Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold

Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold...

Full description

Saved in:
Bibliographic Details
Published inGeomorphology (Amsterdam, Netherlands) Vol. 408; p. 108236
Main Authors Huang, Faming, Chen, Jiawu, Liu, Weiping, Huang, Jinsong, Hong, Haoyuan, Chen, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration (EE-D), effective rainfall intensity-duration (EI-D) and cumulative effective rainfall-effective rainfall intensity (EE-EI) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model. [Display omitted] •Rainfall-induced landslide hazard warning is examined by landslide susceptibility mapping and critical rainfall threshold.•Various machine learning models are compared for predicting landslide susceptibility.•Uncertainties of different critical rainfall threshold models for landslide hazard warning are explored.•Effective rainfall intensity-duration threshold model has the highest accuracy than other models.
AbstractList Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration (EE-D), effective rainfall intensity-duration (EI-D) and cumulative effective rainfall-effective rainfall intensity (EE-EI) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model.
Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration (EE-D), effective rainfall intensity-duration (EI-D) and cumulative effective rainfall-effective rainfall intensity (EE-EI) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model. [Display omitted] •Rainfall-induced landslide hazard warning is examined by landslide susceptibility mapping and critical rainfall threshold.•Various machine learning models are compared for predicting landslide susceptibility.•Uncertainties of different critical rainfall threshold models for landslide hazard warning are explored.•Effective rainfall intensity-duration threshold model has the highest accuracy than other models.
ArticleNumber 108236
Author Huang, Faming
Chen, Wei
Huang, Jinsong
Chen, Jiawu
Hong, Haoyuan
Liu, Weiping
Author_xml – sequence: 1
  givenname: Faming
  surname: Huang
  fullname: Huang, Faming
  organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
– sequence: 2
  givenname: Jiawu
  surname: Chen
  fullname: Chen, Jiawu
  organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
– sequence: 3
  givenname: Weiping
  surname: Liu
  fullname: Liu, Weiping
  email: liuweiping@ncu.edu.cn
  organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
– sequence: 4
  givenname: Jinsong
  surname: Huang
  fullname: Huang, Jinsong
  organization: ARC Centre of Excellence for Geotechnical Science and Engineering, University of Newcastle, Newcastle, NSW, Australia
– sequence: 5
  givenname: Haoyuan
  surname: Hong
  fullname: Hong, Haoyuan
  organization: Department of Geography and Regional Research, University of Vienna, 1010 Vienna, Austria
– sequence: 6
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, China
BookMark eNqFkU9rGzEQxUVJoU7ar1B07GVdSbvSeqGHhtD8gUChtJCb0Eqz9hhZ2khyQ3LoZ6-MGwi95DQw896M3k-n5CTEAIR85GzJGVeft8s1xF1M82YpmBC1uRKtekMWfNWLRg3y7oQsqnBopJR378hpzlvGWNcPbEH-_IA1xmA8TQbDZLxvMLi9BUe9CS57dEA35skkRx9MChjWdDS5jmN4ocj7bGEuOKLH8kh3Zp4PyjqnhtqEBe2LE7RsEuRN9O49eVsbGT78q2fk1-W3nxfXze33q5uL89vGdG1XGjnxcQIQ0Ck7yH7sppEJ18PYq5qVg-ztJEbeCiZHxlq1miQDkMrJ1k0O2vaMfDrunVO830Mueof1xb4mgLjPWijFhoGLjlWpOkptijknmPSccGfSo-ZMH4DrrX4Grg_A9RF4NX75z2ixmFLplhrcv27_erRD5fAbIelsEUL9CUxgi3YRX1vxF9qEpvQ
CitedBy_id crossref_primary_10_3389_feart_2023_1254042
crossref_primary_10_1007_s10064_024_03841_4
crossref_primary_10_1007_s11069_023_06176_7
crossref_primary_10_1016_j_ecoleng_2023_107150
crossref_primary_10_1002_gj_4976
crossref_primary_10_1016_j_cose_2024_103747
crossref_primary_10_3390_w14244074
crossref_primary_10_1007_s11069_024_06672_4
crossref_primary_10_3390_su151310180
crossref_primary_10_1016_j_uclim_2023_101710
crossref_primary_10_1016_j_jhydrol_2024_131536
crossref_primary_10_1088_1755_1315_1314_1_012017
crossref_primary_10_3389_feart_2022_1005199
crossref_primary_10_1007_s00477_022_02361_5
crossref_primary_10_3389_feart_2023_1115235
crossref_primary_10_1007_s10346_024_02356_z
crossref_primary_10_1007_s11069_024_06819_3
crossref_primary_10_3389_feart_2023_1140030
crossref_primary_10_1007_s10346_023_02187_4
crossref_primary_10_1007_s10064_025_04177_3
crossref_primary_10_1007_s10064_025_04116_2
crossref_primary_10_1080_02626667_2024_2362303
crossref_primary_10_3389_feart_2024_1443738
crossref_primary_10_1007_s12665_022_10466_x
crossref_primary_10_3389_feart_2022_918386
crossref_primary_10_3389_feart_2022_998745
crossref_primary_10_3389_feart_2022_1025231
crossref_primary_10_3389_feart_2023_1117004
crossref_primary_10_3390_rs15082149
crossref_primary_10_3390_drones8010030
crossref_primary_10_1016_j_qsa_2024_100187
crossref_primary_10_3389_feart_2022_981754
crossref_primary_10_3389_feart_2024_1466751
crossref_primary_10_3390_app13020864
crossref_primary_10_1007_s13762_022_04665_z
crossref_primary_10_1007_s11356_024_34726_4
crossref_primary_10_1155_2022_8254356
crossref_primary_10_3390_f13071055
crossref_primary_10_1016_j_jrmge_2023_11_039
crossref_primary_10_3390_su17051973
crossref_primary_10_1016_j_asr_2024_11_052
crossref_primary_10_1016_j_scitotenv_2023_164334
crossref_primary_10_1016_j_eswa_2025_126582
crossref_primary_10_1016_j_geomorph_2023_108600
crossref_primary_10_1016_j_enggeo_2024_107464
crossref_primary_10_1007_s11069_024_06602_4
crossref_primary_10_1007_s11069_022_05610_6
crossref_primary_10_1016_j_rockmb_2023_100028
crossref_primary_10_1007_s12583_022_1764_4
crossref_primary_10_1007_s11069_024_07063_5
crossref_primary_10_1080_19475705_2024_2435510
crossref_primary_10_1016_j_bgtech_2023_100056
crossref_primary_10_1061_NHREFO_NHENG_1993
crossref_primary_10_3390_geosciences14100274
crossref_primary_10_3389_feart_2023_1146724
crossref_primary_10_1109_JSTARS_2024_3370218
crossref_primary_10_3390_su151411330
crossref_primary_10_1155_2023_7030643
crossref_primary_10_3390_rs16132394
crossref_primary_10_1016_j_heliyon_2024_e37352
crossref_primary_10_1080_10106049_2024_2322058
crossref_primary_10_3390_rs14235952
crossref_primary_10_1016_j_rockmb_2023_100056
crossref_primary_10_3390_su141912000
crossref_primary_10_3390_rs16163089
crossref_primary_10_1016_j_jhydrol_2024_132148
crossref_primary_10_3390_rs16183526
crossref_primary_10_1051_e3sconf_202235801015
crossref_primary_10_3390_su142416985
crossref_primary_10_5194_nhess_24_3991_2024
crossref_primary_10_1061_IJGNAI_GMENG_8234
crossref_primary_10_1007_s12046_023_02404_9
crossref_primary_10_3390_rs16020356
crossref_primary_10_1016_j_catena_2023_107732
crossref_primary_10_1080_17538947_2023_2249863
crossref_primary_10_1080_27669645_2025_2477936
crossref_primary_10_1080_17499518_2022_2088802
crossref_primary_10_1007_s10346_024_02437_z
crossref_primary_10_1080_19475705_2024_2314565
crossref_primary_10_1007_s11069_024_06897_3
crossref_primary_10_1029_2023EF003741
crossref_primary_10_3799_dqkx_2022_341
crossref_primary_10_3389_fenvs_2025_1522949
crossref_primary_10_3389_feart_2022_1016605
crossref_primary_10_3390_rs15164111
crossref_primary_10_17491_jgsi_2024_173885
crossref_primary_10_3390_geosciences14060171
crossref_primary_10_3389_feart_2022_1030417
crossref_primary_10_3390_rs14184436
crossref_primary_10_1016_j_probengmech_2024_103623
crossref_primary_10_1080_19475705_2024_2354507
crossref_primary_10_3390_land12081558
crossref_primary_10_1155_js_6182699
crossref_primary_10_3390_land13071039
crossref_primary_10_1038_s41598_024_64679_0
crossref_primary_10_1007_s11431_023_2657_3
crossref_primary_10_1007_s12145_025_01700_8
crossref_primary_10_3390_w16010057
crossref_primary_10_3389_feart_2022_991384
crossref_primary_10_1016_j_gsf_2024_101802
crossref_primary_10_3389_feart_2023_1098872
crossref_primary_10_1016_j_regsus_2023_08_001
crossref_primary_10_1016_j_jrmge_2024_02_001
crossref_primary_10_3390_min12111425
crossref_primary_10_1016_j_gsf_2023_101645
crossref_primary_10_1016_j_qsa_2023_100150
crossref_primary_10_3390_rs16122207
crossref_primary_10_3389_feart_2022_1071231
crossref_primary_10_1002_gj_4683
crossref_primary_10_1080_17538947_2024_2392843
crossref_primary_10_1016_j_jrmge_2023_03_001
crossref_primary_10_1080_17538947_2024_2409337
crossref_primary_10_3390_su141811321
crossref_primary_10_1007_s11069_024_06521_4
crossref_primary_10_1007_s12517_025_12221_5
crossref_primary_10_1007_s12665_023_11118_4
crossref_primary_10_1111_risa_70014
crossref_primary_10_1007_s40789_023_00579_4
crossref_primary_10_1007_s00477_023_02394_4
Cites_doi 10.1016/j.geomorph.2015.05.016
10.1007/s11368-014-0886-4
10.1007/s12665-017-6731-5
10.1016/j.catena.2021.105250
10.1002/esp.1491
10.5194/nhess-14-317-2014
10.1016/j.enggeo.2014.03.005
10.1007/s12583-021-1433-z
10.1007/s12583-020-1101-8
10.1016/j.earscirev.2018.03.001
10.1016/j.gsf.2021.101249
10.1016/j.geomorph.2005.06.002
10.1016/j.catena.2018.01.012
10.1007/s10346-018-1072-3
10.1007/s10346-018-0966-4
10.1016/j.geomorph.2017.02.001
10.1016/j.geomorph.2011.10.005
10.1016/j.envsoft.2016.07.005
10.1016/j.enggeo.2011.09.006
10.1016/j.catena.2016.11.032
10.1007/s10346-013-0447-8
10.1016/j.geomorph.2016.02.012
10.1007/s11069-012-0510-0
10.1007/s11004-014-9560-z
10.1016/j.enggeo.2017.01.016
10.1007/s10346-014-0550-5
10.1007/s11069-011-9747-2
10.1007/s10346-018-1063-4
10.1007/s12665-020-08957-w
10.1155/2015/512158
10.1007/s10346-013-0408-2
10.1016/S1001-6279(08)60022-0
10.1016/j.catena.2018.03.003
10.1016/j.earscirev.2020.103225
10.1016/j.rse.2014.07.004
10.1007/s12583-020-1380-0
10.1007/s10346-014-0502-0
10.1016/j.geomorph.2009.05.008
10.1007/s12583-020-1072-9
10.1007/s12583-020-1398-3
10.1007/s10346-018-1112-z
10.1007/s10346-020-01473-9
10.3390/rs12244134
10.1016/j.enggeo.2015.05.022
10.1007/s10346-012-0341-9
10.1007/s10346-013-0436-y
10.1007/s12583-019-1231-z
10.1007/s10346-021-01756-9
10.1016/j.catena.2016.06.004
10.3389/feart.2018.00085
10.1016/j.scitotenv.2019.01.329
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geomorph.2022.108236
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1872-695X
ExternalDocumentID 10_1016_j_geomorph_2022_108236
S0169555X22001295
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABMYL
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSZ
T5K
XPP
ZCA
ZMT
~02
~G-
29H
9M8
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABXDB
ACVFH
ADCNI
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
OHT
R2-
SEP
SEW
SSH
VH1
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a434t-5f1bfee2e46c957b4fb02d7eb768231e57cf2b13205b00368f50ee56d53dfde33
IEDL.DBID .~1
ISSN 0169-555X
IngestDate Mon Jul 21 11:40:51 EDT 2025
Tue Jul 01 01:58:20 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Sat Mar 16 16:12:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Landslide hazard warning
Critical rainfall threshold
Random forest
Rainfall-induced landslides
Landslide susceptibility prediction
Effective rainfall intensity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a434t-5f1bfee2e46c957b4fb02d7eb768231e57cf2b13205b00368f50ee56d53dfde33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2660991240
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2660991240
crossref_primary_10_1016_j_geomorph_2022_108236
crossref_citationtrail_10_1016_j_geomorph_2022_108236
elsevier_sciencedirect_doi_10_1016_j_geomorph_2022_108236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Geomorphology (Amsterdam, Netherlands)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Ye, Jiang, Huang, Chang, Chen (bb0135) 2021; 202
Wang, Frattini, Crosta, Zhang, Agliardi, Lari, Yang (bb0310) 2013; 11
Vennari, Gariano, Antronico, Brunetti, Iovine, Peruccacci, Terranova, Guzzetti (bb0300) 2014; 14
Chen, Li, Wang, Chen, Liu (bb0045) 2014; 152
Matsushi, Matsukura (bb0205) 2007; 32
Chen, Zhou, Yuan, Wang (bb0060) 2018; 49
Ma, Li, Lu, Bao (bb0190) 2015; 245
Pradhan (bb0250) 2012; 51
Segoni, Lagomarsino, Fanti, Moretti, Casagli (bb0270) 2015; 12
Jaiswal, Westen (bb0160) 2009; 112
Peruccacci, Brunetti, Luciani, Vennari, Guzzetti (bb0230) 2012; 139–140
Ping, Zeng, Chen, Tang (bb0240) 2014
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bb0255) 2018; 180
Huang, Zhao (bb0145) 2018; 165
Guzzetti, Reichenbach, Cardinali, Galli, Ardizzone (bb0100) 2005; 72
Albatah, Alkhasawneh, Tay, Ngah, Lateh, Isa (bb0010) 2015
Saro (bb0265) 2019; 35
Segoni, Piciullo, Gariano (bb0275) 2018; 15
Zhu, Wang, Huang, Li, Hong (bb0350) 2021; PP
Mathew, Babu, Kundu, Kumar, Pant (bb0200) 2014; 11
Rossi, Luciani, Valigi, Kirschbaum, Brunetti, Peruccacci, Guzzetti (bb0260) 2017; 285
Staley, Kean, Cannon, Schmidt, Laber (bb0285) 2013; 10
Huang, Yan, Fan, Yao, Huang, Chen, Hong (bb0130) 2021; 101317
Adler (bb0005) 2008; 23
Michel, Kobiyama, Goerl (bb0215) 2014; 14
Conforti, Ietto (bb0075) 2020; 31
Li, Huang, Pei, Qiao, Wang (bb0180) 2021; 32
Murărescu, Murătoreanu, Frânculeasa (bb0220) 2013; 22
Lee, Won, Jeon, Park, Lee (bb0175) 2015; 47
Cantarino, Carrion, Goerlich, Martinez Ibañez (bb0040) 2018; 16
He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen (bb0105) 2019; 663
Huang, Cao, Jiang, Zhou, Huang, Guo (bb0115) 2020; 17
Huang, Xiang, Nengpan (bb0140) 2004
Wu, Zhang, Tang, Xiao (bb0330) 2014; 39
Merghadi, Yunus, Dou, Whiteley, Thaipham, Bui, Avtar, Boumezbeur, Pham (bb0210) 2020; 207
Wu, Chen, Cheng, Yin, Török (bb0325) 2014; 175
Ciurleo, Mandaglio, Moraci (bb0070) 2019; 16
Zhang, Wu, Niu, Yang, Zhao (bb0340) 2017; 76
Caine (bb0030) 1980; 62
Huang, Xu, Zhang, Xue, Wang (bb0150) 2021; 32
Wang, Wang, Guo, Wang (bb0315) 2020; 104(3)
Li, Fan, Huang, Chen, Hong, Huang, Guo (bb0185) 2020; 12
Huang, Tao, Chang, Huang, Fan, Jiang, Li (bb0125) 2021; 18
Cannon, Boldt, Laber, Kean, Staley (bb0035) 2011; 59
Dennis, Joseph, Jason (bb0085) 2015
Huang, Huang, Jiang, Zhou (bb0120) 2017; 218
Pham, Pradhan, Bui, Prakash, Dholakia (bb0235) 2016; 84
Pradhan, Lee, Kim (bb0245) 2018; 16
Xia, Hu, Wu, Ying, Liu (bb0335) 2020; 31
Baharvand, Rahnamarad, Soori, Saadatkhah (bb0015) 2020; 79
Kirschbaum, Stanley (bb0165) 2018; 6(3)
Segoni, Tofani, Rosi, Catani, Casagli (bb0280) 2018; 6
Bui, Pradhan, Lofman, Revhaug, Dick (bb0025) 2013; 66
Chen, Xie, Wang, Pradhan, Hong, Bui, Duan, Ma (bb0055) 2017; 151
Hungr, Leroueil, Picarelli (bb0155) 2014; 11
Nikolopoulos, Borga, Marra (bb0225) 2013
Wang, Shi, Liu, Li, Li (bb0305) 2014
Hong, Pourghasemi, Pourtaghi (bb0110) 2016; 259
Chen, Xie, Peng, Shahabi, Hong, Bui, Duan, Li, Zhu (bb0050) 2018; 164
Gao, Cui, Zhao, Wei (bb0090) 2006; 25
Chong, Dai, Yao, Chen, Xinbin, Sun, Wang (bb0065) 2009; 28
Kirschbaum, Stanley, Simmons, Sciences (bb0170) 2015; 15(10)
Dai, Li, Wang, Lu, Xu, Jian (bb0080) 2021; 32
Zhu, Hu (bb0345) 2013; 239–240
Marjanović, Kovačević, Bajat, Voženílek (bb0195) 2011; 123
Sun, Xu, Wen, Wang (bb0290) 2020; 31
Wu, Lan, Gao, Li, Yang (bb0320) 2015; 195
Budimir, Lewis (bb0020) 2015; 12
Guo, Shi, Huang, Fan, Huang (bb0095) 2021; 12
Tsangaratos, Ilia (bb0295) 2016; 145
Huang (10.1016/j.geomorph.2022.108236_bb0135) 2021; 202
Bui (10.1016/j.geomorph.2022.108236_bb0025) 2013; 66
Guo (10.1016/j.geomorph.2022.108236_bb0095) 2021; 12
Huang (10.1016/j.geomorph.2022.108236_bb0145) 2018; 165
Wu (10.1016/j.geomorph.2022.108236_bb0330) 2014; 39
Vennari (10.1016/j.geomorph.2022.108236_bb0300) 2014; 14
Segoni (10.1016/j.geomorph.2022.108236_bb0275) 2018; 15
Michel (10.1016/j.geomorph.2022.108236_bb0215) 2014; 14
Segoni (10.1016/j.geomorph.2022.108236_bb0280) 2018; 6
Segoni (10.1016/j.geomorph.2022.108236_bb0270) 2015; 12
Guzzetti (10.1016/j.geomorph.2022.108236_bb0100) 2005; 72
Ma (10.1016/j.geomorph.2022.108236_bb0190) 2015; 245
Wang (10.1016/j.geomorph.2022.108236_bb0305) 2014
Huang (10.1016/j.geomorph.2022.108236_bb0120) 2017; 218
Rossi (10.1016/j.geomorph.2022.108236_bb0260) 2017; 285
Ping (10.1016/j.geomorph.2022.108236_bb0240) 2014
Albatah (10.1016/j.geomorph.2022.108236_bb0010) 2015
Li (10.1016/j.geomorph.2022.108236_bb0180) 2021; 32
Cantarino (10.1016/j.geomorph.2022.108236_bb0040) 2018; 16
Lee (10.1016/j.geomorph.2022.108236_bb0175) 2015; 47
Wang (10.1016/j.geomorph.2022.108236_bb0310) 2013; 11
Baharvand (10.1016/j.geomorph.2022.108236_bb0015) 2020; 79
Kirschbaum (10.1016/j.geomorph.2022.108236_bb0170) 2015; 15(10)
Huang (10.1016/j.geomorph.2022.108236_bb0125) 2021; 18
Cannon (10.1016/j.geomorph.2022.108236_bb0035) 2011; 59
Adler (10.1016/j.geomorph.2022.108236_bb0005) 2008; 23
Hong (10.1016/j.geomorph.2022.108236_bb0110) 2016; 259
Wu (10.1016/j.geomorph.2022.108236_bb0325) 2014; 175
Li (10.1016/j.geomorph.2022.108236_bb0185) 2020; 12
Gao (10.1016/j.geomorph.2022.108236_bb0090) 2006; 25
Murărescu (10.1016/j.geomorph.2022.108236_bb0220) 2013; 22
Dai (10.1016/j.geomorph.2022.108236_bb0080) 2021; 32
Matsushi (10.1016/j.geomorph.2022.108236_bb0205) 2007; 32
Zhu (10.1016/j.geomorph.2022.108236_bb0345) 2013; 239–240
Hungr (10.1016/j.geomorph.2022.108236_bb0155) 2014; 11
Jaiswal (10.1016/j.geomorph.2022.108236_bb0160) 2009; 112
Chen (10.1016/j.geomorph.2022.108236_bb0050) 2018; 164
Chong (10.1016/j.geomorph.2022.108236_bb0065) 2009; 28
Merghadi (10.1016/j.geomorph.2022.108236_bb0210) 2020; 207
Pham (10.1016/j.geomorph.2022.108236_bb0235) 2016; 84
Huang (10.1016/j.geomorph.2022.108236_bb0130) 2021; 101317
Huang (10.1016/j.geomorph.2022.108236_bb0140) 2004
Conforti (10.1016/j.geomorph.2022.108236_bb0075) 2020; 31
Xia (10.1016/j.geomorph.2022.108236_bb0335) 2020; 31
Huang (10.1016/j.geomorph.2022.108236_bb0115) 2020; 17
Ciurleo (10.1016/j.geomorph.2022.108236_bb0070) 2019; 16
Huang (10.1016/j.geomorph.2022.108236_bb0150) 2021; 32
Reichenbach (10.1016/j.geomorph.2022.108236_bb0255) 2018; 180
Tsangaratos (10.1016/j.geomorph.2022.108236_bb0295) 2016; 145
Marjanović (10.1016/j.geomorph.2022.108236_bb0195) 2011; 123
Wu (10.1016/j.geomorph.2022.108236_bb0320) 2015; 195
Zhang (10.1016/j.geomorph.2022.108236_bb0340) 2017; 76
Chen (10.1016/j.geomorph.2022.108236_bb0045) 2014; 152
Zhu (10.1016/j.geomorph.2022.108236_bb0350) 2021; PP
Caine (10.1016/j.geomorph.2022.108236_bb0030) 1980; 62
Pradhan (10.1016/j.geomorph.2022.108236_bb0245) 2018; 16
Staley (10.1016/j.geomorph.2022.108236_bb0285) 2013; 10
Wang (10.1016/j.geomorph.2022.108236_bb0315) 2020; 104(3)
Chen (10.1016/j.geomorph.2022.108236_bb0055) 2017; 151
Dennis (10.1016/j.geomorph.2022.108236_bb0085) 2015
He (10.1016/j.geomorph.2022.108236_bb0105) 2019; 663
Pradhan (10.1016/j.geomorph.2022.108236_bb0250) 2012; 51
Peruccacci (10.1016/j.geomorph.2022.108236_bb0230) 2012; 139–140
Chen (10.1016/j.geomorph.2022.108236_bb0060) 2018; 49
Sun (10.1016/j.geomorph.2022.108236_bb0290) 2020; 31
Nikolopoulos (10.1016/j.geomorph.2022.108236_bb0225) 2013
Mathew (10.1016/j.geomorph.2022.108236_bb0200) 2014; 11
Saro (10.1016/j.geomorph.2022.108236_bb0265) 2019; 35
Kirschbaum (10.1016/j.geomorph.2022.108236_bb0165) 2018; 6(3)
Budimir (10.1016/j.geomorph.2022.108236_bb0020) 2015; 12
References_xml – start-page: 1
  year: 2015
  end-page: 9
  ident: bb0010
  article-title: Landslide occurrence prediction using trainable cascade forward network and multilayer perceptron
  publication-title: Math. Probl. Eng.
– volume: 165
  start-page: 520
  year: 2018
  end-page: 529
  ident: bb0145
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
– volume: 14
  start-page: 1266
  year: 2014
  end-page: 1277
  ident: bb0215
  article-title: Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil
  publication-title: J. Soils Sediments Prot. Risk Assess. Rem.
– volume: 195
  start-page: 63
  year: 2015
  end-page: 69
  ident: bb0320
  article-title: A simplified physically based coupled rainfall threshold model for triggering landslides
  publication-title: Eng. Geol.
– volume: PP
  start-page: 1
  year: 2021
  end-page: 5
  ident: bb0350
  article-title: Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 59
  start-page: 209
  year: 2011
  end-page: 236
  ident: bb0035
  article-title: Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning
  publication-title: Nat. Hazards
– volume: 6(3)
  start-page: 505
  year: 2018
  end-page: 523
  ident: bb0165
  publication-title: Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness
– volume: 12
  start-page: 4134
  year: 2020
  ident: bb0185
  article-title: Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: influences of different data-based models and connections between collapses and environmental factors
  publication-title: Remote Sens.
– volume: 663
  start-page: 1
  year: 2019
  end-page: 15
  ident: bb0105
  article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 317
  year: 2014
  end-page: 330
  ident: bb0300
  article-title: Rainfall thresholds for shallow landslides occurrence in Calabria, southern Italy
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: bb0110
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
– volume: 207
  year: 2020
  ident: bb0210
  article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
– volume: 16
  start-page: 175
  year: 2019
  end-page: 188
  ident: bb0070
  article-title: Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area
  publication-title: Landslides
– volume: 12
  start-page: 419
  year: 2015
  end-page: 436
  ident: bb0020
  article-title: A systematic review of landslide probability mapping using logistic regression
  publication-title: Landslides
– year: 2004
  ident: bb0140
  article-title: Assessment of China's regional geohazards: present situation and problems
  publication-title: Regional Geology of China
– volume: 285
  start-page: 16
  year: 2017
  end-page: 27
  ident: bb0260
  article-title: Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data
  publication-title: Geomorphology
– volume: 18
  start-page: 3715
  year: 2021
  end-page: 3731
  ident: bb0125
  article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments
  publication-title: Landslides
– volume: 16
  start-page: 647
  year: 2018
  end-page: 659
  ident: bb0245
  article-title: A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan,Korea
  publication-title: Landslides
– volume: 15(10)
  start-page: 2257
  year: 2015
  end-page: 2272
  ident: bb0170
  publication-title: A dynamic landslide hazard assessment system for Central America and Hispaniola
– volume: 32
  year: 2021
  ident: bb0180
  article-title: Using physical model experiments for hazards assessment of rainfall-induced debris landslides
  publication-title: J. Earth Sci.
– volume: 47
  start-page: 565
  year: 2015
  end-page: 589
  ident: bb0175
  article-title: Spatial landslide hazard prediction using rainfall probability and a logistic regression model
  publication-title: Math. Geosci.
– volume: 123
  start-page: 225
  year: 2011
  end-page: 234
  ident: bb0195
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
– volume: 51
  start-page: 350
  year: 2012
  end-page: 365
  ident: bb0250
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– year: 2013
  ident: bb0225
  article-title: Impact of rainfall estimation uncertainty on identification and use of precipitation thresholds for debris flow/landslide warning
  publication-title: American Geosci. Union (AGU) Fall Meeting 2013, San Francisco (USA), December 2013
– volume: 31
  start-page: 1121
  year: 2020
  end-page: 1132
  ident: bb0335
  article-title: Slope stability analysis based on group decision theory and fuzzy comprehensive evaluation
  publication-title: J. Earth Sci.
– volume: 84
  start-page: 240
  year: 2016
  end-page: 250
  ident: bb0235
  article-title: A comparative study of different machine learning methods for landslide susceptibility assessment
  publication-title: Environ. Model. Softw.
– volume: 11
  start-page: 167
  year: 2014
  end-page: 194
  ident: bb0155
  article-title: The varnes classification of landslide types, an update
  publication-title: Landslides
– volume: 72
  start-page: 272
  year: 2005
  end-page: 299
  ident: bb0100
  article-title: Probabilistic landslide hazard assessment at the basin scale
  publication-title: Geomorphology
– volume: 164
  start-page: 135
  year: 2018
  end-page: 149
  ident: bb0050
  article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method
  publication-title: Catena
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  ident: bb0055
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
– volume: 32
  start-page: 1092
  year: 2021
  end-page: 1103
  ident: bb0080
  article-title: Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu County, Gansu Province, Northwest China
  publication-title: J. Earth Sci.
– volume: 39
  start-page: 889
  year: 2014
  end-page: 895
  ident: bb0330
  article-title: Landslide hazard warning based on effective rainfall intensity
  publication-title: Earth Sci.
– volume: 112
  start-page: 96
  year: 2009
  end-page: 105
  ident: bb0160
  article-title: Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds
  publication-title: Geomorphology
– year: 2014
  ident: bb0240
  article-title: A PSOGSA method to optimize the T-S fuzzy neural network for displacement prediction of landslide
  publication-title: 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC
– volume: 11
  start-page: 711
  year: 2013
  end-page: 722
  ident: bb0310
  article-title: Uncertainty assessment in quantitative rockfall risk assessment
  publication-title: Landslides
– volume: 32
  year: 2007
  ident: bb0205
  article-title: Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan
  publication-title: Earth Surf. Process. Landforms
– volume: 31
  start-page: 1068
  year: 2020
  end-page: 1086
  ident: bb0290
  article-title: An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of three Gorges Reservoir, China
  publication-title: J. Earth Sci.
– volume: 25
  start-page: 991
  year: 2006
  end-page: 996
  ident: bb0090
  article-title: Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 76
  start-page: 405
  year: 2017
  ident: bb0340
  article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area,China
  publication-title: Environ. Earth Sci.
– volume: 6
  start-page: 85
  year: 2018
  ident: bb0280
  article-title: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale
  publication-title: Front. Earth Sci.
– volume: 66
  start-page: 707
  year: 2013
  end-page: 730
  ident: bb0025
  article-title: Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province,Vietnam
  publication-title: Nat. Hazards
– volume: 139–140
  start-page: 79
  year: 2012
  end-page: 90
  ident: bb0230
  article-title: Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy
  publication-title: Geomorphology
– volume: 23
  start-page: 249
  year: 2008
  end-page: 257
  ident: bb0005
  article-title: Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates
  publication-title: Int. J. Sediment Res.
– volume: 22
  start-page: 47
  year: 2013
  ident: bb0220
  article-title: Extreme climatic phenomena and their impact in the shaping the current relief in the Bucegi-Leaota mountain complex
  publication-title: Georev. Sci. Ann. Stefan Cel Mare Univ. Suceava Geogr.
– volume: 175
  start-page: 9
  year: 2014
  end-page: 21
  ident: bb0325
  article-title: GIS-based landslide hazard predicting system and its real-time test during a typhoon, Zhejiang Province,Southeast China
  publication-title: Eng. Geol.
– volume: 17
  start-page: 2919
  year: 2020
  end-page: 2930
  ident: bb0115
  article-title: Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model
  publication-title: Landslides
– volume: 10
  start-page: 547
  year: 2013
  end-page: 562
  ident: bb0285
  article-title: Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California
  publication-title: Landslides
– year: 2015
  ident: bb0085
  article-title: Objective Definition of Rainfall Intensity-duration Thresholds for Post-fire Flash Floods And Debris Flows in the Area Burned by the Waldo Canyon Fire, Colorado, USA
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: bb0295
  article-title: Comparison of a logistic regression and Naive Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
– volume: 49
  start-page: 60
  year: 2018
  end-page: 65
  ident: bb0060
  article-title: Displacement prediction of reservoir landslide considering lag effect of inducing factors
  publication-title: Yangtze River
– volume: 35
  start-page: 179
  year: 2019
  end-page: 193
  ident: bb0265
  article-title: Current and future status of GIS-based landslide susceptibility mapping: a literature review
  publication-title: Kor. J. Remote Sens.
– start-page: 285
  year: 2014
  end-page: 289
  ident: bb0305
  article-title: Analysis on physical characteristics of rural solid waste in Dongjiang river source area, China
  publication-title: J. Agric. Res. Environ.
– volume: 180
  start-page: 60
  year: 2018
  end-page: 91
  ident: bb0255
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci. Rev.
– volume: 16
  start-page: 265
  year: 2018
  end-page: 282
  ident: bb0040
  article-title: A ROC analysis-based classification method for landslide susceptibility maps
  publication-title: Landslides
– volume: 28
  start-page: 3978
  year: 2009
  end-page: 3985
  ident: bb0065
  article-title: GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region
  publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng.
– volume: 218
  start-page: 173
  year: 2017
  end-page: 186
  ident: bb0120
  article-title: Landslide displacement prediction based on multivariate chaotic model and extreme learning machine
  publication-title: Eng. Geol.
– volume: 101317
  year: 2021
  ident: bb0130
  article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions
  publication-title: Geosci. Front.
– volume: 12
  start-page: 773
  year: 2015
  end-page: 785
  ident: bb0270
  article-title: Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system
  publication-title: Landslides
– volume: 104(3)
  start-page: 2153
  year: 2020
  end-page: 2173
  ident: bb0315
  publication-title: Regional landslide hazard assessment through integrating susceptibility index and rainfall process
– volume: 239–240
  start-page: 1413
  year: 2013
  end-page: 1420
  ident: bb0345
  article-title: Time series prediction of landslide displacement using SVM model: application to Baishuihe landslide in Three Gorges Reservoir Area, China
  publication-title: Appl. Mech. Mater.
– volume: 62
  start-page: 23
  year: 1980
  end-page: 27
  ident: bb0030
  article-title: The rainfall intensity-duration control of shallow landslides and debris flows
  publication-title: Geogr. Ann.
– volume: 11
  start-page: 575
  year: 2014
  end-page: 588
  ident: bb0200
  article-title: Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya,India
  publication-title: Landslides
– volume: 31
  start-page: 393
  year: 2020
  end-page: 409
  ident: bb0075
  article-title: Influence of tectonics and morphometric features on the landslide distribution: a case study from the Mesima Basin (Calabria, South Italy)
  publication-title: J. Earth Sci.
– volume: 245
  start-page: 193
  year: 2015
  end-page: 206
  ident: bb0190
  article-title: Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China
  publication-title: Geomorphology
– volume: 152
  start-page: 291
  year: 2014
  end-page: 301
  ident: bb0045
  article-title: Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China
  publication-title: Remote Sens. Environ.
– volume: 202
  year: 2021
  ident: bb0135
  article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models
  publication-title: Catena
– volume: 12
  year: 2021
  ident: bb0095
  article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
  publication-title: Geosci. Front.
– volume: 79
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0015
  article-title: Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS
  publication-title: Environ. Earth Sci.
– volume: 32
  start-page: 1069
  year: 2021
  end-page: 1078
  ident: bb0150
  article-title: An updated database and spatial distribution of landslides triggered by the Milin, Tibet M(w)6.4 earthquake of 18 November 2017
  publication-title: J. Earth Sci.
– volume: 15
  start-page: 1483
  year: 2018
  end-page: 1501
  ident: bb0275
  article-title: A review of the recent literature on rainfall thresholds for landslide occurrence
  publication-title: Landslides
– volume: 245
  start-page: 193
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0190
  article-title: Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.05.016
– volume: 14
  start-page: 1266
  issue: 7
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0215
  article-title: Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil
  publication-title: J. Soils Sediments Prot. Risk Assess. Rem.
  doi: 10.1007/s11368-014-0886-4
– volume: 76
  start-page: 405
  issue: 11
  year: 2017
  ident: 10.1016/j.geomorph.2022.108236_bb0340
  article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area,China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6731-5
– year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0240
  article-title: A PSOGSA method to optimize the T-S fuzzy neural network for displacement prediction of landslide
– volume: 202
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0135
  article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105250
– volume: 32
  year: 2007
  ident: 10.1016/j.geomorph.2022.108236_bb0205
  article-title: Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/esp.1491
– volume: 14
  start-page: 317
  issue: 2
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0300
  article-title: Rainfall thresholds for shallow landslides occurrence in Calabria, southern Italy
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-317-2014
– volume: 175
  start-page: 9
  issue: 12
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0325
  article-title: GIS-based landslide hazard predicting system and its real-time test during a typhoon, Zhejiang Province,Southeast China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.03.005
– volume: 32
  start-page: 1069
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0150
  article-title: An updated database and spatial distribution of landslides triggered by the Milin, Tibet M(w)6.4 earthquake of 18 November 2017
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-021-1433-z
– volume: 31
  start-page: 1121
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0335
  article-title: Slope stability analysis based on group decision theory and fuzzy comprehensive evaluation
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-020-1101-8
– volume: 180
  start-page: 60
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0255
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 12
  issue: 6
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0095
  article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2021.101249
– volume: 72
  start-page: 272
  issue: 1
  year: 2005
  ident: 10.1016/j.geomorph.2022.108236_bb0100
  article-title: Probabilistic landslide hazard assessment at the basin scale
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.06.002
– volume: 164
  start-page: 135
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0050
  article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.012
– volume: 16
  start-page: 175
  issue: 1
  year: 2019
  ident: 10.1016/j.geomorph.2022.108236_bb0070
  article-title: Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area
  publication-title: Landslides
  doi: 10.1007/s10346-018-1072-3
– volume: 15
  start-page: 1483
  issue: 8
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0275
  article-title: A review of the recent literature on rainfall thresholds for landslide occurrence
  publication-title: Landslides
  doi: 10.1007/s10346-018-0966-4
– volume: 285
  start-page: 16
  year: 2017
  ident: 10.1016/j.geomorph.2022.108236_bb0260
  article-title: Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.02.001
– volume: 101317
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0130
  article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions
  publication-title: Geosci. Front.
– volume: 139–140
  start-page: 79
  year: 2012
  ident: 10.1016/j.geomorph.2022.108236_bb0230
  article-title: Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.10.005
– volume: 84
  start-page: 240
  year: 2016
  ident: 10.1016/j.geomorph.2022.108236_bb0235
  article-title: A comparative study of different machine learning methods for landslide susceptibility assessment
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.07.005
– volume: 28
  start-page: 3978
  year: 2009
  ident: 10.1016/j.geomorph.2022.108236_bb0065
  article-title: GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region
  publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng.
– volume: 123
  start-page: 225
  issue: 3
  year: 2011
  ident: 10.1016/j.geomorph.2022.108236_bb0195
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 25
  start-page: 991
  issue: 5
  year: 2006
  ident: 10.1016/j.geomorph.2022.108236_bb0090
  article-title: Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 22
  start-page: 47
  issue: 1
  year: 2013
  ident: 10.1016/j.geomorph.2022.108236_bb0220
  article-title: Extreme climatic phenomena and their impact in the shaping the current relief in the Bucegi-Leaota mountain complex
  publication-title: Georev. Sci. Ann. Stefan Cel Mare Univ. Suceava Geogr.
– volume: 151
  start-page: 147
  year: 2017
  ident: 10.1016/j.geomorph.2022.108236_bb0055
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2016.11.032
– volume: 11
  start-page: 711
  issue: 4
  year: 2013
  ident: 10.1016/j.geomorph.2022.108236_bb0310
  article-title: Uncertainty assessment in quantitative rockfall risk assessment
  publication-title: Landslides
  doi: 10.1007/s10346-013-0447-8
– volume: 259
  start-page: 105
  year: 2016
  ident: 10.1016/j.geomorph.2022.108236_bb0110
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 66
  start-page: 707
  issue: 2
  year: 2013
  ident: 10.1016/j.geomorph.2022.108236_bb0025
  article-title: Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province,Vietnam
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0510-0
– volume: 47
  start-page: 565
  issue: 5
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0175
  article-title: Spatial landslide hazard prediction using rainfall probability and a logistic regression model
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-014-9560-z
– volume: 218
  start-page: 173
  year: 2017
  ident: 10.1016/j.geomorph.2022.108236_bb0120
  article-title: Landslide displacement prediction based on multivariate chaotic model and extreme learning machine
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.01.016
– volume: 12
  start-page: 419
  issue: 3
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0020
  article-title: A systematic review of landslide probability mapping using logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-014-0550-5
– volume: 104(3)
  start-page: 2153
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0315
– year: 2013
  ident: 10.1016/j.geomorph.2022.108236_bb0225
  article-title: Impact of rainfall estimation uncertainty on identification and use of precipitation thresholds for debris flow/landslide warning
– volume: 6(3)
  start-page: 505
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0165
– volume: 59
  start-page: 209
  issue: 1
  year: 2011
  ident: 10.1016/j.geomorph.2022.108236_bb0035
  article-title: Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9747-2
– volume: 16
  start-page: 265
  issue: 2
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0040
  article-title: A ROC analysis-based classification method for landslide susceptibility maps
  publication-title: Landslides
  doi: 10.1007/s10346-018-1063-4
– volume: 79
  start-page: 1
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0015
  article-title: Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-020-08957-w
– volume: 239–240
  start-page: 1413
  year: 2013
  ident: 10.1016/j.geomorph.2022.108236_bb0345
  article-title: Time series prediction of landslide displacement using SVM model: application to Baishuihe landslide in Three Gorges Reservoir Area, China
  publication-title: Appl. Mech. Mater.
– start-page: 1
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0010
  article-title: Landslide occurrence prediction using trainable cascade forward network and multilayer perceptron
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/512158
– volume: 11
  start-page: 575
  issue: 4
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0200
  article-title: Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya,India
  publication-title: Landslides
  doi: 10.1007/s10346-013-0408-2
– volume: 23
  start-page: 249
  issue: 3
  year: 2008
  ident: 10.1016/j.geomorph.2022.108236_bb0005
  article-title: Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/S1001-6279(08)60022-0
– volume: 165
  start-page: 520
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0145
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 62
  start-page: 23
  issue: 1–2
  year: 1980
  ident: 10.1016/j.geomorph.2022.108236_bb0030
  article-title: The rainfall intensity-duration control of shallow landslides and debris flows
  publication-title: Geogr. Ann.
– year: 2004
  ident: 10.1016/j.geomorph.2022.108236_bb0140
  article-title: Assessment of China's regional geohazards: present situation and problems
– volume: PP
  start-page: 1
  issue: 99
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0350
  article-title: Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 39
  start-page: 889
  issue: 7
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0330
  article-title: Landslide hazard warning based on effective rainfall intensity
  publication-title: Earth Sci.
– volume: 207
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0210
  article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 152
  start-page: 291
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0045
  article-title: Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.07.004
– volume: 32
  start-page: 1092
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0080
  article-title: Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu County, Gansu Province, Northwest China
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-020-1380-0
– volume: 12
  start-page: 773
  issue: 4
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0270
  article-title: Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system
  publication-title: Landslides
  doi: 10.1007/s10346-014-0502-0
– year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0085
– volume: 112
  start-page: 96
  issue: 1
  year: 2009
  ident: 10.1016/j.geomorph.2022.108236_bb0160
  article-title: Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.05.008
– volume: 15(10)
  start-page: 2257
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0170
– volume: 31
  start-page: 1068
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0290
  article-title: An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of three Gorges Reservoir, China
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-020-1072-9
– volume: 35
  start-page: 179
  issue: 1
  year: 2019
  ident: 10.1016/j.geomorph.2022.108236_bb0265
  article-title: Current and future status of GIS-based landslide susceptibility mapping: a literature review
  publication-title: Kor. J. Remote Sens.
– volume: 32
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0180
  article-title: Using physical model experiments for hazards assessment of rainfall-induced debris landslides
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-020-1398-3
– volume: 16
  start-page: 647
  issue: 3
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0245
  article-title: A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan,Korea
  publication-title: Landslides
  doi: 10.1007/s10346-018-1112-z
– volume: 17
  start-page: 2919
  issue: 12
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0115
  article-title: Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model
  publication-title: Landslides
  doi: 10.1007/s10346-020-01473-9
– volume: 12
  start-page: 4134
  issue: 24
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0185
  article-title: Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: influences of different data-based models and connections between collapses and environmental factors
  publication-title: Remote Sens.
  doi: 10.3390/rs12244134
– volume: 195
  start-page: 63
  year: 2015
  ident: 10.1016/j.geomorph.2022.108236_bb0320
  article-title: A simplified physically based coupled rainfall threshold model for triggering landslides
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.05.022
– volume: 49
  start-page: 60
  issue: 10
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0060
  article-title: Displacement prediction of reservoir landslide considering lag effect of inducing factors
  publication-title: Yangtze River
– volume: 10
  start-page: 547
  issue: 5
  year: 2013
  ident: 10.1016/j.geomorph.2022.108236_bb0285
  article-title: Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California
  publication-title: Landslides
  doi: 10.1007/s10346-012-0341-9
– volume: 51
  start-page: 350
  issue: 2
  year: 2012
  ident: 10.1016/j.geomorph.2022.108236_bb0250
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– volume: 11
  start-page: 167
  issue: 2
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0155
  article-title: The varnes classification of landslide types, an update
  publication-title: Landslides
  doi: 10.1007/s10346-013-0436-y
– volume: 31
  start-page: 393
  issue: 2
  year: 2020
  ident: 10.1016/j.geomorph.2022.108236_bb0075
  article-title: Influence of tectonics and morphometric features on the landslide distribution: a case study from the Mesima Basin (Calabria, South Italy)
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-019-1231-z
– volume: 18
  start-page: 3715
  issue: 11
  year: 2021
  ident: 10.1016/j.geomorph.2022.108236_bb0125
  article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments
  publication-title: Landslides
  doi: 10.1007/s10346-021-01756-9
– volume: 145
  start-page: 164
  year: 2016
  ident: 10.1016/j.geomorph.2022.108236_bb0295
  article-title: Comparison of a logistic regression and Naive Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– volume: 6
  start-page: 85
  year: 2018
  ident: 10.1016/j.geomorph.2022.108236_bb0280
  article-title: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00085
– start-page: 285
  year: 2014
  ident: 10.1016/j.geomorph.2022.108236_bb0305
  article-title: Analysis on physical characteristics of rural solid waste in Dongjiang river source area, China
  publication-title: J. Agric. Res. Environ.
– volume: 663
  start-page: 1
  year: 2019
  ident: 10.1016/j.geomorph.2022.108236_bb0105
  article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.329
SSID ssj0004790
Score 2.6477864
Snippet Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108236
SubjectTerms China
Critical rainfall threshold
Effective rainfall intensity
geomorphology
Landslide hazard warning
Landslide susceptibility prediction
landslides
prediction
probability
rain
rain intensity
rainfall duration
Rainfall-induced landslides
Random forest
regression analysis
support vector machines
Title Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold
URI https://dx.doi.org/10.1016/j.geomorph.2022.108236
https://www.proquest.com/docview/2660991240
Volume 408
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QCMEF8RRvBYlr2JY2LTsiBAwQHHhI3KImcWDTaBHbhMaB346dtryExIFj26SP2LU_O34wthuZKFIWEtGyqRUo8EAYRLpCpq5tWx4VYtg9v7hMOrfx2Z26m2CHdS4MhVVWsr-U6UFaV2ca1Wo2nrrdxjXVEVEKjS0ZvCmUaB7HKXH53ttnmEecln4WHCxo9Jcs4R7SqHgs8HvQTpSSwu1kKNX8q4L6IaqD_jmeZ3MVcOQH5bstsAnIF9lM1cP8YbzIpk9Ck97xEnu7gvvg4ePU_8Fn_b5Ayxtp6HjI7O13HfCH7BWZg7-UnhFO2szxIv8yYjAahJiXED475o8ZlXK453idZ9xWLRI-HsGHyBUD2sxaZrfHRzeHHVH1WRBZHMVDoXzLeAAJcWLbKjWxN03pUjBoiiD8A5VaLw3lWisSAsm-V00AlTgVOe8gilbYZF7ksMq4k01LFWBc5tBSSz3eV7YNghjwSCIDa0zVi6ttVYScemH0dR1t1tM1UTQRRZdEWWONj3lPZRmOP2e0a9rpbwylUVf8OXenJrbGv422ULIcitFAI5xBSI2YqLn-j_tvsFk6KqN-N9nk8HkEW4hthmY7MO82mzo4Pe9cvgMJXvyn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLemTWi8oDFADAYECR7D3aVNu3vgAW2MG_vzAJu0t9AkznbTrZ3onabjYV-KL4idtmMgpD2gvTZNWtmO_bPj2ABvEpsk2mEmBy53khQeSktIV6rcD90gkEGMp-f7B9noKP18rI8X4Gd3F4bTKlvd3-j0qK3bJ72Wmr2L8bj3leuIaE3OlorRlC6zchfnl-S31e93tojJb5Xa_ni4OZJtawFZpEk6lToMbEBUmGZuqHObBttXPkdL6JsQD-rcBWX5erFmuc82gu4j6szrxAePHAUlvb-Ukrrgtgnvrn7nlaR5E9ihv5P8ezeuJZ-RUFTnFRGQHFOlOL9PxdrQ_7SIf9mGaPC2V-BBi1TFh4YYD2EBy1VYbpumn85X4d6n2BV4_giuvuBJDCkKbjgRislEkqtPQuNFvEo8GXsUp8UPkkZx2YRiBJtPL6ryxhv1rI5JNjFfdy7OC64dcSJoXBTCtT0Zrj8hpiSGNZ-ePYajO6H-E1gsqxKfgvCq77jkjC88uYZ5oHXV0BJqwkAyYXENdEdc49qq59x8Y2K69LYz0zHFMFNMw5Q16F3Pu2jqftw6Y9jxzvwhwYaM061zX3fMNrS9-cymKLGa1YbwE2F4AmH9Z_-x_itYHh3u75m9nYPd53CfR5qU43VYnH6f4QsCVlP7MgqygG93vXN-AaPrONA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+rainfall-induced+landslide+hazard+warning+based+on+landslide+susceptibility+mapping+and+a+critical+rainfall+threshold&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Huang%2C+Faming&rft.au=Chen%2C+Jiawu&rft.au=Liu%2C+Weiping&rft.au=Huang%2C+Jinsong&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-555X&rft.eissn=1872-695X&rft.volume=408&rft_id=info:doi/10.1016%2Fj.geomorph.2022.108236&rft.externalDocID=S0169555X22001295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon