improves the durability and remediates the cracks of concrete structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.06.061
– volume: 42
  start-page: 64
  year: 2012
  ident: 10.1016/j.geoderma.2020.114723_b0070
  article-title: In situ soil cementation with ureolytic bacteria by surface percolation
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2012.01.013
– volume: 58
  start-page: 91
  year: 2013
  ident: 10.1016/j.geoderma.2020.114723_b0270
  article-title: Physiological response of a submerged plant (Myriophyllum spicatum) to different NH4Cl concentrations in sediments
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.06.006
– ident: 10.1016/j.geoderma.2020.114723_b0185
  doi: 10.1061/41165(397)409
– volume: 361
  year: 2020
  ident: 10.1016/j.geoderma.2020.114723_b0175
  article-title: Durable and ductile double-network material for dust control
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114090
– volume: 14
  start-page: 697
  issue: 3
  year: 2019
  ident: 10.1016/j.geoderma.2020.114723_b0115
  article-title: Mechanical behaviour of biocemented sands at various treatment levels and relative densities
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-018-0729-3
– volume: 16
  start-page: 847
  issue: 5826
  year: 2007
  ident: 10.1016/j.geoderma.2020.114723_b0210
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
  doi: 10.1126/science.1131634
– volume: 13
  start-page: 937
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2020.114723_b0180
  article-title: Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil
  publication-title: Int. J. Environ. Sci. Te.
  doi: 10.1007/s13762-015-0921-z
– volume: 323
  start-page: 22
  year: 2018
  ident: 10.1016/j.geoderma.2020.114723_b0165
  article-title: Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.02.042
– volume: 36
  start-page: 168
  issue: 2
  year: 2010
  ident: 10.1016/j.geoderma.2020.114723_b0230
  article-title: Potential soil reinforcement by biological denitrification
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2009.03.026
– volume: 186
  start-page: 132
  year: 2016
  ident: 10.1016/j.geoderma.2020.114723_b0265
  article-title: A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2016.03.010
– volume: 5
  start-page: 5183
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2020.114723_b0080
  article-title: Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00521
– volume: 48
  start-page: 441
  issue: 2
  year: 2015
  ident: 10.1016/j.geoderma.2020.114723_b0090
  article-title: Experimental study on the water-induced weakening of calcarenites
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-014-0603-z
– volume: 36
  start-page: 112
  issue: 2
  year: 2010
  ident: 10.1016/j.geoderma.2020.114723_b0130
  article-title: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2009.01.004
– volume: 74
  start-page: 65
  year: 2015
  ident: 10.1016/j.geoderma.2020.114723_b0055
  article-title: Effects of Xanthan gum biopolymer on soil strengthening
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.10.026
– volume: 253
  start-page: 39
  year: 2015
  ident: 10.1016/j.geoderma.2020.114723_b0065
  article-title: Soil treatment using microbial biopolymers for anti-desertification purposes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.006
– volume: 132
  start-page: 1381
  issue: 11
  year: 2006
  ident: 10.1016/j.geoderma.2020.114723_b0100
  article-title: Microbially induced cementation to control sand response to undrained shear
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
– ident: 10.1016/j.geoderma.2020.114723_b0105
  doi: 10.1016/j.ecoleng.2008.12.029
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2020.114723_b0250
  article-title: Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2018/6107656
– volume: 62
  start-page: 221
  issue: 4
  year: 1995
  ident: 10.1016/j.geoderma.2020.114723_b0225
  article-title: Silicon-containing polycomplexes for protection against wind erosion of sandy soil
  publication-title: J. Agr. Eng. Res.
  doi: 10.1006/jaer.1995.1080
– volume: 330
  start-page: 397
  year: 2018
  ident: 10.1016/j.geoderma.2020.114723_b0025
  article-title: A review on the angle of repose of granular materials
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.02.003
– volume: 39
  start-page: 133
  issue: 2
  year: 1998
  ident: 10.1016/j.geoderma.2020.114723_b0050
  article-title: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance
  publication-title: J. Arid Environ.
  doi: 10.1006/jare.1998.0388
– volume: 143
  start-page: 04016083
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114723_b0075
  article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0001586
– volume: 36
  start-page: 366
  issue: 4
  year: 2019
  ident: 10.1016/j.geoderma.2020.114723_b0120
  article-title: Microbially induced calcite precipitation for seepage control in sandy soil
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2018.1556750
– volume: 26
  start-page: 62
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2020.114723_b0095
  article-title: The impact of agriculture on soil texture due to wind erosion
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2297
– volume: 24
  start-page: 417
  issue: 5
  year: 2007
  ident: 10.1016/j.geoderma.2020.114723_b0255
  article-title: Microbial carbonate precipitation as a soil improvement technique
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490450701436505
– volume: 40
  start-page: 34
  year: 2019
  ident: 10.1016/j.geoderma.2020.114723_b0280
  article-title: Stabilisation of crustal sand layer using biocementation technique for wind erosion control
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2019.06.001
– volume: 77
  start-page: 430
  year: 2015
  ident: 10.1016/j.geoderma.2020.114723_b0060
  article-title: Soil strengthening using thermo-gelation biopolymers
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.12.116
– volume: 370
  start-page: 163
  issue: 1–2
  year: 2013
  ident: 10.1016/j.geoderma.2020.114723_b0145
  article-title: Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1616-1
– volume: 29
  start-page: 544
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2020.114723_b0085
  article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2011.592929
– volume: 92
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2020.114723_b0040
  article-title: Combating desertification in Iran over the last 50 years: an overview of changing approaches
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.08.012
– volume: 138
  start-page: 992
  issue: 8
  year: 2012
  ident: 10.1016/j.geoderma.2020.114723_b0030
  article-title: Factors affecting efficiency of microbially induced calcite precipitation
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0000666
– ident: 10.1016/j.geoderma.2020.114723_b0260
– volume: 145
  start-page: 06019008
  issue: 9
  year: 2019
  ident: 10.1016/j.geoderma.2020.114723_b0195
  article-title: Influence of microbe and enzyme-induced treatments on cemented sand shear response
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0002111
– volume: 66
  start-page: 546
  issue: 7
  year: 2016
  ident: 10.1016/j.geoderma.2020.114723_b0135
  article-title: Enzyme-induced carbonate mineral precipitation for fugitive dust control
  publication-title: Géotechnique
  doi: 10.1680/jgeot.15.P.168
SSID ssj0017020
Score 2.6348276
Snippet •Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP...
This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114723
SubjectTerms Biocementation
Calcium carbonate
calcium chloride
China
Desert soil
desert soils
durability
energy-dispersive X-ray analysis
erosion control
Field tests
Microbially induced carbonate precipitation (MICP)
urea
wind
wind erosion
Wind erosion control
Title Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests
URI https://dx.doi.org/10.1016/j.geoderma.2020.114723
https://www.proquest.com/docview/2552006799
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYiuNBDBbRVecpIvbrZ9XrtXW4RIkpBzalI3CzbO66CoiRKghAXfjszGy8qSIhDr5ZteWe887C_-czYD-mq0usQhat8LZSJlajQD4vSq-hjDQ4yKnD-PdajG3V1W9722EVXC0OwymT7Nza9tdappZ-k2V9MJlTjm2tDHpooV9CsUgW7MrTLfz69wDxykyVqxlwL6v1PlfAd6ogeHGv5h2RLm2tk8Z6DemOqW_8z3GWfU-DIB5u17bEezPbZp8HfZSLPgC-McJ1Eq-Sm00eOuTZqreHBLT2dkANfEJHFInFycwxW-QN24oDLoIYEWufzyBugO3q-mk-m53xIGDexQl0Cx7h0vfrKboaXfy5GIr2jIJwq1Fr4smkKcBVg7FaFKoBWjYZMx4C5XwwSjMpCDi25mGxMqKX3MsigVVnGLMTiG9uazWfwnfHKNwETqEiXN8rV0WfRRSd1NHlehCYcsLITng3pg-iti6nt0GR3thO6JaHbjdAPWP9l3GJDs_HhiLrTjX21YSz6gg_HnnXKtPg30RWJm8H8fmUxwaIzFlPXh_8x_xHbkQR9acHdx2xrvbyHE4xd1v603ZynbHvw63o0fgacFfGm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNoeEPShAqW4Unt0N3EcJ6nEAdGulucJJG6u7YzRotXuarMIceFP8QeZyTqorVRxqLhaseWMx_Owv_nM2Bdpy9xpH4QtXSVUEUpRoh8WuVPBhQosJFTgfHKqB-fq8CK_WGL3XS0MwSqj7V_Y9NZax5ZelGZvOhxSjW-qC_LQRLmCZjUiK4_g9gbztmb34Acu8lcp-z_P9gciPi0grMrUXLi8rjOwJWA4U_rSg1a1hkQHj-lQ8BIKlfgUWr4tWRe-ks5JL71WeR4SHzIc9wVbUWgu6NmEb3ePuJK0SCIXZKoFTe-3suQrVAp64awlPJItT28hs395xL98Q-vw-mtsNUaqfG8hjHW2BOM37PXe5SyydcBbRkBS4nGyo9Etx-Qe1aTm3s4cHckDnxJzxjSSgHOMjvkNfsQBp0ENESXPJ4HXQKAA3kyGo--8T6A60aDyAMdAeN68Y-fPIt33bHk8GcMHxktXe8zYAt0WKVsFlwQbrNShSNPM136D5Z3wjI8_RI9rjEwHX7syndANCd0shL7Beo_9pgtejyd7VN3amD801KDzebLv524xDW5fupOxY5hcNwYzOjrUKapq8z_G32EvB2cnx-b44PRoi72ShLtpkeUf2fJ8dg3bGDjN3adWUTn79dw74wG3lS4r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbially+induced+carbonate+precipitation+for+wind+erosion+control+of+desert+soil%3A+Field-scale+tests&rft.jtitle=Geoderma&rft.au=Meng%2C+Hao&rft.au=Gao%2C+Yufeng&rft.au=He%2C+Jia&rft.au=Qi%2C+Yongshuai&rft.date=2021-02-01&rft.issn=0016-7061&rft.volume=383&rft.spage=114723&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon