Effect of biochar on soil properties on the Loess Plateau: Results from field experiments
•The soil bulk density is correlated with soil types and the biochar applied rates.•The soil organic carbon and total nitrogen increased after eight-year field study.•The soil NO3−–N is correlated with soil types and biochar application rates.•The effect of biochar application on NH4+–N and total ph...
Saved in:
Published in | Geoderma Vol. 369; p. 114323 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The soil bulk density is correlated with soil types and the biochar applied rates.•The soil organic carbon and total nitrogen increased after eight-year field study.•The soil NO3−–N is correlated with soil types and biochar application rates.•The effect of biochar application on NH4+–N and total phosphorus are very limited.
Soil erosion on the Loess Plateau has been partly controlled, but soil nutrients remain limited throughout the region. Biochar amendments are an efficient method of improving availability of soil nutrients due to their strong adsorptive capacity; however, the effects of biochar amendments on different soil types on the Loess Plateau are not well understood. In this paper, we compared the effects of biochar on soil bulk density, soil organic carbon, and soil nitrogen and phosphorus contents among four soil types on the Loess Plateau. An eight-year field study was conducted in Loessal soil, Dark Loessial soil, Lou soil, and Aeolian sandy soil to investigate changes in soil bulk density and nutrient retention caused by biochar amendment at rates of 0 g/kg (control), 4 g/kg, 8 g/kg and 16 g/kg. Soil organic carbon, total nitrogen, total phosphorus, ammonium nitrogen, and nitrate nitrogen concentrations were measured eight years after biochar application. The biochar amendments significantly increased the soil organic carbon and nitrate nitrogen concentrations in the 0–40 cm layer of all soils. The nitrate nitrogen concentration in the Lou soil and Dark Loessial soil decreased with 4 g/kg biochar application and increased significantly with 8 g/kg and 16 g/kg biochar application, but it did not significantly change in the Loessal soil. In contrast, the nitrate nitrogen concentration in the Aeolian sandy soil decreased with increasing biochar application. Biochar amendments did not significantly influence soil ammonium nitrogen in the 0–20 cm soil layer. However, the soil phosphorus content in the 0–20 cm layer decreased with increasing biochar application, except in the Lou soil and Aeolian sandy soil. These data suggest that biochar-soil interactions on the Loess Plateau have the potential to enhance soil organic carbon and soil nitrogen storage. Moreover, using an appropriate biochar amendment rate according to soil type might help optimise the use of fertilizer on the Loess Plateau. |
---|---|
AbstractList | Soil erosion on the Loess Plateau has been partly controlled, but soil nutrients remain limited throughout the region. Biochar amendments are an efficient method of improving availability of soil nutrients due to their strong adsorptive capacity; however, the effects of biochar amendments on different soil types on the Loess Plateau are not well understood. In this paper, we compared the effects of biochar on soil bulk density, soil organic carbon, and soil nitrogen and phosphorus contents among four soil types on the Loess Plateau. An eight-year field study was conducted in Loessal soil, Dark Loessial soil, Lou soil, and Aeolian sandy soil to investigate changes in soil bulk density and nutrient retention caused by biochar amendment at rates of 0 g/kg (control), 4 g/kg, 8 g/kg and 16 g/kg. Soil organic carbon, total nitrogen, total phosphorus, ammonium nitrogen, and nitrate nitrogen concentrations were measured eight years after biochar application. The biochar amendments significantly increased the soil organic carbon and nitrate nitrogen concentrations in the 0–40 cm layer of all soils. The nitrate nitrogen concentration in the Lou soil and Dark Loessial soil decreased with 4 g/kg biochar application and increased significantly with 8 g/kg and 16 g/kg biochar application, but it did not significantly change in the Loessal soil. In contrast, the nitrate nitrogen concentration in the Aeolian sandy soil decreased with increasing biochar application. Biochar amendments did not significantly influence soil ammonium nitrogen in the 0–20 cm soil layer. However, the soil phosphorus content in the 0–20 cm layer decreased with increasing biochar application, except in the Lou soil and Aeolian sandy soil. These data suggest that biochar-soil interactions on the Loess Plateau have the potential to enhance soil organic carbon and soil nitrogen storage. Moreover, using an appropriate biochar amendment rate according to soil type might help optimise the use of fertilizer on the Loess Plateau. •The soil bulk density is correlated with soil types and the biochar applied rates.•The soil organic carbon and total nitrogen increased after eight-year field study.•The soil NO3−–N is correlated with soil types and biochar application rates.•The effect of biochar application on NH4+–N and total phosphorus are very limited. Soil erosion on the Loess Plateau has been partly controlled, but soil nutrients remain limited throughout the region. Biochar amendments are an efficient method of improving availability of soil nutrients due to their strong adsorptive capacity; however, the effects of biochar amendments on different soil types on the Loess Plateau are not well understood. In this paper, we compared the effects of biochar on soil bulk density, soil organic carbon, and soil nitrogen and phosphorus contents among four soil types on the Loess Plateau. An eight-year field study was conducted in Loessal soil, Dark Loessial soil, Lou soil, and Aeolian sandy soil to investigate changes in soil bulk density and nutrient retention caused by biochar amendment at rates of 0 g/kg (control), 4 g/kg, 8 g/kg and 16 g/kg. Soil organic carbon, total nitrogen, total phosphorus, ammonium nitrogen, and nitrate nitrogen concentrations were measured eight years after biochar application. The biochar amendments significantly increased the soil organic carbon and nitrate nitrogen concentrations in the 0–40 cm layer of all soils. The nitrate nitrogen concentration in the Lou soil and Dark Loessial soil decreased with 4 g/kg biochar application and increased significantly with 8 g/kg and 16 g/kg biochar application, but it did not significantly change in the Loessal soil. In contrast, the nitrate nitrogen concentration in the Aeolian sandy soil decreased with increasing biochar application. Biochar amendments did not significantly influence soil ammonium nitrogen in the 0–20 cm soil layer. However, the soil phosphorus content in the 0–20 cm layer decreased with increasing biochar application, except in the Lou soil and Aeolian sandy soil. These data suggest that biochar-soil interactions on the Loess Plateau have the potential to enhance soil organic carbon and soil nitrogen storage. Moreover, using an appropriate biochar amendment rate according to soil type might help optimise the use of fertilizer on the Loess Plateau. |
ArticleNumber | 114323 |
Author | Yang, Jingjing Luo, Chaoyi Chen, Wen Han, Fengpeng |
Author_xml | – sequence: 1 givenname: Chaoyi surname: Luo fullname: Luo, Chaoyi organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, China – sequence: 2 givenname: Jingjing surname: Yang fullname: Yang, Jingjing organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, China – sequence: 3 givenname: Wen surname: Chen fullname: Chen, Wen organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, China – sequence: 4 givenname: Fengpeng surname: Han fullname: Han, Fengpeng email: hanxiangzi007@163.com organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, China |
BookMark | eNqFkE1LAzEQhoMo2Fb_guToZWuS_Yx4UEr9gIIievAUssnEpmw3NUlF_71ZqhcvPQ0zvM8w84zRYe96QOiMkikltLpYTd_BafBrOWWEpSEtcpYfoBFtapZVrOSHaERSMqtJRY_ROIRVauuUHaG3uTGgInYGt9appfTY9Tg42-GNdxvw0UIYRnEJeOEgBPzUyQhye4mfIWy7GLDxbo2NhU5j-EqIXUMfwwk6MrILcPpbJ-j1dv4yu88Wj3cPs5tFJou8iBmXRPOSkKZkeTpKtkSbpmxaUKZgvGhbyhspG65yXjDTljJXutR1UxjNdVXxfILOd3vTvR9bCFGsbVDQdbIHtw2CFYSUtCT5EL3aRZV3IXgwQtkoo3V99NJ2ghIxGBUr8WdUDEbFzmjCq3_4Jv0q_fd-8HoHQvLwacGLoCz0CrT1Sb7Qzu5b8QNjFJa8 |
CitedBy_id | crossref_primary_10_5194_soil_9_261_2023 crossref_primary_10_3390_plants13020166 crossref_primary_10_2478_ats_2024_0016 crossref_primary_10_3390_w14233818 crossref_primary_10_1080_15324982_2022_2104183 crossref_primary_10_1007_s11270_023_06493_4 crossref_primary_10_1002_agj2_20317 crossref_primary_10_1111_sum_12661 crossref_primary_10_1007_s42729_021_00472_6 crossref_primary_10_1016_j_scitotenv_2021_149190 crossref_primary_10_1007_s10661_023_11904_4 crossref_primary_10_1016_j_agwat_2023_108565 crossref_primary_10_3389_fenvs_2022_899935 crossref_primary_10_3390_land13040481 crossref_primary_10_1016_j_scitotenv_2021_149167 crossref_primary_10_1007_s42729_024_01810_0 crossref_primary_10_1016_j_geoderma_2023_116663 crossref_primary_10_1080_26395940_2023_2268272 crossref_primary_10_1007_s11368_022_03416_4 crossref_primary_10_1038_s43247_023_01155_z crossref_primary_10_1139_cjss_2022_0061 crossref_primary_10_3390_crops4020017 crossref_primary_10_1007_s12665_023_11330_2 crossref_primary_10_1007_s11368_023_03701_w crossref_primary_10_1002_ldr_5029 crossref_primary_10_1016_j_scitotenv_2022_154925 crossref_primary_10_1016_j_geoderma_2022_116250 crossref_primary_10_32604_phyton_2025_059997 crossref_primary_10_1080_17583004_2024_2364784 crossref_primary_10_1002_ldr_4207 crossref_primary_10_1080_03650340_2022_2045280 crossref_primary_10_1016_j_geodrs_2024_e00900 crossref_primary_10_1016_j_aeolia_2020_100659 crossref_primary_10_3389_fpls_2024_1225031 crossref_primary_10_1007_s11368_023_03444_8 crossref_primary_10_1016_j_jece_2023_110009 crossref_primary_10_17221_580_2024_PSE crossref_primary_10_3390_atmos11050539 crossref_primary_10_1016_j_jia_2023_12_011 crossref_primary_10_1016_j_scitotenv_2024_173956 crossref_primary_10_3389_fenvs_2022_1044921 crossref_primary_10_1007_s10343_022_00730_2 crossref_primary_10_32604_phyton_2025_058970 crossref_primary_10_1007_s42729_024_01932_5 crossref_primary_10_1016_j_geoderma_2021_115276 crossref_primary_10_1016_j_biombioe_2024_107416 crossref_primary_10_1134_S1064229323600689 crossref_primary_10_1007_s13399_021_01471_4 crossref_primary_10_12688_f1000research_74041_2 crossref_primary_10_3390_agronomy12123039 crossref_primary_10_12688_f1000research_74041_1 crossref_primary_10_3389_fenrg_2021_710766 crossref_primary_10_1016_j_geoderma_2021_115317 crossref_primary_10_1016_j_agee_2024_108989 crossref_primary_10_1007_s12600_021_00887_y crossref_primary_10_1016_j_jenvman_2024_123097 crossref_primary_10_22207_JPAM_18_1_58 |
Cites_doi | 10.1007/s11104-010-0464-5 10.1016/j.soilbio.2011.10.012 10.1016/j.micromeso.2013.05.023 10.1016/j.catena.2010.12.003 10.1016/j.soilbio.2008.10.016 10.1111/ejss.12808 10.2136/sssaj2017.01.0017 10.1016/j.scitotenv.2014.09.096 10.1002/ldr.2829 10.1007/s10725-017-0297-9 10.1016/S2095-3119(13)60705-4 10.1016/j.soilbio.2011.02.005 10.1006/jare.1999.0618 10.1016/S0038-0717(00)00084-5 10.1016/j.geoderma.2016.07.019 10.1023/A:1022833116184 10.1016/j.envpol.2017.04.032 10.1007/s11769-014-0702-5 10.2134/jeq2010.0204 10.1111/j.1365-2389.2010.01234.x 10.1111/gcbb.12266 10.1371/journal.pone.0067722 10.1104/pp.111.175232 10.1007/s00254-007-0674-1 10.1111/gcbb.12644 10.1016/j.geoderma.2017.05.029 10.1021/es061307m 10.1016/j.biortech.2006.06.027 10.1016/j.fuel.2017.12.054 10.1016/j.jenvman.2016.06.063 10.1016/j.agee.2011.08.015 10.1111/j.1475-2743.1989.tb00765.x 10.1016/S1002-0160(18)60034-7 10.1016/j.envpol.2012.12.003 10.1007/s13280-010-0038-z 10.1016/j.geoderma.2010.05.013 10.1016/j.scitotenv.2014.06.105 10.1016/j.soilbio.2009.03.016 10.1111/j.1365-2389.2011.01410.x 10.1016/B978-0-12-385538-1.00003-2 10.1038/srep03687 10.1146/annurev-earth-063016-020552 10.1038/nclimate3092 10.2134/jeq2009.0138 10.1016/j.carbpol.2018.03.028 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114323 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114323 S0016706119323699 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a434t-9a0d95008523017ab0df858becf4294bb198aa89c3942fb5a3cd5d784fd9d6693 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 12:31:52 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Fri Feb 23 02:50:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bulk density The Loess Plateau Soil nutrient Biochar Field experiment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a434t-9a0d95008523017ab0df858becf4294bb198aa89c3942fb5a3cd5d784fd9d6693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2400515039 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400515039 crossref_citationtrail_10_1016_j_geoderma_2020_114323 crossref_primary_10_1016_j_geoderma_2020_114323 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Lewis, Wu, Yu, Zhou, Wei, Dai (b0235) 2014; 24 Fang, Singh, Nazaries, Keith, Tavakkoli, Wilson, Singh (b0055) 2019 Pignatello, Kwon, Lu (b0155) 2006; 40 Wang, Zheng, Luo, Deng, Herbert, Xing (b0205) 2013; 174 Burrell, Zehetner, Rampazzo, Wimmer, Soja (b0030) 2016; 282 Lehmann, da Silva, Steiner, Nehls, Zech, Glaser (b0130) 2003; 249 Singh, Hatton, Singh, Cowie, Kathuria (b0180) 2010; 39 Cambier, Pot, Mercier, Michaud, Benoit, Revallier, Houot (b0035) 2014; 499 Laird, Fleming, Davis, Horton, Wang, Karlen (b0125) 2010; 158 Fu (b0065) 1989; 5 Kookana, Sarmah, Van Zwieten, Krull, Singh (b0110) 2011; 112 Cao, Tian, Chen, Dong, Yu, Wang (b0040) 2010; 39 Fu, Wang, Liu, Liu, Liang, Miao (b0070) 2017; 45 Yang, Li, Guo, Fan, Song, Zhang, Yu (b0215) 2017; 83 Al-Shammary, Kouzani, Kaynak, Khoo, Norton, Gates (b0005) 2018; 28 Zhu, Chen, Zhu, Xing (b0240) 2017; 227 Jones, Rousk, Edwards-Jones, DeLuca, Murphy (b0100) 2012; 45 Shi, Shao (b0170) 2000; 45 Wang, Fu, Lü, Chen (b0200) 2011; 85 Yuan, Xu (b0220) 2011; 20 Chintala, Mollinedo, Schumacher, Papiernik, Malo, Clay, Kumar, Gulbrandson (b0045) 2013; 179 Atkinson, Fitzgerald, Hipps (b0015) 2010; 337 Igalavithana, Ok, Usman, Al-Wabel, Oleszczuk, Lee, Guo, He, Uchimiya (b0090) 2016 Brassard, Godbout, Raghavan (b0025) 2016; 181 Wang, Camps-Arbestain, Hedley, Bishop (b0195) 2012; 357 Guenet, Leloup, Raynaud, Bardoux, Abbadie (b0080) 2010; 61 Gontikaki, Thornton, Huvenne, Witte (b0075) 2013; 8 Singh, Cowie (b0175) 2014; 4 Jeffery, Verheijen, van der Velde, Bastos (b0095) 2011; 144 Zhang, Zhu, Cai, Qin, Müller (b0225) 2012; 63 Steinbeiss, Gleixner, Antonietti (b0185) 2009; 41 Liu, Zhu, Wang, Liu, Guo, Zheng, Bian, Wang, Zhang, Cheng, Liu, Li, Pan (b0140) 2019; 11 Madari, Silva, Carvalho, Maia, Petter, Santos, Tsai, Leal, Zeviani (b0145) 2017; 305 Clough, Condron (b0050) 2010; 39 Kuzyakov, Subbotina, Chen, Bogomolova, Xu (b0120) 2009; 41 Al-Wabel, Hussain, Usman, Ahmad, Abduljabbar, Sallam, Ok (b0010) 2018; 29 Feng, Fu, Piao, Wang, Ciais, Zeng, Lü, Zeng, Li, Jiang, Wu (b0060) 2016; 6 Zimmerman, Gao, Ahn (b0245) 2011; 43 Kizito, Wu, Kipkemoi Kirui, Lei, Lu, Bah, Dong (b0105) 2015; 505 Shenbagavalli, Mahimairaja (b0165) 2012; 2 Weber, Quicker (b0210) 2018; 217 Guo, Rockstraw (b0085) 2007; 98 Blanco-Canqui (b0020) 2017; 81 Kuzyakov, Friedel, Stahr (b0115) 2000; 32 Liu, Dong, Wang (b0135) 2007; 53 Wang, Xiong, Kuzyakov (b0190) 2016; 8 Narayanan, Kartik, Sangeetha, Dhamodharan (b0150) 2018; 191 Zhao, Li, Kong, Lin (b0230) 2014; 13 Shen, Yuan, Zhang, Li, Bai, Chen, Zhang, Zhang (b0160) 2011; 156 Yuan (10.1016/j.geoderma.2020.114323_b0220) 2011; 20 Al-Shammary (10.1016/j.geoderma.2020.114323_b0005) 2018; 28 Blanco-Canqui (10.1016/j.geoderma.2020.114323_b0020) 2017; 81 Burrell (10.1016/j.geoderma.2020.114323_b0030) 2016; 282 Kizito (10.1016/j.geoderma.2020.114323_b0105) 2015; 505 Wang (10.1016/j.geoderma.2020.114323_b0190) 2016; 8 Laird (10.1016/j.geoderma.2020.114323_b0125) 2010; 158 Narayanan (10.1016/j.geoderma.2020.114323_b0150) 2018; 191 Shen (10.1016/j.geoderma.2020.114323_b0160) 2011; 156 Chintala (10.1016/j.geoderma.2020.114323_b0045) 2013; 179 Singh (10.1016/j.geoderma.2020.114323_b0175) 2014; 4 Kookana (10.1016/j.geoderma.2020.114323_b0110) 2011; 112 Igalavithana (10.1016/j.geoderma.2020.114323_b0090) 2016 Jeffery (10.1016/j.geoderma.2020.114323_b0095) 2011; 144 Gontikaki (10.1016/j.geoderma.2020.114323_b0075) 2013; 8 Singh (10.1016/j.geoderma.2020.114323_b0180) 2010; 39 Weber (10.1016/j.geoderma.2020.114323_b0210) 2018; 217 Cambier (10.1016/j.geoderma.2020.114323_b0035) 2014; 499 Yang (10.1016/j.geoderma.2020.114323_b0215) 2017; 83 Liu (10.1016/j.geoderma.2020.114323_b0135) 2007; 53 Guenet (10.1016/j.geoderma.2020.114323_b0080) 2010; 61 Guo (10.1016/j.geoderma.2020.114323_b0085) 2007; 98 Wang (10.1016/j.geoderma.2020.114323_b0205) 2013; 174 Fu (10.1016/j.geoderma.2020.114323_b0065) 1989; 5 Lehmann (10.1016/j.geoderma.2020.114323_b0130) 2003; 249 Shi (10.1016/j.geoderma.2020.114323_b0170) 2000; 45 Cao (10.1016/j.geoderma.2020.114323_b0040) 2010; 39 Fang (10.1016/j.geoderma.2020.114323_b0055) 2019 Zhou (10.1016/j.geoderma.2020.114323_b0235) 2014; 24 Brassard (10.1016/j.geoderma.2020.114323_b0025) 2016; 181 Wang (10.1016/j.geoderma.2020.114323_b0200) 2011; 85 Atkinson (10.1016/j.geoderma.2020.114323_b0015) 2010; 337 Wang (10.1016/j.geoderma.2020.114323_b0195) 2012; 357 Zimmerman (10.1016/j.geoderma.2020.114323_b0245) 2011; 43 Zhu (10.1016/j.geoderma.2020.114323_b0240) 2017; 227 Pignatello (10.1016/j.geoderma.2020.114323_b0155) 2006; 40 Madari (10.1016/j.geoderma.2020.114323_b0145) 2017; 305 Fu (10.1016/j.geoderma.2020.114323_b0070) 2017; 45 Kuzyakov (10.1016/j.geoderma.2020.114323_b0115) 2000; 32 Shenbagavalli (10.1016/j.geoderma.2020.114323_b0165) 2012; 2 Liu (10.1016/j.geoderma.2020.114323_b0140) 2019; 11 Kuzyakov (10.1016/j.geoderma.2020.114323_b0120) 2009; 41 Zhao (10.1016/j.geoderma.2020.114323_b0230) 2014; 13 Clough (10.1016/j.geoderma.2020.114323_b0050) 2010; 39 Zhang (10.1016/j.geoderma.2020.114323_b0225) 2012; 63 Feng (10.1016/j.geoderma.2020.114323_b0060) 2016; 6 Al-Wabel (10.1016/j.geoderma.2020.114323_b0010) 2018; 29 Jones (10.1016/j.geoderma.2020.114323_b0100) 2012; 45 Steinbeiss (10.1016/j.geoderma.2020.114323_b0185) 2009; 41 |
References_xml | – volume: 191 start-page: 152 year: 2018 end-page: 160 ident: b0150 article-title: Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption publication-title: Carbohydr. Polym. – volume: 53 start-page: 589 year: 2007 end-page: 598 ident: b0135 article-title: Dynamic analysis of eco-environmental changes based on remote sensing and geographic information system: an example in Longdong region of the Chinese Loess Plateau publication-title: Environ. Geol. – volume: 505 start-page: 102 year: 2015 end-page: 112 ident: b0105 article-title: Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry publication-title: Sci. Total Environ. – volume: 357 start-page: 173 year: 2012 end-page: 187 ident: b0195 article-title: Predicting phosphorus bioavailability from high-ash biochars publication-title: Plant Soil – volume: 8 year: 2013 ident: b0075 article-title: Negative priming effect on organic matter mineralisation in NE Atlantic slope sediments publication-title: PLoS One – volume: 217 start-page: 240 year: 2018 end-page: 261 ident: b0210 article-title: Properties of biochar publication-title: Fuel – volume: 83 start-page: 351 year: 2017 end-page: 360 ident: b0215 article-title: Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions publication-title: Plant Growth Regul. – volume: 40 start-page: 7757 year: 2006 end-page: 7763 ident: b0155 article-title: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids publication-title: Environ. Sci. Tech. – start-page: 123 year: 2016 end-page: 144 ident: b0090 article-title: The effects of biochar amendment on soil fertility publication-title: Agricultural and Environmental Applications of Biochar: Advances and Barriers. Soil Science Society of America, Madison, WI – volume: 282 start-page: 96 year: 2016 end-page: 102 ident: b0030 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma – volume: 39 start-page: 1218 year: 2010 end-page: 1223 ident: b0050 article-title: Biochar and the nitrogen cycle: introduction publication-title: J. Environ. Qual. – volume: 61 start-page: 384 year: 2010 end-page: 391 ident: b0080 article-title: Negative priming effect on mineralization in a soil free of vegetation for 80 years publication-title: Eur. J. Soil Sci. – volume: 11 start-page: 1408 year: 2019 end-page: 1420 ident: b0140 article-title: The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments publication-title: GCB Bioenergy – volume: 45 start-page: 223 year: 2017 end-page: 243 ident: b0070 article-title: Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China publication-title: Annu. Rev. Earth Planet. Sci. – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: b0245 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – year: 2019 ident: b0055 article-title: Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter publication-title: Eur. J. Soil Sci. – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: b0015 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 174 start-page: 289 year: 2013 end-page: 296 ident: b0205 article-title: Characterization and influence of biochars on nitrous oxide emission from agricultural soil publication-title: Environ. Pollut. – volume: 63 start-page: 75 year: 2012 end-page: 85 ident: b0225 article-title: Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations publication-title: Eur. J. Soil Sci. – volume: 85 start-page: 58 year: 2011 end-page: 66 ident: b0200 article-title: Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau publication-title: China. Catena – volume: 181 start-page: 484 year: 2016 end-page: 497 ident: b0025 article-title: Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved publication-title: J. Environ. Manage. – volume: 227 start-page: 98 year: 2017 end-page: 115 ident: b0240 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ. Pollut. – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: b0185 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. – volume: 179 start-page: 250 year: 2013 end-page: 257 ident: b0045 article-title: Nitrate sorption and desorption in biochars from fast pyrolysis publication-title: Micropor Mesopor Mat – volume: 6 start-page: 1019 year: 2016 end-page: 1022 ident: b0060 article-title: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits publication-title: Nat. Clim. Change – volume: 45 start-page: 113 year: 2012 end-page: 124 ident: b0100 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. – volume: 5 start-page: 76 year: 1989 end-page: 82 ident: b0065 article-title: Soil erosion and its control in the Loess Plateau of China publication-title: Soil Use Manage. – volume: 499 start-page: 560 year: 2014 end-page: 573 ident: b0035 article-title: Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils publication-title: Sci. Total Environ. – volume: 4 start-page: 3687 year: 2014 ident: b0175 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: b0125 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 2 start-page: 249 year: 2012 end-page: 255 ident: b0165 article-title: Characterization and effect of biochar on nitrogen and carbon dynamics in soil publication-title: Int. J. Adv. Biol. Res. – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: b0190 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy – volume: 81 start-page: 687 year: 2017 ident: b0020 article-title: Biochar and soil physical properties publication-title: Soil Sci. Soc. Am. J. – volume: 13 start-page: 499 year: 2014 end-page: 506 ident: b0230 article-title: Does biochar addition influence the change points of soil phosphorus leaching? publication-title: J. Integr. Agric. – volume: 98 start-page: 1513 year: 2007 end-page: 1521 ident: b0085 article-title: Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation publication-title: Bioresour. Tech. – volume: 249 start-page: 343 year: 2003 end-page: 357 ident: b0130 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil – volume: 28 start-page: 581 year: 2018 end-page: 596 ident: b0005 article-title: Soil bulk density estimation methods: a review publication-title: Pedosphere – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: b0115 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – volume: 20 start-page: 779 year: 2011 end-page: 785 ident: b0220 article-title: Progress of the research on the properties of biochars and their influence on soil environmental functions publication-title: Ecol. Environ. Sci. – volume: 144 start-page: 175 year: 2011 end-page: 187 ident: b0095 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 24 start-page: 406 year: 2014 end-page: 413 ident: b0235 article-title: Biomass carbon storage and its sequestration potential of afforestation under natural forest protection program in China publication-title: Chin. Geogr. Sci. – volume: 39 start-page: 279 year: 2010 end-page: 283 ident: b0040 article-title: Damage caused to the environment by reforestation policies in arid and semi-arid areas of China publication-title: Ambio – volume: 156 start-page: 997 year: 2011 end-page: 1005 ident: b0160 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiol. – volume: 29 start-page: 2124 year: 2018 end-page: 2161 ident: b0010 article-title: Impact of biochar properties on soil conditions and agricultural sustainability: a review publication-title: Land Degrad. Dev. – volume: 305 start-page: 100 year: 2017 end-page: 112 ident: b0145 article-title: Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment publication-title: Geoderma – volume: 45 start-page: 9 year: 2000 end-page: 20 ident: b0170 article-title: Soil and water loss from the Loess Plateau in China publication-title: J. Arid Environ. – volume: 39 start-page: 1224 year: 2010 end-page: 1235 ident: b0180 article-title: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils publication-title: J. Environ. Qual. – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: b0120 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by publication-title: Soil Biol. Biochem. – volume: 112 start-page: 103 year: 2011 end-page: 143 ident: b0110 article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Adv. Agron. – volume: 337 start-page: 1 issue: 1–2 year: 2010 ident: 10.1016/j.geoderma.2020.114323_b0015 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – start-page: 123 year: 2016 ident: 10.1016/j.geoderma.2020.114323_b0090 article-title: The effects of biochar amendment on soil fertility – volume: 45 start-page: 113 year: 2012 ident: 10.1016/j.geoderma.2020.114323_b0100 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.10.012 – volume: 179 start-page: 250 year: 2013 ident: 10.1016/j.geoderma.2020.114323_b0045 article-title: Nitrate sorption and desorption in biochars from fast pyrolysis publication-title: Micropor Mesopor Mat doi: 10.1016/j.micromeso.2013.05.023 – volume: 85 start-page: 58 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2020.114323_b0200 article-title: Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau publication-title: China. Catena doi: 10.1016/j.catena.2010.12.003 – volume: 41 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2020.114323_b0120 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.016 – year: 2019 ident: 10.1016/j.geoderma.2020.114323_b0055 article-title: Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12808 – volume: 81 start-page: 687 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2020.114323_b0020 article-title: Biochar and soil physical properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.01.0017 – volume: 505 start-page: 102 year: 2015 ident: 10.1016/j.geoderma.2020.114323_b0105 article-title: Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.09.096 – volume: 29 start-page: 2124 issue: 7 year: 2018 ident: 10.1016/j.geoderma.2020.114323_b0010 article-title: Impact of biochar properties on soil conditions and agricultural sustainability: a review publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2829 – volume: 83 start-page: 351 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2020.114323_b0215 article-title: Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions publication-title: Plant Growth Regul. doi: 10.1007/s10725-017-0297-9 – volume: 13 start-page: 499 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2020.114323_b0230 article-title: Does biochar addition influence the change points of soil phosphorus leaching? publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(13)60705-4 – volume: 43 start-page: 1169 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2020.114323_b0245 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 45 start-page: 9 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2020.114323_b0170 article-title: Soil and water loss from the Loess Plateau in China publication-title: J. Arid Environ. doi: 10.1006/jare.1999.0618 – volume: 32 start-page: 1485 issue: 11–12 year: 2000 ident: 10.1016/j.geoderma.2020.114323_b0115 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – volume: 282 start-page: 96 year: 2016 ident: 10.1016/j.geoderma.2020.114323_b0030 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.07.019 – volume: 249 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2020.114323_b0130 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil doi: 10.1023/A:1022833116184 – volume: 227 start-page: 98 year: 2017 ident: 10.1016/j.geoderma.2020.114323_b0240 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.032 – volume: 24 start-page: 406 issue: 4 year: 2014 ident: 10.1016/j.geoderma.2020.114323_b0235 article-title: Biomass carbon storage and its sequestration potential of afforestation under natural forest protection program in China publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-014-0702-5 – volume: 39 start-page: 1218 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2020.114323_b0050 article-title: Biochar and the nitrogen cycle: introduction publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0204 – volume: 61 start-page: 384 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2020.114323_b0080 article-title: Negative priming effect on mineralization in a soil free of vegetation for 80 years publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01234.x – volume: 8 start-page: 512 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2020.114323_b0190 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.geoderma.2020.114323_b0075 article-title: Negative priming effect on organic matter mineralisation in NE Atlantic slope sediments publication-title: PLoS One doi: 10.1371/journal.pone.0067722 – volume: 156 start-page: 997 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2020.114323_b0160 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiol. doi: 10.1104/pp.111.175232 – volume: 53 start-page: 589 issue: 3 year: 2007 ident: 10.1016/j.geoderma.2020.114323_b0135 article-title: Dynamic analysis of eco-environmental changes based on remote sensing and geographic information system: an example in Longdong region of the Chinese Loess Plateau publication-title: Environ. Geol. doi: 10.1007/s00254-007-0674-1 – volume: 11 start-page: 1408 issue: 12 year: 2019 ident: 10.1016/j.geoderma.2020.114323_b0140 article-title: The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments publication-title: GCB Bioenergy doi: 10.1111/gcbb.12644 – volume: 305 start-page: 100 year: 2017 ident: 10.1016/j.geoderma.2020.114323_b0145 article-title: Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.029 – volume: 40 start-page: 7757 issue: 24 year: 2006 ident: 10.1016/j.geoderma.2020.114323_b0155 article-title: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids publication-title: Environ. Sci. Tech. doi: 10.1021/es061307m – volume: 2 start-page: 249 year: 2012 ident: 10.1016/j.geoderma.2020.114323_b0165 article-title: Characterization and effect of biochar on nitrogen and carbon dynamics in soil publication-title: Int. J. Adv. Biol. Res. – volume: 98 start-page: 1513 issue: 8 year: 2007 ident: 10.1016/j.geoderma.2020.114323_b0085 article-title: Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation publication-title: Bioresour. Tech. doi: 10.1016/j.biortech.2006.06.027 – volume: 217 start-page: 240 year: 2018 ident: 10.1016/j.geoderma.2020.114323_b0210 article-title: Properties of biochar publication-title: Fuel doi: 10.1016/j.fuel.2017.12.054 – volume: 181 start-page: 484 year: 2016 ident: 10.1016/j.geoderma.2020.114323_b0025 article-title: Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.06.063 – volume: 144 start-page: 175 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2020.114323_b0095 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.08.015 – volume: 5 start-page: 76 year: 1989 ident: 10.1016/j.geoderma.2020.114323_b0065 article-title: Soil erosion and its control in the Loess Plateau of China publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.1989.tb00765.x – volume: 28 start-page: 581 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2020.114323_b0005 article-title: Soil bulk density estimation methods: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(18)60034-7 – volume: 174 start-page: 289 year: 2013 ident: 10.1016/j.geoderma.2020.114323_b0205 article-title: Characterization and influence of biochars on nitrous oxide emission from agricultural soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.12.003 – volume: 39 start-page: 279 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2020.114323_b0040 article-title: Damage caused to the environment by reforestation policies in arid and semi-arid areas of China publication-title: Ambio doi: 10.1007/s13280-010-0038-z – volume: 158 start-page: 443 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2020.114323_b0125 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 499 start-page: 560 year: 2014 ident: 10.1016/j.geoderma.2020.114323_b0035 article-title: Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.06.105 – volume: 41 start-page: 1301 issue: 6 year: 2009 ident: 10.1016/j.geoderma.2020.114323_b0185 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.016 – volume: 63 start-page: 75 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2020.114323_b0225 article-title: Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01410.x – volume: 112 start-page: 103 year: 2011 ident: 10.1016/j.geoderma.2020.114323_b0110 article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Adv. Agron. doi: 10.1016/B978-0-12-385538-1.00003-2 – volume: 4 start-page: 3687 year: 2014 ident: 10.1016/j.geoderma.2020.114323_b0175 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. doi: 10.1038/srep03687 – volume: 45 start-page: 223 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114323_b0070 article-title: Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-063016-020552 – volume: 6 start-page: 1019 issue: 11 year: 2016 ident: 10.1016/j.geoderma.2020.114323_b0060 article-title: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits publication-title: Nat. Clim. Change doi: 10.1038/nclimate3092 – volume: 39 start-page: 1224 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2020.114323_b0180 article-title: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0138 – volume: 357 start-page: 173 issue: 1–2 year: 2012 ident: 10.1016/j.geoderma.2020.114323_b0195 article-title: Predicting phosphorus bioavailability from high-ash biochars publication-title: Plant Soil – volume: 20 start-page: 779 year: 2011 ident: 10.1016/j.geoderma.2020.114323_b0220 article-title: Progress of the research on the properties of biochars and their influence on soil environmental functions publication-title: Ecol. Environ. Sci. – volume: 191 start-page: 152 year: 2018 ident: 10.1016/j.geoderma.2020.114323_b0150 article-title: Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.03.028 |
SSID | ssj0017020 |
Score | 2.5270746 |
Snippet | •The soil bulk density is correlated with soil types and the biochar applied rates.•The soil organic carbon and total nitrogen increased after eight-year field... Soil erosion on the Loess Plateau has been partly controlled, but soil nutrients remain limited throughout the region. Biochar amendments are an efficient... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114323 |
SubjectTerms | adsorption ammonium nitrogen Biochar Bulk density China fertilizers Field experiment field experimentation nitrate nitrogen nitrogen nutrient retention sandy soils soil density soil erosion Soil nutrient soil nutrients soil organic carbon The Loess Plateau total nitrogen total phosphorus |
Title | Effect of biochar on soil properties on the Loess Plateau: Results from field experiments |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114323 https://www.proquest.com/docview/2400515039 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgPrE-SgSva5sm2U28FbHUVxFR0FNINlmplN3Sba_-djP7qA-QHjxu2IRlJjvzZXe-bxA6s4IKoCoHiehR-FpFAmEFD1zihLCRpa5o33Y_CofP7OaFvzTQZc2FgbLKKvaXMb2I1tVIp7JmZzoeA8eXhJFPRwBBaCiBxMdYBLv8_GNZ5kGibiXNSMIA7v7GEn73PoKGY4X-UK-QzaU9-leC-hWqi_wz2EKbFXDE_fLZtlHDpTtoo_82q8Qz3C56LaWIcZZgM86AT4WzFOfZeIKn8M19BuKpMORBH77LfIzDDxOPNfXiAj-63C-TY6Cb4KKsDX-J_-d76Hlw9XQ5DKrWCYFmlM0DqbtWcsBT_ohBIm26NhFceIclPgExY4gUWgsZU8l6ieGaxpbbSLDEShuGku6jZpql7gDh0Dhgy7LQxoZZzrUgsT-OO00THhMjWojX9lJxpSsO7S0mqi4ge1e1nRXYWZV2bqHOct60VNZYOUPW7lA_9ojy4X_l3NPaf8q_QPBXRKcuW-QKimg9qOtSefiP9Y_QOlxBERnhx6g5ny3ciYcrc9Mu9mMbrfWvb4ejTzIE6m4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYhObQ9hPQRmkdbFdqju2tLsqVCD6FJ2DSbUMoubE-KZMlhw2Iv611CL_1T_YOdseX0AWUPJVcZCXskzXyS5_uGkDdOMolU5aiQCcPbqjiSTorIF15Klznmm_JtF5fpYMw_TcRkg_zouDCYVhl8f-vTG28dWnrBmr35dIoc3zjNIBwhBGGpUiGz8tx_u4VzW_3h7Bgm-W2SnJ6MPg6iUFogMpzxZaRM3ymBeAMgeJwZ23eFFBI-qAAHza2Fs7gxUuVM8aSwwrDcCZdJXjjl0hQVmMDvb3FwF1g24d33u7ySOOsHLcg4jfD1fqMl38CiwApnjeBR0uj0soT9KyL-FRuagHe6Q7YDUqVHrTEekw1fPiGPjq4XQa3DPyVfW-1jWhXUTiskcNGqpHU1ndE5XvIvUK0VmwBl0mEFTpV-ngG4Nav39IuvYZiaIr-FNnl09Fe1gfoZGd-LQXfJZlmV_jmhqfVIz-Wpyy13QhgZ53D-94YVIo-t3COis5fOg5A51tOY6S5j7UZ3dtZoZ93aeY_07vrNWymPtT1UNx36j0WpId6s7fu6mz8NOxZ_w5jSV6taY9YuoMg-U_v_Mf4r8mAwuhjq4dnl-QF5iE8wgy0Wh2RzuVj5F4CVlvZlszYpubrvzfATiIImBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+biochar+on+soil+properties+on+the+Loess+Plateau%3A+Results+from+field+experiments&rft.jtitle=Geoderma&rft.au=Luo%2C+Chaoyi&rft.au=Yang%2C+Jingjing&rft.au=Chen%2C+Wen&rft.au=Han%2C+Fengpeng&rft.date=2020-06-15&rft.issn=0016-7061&rft.volume=369+p.114323-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114323&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |