Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte
Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of...
Saved in:
Published in | Journal of physical chemistry. C Vol. 127; no. 23; pp. 10938 - 10946 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes. |
---|---|
AbstractList | Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes. Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes.Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes. Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes. Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes. |
Author | Mitchell, Nathan H. Elgrishi, Noémie |
Author_xml | – sequence: 1 givenname: Nathan H. orcidid: 0000-0002-4249-7612 surname: Mitchell fullname: Mitchell, Nathan H. – sequence: 2 givenname: Noémie orcidid: 0000-0001-9776-5031 surname: Elgrishi fullname: Elgrishi, Noémie email: noemie@lsu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37342204$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9LHDEcxUOxVF1776nkaKG75tf82F6KFW0HhELVc8gm33Eis8k0ya7OrX964-4qrdCeEsjnvUfeO0R7zjtA6B0lM0oYPVE6zu4GrWdcE1qV_BU6oHPOppUoir3nu6j20WGMd4QUnFD-Bu3zigvGiDhAvxq3hpjsrUrWO-xb3ATvjpum-YCvIQU1dODGfvBh6MZgHVYRK_wDjH_AF72_x19UShBGfOp8Pyb4hG8cPAygExh8ZQ1kVulk1zaN-N6mDqcO8HmfgbARHKHXreojvN2dE3RzcX599m16-f1rc3Z6OVWCizRVC0OLlghiqAJgpTEVCFEudLsoCi1oq6pyztp5TecGWs5EpRkXShWCt4xSwyfo89Z3WC2WYDS4_LleDsEuVRilV1b-_eJsJ2_9Wuaiq5pynh2Odw7B_1zl0uTSRg19rxz4VZSsZjUvaZ3hCXr_Z9hzylPvGSi3gA4-xgCt1DZtJsjZts-hj7lU5oHl48ByN3AWkhfCJ-__SD5uJZsXvwou9_xv_DeZqLzI |
CitedBy_id | crossref_primary_10_1002_ange_202412417 crossref_primary_10_1039_D3TA06432H crossref_primary_10_1021_acs_accounts_4c00329 crossref_primary_10_1016_j_cej_2025_159954 crossref_primary_10_1021_acsorginorgau_3c00034 crossref_primary_10_1002_anie_202412417 crossref_primary_10_1016_j_cplett_2024_141102 crossref_primary_10_1021_acscatal_4c05259 crossref_primary_10_1021_acscatal_4c01791 crossref_primary_10_1021_acs_inorgchem_4c00825 |
Cites_doi | 10.1149/2.0671602jes 10.1021/acssuschemeng.6b02916 10.1002/chem.202002813 10.1039/C7SC05295B 10.1021/jacs.7b00147 10.1002/anie.202110190 10.1021/acsenergylett.9b01321 10.1021/ja00022a038 10.1016/j.electacta.2012.09.067 10.1021/acssuschemeng.0c03297 10.1149/1.1838833 10.1021/acs.jpcc.1c00686 10.1016/j.jpowsour.2021.229819 10.1016/j.jpowsour.2016.07.015 10.1002/cssc.201700028 10.1021/acs.inorgchem.7b00401 10.1149/1.2059270 10.1021/acs.jpclett.0c01761 10.1016/j.cattod.2020.12.012 10.1016/j.jpowsour.2021.229942 10.5935/0103-5053.20130215 10.1021/jacs.9b07345 10.1021/acsaem.1c00017 10.1039/C8SC02220H 10.1021/ja9534462 10.1073/pnas.1507063112 10.1016/j.jpowsour.2017.03.034 10.1039/C7SC04682K 10.1016/S0020-1693(98)00401-0 10.1021/jacs.6b07014 10.1002/anie.201713423 10.1002/ente.201600438 10.1002/cphc.202200779 10.1126/science.1224581 10.1021/jp991423u 10.1002/cphc.200800470 10.1021/acs.inorgchem.1c01079 10.1002/anie.202111215 10.1016/0020-1693(94)04087-7 10.1016/j.coche.2015.04.001 10.1021/ic50219a003 10.1016/j.jpowsour.2017.05.057 10.1142/S1088424615300013 10.1016/j.jpowsour.2019.227037 10.1016/S0022-0728(80)80367-6 10.1149/1.1837882 10.1021/acssuschemeng.0c02427 10.1038/s41570-017-0087 10.1021/jp311114u 10.1021/ac60366a052 10.1021/ja300790x 10.1016/j.memsci.2019.04.017 10.1021/ic00253a002 10.1038/s41467-020-15599-w 10.1016/j.jelechem.2020.114241 10.1039/C5EE02341F 10.1021/acs.inorgchem.2c03124 10.1021/acsaem.9b00761 10.1039/C5CC01938A 10.1177/0967033518821834 10.1039/D1FD00076D 10.1016/0304-4165(74)90344-4 10.1016/j.jphotochem.2012.05.031 10.1039/C6EE02027E 10.1016/j.chempr.2019.07.006 10.1016/j.elecom.2019.106625 10.1142/S1088424607000606 10.1021/acsenergylett.7b00559 10.1016/0013-4686(89)87079-3 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society. 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society. – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acs.jpcc.3c01763 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 10946 |
ExternalDocumentID | PMC10278133 37342204 10_1021_acs_jpcc_3c01763 g75075069 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2119435 – fundername: ; grantid: NA – fundername: ; grantid: WISE/Act 803 fund |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-a434t-abd15f040d1aee26dd7e446bcfb55c41fa7692f9819def3247c234aa543f211d3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Thu Aug 21 18:37:00 EDT 2025 Thu Jul 10 18:41:06 EDT 2025 Wed Feb 19 02:22:56 EST 2025 Thu Apr 24 22:51:20 EDT 2025 Tue Jul 01 02:50:59 EDT 2025 Thu Jul 06 08:30:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2023 The Authors. Published by American Chemical Society. Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a434t-abd15f040d1aee26dd7e446bcfb55c41fa7692f9819def3247c234aa543f211d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9776-5031 0000-0002-4249-7612 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10278133 |
PMID | 37342204 |
PQID | 2828361881 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10278133 proquest_miscellaneous_2828361881 pubmed_primary_37342204 crossref_citationtrail_10_1021_acs_jpcc_3c01763 crossref_primary_10_1021_acs_jpcc_3c01763 acs_journals_10_1021_acs_jpcc_3c01763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1149/2.0671602jes – ident: ref34/cit34 doi: 10.1021/acssuschemeng.6b02916 – ident: ref52/cit52 doi: 10.1002/chem.202002813 – ident: ref15/cit15 doi: 10.1039/C7SC05295B – ident: ref10/cit10 doi: 10.1021/jacs.7b00147 – ident: ref22/cit22 doi: 10.1002/anie.202110190 – ident: ref4/cit4 doi: 10.1021/acsenergylett.9b01321 – ident: ref23/cit23 doi: 10.1021/ja00022a038 – ident: ref3/cit3 doi: 10.1016/j.electacta.2012.09.067 – ident: ref6/cit6 doi: 10.1021/acssuschemeng.0c03297 – ident: ref28/cit28 doi: 10.1149/1.1838833 – ident: ref65/cit65 doi: 10.1021/acs.jpcc.1c00686 – ident: ref57/cit57 doi: 10.1016/j.jpowsour.2021.229819 – ident: ref16/cit16 doi: 10.1016/j.jpowsour.2016.07.015 – ident: ref64/cit64 doi: 10.1002/cssc.201700028 – ident: ref35/cit35 doi: 10.1021/acs.inorgchem.7b00401 – ident: ref43/cit43 doi: 10.1149/1.2059270 – ident: ref12/cit12 doi: 10.1021/acs.jpclett.0c01761 – ident: ref2/cit2 doi: 10.1016/j.cattod.2020.12.012 – ident: ref18/cit18 doi: 10.1016/j.jpowsour.2021.229942 – ident: ref27/cit27 doi: 10.5935/0103-5053.20130215 – ident: ref14/cit14 doi: 10.1021/jacs.9b07345 – ident: ref61/cit61 doi: 10.1021/acsaem.1c00017 – ident: ref19/cit19 doi: 10.1039/C8SC02220H – ident: ref26/cit26 doi: 10.1021/ja9534462 – ident: ref37/cit37 doi: 10.1073/pnas.1507063112 – ident: ref11/cit11 doi: 10.1016/j.jpowsour.2017.03.034 – ident: ref39/cit39 doi: 10.1039/C7SC04682K – ident: ref69/cit69 doi: 10.1016/S0020-1693(98)00401-0 – ident: ref38/cit38 doi: 10.1021/jacs.6b07014 – ident: ref55/cit55 doi: 10.1002/anie.201713423 – ident: ref60/cit60 doi: 10.1002/ente.201600438 – ident: ref63/cit63 doi: 10.1002/cphc.202200779 – ident: ref9/cit9 doi: 10.1021/jacs.9b07345 – ident: ref36/cit36 doi: 10.1126/science.1224581 – ident: ref21/cit21 doi: 10.1021/jp991423u – ident: ref48/cit48 doi: 10.1002/cphc.200800470 – ident: ref31/cit31 doi: 10.1021/acs.inorgchem.1c01079 – ident: ref46/cit46 doi: 10.1002/anie.202111215 – ident: ref66/cit66 doi: 10.1016/0020-1693(94)04087-7 – ident: ref1/cit1 doi: 10.1016/j.coche.2015.04.001 – ident: ref58/cit58 doi: 10.1021/ic50219a003 – ident: ref45/cit45 doi: 10.1016/j.jpowsour.2017.05.057 – ident: ref25/cit25 doi: 10.1142/S1088424615300013 – ident: ref8/cit8 doi: 10.1016/j.jpowsour.2019.227037 – ident: ref40/cit40 doi: 10.1016/S0022-0728(80)80367-6 – ident: ref41/cit41 doi: 10.1149/1.1837882 – ident: ref5/cit5 doi: 10.1021/acssuschemeng.0c02427 – ident: ref20/cit20 doi: 10.1038/s41570-017-0087 – ident: ref47/cit47 doi: 10.1021/jp311114u – ident: ref56/cit56 doi: 10.1021/ac60366a052 – ident: ref33/cit33 doi: 10.1021/ja300790x – ident: ref7/cit7 doi: 10.1016/j.memsci.2019.04.017 – ident: ref53/cit53 doi: 10.1021/ic00253a002 – ident: ref32/cit32 doi: 10.1038/s41467-020-15599-w – ident: ref51/cit51 doi: 10.1016/j.jelechem.2020.114241 – ident: ref44/cit44 doi: 10.1039/C5EE02341F – ident: ref13/cit13 doi: 10.1021/acs.inorgchem.2c03124 – ident: ref24/cit24 doi: 10.1021/acsaem.9b00761 – ident: ref29/cit29 doi: 10.1039/C5CC01938A – ident: ref70/cit70 doi: 10.1177/0967033518821834 – ident: ref30/cit30 doi: 10.1039/D1FD00076D – ident: ref68/cit68 doi: 10.1016/0304-4165(74)90344-4 – ident: ref54/cit54 doi: 10.1016/j.jphotochem.2012.05.031 – ident: ref62/cit62 doi: 10.1039/C6EE02027E – ident: ref17/cit17 doi: 10.1016/j.chempr.2019.07.006 – ident: ref59/cit59 doi: 10.1016/j.elecom.2019.106625 – ident: ref67/cit67 doi: 10.1142/S1088424607000606 – ident: ref50/cit50 doi: 10.1021/acsenergylett.7b00559 – ident: ref49/cit49 doi: 10.1016/0013-4686(89)87079-3 |
SSID | ssj0053013 |
Score | 2.4720068 |
Snippet | Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand... Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10938 |
SubjectTerms | C: Energy Conversion and Storage |
Title | Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte |
URI | http://dx.doi.org/10.1021/acs.jpcc.3c01763 https://www.ncbi.nlm.nih.gov/pubmed/37342204 https://www.proquest.com/docview/2828361881 https://pubmed.ncbi.nlm.nih.gov/PMC10278133 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtswECWa9NBcuqRJ625ggBZoDnLCTUtvhhEj7qGHJgZ8E7giTg0qsGQk7qmf3qEku3FcBL5KJAFyHsk3mtEbhD4nqVKCxCIyRPKIS4BxFqcuUqkKGTrcalMnyP6Iz0f8-1iM_8nkPIzgU3Iiddm9vtG6yzSgJ2Y76CmNYQ8HGtS_WJ66AoDKmggyMEbOkzYk-b8RwkWky_WLaINdPkySvHfrDF405YvKWqwwJJv86s4r1dW_N6Uct5jQS_S8JZ-416DlFXpi_T561l_WfHuN_tyT3Sg8Lhwezgr_dTgcHuNLWwVxa-sXU-DsYJ3ZxGNZYol_WlPc4cG0uMWNXOcC93wxXVT2Gx75UENAA6_FFxNjoW34kyIUrMDhEzAG_onPmlI8ocMBGg3OLvvnUVujIZKc8SqSyhDh4CQAW1tLY2MSCx6m0k4JoTlxMokz6jIgHsY6YG-JpoxLKThz4Hsadoh2feHtW4QT8DRTqTJnFOVMUQnwShwzQOEyrexpB32BpcvbPVbmdfickrx-COuZt-vZQSdLw-a6FToP9Tamj_Q4XvW4aUQ-Hml7tMRKDsYJ4RXpbTEv8-C8spikKemgNw12VqOxhHFKT3kHpWuoWjUIKt_rb_zkqlb7JiE2TBh7t-X036M9CkQspLMR8QHtVrO5_QjEqVKf6h3zF79OF08 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxFLZKOZQLlD1QwEgg0cOk9TIbtyhqlIHSQ5tIvY28ikDkqTITQTj1p_d5ltAUVMHVY1tePtuf5z1_D6F3cSJlSKIw0ETwgAuAcRolNpCJ9B463ChdO8ieROMp_3Qenm8h0r2FgUaUUFNZG_F_qwuQA5_27UKpPlMAoojdQXeBi1AP6sHwrNt8Q8ArawzJQBw5j1vL5N9q8OeRKjfPoz9I5k1fyWuHz-gBOl03u_Y5-d5fVrKvft1QdPyvfu2i-y0VxYMGOw_RlnGP0M6wiwD3GF1eE-EoHC4szhaF-5Bl2T6emMpLXRu3mgODh7lazBwWJRb41OjiJx7Nix-4Ee9c4YEr5qvKfMRT5yMKKGC5-GymDeT17yp8-ArsfwhjYKP4qAnM4ws8QdPR0WQ4DtqIDYHgjFeBkJqEFvYFmHljaKR1bOC-KZWVYag4sSKOUmpToCHaWOBysaKMCxFyZuEmqtlTtO0KZ54jHMO9MxEytVpSziQVALbYMg2ELlXSHPbQexi6vF1xZV4b0ynJ60QYz7wdzx466OY3V63suY--Mb-lxP66xEUj-XFL3rcdZHKYHG9sEc4UyzL3V1kWkSQhPfSsgdC6NhYzTukh76FkA1zrDF7ze_OLm32ttb-JtxQTxl78Y_ffoJ3x5MtxfpydfH6J7lGgaN7RjYR7aLtaLM0roFSVfF0voisCmx-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxFLZKkaCXlq0QymIkkOhh0npsz8ItCo06gCpEG9TbyKtIiTxRZqISTvx0nmeJmoIquHpsy8tn-_O85-8h9DpOpOQk4oEmggVMAIzTKLGBTKT30GFG6dpB9iQ6HrMP5_x8A_HuLQw0ooSaytqI71f1TNtWYYAc-PSLmVJ9qgBIEb2FbnurnQf2YHjabcAcMEsbYzKQR8bi1jr5txr8maTK9TPpD6J53V_yygE02kFfV02v_U6-9xeV7Kuf11Qd_7tv99B2S0nxoMHQfbRh3AN0d9hFgnuIfl0R4ygcLizO5oV7m2XZPj4zlZe8Nm45BSYPczafOCxKLPAXo4sfeDQtLnEj4rnEA1dMl5V5h8fORxZQwHbx6UQbyOvfV_gwFtj_GMbASvFRE6DHF3iExqOjs-Fx0EZuCASjrAqE1IRb2B8AAcaEkdaxgXunVFZyrhixIo7S0KZAR7SxwOliFVImBGfUwo1U01206QpnniAcw_0zETK1WoaMylAA6GJLNRC7VElz2ENvYOjyduWVeW1UD0leJ8J45u149tBBN8e5auXPfRSO6Q0l9lclZo30xw15X3WwyWFyvNFFOFMsytxfaWlEkoT00OMGRqvaaExZGB6yHkrWALbK4LW_17-4ybdaA5x4izGh9Ok_dv8luvP5_Sj_lJ183ENbITA17-9G-DO0Wc0X5jkwq0q-qNfRbxqqIjM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+Iron%28III%29+Tetraphenylporphyrin+as+a+Redox+Flow+Battery+Anolyte%3A+Unexpected+Side+Reactivity+with+the+Electrolyte&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Mitchell%2C+Nathan+H&rft.au=Elgrishi%2C+No%C3%A9mie&rft.date=2023-06-15&rft.issn=1932-7447&rft.volume=127&rft.issue=23&rft.spage=10938&rft_id=info:doi/10.1021%2Facs.jpcc.3c01763&rft_id=info%3Apmid%2F37342204&rft.externalDocID=37342204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |