Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests
•Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP treatment.•MICP shows pleasurable ecological compatibility and long-term sustainability.•MICP is a promising candidate to mitigate wind erosion of de...
Saved in:
Published in | Geoderma Vol. 383; p. 114723 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP treatment.•MICP shows pleasurable ecological compatibility and long-term sustainability.•MICP is a promising candidate to mitigate wind erosion of desert soils in drylands.
This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on artificial mounds and bare sandy land located in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the MICP method could significantly enhance the bearing capacity and wind erosion resistance of the surficial soil through the formation of soil crusts. The optimal cementation solution (containing equimolar urea and calcium chloride) concentration and spraying volume, were 0.2 M and 4 L/m2, respectively. Under this condition, the soil crusts, with a thickness of 12.5 mm and a calcium carbonate (CaCO3) content of 0.57%, remained intact on the surface of man-made mounds after being exposed to a 30 m/s wind for 2 min. For the sandy land, the soil bearing capacity could reach its maximum of 459.9 kPa (as measured with a 6 mm-diameter handheld penetrometer) within three days, and the depth of wind erosion was approximately zero after 30 days of exposure to the local weather conditions. Furthermore, the biocementation method showed its ecological compatibility at the optimal dosage. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the bridge effect of CaCO3 crystals. Longer-term durability of MICP treatment was evaluated, and the results showed that soil bearing capacity and wind erosion resistance of the sandy land was significantly improved over 180 days. These findings suggest that MICP is a promising candidate to protect desert soils from wind erosion. |
---|---|
AbstractList | This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on artificial mounds and bare sandy land located in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the MICP method could significantly enhance the bearing capacity and wind erosion resistance of the surficial soil through the formation of soil crusts. The optimal cementation solution (containing equimolar urea and calcium chloride) concentration and spraying volume, were 0.2 M and 4 L/m², respectively. Under this condition, the soil crusts, with a thickness of 12.5 mm and a calcium carbonate (CaCO₃) content of 0.57%, remained intact on the surface of man-made mounds after being exposed to a 30 m/s wind for 2 min. For the sandy land, the soil bearing capacity could reach its maximum of 459.9 kPa (as measured with a 6 mm-diameter handheld penetrometer) within three days, and the depth of wind erosion was approximately zero after 30 days of exposure to the local weather conditions. Furthermore, the biocementation method showed its ecological compatibility at the optimal dosage. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the bridge effect of CaCO₃ crystals. Longer-term durability of MICP treatment was evaluated, and the results showed that soil bearing capacity and wind erosion resistance of the sandy land was significantly improved over 180 days. These findings suggest that MICP is a promising candidate to protect desert soils from wind erosion. •Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP treatment.•MICP shows pleasurable ecological compatibility and long-term sustainability.•MICP is a promising candidate to mitigate wind erosion of desert soils in drylands. This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on artificial mounds and bare sandy land located in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the MICP method could significantly enhance the bearing capacity and wind erosion resistance of the surficial soil through the formation of soil crusts. The optimal cementation solution (containing equimolar urea and calcium chloride) concentration and spraying volume, were 0.2 M and 4 L/m2, respectively. Under this condition, the soil crusts, with a thickness of 12.5 mm and a calcium carbonate (CaCO3) content of 0.57%, remained intact on the surface of man-made mounds after being exposed to a 30 m/s wind for 2 min. For the sandy land, the soil bearing capacity could reach its maximum of 459.9 kPa (as measured with a 6 mm-diameter handheld penetrometer) within three days, and the depth of wind erosion was approximately zero after 30 days of exposure to the local weather conditions. Furthermore, the biocementation method showed its ecological compatibility at the optimal dosage. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the bridge effect of CaCO3 crystals. Longer-term durability of MICP treatment was evaluated, and the results showed that soil bearing capacity and wind erosion resistance of the sandy land was significantly improved over 180 days. These findings suggest that MICP is a promising candidate to protect desert soils from wind erosion. |
ArticleNumber | 114723 |
Author | Meng, Hao He, Jia Gao, Yufeng Hang, Lei Qi, Yongshuai |
Author_xml | – sequence: 1 givenname: Hao surname: Meng fullname: Meng, Hao organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China – sequence: 2 givenname: Yufeng surname: Gao fullname: Gao, Yufeng email: yfgao66@163.com organization: Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu, China – sequence: 3 givenname: Jia surname: He fullname: He, Jia email: hejia@hhu.edu.cn organization: Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu, China – sequence: 4 givenname: Yongshuai surname: Qi fullname: Qi, Yongshuai organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China – sequence: 5 givenname: Lei surname: Hang fullname: Hang, Lei organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China |
BookMark | eNqFkMFKAzEQhoMoWKuvIDl62Zpkd7OteFDEqqB40XPITiaSkm5qkiq-vSmtFy89DTN8_wzznZDDIQxIyDlnE864vFxMPjAYjEs9EUyUIW86UR-QEZ92opKinR2SEStk1THJj8lJSovSdoUdEfviIIbeae9_qBvMGtBQ0LEPg85IVxHBrVzW2YWB2hDpd4EoxpA2AwhDjsHTYKnBhDHTFJy_onOH3lQJtEeaMeV0So6s9gnPdnVM3uf3b3eP1fPrw9Pd7XOlm7rJVd8aU6OeomzlFKaAsjESmbTAWWdBYNcw4Chk-UaYDmai7wUIkE3bWga2HpOL7d5VDJ_rclktXQL0Xg8Y1kmJthWMyW42K6jcouX_lCJatYpuqeOP4kxtxKqF-hOrNmLVVmwJXv8Lwk5Qjtr5_fGbbRyLhy-HUSVwOBTvrsjOygS3b8UvNJ2c7A |
CitedBy_id | crossref_primary_10_1016_j_envres_2022_115121 crossref_primary_10_1007_s12010_024_04947_x crossref_primary_10_1039_D4EE06048B crossref_primary_10_1007_s11440_021_01334_2 crossref_primary_10_1016_j_jenvman_2024_122745 crossref_primary_10_1080_01490451_2023_2208113 crossref_primary_10_3390_ma15114017 crossref_primary_10_1007_s10064_024_03909_1 crossref_primary_10_1007_s11440_025_02552_8 crossref_primary_10_1007_s12665_023_10899_y crossref_primary_10_1016_j_mineng_2022_107855 crossref_primary_10_1016_j_geoderma_2022_116231 crossref_primary_10_1016_j_enggeo_2024_107842 crossref_primary_10_1016_j_sandf_2025_101567 crossref_primary_10_1016_j_apt_2021_10_001 crossref_primary_10_1520_JTE20220343 crossref_primary_10_1631_jzus_A2300006 crossref_primary_10_1016_j_jenvman_2022_115929 crossref_primary_10_1016_j_catena_2022_106324 crossref_primary_10_1007_s10064_023_03357_3 crossref_primary_10_1016_j_jenvman_2023_118633 crossref_primary_10_1016_j_jobe_2024_111297 crossref_primary_10_1007_s10064_022_02900_y crossref_primary_10_1016_j_conbuildmat_2022_127792 crossref_primary_10_1016_j_biteb_2024_101979 crossref_primary_10_1002_ldr_5589 crossref_primary_10_1016_j_ecohyd_2023_11_006 crossref_primary_10_1061_IJGNAI_GMENG_9353 crossref_primary_10_1016_j_geoderma_2023_116504 crossref_primary_10_1016_j_jhydrol_2022_127966 crossref_primary_10_1016_j_procs_2023_08_127 crossref_primary_10_3390_min13040506 crossref_primary_10_1016_j_jclepro_2025_144904 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126656 crossref_primary_10_1007_s11368_024_03888_6 crossref_primary_10_1016_j_rineng_2024_103732 crossref_primary_10_1016_j_jece_2023_111223 crossref_primary_10_1016_j_jece_2025_115349 crossref_primary_10_1061_JMCEE7_MTENG_18815 crossref_primary_10_1007_s11440_024_02494_7 crossref_primary_10_1016_j_jobe_2023_105839 crossref_primary_10_3390_ma16175767 crossref_primary_10_3390_math12203267 crossref_primary_10_3390_min13020185 crossref_primary_10_1016_j_biotechadv_2023_108269 crossref_primary_10_1007_s12517_021_07775_z crossref_primary_10_1016_j_enggeo_2024_107869 crossref_primary_10_1139_cgj_2022_0416 crossref_primary_10_1007_s12665_024_11568_4 crossref_primary_10_1038_s41598_025_94124_9 crossref_primary_10_1016_j_conbuildmat_2025_140679 crossref_primary_10_3390_land12081503 crossref_primary_10_1038_s41598_024_77613_1 crossref_primary_10_1016_j_apt_2021_11_004 crossref_primary_10_1080_01490451_2024_2401887 crossref_primary_10_3390_su15097622 crossref_primary_10_1016_j_powtec_2021_05_096 crossref_primary_10_1186_s40793_025_00694_6 crossref_primary_10_3390_ma17225420 crossref_primary_10_3389_feart_2022_863357 crossref_primary_10_1061_IJGNAI_GMENG_9257 crossref_primary_10_3390_polym15051107 crossref_primary_10_1016_j_conbuildmat_2023_131365 crossref_primary_10_1021_acs_langmuir_2c01854 crossref_primary_10_1007_s12665_023_10966_4 crossref_primary_10_3390_su15010863 crossref_primary_10_3390_ma16093357 crossref_primary_10_1016_j_rineng_2024_103235 crossref_primary_10_1016_j_bgtech_2023_100002 crossref_primary_10_3390_ma17184508 crossref_primary_10_3390_en15155566 crossref_primary_10_1155_2022_3616473 crossref_primary_10_1016_j_jclepro_2024_143085 crossref_primary_10_1080_1064119X_2022_2055508 crossref_primary_10_1111_rec_14379 crossref_primary_10_1016_j_conbuildmat_2025_139995 crossref_primary_10_1007_s11771_024_5585_8 crossref_primary_10_1016_j_apgeochem_2024_106258 crossref_primary_10_1016_j_procs_2022_11_241 crossref_primary_10_1016_j_sandf_2022_101246 crossref_primary_10_1016_j_jrmge_2023_10_007 crossref_primary_10_3390_jcs6010023 crossref_primary_10_1016_j_heliyon_2023_e19655 crossref_primary_10_1038_s41598_023_37523_0 crossref_primary_10_1016_j_powtec_2025_120710 crossref_primary_10_1007_s40333_022_0017_9 crossref_primary_10_1016_j_jece_2024_114824 crossref_primary_10_1007_s11356_024_35781_7 crossref_primary_10_1007_s11157_023_09674_z crossref_primary_10_3390_app14072854 crossref_primary_10_1007_s11440_024_02524_4 crossref_primary_10_1016_j_renene_2024_120055 crossref_primary_10_1007_s11356_024_33824_7 crossref_primary_10_1016_j_jrmge_2021_12_008 crossref_primary_10_1007_s11104_022_05803_9 crossref_primary_10_1111_sum_12736 crossref_primary_10_3389_fevo_2023_1189356 crossref_primary_10_1007_s13369_024_08896_9 crossref_primary_10_1007_s11440_023_02008_x crossref_primary_10_1016_j_enmm_2023_100844 crossref_primary_10_1016_j_ibiod_2023_105728 crossref_primary_10_3390_ma16051949 crossref_primary_10_1016_j_bgtech_2024_100146 crossref_primary_10_1061_JGGEFK_GTENG_11140 crossref_primary_10_1016_j_bgtech_2023_100022 crossref_primary_10_1007_s11356_022_24046_w crossref_primary_10_1016_j_apor_2021_102972 crossref_primary_10_1080_15324982_2024_2441726 crossref_primary_10_1007_s11440_022_01489_6 crossref_primary_10_1038_s41598_023_33070_w crossref_primary_10_1061_IJGNAI_GMENG_8817 crossref_primary_10_1016_j_enggeo_2021_106374 crossref_primary_10_1038_s41579_023_00980_5 crossref_primary_10_1016_j_bgtech_2023_100017 crossref_primary_10_1016_j_jenvman_2022_115280 crossref_primary_10_3390_su142012965 crossref_primary_10_1016_j_conbuildmat_2021_125098 crossref_primary_10_1016_j_geoderma_2022_116183 crossref_primary_10_1007_s12665_024_11668_1 crossref_primary_10_1016_j_scitotenv_2023_168048 crossref_primary_10_1016_j_scitotenv_2023_169016 crossref_primary_10_1016_j_jobe_2023_107013 crossref_primary_10_1007_s11440_023_02161_3 crossref_primary_10_12677_hjce_2024_135065 crossref_primary_10_3390_app14146343 crossref_primary_10_1016_j_bgtech_2024_100157 crossref_primary_10_1080_1064119X_2024_2318395 crossref_primary_10_1016_j_apor_2022_103177 crossref_primary_10_1016_j_geoderma_2021_115359 crossref_primary_10_1080_01490451_2023_2283419 crossref_primary_10_3390_app13021010 crossref_primary_10_3390_min12101186 crossref_primary_10_1016_j_catena_2024_107900 crossref_primary_10_1016_j_jobe_2021_102834 crossref_primary_10_3390_cryst11121439 |
Cites_doi | 10.1061/(ASCE)MT.1943-5533.0002774 10.1007/s10295-008-0514-7 10.1016/S0038-0717(99)00082-6 10.1016/j.ecoleng.2016.01.073 10.1016/j.geoderma.2005.06.008 10.1016/j.ecoleng.2006.05.020 10.1016/j.chemosphere.2010.09.066 10.1061/(ASCE)GT.1943-5606.0001559 10.1007/s11157-007-9126-3 10.1007/s11270-013-1631-0 10.1016/j.jhazmat.2011.11.067 10.1680/geot.SIP13.P.019 10.1007/s10811-017-1061-2 10.1061/(ASCE)MT.1943-5533.0003100 10.1089/ind.2010.6.170 10.1016/j.conbuildmat.2013.06.061 10.1016/j.ecoleng.2012.01.013 10.1016/j.ecoleng.2013.06.006 10.1061/41165(397)409 10.1016/j.geoderma.2019.114090 10.1007/s11440-018-0729-3 10.1126/science.1131634 10.1007/s13762-015-0921-z 10.1016/j.geoderma.2018.02.042 10.1016/j.ecoleng.2009.03.026 10.1016/j.micres.2016.03.010 10.1021/acssuschemeng.7b00521 10.1007/s00603-014-0603-z 10.1016/j.ecoleng.2009.01.004 10.1016/j.conbuildmat.2014.10.026 10.1016/j.geoderma.2015.04.006 10.1061/(ASCE)1090-0241(2006)132:11(1381) 10.1016/j.ecoleng.2008.12.029 10.1155/2018/6107656 10.1006/jaer.1995.1080 10.1016/j.powtec.2018.02.003 10.1006/jare.1998.0388 10.1061/(ASCE)GT.1943-5606.0001586 10.1080/01490451.2018.1556750 10.1002/ldr.2297 10.1080/01490450701436505 10.1016/j.aeolia.2019.06.001 10.1016/j.conbuildmat.2014.12.116 10.1007/s11104-013-1616-1 10.1080/01490451.2011.592929 10.1016/j.jenvman.2010.08.012 10.1061/(ASCE)GT.1943-5606.0000666 10.1061/(ASCE)GT.1943-5606.0002111 10.1680/jgeot.15.P.168 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114723 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114723 S0016706120308429 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a434t-b5dd3ea8e6568c8ce64d6e06fc107fc2e740c1e260162d7c92bb2c2c6455f0cf3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 12:01:54 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Jul 01 04:04:54 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Field tests Microbially induced carbonate precipitation (MICP) Desert soil Biocementation Calcium carbonate Wind erosion control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a434t-b5dd3ea8e6568c8ce64d6e06fc107fc2e740c1e260162d7c92bb2c2c6455f0cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2552006799 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552006799 crossref_primary_10_1016_j_geoderma_2020_114723 crossref_citationtrail_10_1016_j_geoderma_2020_114723 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114723 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jiang, Yoshioka, Yamamoto, Soga (b0160) 2016; 90 Harkes, Van Paassen, Booster, Whiffin, van Loosdrecht (b0130) 2010; 36 Peng, Zheng, Huang, Li, Li, Cheng, Liu (b0205) 2017; 29 Bang, S.S., Bang, S., Frutiger, S., Nehl, L.M., Comes, B.L., 2009. Application of Novel Biological Technique in Dust Suppression, Transportation Research Board 88th Annual Meeting, Washington DC, United States, pp. 0831. Achal, Mukerjee, Reddy (b0015) 2013; 48 DeJong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C., 2010. Bio-mediated soil improvement. Ecol. Eng. 36 (2), 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029. Yokoi, S., Bressan, R. A., Hasegawa, P. M., 2002. Salt stress tolerance of plants. JIRCAS working report 23(1), 25-33. Whiffin, Van Paassen, Harkes (b0255) 2007; 24 Achal, Pan, Fu, Zhang (b0020) 2012; 201 Amiraslani, Dragovich (b0040) 2011; 92 Chang, Im, Prasidhi, Cho (b0055) 2015; 74 Zomorodian, Ghaffari, O'Kelly (b0280) 2019; 40 Hessini, Hamed, Gandour, Mejri, Abdelly, Cruz (b0145) 2013; 370 Gomez, M. G., Martinez, B. C., Dejong, J. T., Hunt, C. E., Dworatzek, S. W., 2013. Bio-mediated Soil Improvement Field Study to Stabilize Mine Sands. Proceedings of GeoMontreal 2013, Montreal, Canada. Montoya, DeJong, Boulanger (b0190) 2013; 63 Nafisi, Safavizadeh, Montoya (b0195) 2019; 145 Okwadha, Li (b0200) 2010; 81 Gao, Tang, Chu, He (b0120) 2019; 36 Al-Thawadi (b0035) 2008 DeJong, Fritzges, Nüsslein (b0100) 2006; 132 Telysheva, Shulga (b0225) 1995; 62 Ciantia, Castellanza, Di Prisco (b0090) 2015; 48 Van Paassen, Harkes, Van Zwieten, Van der Zon, Van der Star, Van Loosdrecht (b0235) 2009 He, Gao, Gu, Chu, Wang (b0140) 2020; 32 Achal, Mukherjee, Basu, Reddy (b0005) 2009; 36 Al Qabany, Soga, Santamarina (b0030) 2012; 138 Yoosathaporn, Tiangburanatham, Bovonsombut, Chaipanich, Pathom-Aree (b0265) 2016; 186 Wang, Zhang, Ding, Lu, Jin (b0250) 2018; 2018 Al-Hashemi, Al-Amoudi (b0025) 2018; 330 Chang, Prasidhi, Im, Cho (b0060) 2015; 77 Zhang, Wang, Jiao, Zhao, Zhang, Li (b0270) 2013; 58 Van Paassen, Daza, Staal, Sorokin, Der Zon, Van Loosdrecht (b0230) 2010; 36 Hamdan, Kavazanjian (b0135) 2016; 66 Cheng, Cord-Ruwisch (b0070) 2012; 42 Achal, Mukherjee, Reddy (b0010) 2010; 6 Li, Xiao, He, Zhang (b0170) 2006; 28 Cheng, Shahin, Mujah (b0075) 2017; 143 Reynolds, Smith, Lambin, Turner, Mortimore, Batterbury, Downin, Dowlatabadi, Fernández, Herrick, Huber-Sannwald, Jiang, Leemans, Lynam, Maestre, Ayarza, Walker (b0210) 2007; 16 Gao, Hang, He, Chu (b0115) 2019; 14 Maleki, Ebrahimi, Asadzadeh, Tabrizi (b0180) 2016; 13 Lo, Tirkolaei, Hua, De Rosa, Carlson, Kavazanjian, He (b0175) 2020; 361 Colazo, Buschiazzo (b0095) 2015; 26 Kheirabadi, Mahmoodabadi, Jalali, Naghavi (b0165) 2018; 323 Venda Oliveira, Neves (b0245) 2019; 31 Zhang, Wang, Wang, Yang, Zhang (b0275) 2006; 132 Jiang, Soga, Kuo (b0155) 2017; 143 Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control. GSP 211. ASCE, Reston, VA, USA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409. Choi, Chu, Brown, Wang, Wen (b0080) 2017; 5 Chu, Stabnikov, Ivanov (b0085) 2012; 29 Ivanov, Chu (b0150) 2008; 7 Belnap, Gillette (b0050) 1998; 39 Stocks-Fischer, Galinat, Bang (b0220) 1999; 31 Stabnikov, Chu, Myo, Ivanov (b0215) 2013; 224 Chang, Prasidhi, Im, Shin, Cho (b0065) 2015; 253 Whiffin (10.1016/j.geoderma.2020.114723_b0255) 2007; 24 DeJong (10.1016/j.geoderma.2020.114723_b0100) 2006; 132 Amiraslani (10.1016/j.geoderma.2020.114723_b0040) 2011; 92 Reynolds (10.1016/j.geoderma.2020.114723_b0210) 2007; 16 Venda Oliveira (10.1016/j.geoderma.2020.114723_b0245) 2019; 31 Al-Hashemi (10.1016/j.geoderma.2020.114723_b0025) 2018; 330 Chang (10.1016/j.geoderma.2020.114723_b0065) 2015; 253 Wang (10.1016/j.geoderma.2020.114723_b0250) 2018; 2018 Cheng (10.1016/j.geoderma.2020.114723_b0070) 2012; 42 Achal (10.1016/j.geoderma.2020.114723_b0015) 2013; 48 Telysheva (10.1016/j.geoderma.2020.114723_b0225) 1995; 62 10.1016/j.geoderma.2020.114723_b0105 Chang (10.1016/j.geoderma.2020.114723_b0055) 2015; 74 Cheng (10.1016/j.geoderma.2020.114723_b0075) 2017; 143 Al Qabany (10.1016/j.geoderma.2020.114723_b0030) 2012; 138 Hamdan (10.1016/j.geoderma.2020.114723_b0135) 2016; 66 10.1016/j.geoderma.2020.114723_b0185 Ciantia (10.1016/j.geoderma.2020.114723_b0090) 2015; 48 Hessini (10.1016/j.geoderma.2020.114723_b0145) 2013; 370 10.1016/j.geoderma.2020.114723_b0260 Jiang (10.1016/j.geoderma.2020.114723_b0160) 2016; 90 Jiang (10.1016/j.geoderma.2020.114723_b0155) 2017; 143 Van Paassen (10.1016/j.geoderma.2020.114723_b0235) 2009 Choi (10.1016/j.geoderma.2020.114723_b0080) 2017; 5 Harkes (10.1016/j.geoderma.2020.114723_b0130) 2010; 36 Kheirabadi (10.1016/j.geoderma.2020.114723_b0165) 2018; 323 Gao (10.1016/j.geoderma.2020.114723_b0115) 2019; 14 Li (10.1016/j.geoderma.2020.114723_b0170) 2006; 28 Zhang (10.1016/j.geoderma.2020.114723_b0270) 2013; 58 Montoya (10.1016/j.geoderma.2020.114723_b0190) 2013; 63 Nafisi (10.1016/j.geoderma.2020.114723_b0195) 2019; 145 Zomorodian (10.1016/j.geoderma.2020.114723_b0280) 2019; 40 Chang (10.1016/j.geoderma.2020.114723_b0060) 2015; 77 Yoosathaporn (10.1016/j.geoderma.2020.114723_b0265) 2016; 186 Belnap (10.1016/j.geoderma.2020.114723_b0050) 1998; 39 Van Paassen (10.1016/j.geoderma.2020.114723_b0230) 2010; 36 Okwadha (10.1016/j.geoderma.2020.114723_b0200) 2010; 81 Colazo (10.1016/j.geoderma.2020.114723_b0095) 2015; 26 Achal (10.1016/j.geoderma.2020.114723_b0020) 2012; 201 Stocks-Fischer (10.1016/j.geoderma.2020.114723_b0220) 1999; 31 He (10.1016/j.geoderma.2020.114723_b0140) 2020; 32 Gao (10.1016/j.geoderma.2020.114723_b0120) 2019; 36 Achal (10.1016/j.geoderma.2020.114723_b0010) 2010; 6 10.1016/j.geoderma.2020.114723_b0125 10.1016/j.geoderma.2020.114723_b0045 Peng (10.1016/j.geoderma.2020.114723_b0205) 2017; 29 Ivanov (10.1016/j.geoderma.2020.114723_b0150) 2008; 7 Al-Thawadi (10.1016/j.geoderma.2020.114723_b0035) 2008 Achal (10.1016/j.geoderma.2020.114723_b0005) 2009; 36 Chu (10.1016/j.geoderma.2020.114723_b0085) 2012; 29 Lo (10.1016/j.geoderma.2020.114723_b0175) 2020; 361 Stabnikov (10.1016/j.geoderma.2020.114723_b0215) 2013; 224 Zhang (10.1016/j.geoderma.2020.114723_b0275) 2006; 132 Maleki (10.1016/j.geoderma.2020.114723_b0180) 2016; 13 |
References_xml | – volume: 36 start-page: 366 year: 2019 end-page: 375 ident: b0120 article-title: Microbially induced calcite precipitation for seepage control in sandy soil publication-title: Geomicrobiol. J. – volume: 26 start-page: 62 year: 2015 end-page: 70 ident: b0095 article-title: The impact of agriculture on soil texture due to wind erosion publication-title: Land Degrad. Dev. – year: 2008 ident: b0035 article-title: High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria – volume: 7 start-page: 139 year: 2008 end-page: 153 ident: b0150 article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ publication-title: Rev. Environ. Sci. Bio. – volume: 143 start-page: 04016100 year: 2017 ident: b0155 article-title: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures publication-title: J. Geotech. Geoenviron. – volume: 29 start-page: 544 year: 2012 end-page: 549 ident: b0085 article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil publication-title: Geomicrobiol. J. – volume: 16 start-page: 847 year: 2007 end-page: 851 ident: b0210 article-title: Global desertification: building a science for dryland development publication-title: Science – volume: 77 start-page: 430 year: 2015 end-page: 438 ident: b0060 article-title: Soil strengthening using thermo-gelation biopolymers publication-title: Constr. Build. Mater. – volume: 224 start-page: 1631 year: 2013 ident: b0215 article-title: Immobilization of sand dust and associated pollutants using bioaggregation publication-title: Water Air Soil Poll. – volume: 36 start-page: 168 year: 2010 end-page: 175 ident: b0230 article-title: Potential soil reinforcement by biological denitrification publication-title: Ecol. Eng. – volume: 361 year: 2020 ident: b0175 article-title: Durable and ductile double-network material for dust control publication-title: Geoderma – volume: 31 start-page: 1563 year: 1999 end-page: 1571 ident: b0220 article-title: Microbiological precipitation of CaCO publication-title: Soil Biol. Biochem. – volume: 24 start-page: 417 year: 2007 end-page: 423 ident: b0255 article-title: Microbial carbonate precipitation as a soil improvement technique publication-title: Geomicrobiol. J. – volume: 42 start-page: 64 year: 2012 end-page: 72 ident: b0070 article-title: In situ soil cementation with ureolytic bacteria by surface percolation publication-title: Ecol. Eng. – volume: 90 start-page: 96 year: 2016 end-page: 104 ident: b0160 article-title: Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP) publication-title: Ecol. Eng. – volume: 13 start-page: 937 year: 2016 end-page: 944 ident: b0180 article-title: Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil publication-title: Int. J. Environ. Sci. Te. – volume: 63 start-page: 302 year: 2013 end-page: 312 ident: b0190 article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation publication-title: Géotechnique – volume: 81 start-page: 1143 year: 2010 end-page: 1148 ident: b0200 article-title: Optimum conditions for microbial carbonate precipitation publication-title: Chemosphere – volume: 40 start-page: 34 year: 2019 end-page: 41 ident: b0280 article-title: Stabilisation of crustal sand layer using biocementation technique for wind erosion control publication-title: Aeolian Res. – volume: 201 start-page: 178 year: 2012 end-page: 184 ident: b0020 article-title: Biomineralization based remediation of As (III) contaminated soil by publication-title: J. Hazard. Mater. – volume: 92 start-page: 1 year: 2011 end-page: 13 ident: b0040 article-title: Combating desertification in Iran over the last 50 years: an overview of changing approaches publication-title: J. Environ. Manage. – reference: Bang, S.S., Bang, S., Frutiger, S., Nehl, L.M., Comes, B.L., 2009. Application of Novel Biological Technique in Dust Suppression, Transportation Research Board 88th Annual Meeting, Washington DC, United States, pp. 0831. – volume: 48 start-page: 441 year: 2015 end-page: 461 ident: b0090 article-title: Experimental study on the water-induced weakening of calcarenites publication-title: Rock Mech. Rock Eng. – volume: 39 start-page: 133 year: 1998 end-page: 142 ident: b0050 article-title: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance publication-title: J. Arid Environ. – volume: 66 start-page: 546 year: 2016 end-page: 555 ident: b0135 article-title: Enzyme-induced carbonate mineral precipitation for fugitive dust control publication-title: Géotechnique – volume: 28 start-page: 149 year: 2006 end-page: 157 ident: b0170 article-title: Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions publication-title: Ecol. Eng. – volume: 62 start-page: 221 year: 1995 end-page: 227 ident: b0225 article-title: Silicon-containing polycomplexes for protection against wind erosion of sandy soil publication-title: J. Agr. Eng. Res. – volume: 5 start-page: 5183 year: 2017 end-page: 5190 ident: b0080 article-title: Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass publication-title: ACS Sustain. Chem. Eng. – volume: 132 start-page: 1381 year: 2006 end-page: 1392 ident: b0100 article-title: Microbially induced cementation to control sand response to undrained shear publication-title: J. Geotech. Geoenviron. – reference: Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control. GSP 211. ASCE, Reston, VA, USA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409. – volume: 36 start-page: 112 year: 2010 end-page: 117 ident: b0130 article-title: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement publication-title: Ecol. Eng. – start-page: 2328 year: 2009 end-page: 2333 ident: b0235 article-title: Scale up of BioGrout: a biological ground reinforcement method publication-title: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering – volume: 6 start-page: 170 year: 2010 end-page: 174 ident: b0010 article-title: Biocalcification by publication-title: Ind. Biotech. – volume: 74 start-page: 65 year: 2015 end-page: 72 ident: b0055 article-title: Effects of Xanthan gum biopolymer on soil strengthening publication-title: Constr. Build. Mater. – reference: Gomez, M. G., Martinez, B. C., Dejong, J. T., Hunt, C. E., Dworatzek, S. W., 2013. Bio-mediated Soil Improvement Field Study to Stabilize Mine Sands. Proceedings of GeoMontreal 2013, Montreal, Canada. – reference: Yokoi, S., Bressan, R. A., Hasegawa, P. M., 2002. Salt stress tolerance of plants. JIRCAS working report 23(1), 25-33. – volume: 29 start-page: 1421 year: 2017 end-page: 1428 ident: b0205 article-title: Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage publication-title: J. Appl. Phycol. – volume: 323 start-page: 22 year: 2018 end-page: 30 ident: b0165 article-title: Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution publication-title: Geoderma – reference: DeJong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C., 2010. Bio-mediated soil improvement. Ecol. Eng. 36 (2), 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029. – volume: 138 start-page: 992 year: 2012 end-page: 1001 ident: b0030 article-title: Factors affecting efficiency of microbially induced calcite precipitation publication-title: J. Geotech. Geoenviron. – volume: 145 start-page: 06019008 year: 2019 ident: b0195 article-title: Influence of microbe and enzyme-induced treatments on cemented sand shear response publication-title: J. Geotech. Geoenviron. – volume: 132 start-page: 441 year: 2006 end-page: 449 ident: b0275 article-title: The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China publication-title: Geoderma – volume: 2018 start-page: 1 year: 2018 end-page: 10 ident: b0250 article-title: Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation publication-title: Adv. Mater. Sci. Eng. – volume: 330 start-page: 397 year: 2018 end-page: 417 ident: b0025 article-title: A review on the angle of repose of granular materials publication-title: Powder Technol. – volume: 370 start-page: 163 year: 2013 end-page: 173 ident: b0145 article-title: Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium? publication-title: Plant Soil – volume: 14 start-page: 697 year: 2019 end-page: 707 ident: b0115 article-title: Mechanical behaviour of biocemented sands at various treatment levels and relative densities publication-title: Acta Geotech. – volume: 31 start-page: 04019121 year: 2019 ident: b0245 article-title: Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils publication-title: J. Mater. Civil Eng. – volume: 186 start-page: 132 year: 2016 end-page: 138 ident: b0265 article-title: A cost effective cultivation medium for biocalcification of publication-title: Microbiol. Res. – volume: 48 start-page: 1 year: 2013 end-page: 5 ident: b0015 article-title: Biogenic treatment improves the durability and remediates the cracks of concrete structures publication-title: Constr. Build. Mater. – volume: 253 start-page: 39 year: 2015 end-page: 47 ident: b0065 article-title: Soil treatment using microbial biopolymers for anti-desertification purposes publication-title: Geoderma – volume: 58 start-page: 91 year: 2013 end-page: 98 ident: b0270 article-title: Physiological response of a submerged plant ( publication-title: Ecol. Eng. – volume: 32 start-page: 04020071 year: 2020 ident: b0140 article-title: Characterization of crude bacterial urease for CaCO publication-title: J. Mater. Civil Eng. – volume: 143 start-page: 04016083 year: 2017 ident: b0075 article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization publication-title: J. Geotech. Geoenviron. – volume: 36 start-page: 433 year: 2009 end-page: 438 ident: b0005 article-title: Lactose mother liquor as an alternative nutrient source for microbial concrete production by publication-title: Microbiol. Biotechnol. – start-page: 2328 year: 2009 ident: 10.1016/j.geoderma.2020.114723_b0235 article-title: Scale up of BioGrout: a biological ground reinforcement method – volume: 31 start-page: 04019121 issue: 7 year: 2019 ident: 10.1016/j.geoderma.2020.114723_b0245 article-title: Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils publication-title: J. Mater. Civil Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002774 – volume: 36 start-page: 433 year: 2009 ident: 10.1016/j.geoderma.2020.114723_b0005 article-title: Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii publication-title: Microbiol. Biotechnol. doi: 10.1007/s10295-008-0514-7 – ident: 10.1016/j.geoderma.2020.114723_b0045 – volume: 31 start-page: 1563 issue: 11 year: 1999 ident: 10.1016/j.geoderma.2020.114723_b0220 article-title: Microbiological precipitation of CaCO3 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00082-6 – ident: 10.1016/j.geoderma.2020.114723_b0125 – volume: 90 start-page: 96 year: 2016 ident: 10.1016/j.geoderma.2020.114723_b0160 article-title: Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP) publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2016.01.073 – volume: 132 start-page: 441 issue: 3–4 year: 2006 ident: 10.1016/j.geoderma.2020.114723_b0275 article-title: The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China publication-title: Geoderma doi: 10.1016/j.geoderma.2005.06.008 – volume: 28 start-page: 149 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2020.114723_b0170 article-title: Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2006.05.020 – volume: 81 start-page: 1143 issue: 9 year: 2010 ident: 10.1016/j.geoderma.2020.114723_b0200 article-title: Optimum conditions for microbial carbonate precipitation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.09.066 – volume: 143 start-page: 04016100 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2020.114723_b0155 article-title: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)GT.1943-5606.0001559 – volume: 7 start-page: 139 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2020.114723_b0150 article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ publication-title: Rev. Environ. Sci. Bio. doi: 10.1007/s11157-007-9126-3 – volume: 224 start-page: 1631 issue: 9 year: 2013 ident: 10.1016/j.geoderma.2020.114723_b0215 article-title: Immobilization of sand dust and associated pollutants using bioaggregation publication-title: Water Air Soil Poll. doi: 10.1007/s11270-013-1631-0 – year: 2008 ident: 10.1016/j.geoderma.2020.114723_b0035 – volume: 201 start-page: 178 year: 2012 ident: 10.1016/j.geoderma.2020.114723_b0020 article-title: Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.11.067 – volume: 63 start-page: 302 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2020.114723_b0190 article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation publication-title: Géotechnique doi: 10.1680/geot.SIP13.P.019 – volume: 29 start-page: 1421 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2020.114723_b0205 article-title: Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage publication-title: J. Appl. Phycol. doi: 10.1007/s10811-017-1061-2 – volume: 32 start-page: 04020071 issue: 5 year: 2020 ident: 10.1016/j.geoderma.2020.114723_b0140 article-title: Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand publication-title: J. Mater. Civil Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003100 – volume: 6 start-page: 170 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2020.114723_b0010 article-title: Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source publication-title: Ind. Biotech. doi: 10.1089/ind.2010.6.170 – volume: 48 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2020.114723_b0015 article-title: Biogenic treatment improves the durability and remediates the cracks of concrete structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.06.061 – volume: 42 start-page: 64 year: 2012 ident: 10.1016/j.geoderma.2020.114723_b0070 article-title: In situ soil cementation with ureolytic bacteria by surface percolation publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2012.01.013 – volume: 58 start-page: 91 year: 2013 ident: 10.1016/j.geoderma.2020.114723_b0270 article-title: Physiological response of a submerged plant (Myriophyllum spicatum) to different NH4Cl concentrations in sediments publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.06.006 – ident: 10.1016/j.geoderma.2020.114723_b0185 doi: 10.1061/41165(397)409 – volume: 361 year: 2020 ident: 10.1016/j.geoderma.2020.114723_b0175 article-title: Durable and ductile double-network material for dust control publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114090 – volume: 14 start-page: 697 issue: 3 year: 2019 ident: 10.1016/j.geoderma.2020.114723_b0115 article-title: Mechanical behaviour of biocemented sands at various treatment levels and relative densities publication-title: Acta Geotech. doi: 10.1007/s11440-018-0729-3 – volume: 16 start-page: 847 issue: 5826 year: 2007 ident: 10.1016/j.geoderma.2020.114723_b0210 article-title: Global desertification: building a science for dryland development publication-title: Science doi: 10.1126/science.1131634 – volume: 13 start-page: 937 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2020.114723_b0180 article-title: Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil publication-title: Int. J. Environ. Sci. Te. doi: 10.1007/s13762-015-0921-z – volume: 323 start-page: 22 year: 2018 ident: 10.1016/j.geoderma.2020.114723_b0165 article-title: Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution publication-title: Geoderma doi: 10.1016/j.geoderma.2018.02.042 – volume: 36 start-page: 168 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2020.114723_b0230 article-title: Potential soil reinforcement by biological denitrification publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.03.026 – volume: 186 start-page: 132 year: 2016 ident: 10.1016/j.geoderma.2020.114723_b0265 article-title: A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties publication-title: Microbiol. Res. doi: 10.1016/j.micres.2016.03.010 – volume: 5 start-page: 5183 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2020.114723_b0080 article-title: Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00521 – volume: 48 start-page: 441 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2020.114723_b0090 article-title: Experimental study on the water-induced weakening of calcarenites publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-014-0603-z – volume: 36 start-page: 112 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2020.114723_b0130 article-title: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.01.004 – volume: 74 start-page: 65 year: 2015 ident: 10.1016/j.geoderma.2020.114723_b0055 article-title: Effects of Xanthan gum biopolymer on soil strengthening publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.10.026 – volume: 253 start-page: 39 year: 2015 ident: 10.1016/j.geoderma.2020.114723_b0065 article-title: Soil treatment using microbial biopolymers for anti-desertification purposes publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.006 – volume: 132 start-page: 1381 issue: 11 year: 2006 ident: 10.1016/j.geoderma.2020.114723_b0100 article-title: Microbially induced cementation to control sand response to undrained shear publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381) – ident: 10.1016/j.geoderma.2020.114723_b0105 doi: 10.1016/j.ecoleng.2008.12.029 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2020.114723_b0250 article-title: Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2018/6107656 – volume: 62 start-page: 221 issue: 4 year: 1995 ident: 10.1016/j.geoderma.2020.114723_b0225 article-title: Silicon-containing polycomplexes for protection against wind erosion of sandy soil publication-title: J. Agr. Eng. Res. doi: 10.1006/jaer.1995.1080 – volume: 330 start-page: 397 year: 2018 ident: 10.1016/j.geoderma.2020.114723_b0025 article-title: A review on the angle of repose of granular materials publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.02.003 – volume: 39 start-page: 133 issue: 2 year: 1998 ident: 10.1016/j.geoderma.2020.114723_b0050 article-title: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance publication-title: J. Arid Environ. doi: 10.1006/jare.1998.0388 – volume: 143 start-page: 04016083 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114723_b0075 article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)GT.1943-5606.0001586 – volume: 36 start-page: 366 issue: 4 year: 2019 ident: 10.1016/j.geoderma.2020.114723_b0120 article-title: Microbially induced calcite precipitation for seepage control in sandy soil publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2018.1556750 – volume: 26 start-page: 62 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2020.114723_b0095 article-title: The impact of agriculture on soil texture due to wind erosion publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2297 – volume: 24 start-page: 417 issue: 5 year: 2007 ident: 10.1016/j.geoderma.2020.114723_b0255 article-title: Microbial carbonate precipitation as a soil improvement technique publication-title: Geomicrobiol. J. doi: 10.1080/01490450701436505 – volume: 40 start-page: 34 year: 2019 ident: 10.1016/j.geoderma.2020.114723_b0280 article-title: Stabilisation of crustal sand layer using biocementation technique for wind erosion control publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2019.06.001 – volume: 77 start-page: 430 year: 2015 ident: 10.1016/j.geoderma.2020.114723_b0060 article-title: Soil strengthening using thermo-gelation biopolymers publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.12.116 – volume: 370 start-page: 163 issue: 1–2 year: 2013 ident: 10.1016/j.geoderma.2020.114723_b0145 article-title: Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium? publication-title: Plant Soil doi: 10.1007/s11104-013-1616-1 – volume: 29 start-page: 544 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2020.114723_b0085 article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2011.592929 – volume: 92 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2020.114723_b0040 article-title: Combating desertification in Iran over the last 50 years: an overview of changing approaches publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.08.012 – volume: 138 start-page: 992 issue: 8 year: 2012 ident: 10.1016/j.geoderma.2020.114723_b0030 article-title: Factors affecting efficiency of microbially induced calcite precipitation publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)GT.1943-5606.0000666 – ident: 10.1016/j.geoderma.2020.114723_b0260 – volume: 145 start-page: 06019008 issue: 9 year: 2019 ident: 10.1016/j.geoderma.2020.114723_b0195 article-title: Influence of microbe and enzyme-induced treatments on cemented sand shear response publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)GT.1943-5606.0002111 – volume: 66 start-page: 546 issue: 7 year: 2016 ident: 10.1016/j.geoderma.2020.114723_b0135 article-title: Enzyme-induced carbonate mineral precipitation for fugitive dust control publication-title: Géotechnique doi: 10.1680/jgeot.15.P.168 |
SSID | ssj0017020 |
Score | 2.6348276 |
Snippet | •Field trials on the use of MICP for wind erosion control of desert soil are conducted.•Soil crusts on loose cohesionless desert soil exist after MICP... This study examined the potential of microbially induced carbonate precipitation (MICP) in reducing wind erosion of desert soil. Field tests were conducted on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114723 |
SubjectTerms | Biocementation Calcium carbonate calcium chloride China Desert soil desert soils durability energy-dispersive X-ray analysis erosion control Field tests Microbially induced carbonate precipitation (MICP) urea wind wind erosion Wind erosion control |
Title | Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114723 https://www.proquest.com/docview/2552006799 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYiuNBDBbRVecpIvbrZ9XrtXW4RIkpBzalI3CzbO66CoiRKghAXfjszGy8qSIhDr5ZteWe887C_-czYD-mq0usQhat8LZSJlajQD4vSq-hjDQ4yKnD-PdajG3V1W9722EVXC0OwymT7Nza9tdappZ-k2V9MJlTjm2tDHpooV9CsUgW7MrTLfz69wDxykyVqxlwL6v1PlfAd6ogeHGv5h2RLm2tk8Z6DemOqW_8z3GWfU-DIB5u17bEezPbZp8HfZSLPgC-McJ1Eq-Sm00eOuTZqreHBLT2dkANfEJHFInFycwxW-QN24oDLoIYEWufzyBugO3q-mk-m53xIGDexQl0Cx7h0vfrKboaXfy5GIr2jIJwq1Fr4smkKcBVg7FaFKoBWjYZMx4C5XwwSjMpCDi25mGxMqKX3MsigVVnGLMTiG9uazWfwnfHKNwETqEiXN8rV0WfRRSd1NHlehCYcsLITng3pg-iti6nt0GR3thO6JaHbjdAPWP9l3GJDs_HhiLrTjX21YSz6gg_HnnXKtPg30RWJm8H8fmUxwaIzFlPXh_8x_xHbkQR9acHdx2xrvbyHE4xd1v603ZynbHvw63o0fgacFfGm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNoeEPShAqW4Unt0N3EcJ6nEAdGulucJJG6u7YzRotXuarMIceFP8QeZyTqorVRxqLhaseWMx_Owv_nM2Bdpy9xpH4QtXSVUEUpRoh8WuVPBhQosJFTgfHKqB-fq8CK_WGL3XS0MwSqj7V_Y9NZax5ZelGZvOhxSjW-qC_LQRLmCZjUiK4_g9gbztmb34Acu8lcp-z_P9gciPi0grMrUXLi8rjOwJWA4U_rSg1a1hkQHj-lQ8BIKlfgUWr4tWRe-ks5JL71WeR4SHzIc9wVbUWgu6NmEb3ePuJK0SCIXZKoFTe-3suQrVAp64awlPJItT28hs395xL98Q-vw-mtsNUaqfG8hjHW2BOM37PXe5SyydcBbRkBS4nGyo9Etx-Qe1aTm3s4cHckDnxJzxjSSgHOMjvkNfsQBp0ENESXPJ4HXQKAA3kyGo--8T6A60aDyAMdAeN68Y-fPIt33bHk8GcMHxktXe8zYAt0WKVsFlwQbrNShSNPM136D5Z3wjI8_RI9rjEwHX7syndANCd0shL7Beo_9pgtejyd7VN3amD801KDzebLv524xDW5fupOxY5hcNwYzOjrUKapq8z_G32EvB2cnx-b44PRoi72ShLtpkeUf2fJ8dg3bGDjN3adWUTn79dw74wG3lS4r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbially+induced+carbonate+precipitation+for+wind+erosion+control+of+desert+soil%3A+Field-scale+tests&rft.jtitle=Geoderma&rft.au=Meng%2C+Hao&rft.au=Gao%2C+Yufeng&rft.au=He%2C+Jia&rft.au=Qi%2C+Yongshuai&rft.date=2021-02-01&rft.issn=0016-7061&rft.volume=383&rft.spage=114723&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |