Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold
Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold...
Saved in:
Published in | Geomorphology (Amsterdam, Netherlands) Vol. 408; p. 108236 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration (EE-D), effective rainfall intensity-duration (EI-D) and cumulative effective rainfall-effective rainfall intensity (EE-EI) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model.
[Display omitted]
•Rainfall-induced landslide hazard warning is examined by landslide susceptibility mapping and critical rainfall threshold.•Various machine learning models are compared for predicting landslide susceptibility.•Uncertainties of different critical rainfall threshold models for landslide hazard warning are explored.•Effective rainfall intensity-duration threshold model has the highest accuracy than other models. |
---|---|
AbstractList | Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration (EE-D), effective rainfall intensity-duration (EI-D) and cumulative effective rainfall-effective rainfall intensity (EE-EI) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model. Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under the conditions of continuous rainfall processes, can be established based on landslide susceptibility mapping and critical rainfall threshold calculations. However, it is difficult to determine appropriate machine learning models for mapping landslide susceptibility. Additionally, it is significant to consider the influences of early effective rainfall on landslide instability in the critical rainfall threshold methods. Furthermore, the uncertainties of the critical rainfall threshold values generated by different calculation methods have not been well explored. To overcome these three drawbacks, first, frequency ratio analysis-based logistic regression (LR), support vector machine (SVM) and random forest (RF) models are adopted to predict landslide susceptibility for machine learning model comparison. Second, three different types of critical rainfall threshold methods, namely, cumulative effective rainfall-duration (EE-D), effective rainfall intensity-duration (EI-D) and cumulative effective rainfall-effective rainfall intensity (EE-EI) models, are proposed to calculate the temporal probabilities of landslide occurrence under rainfall conditions based on the concept of effective rainfall. The accuracies and uncertainties of these three critical rainfall threshold methods are discussed. Finally, the landslide susceptibility maps and the critical rainfall threshold values are coupled to predict the rainfall-induced landslide hazards. Xunwu County in China is selected as the study area, and several rainfall-induced landslides are used as the test samples of the proposed landslide hazard warning model. The results show that the RF model has remarkably higher susceptibility prediction accuracy than the SVM and LR models, and the prediction performance of the temporal probabilities of landslide occurrence using the EI-D values are higher than those of EE-D and EE-EI values. Furthermore, rainfall-induced landslide hazard warning is effectively implemented based on the coupling of the susceptibility map and EI-D model. [Display omitted] •Rainfall-induced landslide hazard warning is examined by landslide susceptibility mapping and critical rainfall threshold.•Various machine learning models are compared for predicting landslide susceptibility.•Uncertainties of different critical rainfall threshold models for landslide hazard warning are explored.•Effective rainfall intensity-duration threshold model has the highest accuracy than other models. |
ArticleNumber | 108236 |
Author | Huang, Faming Chen, Wei Huang, Jinsong Chen, Jiawu Hong, Haoyuan Liu, Weiping |
Author_xml | – sequence: 1 givenname: Faming surname: Huang fullname: Huang, Faming organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China – sequence: 2 givenname: Jiawu surname: Chen fullname: Chen, Jiawu organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China – sequence: 3 givenname: Weiping surname: Liu fullname: Liu, Weiping email: liuweiping@ncu.edu.cn organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China – sequence: 4 givenname: Jinsong surname: Huang fullname: Huang, Jinsong organization: ARC Centre of Excellence for Geotechnical Science and Engineering, University of Newcastle, Newcastle, NSW, Australia – sequence: 5 givenname: Haoyuan surname: Hong fullname: Hong, Haoyuan organization: Department of Geography and Regional Research, University of Vienna, 1010 Vienna, Austria – sequence: 6 givenname: Wei surname: Chen fullname: Chen, Wei organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, China |
BookMark | eNqFkU9rGzEQxUVJoU7ar1B07GVdSbvSeqGHhtD8gUChtJCb0Eqz9hhZ2khyQ3LoZ6-MGwi95DQw896M3k-n5CTEAIR85GzJGVeft8s1xF1M82YpmBC1uRKtekMWfNWLRg3y7oQsqnBopJR378hpzlvGWNcPbEH-_IA1xmA8TQbDZLxvMLi9BUe9CS57dEA35skkRx9MChjWdDS5jmN4ocj7bGEuOKLH8kh3Zp4PyjqnhtqEBe2LE7RsEuRN9O49eVsbGT78q2fk1-W3nxfXze33q5uL89vGdG1XGjnxcQIQ0Ck7yH7sppEJ18PYq5qVg-ztJEbeCiZHxlq1miQDkMrJ1k0O2vaMfDrunVO830Mueof1xb4mgLjPWijFhoGLjlWpOkptijknmPSccGfSo-ZMH4DrrX4Grg_A9RF4NX75z2ixmFLplhrcv27_erRD5fAbIelsEUL9CUxgi3YRX1vxF9qEpvQ |
CitedBy_id | crossref_primary_10_3389_feart_2023_1254042 crossref_primary_10_1007_s10064_024_03841_4 crossref_primary_10_1007_s11069_023_06176_7 crossref_primary_10_1016_j_ecoleng_2023_107150 crossref_primary_10_1002_gj_4976 crossref_primary_10_1016_j_cose_2024_103747 crossref_primary_10_3390_w14244074 crossref_primary_10_1007_s11069_024_06672_4 crossref_primary_10_3390_su151310180 crossref_primary_10_1016_j_uclim_2023_101710 crossref_primary_10_1016_j_jhydrol_2024_131536 crossref_primary_10_1088_1755_1315_1314_1_012017 crossref_primary_10_3389_feart_2022_1005199 crossref_primary_10_1007_s00477_022_02361_5 crossref_primary_10_3389_feart_2023_1115235 crossref_primary_10_1007_s10346_024_02356_z crossref_primary_10_1007_s11069_024_06819_3 crossref_primary_10_3389_feart_2023_1140030 crossref_primary_10_1007_s10346_023_02187_4 crossref_primary_10_1007_s10064_025_04177_3 crossref_primary_10_1007_s10064_025_04116_2 crossref_primary_10_1080_02626667_2024_2362303 crossref_primary_10_3389_feart_2024_1443738 crossref_primary_10_1007_s12665_022_10466_x crossref_primary_10_3389_feart_2022_918386 crossref_primary_10_3389_feart_2022_998745 crossref_primary_10_3389_feart_2022_1025231 crossref_primary_10_3389_feart_2023_1117004 crossref_primary_10_3390_rs15082149 crossref_primary_10_3390_drones8010030 crossref_primary_10_1016_j_qsa_2024_100187 crossref_primary_10_3389_feart_2022_981754 crossref_primary_10_3389_feart_2024_1466751 crossref_primary_10_3390_app13020864 crossref_primary_10_1007_s13762_022_04665_z crossref_primary_10_1007_s11356_024_34726_4 crossref_primary_10_1155_2022_8254356 crossref_primary_10_3390_f13071055 crossref_primary_10_1016_j_jrmge_2023_11_039 crossref_primary_10_3390_su17051973 crossref_primary_10_1016_j_asr_2024_11_052 crossref_primary_10_1016_j_scitotenv_2023_164334 crossref_primary_10_1016_j_eswa_2025_126582 crossref_primary_10_1016_j_geomorph_2023_108600 crossref_primary_10_1016_j_enggeo_2024_107464 crossref_primary_10_1007_s11069_024_06602_4 crossref_primary_10_1007_s11069_022_05610_6 crossref_primary_10_1016_j_rockmb_2023_100028 crossref_primary_10_1007_s12583_022_1764_4 crossref_primary_10_1007_s11069_024_07063_5 crossref_primary_10_1080_19475705_2024_2435510 crossref_primary_10_1016_j_bgtech_2023_100056 crossref_primary_10_1061_NHREFO_NHENG_1993 crossref_primary_10_3390_geosciences14100274 crossref_primary_10_3389_feart_2023_1146724 crossref_primary_10_1109_JSTARS_2024_3370218 crossref_primary_10_3390_su151411330 crossref_primary_10_1155_2023_7030643 crossref_primary_10_3390_rs16132394 crossref_primary_10_1016_j_heliyon_2024_e37352 crossref_primary_10_1080_10106049_2024_2322058 crossref_primary_10_3390_rs14235952 crossref_primary_10_1016_j_rockmb_2023_100056 crossref_primary_10_3390_su141912000 crossref_primary_10_3390_rs16163089 crossref_primary_10_1016_j_jhydrol_2024_132148 crossref_primary_10_3390_rs16183526 crossref_primary_10_1051_e3sconf_202235801015 crossref_primary_10_3390_su142416985 crossref_primary_10_5194_nhess_24_3991_2024 crossref_primary_10_1061_IJGNAI_GMENG_8234 crossref_primary_10_1007_s12046_023_02404_9 crossref_primary_10_3390_rs16020356 crossref_primary_10_1016_j_catena_2023_107732 crossref_primary_10_1080_17538947_2023_2249863 crossref_primary_10_1080_27669645_2025_2477936 crossref_primary_10_1080_17499518_2022_2088802 crossref_primary_10_1007_s10346_024_02437_z crossref_primary_10_1080_19475705_2024_2314565 crossref_primary_10_1007_s11069_024_06897_3 crossref_primary_10_1029_2023EF003741 crossref_primary_10_3799_dqkx_2022_341 crossref_primary_10_3389_fenvs_2025_1522949 crossref_primary_10_3389_feart_2022_1016605 crossref_primary_10_3390_rs15164111 crossref_primary_10_17491_jgsi_2024_173885 crossref_primary_10_3390_geosciences14060171 crossref_primary_10_3389_feart_2022_1030417 crossref_primary_10_3390_rs14184436 crossref_primary_10_1016_j_probengmech_2024_103623 crossref_primary_10_1080_19475705_2024_2354507 crossref_primary_10_3390_land12081558 crossref_primary_10_1155_js_6182699 crossref_primary_10_3390_land13071039 crossref_primary_10_1038_s41598_024_64679_0 crossref_primary_10_1007_s11431_023_2657_3 crossref_primary_10_1007_s12145_025_01700_8 crossref_primary_10_3390_w16010057 crossref_primary_10_3389_feart_2022_991384 crossref_primary_10_1016_j_gsf_2024_101802 crossref_primary_10_3389_feart_2023_1098872 crossref_primary_10_1016_j_regsus_2023_08_001 crossref_primary_10_1016_j_jrmge_2024_02_001 crossref_primary_10_3390_min12111425 crossref_primary_10_1016_j_gsf_2023_101645 crossref_primary_10_1016_j_qsa_2023_100150 crossref_primary_10_3390_rs16122207 crossref_primary_10_3389_feart_2022_1071231 crossref_primary_10_1002_gj_4683 crossref_primary_10_1080_17538947_2024_2392843 crossref_primary_10_1016_j_jrmge_2023_03_001 crossref_primary_10_1080_17538947_2024_2409337 crossref_primary_10_3390_su141811321 crossref_primary_10_1007_s11069_024_06521_4 crossref_primary_10_1007_s12517_025_12221_5 crossref_primary_10_1007_s12665_023_11118_4 crossref_primary_10_1111_risa_70014 crossref_primary_10_1007_s40789_023_00579_4 crossref_primary_10_1007_s00477_023_02394_4 |
Cites_doi | 10.1016/j.geomorph.2015.05.016 10.1007/s11368-014-0886-4 10.1007/s12665-017-6731-5 10.1016/j.catena.2021.105250 10.1002/esp.1491 10.5194/nhess-14-317-2014 10.1016/j.enggeo.2014.03.005 10.1007/s12583-021-1433-z 10.1007/s12583-020-1101-8 10.1016/j.earscirev.2018.03.001 10.1016/j.gsf.2021.101249 10.1016/j.geomorph.2005.06.002 10.1016/j.catena.2018.01.012 10.1007/s10346-018-1072-3 10.1007/s10346-018-0966-4 10.1016/j.geomorph.2017.02.001 10.1016/j.geomorph.2011.10.005 10.1016/j.envsoft.2016.07.005 10.1016/j.enggeo.2011.09.006 10.1016/j.catena.2016.11.032 10.1007/s10346-013-0447-8 10.1016/j.geomorph.2016.02.012 10.1007/s11069-012-0510-0 10.1007/s11004-014-9560-z 10.1016/j.enggeo.2017.01.016 10.1007/s10346-014-0550-5 10.1007/s11069-011-9747-2 10.1007/s10346-018-1063-4 10.1007/s12665-020-08957-w 10.1155/2015/512158 10.1007/s10346-013-0408-2 10.1016/S1001-6279(08)60022-0 10.1016/j.catena.2018.03.003 10.1016/j.earscirev.2020.103225 10.1016/j.rse.2014.07.004 10.1007/s12583-020-1380-0 10.1007/s10346-014-0502-0 10.1016/j.geomorph.2009.05.008 10.1007/s12583-020-1072-9 10.1007/s12583-020-1398-3 10.1007/s10346-018-1112-z 10.1007/s10346-020-01473-9 10.3390/rs12244134 10.1016/j.enggeo.2015.05.022 10.1007/s10346-012-0341-9 10.1007/s10346-013-0436-y 10.1007/s12583-019-1231-z 10.1007/s10346-021-01756-9 10.1016/j.catena.2016.06.004 10.3389/feart.2018.00085 10.1016/j.scitotenv.2019.01.329 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geomorph.2022.108236 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1872-695X |
ExternalDocumentID | 10_1016_j_geomorph_2022_108236 S0169555X22001295 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABMYL ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSZ T5K XPP ZCA ZMT ~02 ~G- 29H 9M8 AAHBH AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABXDB ACVFH ADCNI ADVLN ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 OHT R2- SEP SEW SSH VH1 WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a434t-5f1bfee2e46c957b4fb02d7eb768231e57cf2b13205b00368f50ee56d53dfde33 |
IEDL.DBID | .~1 |
ISSN | 0169-555X |
IngestDate | Mon Jul 21 11:40:51 EDT 2025 Tue Jul 01 01:58:20 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Sat Mar 16 16:12:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Landslide hazard warning Critical rainfall threshold Random forest Rainfall-induced landslides Landslide susceptibility prediction Effective rainfall intensity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a434t-5f1bfee2e46c957b4fb02d7eb768231e57cf2b13205b00368f50ee56d53dfde33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2660991240 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2660991240 crossref_primary_10_1016_j_geomorph_2022_108236 crossref_citationtrail_10_1016_j_geomorph_2022_108236 elsevier_sciencedirect_doi_10_1016_j_geomorph_2022_108236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geomorphology (Amsterdam, Netherlands) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huang, Ye, Jiang, Huang, Chang, Chen (bb0135) 2021; 202 Wang, Frattini, Crosta, Zhang, Agliardi, Lari, Yang (bb0310) 2013; 11 Vennari, Gariano, Antronico, Brunetti, Iovine, Peruccacci, Terranova, Guzzetti (bb0300) 2014; 14 Chen, Li, Wang, Chen, Liu (bb0045) 2014; 152 Matsushi, Matsukura (bb0205) 2007; 32 Chen, Zhou, Yuan, Wang (bb0060) 2018; 49 Ma, Li, Lu, Bao (bb0190) 2015; 245 Pradhan (bb0250) 2012; 51 Segoni, Lagomarsino, Fanti, Moretti, Casagli (bb0270) 2015; 12 Jaiswal, Westen (bb0160) 2009; 112 Peruccacci, Brunetti, Luciani, Vennari, Guzzetti (bb0230) 2012; 139–140 Ping, Zeng, Chen, Tang (bb0240) 2014 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bb0255) 2018; 180 Huang, Zhao (bb0145) 2018; 165 Guzzetti, Reichenbach, Cardinali, Galli, Ardizzone (bb0100) 2005; 72 Albatah, Alkhasawneh, Tay, Ngah, Lateh, Isa (bb0010) 2015 Saro (bb0265) 2019; 35 Segoni, Piciullo, Gariano (bb0275) 2018; 15 Zhu, Wang, Huang, Li, Hong (bb0350) 2021; PP Mathew, Babu, Kundu, Kumar, Pant (bb0200) 2014; 11 Rossi, Luciani, Valigi, Kirschbaum, Brunetti, Peruccacci, Guzzetti (bb0260) 2017; 285 Staley, Kean, Cannon, Schmidt, Laber (bb0285) 2013; 10 Huang, Yan, Fan, Yao, Huang, Chen, Hong (bb0130) 2021; 101317 Adler (bb0005) 2008; 23 Michel, Kobiyama, Goerl (bb0215) 2014; 14 Conforti, Ietto (bb0075) 2020; 31 Li, Huang, Pei, Qiao, Wang (bb0180) 2021; 32 Murărescu, Murătoreanu, Frânculeasa (bb0220) 2013; 22 Lee, Won, Jeon, Park, Lee (bb0175) 2015; 47 Cantarino, Carrion, Goerlich, Martinez Ibañez (bb0040) 2018; 16 He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen (bb0105) 2019; 663 Huang, Cao, Jiang, Zhou, Huang, Guo (bb0115) 2020; 17 Huang, Xiang, Nengpan (bb0140) 2004 Wu, Zhang, Tang, Xiao (bb0330) 2014; 39 Merghadi, Yunus, Dou, Whiteley, Thaipham, Bui, Avtar, Boumezbeur, Pham (bb0210) 2020; 207 Wu, Chen, Cheng, Yin, Török (bb0325) 2014; 175 Ciurleo, Mandaglio, Moraci (bb0070) 2019; 16 Zhang, Wu, Niu, Yang, Zhao (bb0340) 2017; 76 Caine (bb0030) 1980; 62 Huang, Xu, Zhang, Xue, Wang (bb0150) 2021; 32 Wang, Wang, Guo, Wang (bb0315) 2020; 104(3) Li, Fan, Huang, Chen, Hong, Huang, Guo (bb0185) 2020; 12 Huang, Tao, Chang, Huang, Fan, Jiang, Li (bb0125) 2021; 18 Cannon, Boldt, Laber, Kean, Staley (bb0035) 2011; 59 Dennis, Joseph, Jason (bb0085) 2015 Huang, Huang, Jiang, Zhou (bb0120) 2017; 218 Pham, Pradhan, Bui, Prakash, Dholakia (bb0235) 2016; 84 Pradhan, Lee, Kim (bb0245) 2018; 16 Xia, Hu, Wu, Ying, Liu (bb0335) 2020; 31 Baharvand, Rahnamarad, Soori, Saadatkhah (bb0015) 2020; 79 Kirschbaum, Stanley (bb0165) 2018; 6(3) Segoni, Tofani, Rosi, Catani, Casagli (bb0280) 2018; 6 Bui, Pradhan, Lofman, Revhaug, Dick (bb0025) 2013; 66 Chen, Xie, Wang, Pradhan, Hong, Bui, Duan, Ma (bb0055) 2017; 151 Hungr, Leroueil, Picarelli (bb0155) 2014; 11 Nikolopoulos, Borga, Marra (bb0225) 2013 Wang, Shi, Liu, Li, Li (bb0305) 2014 Hong, Pourghasemi, Pourtaghi (bb0110) 2016; 259 Chen, Xie, Peng, Shahabi, Hong, Bui, Duan, Li, Zhu (bb0050) 2018; 164 Gao, Cui, Zhao, Wei (bb0090) 2006; 25 Chong, Dai, Yao, Chen, Xinbin, Sun, Wang (bb0065) 2009; 28 Kirschbaum, Stanley, Simmons, Sciences (bb0170) 2015; 15(10) Dai, Li, Wang, Lu, Xu, Jian (bb0080) 2021; 32 Zhu, Hu (bb0345) 2013; 239–240 Marjanović, Kovačević, Bajat, Voženílek (bb0195) 2011; 123 Sun, Xu, Wen, Wang (bb0290) 2020; 31 Wu, Lan, Gao, Li, Yang (bb0320) 2015; 195 Budimir, Lewis (bb0020) 2015; 12 Guo, Shi, Huang, Fan, Huang (bb0095) 2021; 12 Tsangaratos, Ilia (bb0295) 2016; 145 Huang (10.1016/j.geomorph.2022.108236_bb0135) 2021; 202 Bui (10.1016/j.geomorph.2022.108236_bb0025) 2013; 66 Guo (10.1016/j.geomorph.2022.108236_bb0095) 2021; 12 Huang (10.1016/j.geomorph.2022.108236_bb0145) 2018; 165 Wu (10.1016/j.geomorph.2022.108236_bb0330) 2014; 39 Vennari (10.1016/j.geomorph.2022.108236_bb0300) 2014; 14 Segoni (10.1016/j.geomorph.2022.108236_bb0275) 2018; 15 Michel (10.1016/j.geomorph.2022.108236_bb0215) 2014; 14 Segoni (10.1016/j.geomorph.2022.108236_bb0280) 2018; 6 Segoni (10.1016/j.geomorph.2022.108236_bb0270) 2015; 12 Guzzetti (10.1016/j.geomorph.2022.108236_bb0100) 2005; 72 Ma (10.1016/j.geomorph.2022.108236_bb0190) 2015; 245 Wang (10.1016/j.geomorph.2022.108236_bb0305) 2014 Huang (10.1016/j.geomorph.2022.108236_bb0120) 2017; 218 Rossi (10.1016/j.geomorph.2022.108236_bb0260) 2017; 285 Ping (10.1016/j.geomorph.2022.108236_bb0240) 2014 Albatah (10.1016/j.geomorph.2022.108236_bb0010) 2015 Li (10.1016/j.geomorph.2022.108236_bb0180) 2021; 32 Cantarino (10.1016/j.geomorph.2022.108236_bb0040) 2018; 16 Lee (10.1016/j.geomorph.2022.108236_bb0175) 2015; 47 Wang (10.1016/j.geomorph.2022.108236_bb0310) 2013; 11 Baharvand (10.1016/j.geomorph.2022.108236_bb0015) 2020; 79 Kirschbaum (10.1016/j.geomorph.2022.108236_bb0170) 2015; 15(10) Huang (10.1016/j.geomorph.2022.108236_bb0125) 2021; 18 Cannon (10.1016/j.geomorph.2022.108236_bb0035) 2011; 59 Adler (10.1016/j.geomorph.2022.108236_bb0005) 2008; 23 Hong (10.1016/j.geomorph.2022.108236_bb0110) 2016; 259 Wu (10.1016/j.geomorph.2022.108236_bb0325) 2014; 175 Li (10.1016/j.geomorph.2022.108236_bb0185) 2020; 12 Gao (10.1016/j.geomorph.2022.108236_bb0090) 2006; 25 Murărescu (10.1016/j.geomorph.2022.108236_bb0220) 2013; 22 Dai (10.1016/j.geomorph.2022.108236_bb0080) 2021; 32 Matsushi (10.1016/j.geomorph.2022.108236_bb0205) 2007; 32 Zhu (10.1016/j.geomorph.2022.108236_bb0345) 2013; 239–240 Hungr (10.1016/j.geomorph.2022.108236_bb0155) 2014; 11 Jaiswal (10.1016/j.geomorph.2022.108236_bb0160) 2009; 112 Chen (10.1016/j.geomorph.2022.108236_bb0050) 2018; 164 Chong (10.1016/j.geomorph.2022.108236_bb0065) 2009; 28 Merghadi (10.1016/j.geomorph.2022.108236_bb0210) 2020; 207 Pham (10.1016/j.geomorph.2022.108236_bb0235) 2016; 84 Huang (10.1016/j.geomorph.2022.108236_bb0130) 2021; 101317 Huang (10.1016/j.geomorph.2022.108236_bb0140) 2004 Conforti (10.1016/j.geomorph.2022.108236_bb0075) 2020; 31 Xia (10.1016/j.geomorph.2022.108236_bb0335) 2020; 31 Huang (10.1016/j.geomorph.2022.108236_bb0115) 2020; 17 Ciurleo (10.1016/j.geomorph.2022.108236_bb0070) 2019; 16 Huang (10.1016/j.geomorph.2022.108236_bb0150) 2021; 32 Reichenbach (10.1016/j.geomorph.2022.108236_bb0255) 2018; 180 Tsangaratos (10.1016/j.geomorph.2022.108236_bb0295) 2016; 145 Marjanović (10.1016/j.geomorph.2022.108236_bb0195) 2011; 123 Wu (10.1016/j.geomorph.2022.108236_bb0320) 2015; 195 Zhang (10.1016/j.geomorph.2022.108236_bb0340) 2017; 76 Chen (10.1016/j.geomorph.2022.108236_bb0045) 2014; 152 Zhu (10.1016/j.geomorph.2022.108236_bb0350) 2021; PP Caine (10.1016/j.geomorph.2022.108236_bb0030) 1980; 62 Pradhan (10.1016/j.geomorph.2022.108236_bb0245) 2018; 16 Staley (10.1016/j.geomorph.2022.108236_bb0285) 2013; 10 Wang (10.1016/j.geomorph.2022.108236_bb0315) 2020; 104(3) Chen (10.1016/j.geomorph.2022.108236_bb0055) 2017; 151 Dennis (10.1016/j.geomorph.2022.108236_bb0085) 2015 He (10.1016/j.geomorph.2022.108236_bb0105) 2019; 663 Pradhan (10.1016/j.geomorph.2022.108236_bb0250) 2012; 51 Peruccacci (10.1016/j.geomorph.2022.108236_bb0230) 2012; 139–140 Chen (10.1016/j.geomorph.2022.108236_bb0060) 2018; 49 Sun (10.1016/j.geomorph.2022.108236_bb0290) 2020; 31 Nikolopoulos (10.1016/j.geomorph.2022.108236_bb0225) 2013 Mathew (10.1016/j.geomorph.2022.108236_bb0200) 2014; 11 Saro (10.1016/j.geomorph.2022.108236_bb0265) 2019; 35 Kirschbaum (10.1016/j.geomorph.2022.108236_bb0165) 2018; 6(3) Budimir (10.1016/j.geomorph.2022.108236_bb0020) 2015; 12 |
References_xml | – start-page: 1 year: 2015 end-page: 9 ident: bb0010 article-title: Landslide occurrence prediction using trainable cascade forward network and multilayer perceptron publication-title: Math. Probl. Eng. – volume: 165 start-page: 520 year: 2018 end-page: 529 ident: bb0145 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena – volume: 14 start-page: 1266 year: 2014 end-page: 1277 ident: bb0215 article-title: Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil publication-title: J. Soils Sediments Prot. Risk Assess. Rem. – volume: 195 start-page: 63 year: 2015 end-page: 69 ident: bb0320 article-title: A simplified physically based coupled rainfall threshold model for triggering landslides publication-title: Eng. Geol. – volume: PP start-page: 1 year: 2021 end-page: 5 ident: bb0350 article-title: Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 59 start-page: 209 year: 2011 end-page: 236 ident: bb0035 article-title: Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning publication-title: Nat. Hazards – volume: 6(3) start-page: 505 year: 2018 end-page: 523 ident: bb0165 publication-title: Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness – volume: 12 start-page: 4134 year: 2020 ident: bb0185 article-title: Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: influences of different data-based models and connections between collapses and environmental factors publication-title: Remote Sens. – volume: 663 start-page: 1 year: 2019 end-page: 15 ident: bb0105 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Sci. Total Environ. – volume: 14 start-page: 317 year: 2014 end-page: 330 ident: bb0300 article-title: Rainfall thresholds for shallow landslides occurrence in Calabria, southern Italy publication-title: Nat. Hazards Earth Syst. Sci. – volume: 259 start-page: 105 year: 2016 end-page: 118 ident: bb0110 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology – volume: 207 year: 2020 ident: bb0210 article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance publication-title: Earth Sci. Rev. – volume: 16 start-page: 175 year: 2019 end-page: 188 ident: bb0070 article-title: Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area publication-title: Landslides – volume: 12 start-page: 419 year: 2015 end-page: 436 ident: bb0020 article-title: A systematic review of landslide probability mapping using logistic regression publication-title: Landslides – year: 2004 ident: bb0140 article-title: Assessment of China's regional geohazards: present situation and problems publication-title: Regional Geology of China – volume: 285 start-page: 16 year: 2017 end-page: 27 ident: bb0260 article-title: Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data publication-title: Geomorphology – volume: 18 start-page: 3715 year: 2021 end-page: 3731 ident: bb0125 article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments publication-title: Landslides – volume: 16 start-page: 647 year: 2018 end-page: 659 ident: bb0245 article-title: A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan,Korea publication-title: Landslides – volume: 15(10) start-page: 2257 year: 2015 end-page: 2272 ident: bb0170 publication-title: A dynamic landslide hazard assessment system for Central America and Hispaniola – volume: 32 year: 2021 ident: bb0180 article-title: Using physical model experiments for hazards assessment of rainfall-induced debris landslides publication-title: J. Earth Sci. – volume: 47 start-page: 565 year: 2015 end-page: 589 ident: bb0175 article-title: Spatial landslide hazard prediction using rainfall probability and a logistic regression model publication-title: Math. Geosci. – volume: 123 start-page: 225 year: 2011 end-page: 234 ident: bb0195 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. – volume: 51 start-page: 350 year: 2012 end-page: 365 ident: bb0250 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – year: 2013 ident: bb0225 article-title: Impact of rainfall estimation uncertainty on identification and use of precipitation thresholds for debris flow/landslide warning publication-title: American Geosci. Union (AGU) Fall Meeting 2013, San Francisco (USA), December 2013 – volume: 31 start-page: 1121 year: 2020 end-page: 1132 ident: bb0335 article-title: Slope stability analysis based on group decision theory and fuzzy comprehensive evaluation publication-title: J. Earth Sci. – volume: 84 start-page: 240 year: 2016 end-page: 250 ident: bb0235 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment publication-title: Environ. Model. Softw. – volume: 11 start-page: 167 year: 2014 end-page: 194 ident: bb0155 article-title: The varnes classification of landslide types, an update publication-title: Landslides – volume: 72 start-page: 272 year: 2005 end-page: 299 ident: bb0100 article-title: Probabilistic landslide hazard assessment at the basin scale publication-title: Geomorphology – volume: 164 start-page: 135 year: 2018 end-page: 149 ident: bb0050 article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method publication-title: Catena – volume: 151 start-page: 147 year: 2017 end-page: 160 ident: bb0055 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena – volume: 32 start-page: 1092 year: 2021 end-page: 1103 ident: bb0080 article-title: Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu County, Gansu Province, Northwest China publication-title: J. Earth Sci. – volume: 39 start-page: 889 year: 2014 end-page: 895 ident: bb0330 article-title: Landslide hazard warning based on effective rainfall intensity publication-title: Earth Sci. – volume: 112 start-page: 96 year: 2009 end-page: 105 ident: bb0160 article-title: Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds publication-title: Geomorphology – year: 2014 ident: bb0240 article-title: A PSOGSA method to optimize the T-S fuzzy neural network for displacement prediction of landslide publication-title: 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC – volume: 11 start-page: 711 year: 2013 end-page: 722 ident: bb0310 article-title: Uncertainty assessment in quantitative rockfall risk assessment publication-title: Landslides – volume: 32 year: 2007 ident: bb0205 article-title: Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan publication-title: Earth Surf. Process. Landforms – volume: 31 start-page: 1068 year: 2020 end-page: 1086 ident: bb0290 article-title: An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of three Gorges Reservoir, China publication-title: J. Earth Sci. – volume: 25 start-page: 991 year: 2006 end-page: 996 ident: bb0090 article-title: Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir publication-title: Chin. J. Rock Mech. Eng. – volume: 76 start-page: 405 year: 2017 ident: bb0340 article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area,China publication-title: Environ. Earth Sci. – volume: 6 start-page: 85 year: 2018 ident: bb0280 article-title: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale publication-title: Front. Earth Sci. – volume: 66 start-page: 707 year: 2013 end-page: 730 ident: bb0025 article-title: Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province,Vietnam publication-title: Nat. Hazards – volume: 139–140 start-page: 79 year: 2012 end-page: 90 ident: bb0230 article-title: Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy publication-title: Geomorphology – volume: 23 start-page: 249 year: 2008 end-page: 257 ident: bb0005 article-title: Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates publication-title: Int. J. Sediment Res. – volume: 22 start-page: 47 year: 2013 ident: bb0220 article-title: Extreme climatic phenomena and their impact in the shaping the current relief in the Bucegi-Leaota mountain complex publication-title: Georev. Sci. Ann. Stefan Cel Mare Univ. Suceava Geogr. – volume: 175 start-page: 9 year: 2014 end-page: 21 ident: bb0325 article-title: GIS-based landslide hazard predicting system and its real-time test during a typhoon, Zhejiang Province,Southeast China publication-title: Eng. Geol. – volume: 17 start-page: 2919 year: 2020 end-page: 2930 ident: bb0115 article-title: Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model publication-title: Landslides – volume: 10 start-page: 547 year: 2013 end-page: 562 ident: bb0285 article-title: Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California publication-title: Landslides – year: 2015 ident: bb0085 article-title: Objective Definition of Rainfall Intensity-duration Thresholds for Post-fire Flash Floods And Debris Flows in the Area Burned by the Waldo Canyon Fire, Colorado, USA – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: bb0295 article-title: Comparison of a logistic regression and Naive Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena – volume: 49 start-page: 60 year: 2018 end-page: 65 ident: bb0060 article-title: Displacement prediction of reservoir landslide considering lag effect of inducing factors publication-title: Yangtze River – volume: 35 start-page: 179 year: 2019 end-page: 193 ident: bb0265 article-title: Current and future status of GIS-based landslide susceptibility mapping: a literature review publication-title: Kor. J. Remote Sens. – start-page: 285 year: 2014 end-page: 289 ident: bb0305 article-title: Analysis on physical characteristics of rural solid waste in Dongjiang river source area, China publication-title: J. Agric. Res. Environ. – volume: 180 start-page: 60 year: 2018 end-page: 91 ident: bb0255 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci. Rev. – volume: 16 start-page: 265 year: 2018 end-page: 282 ident: bb0040 article-title: A ROC analysis-based classification method for landslide susceptibility maps publication-title: Landslides – volume: 28 start-page: 3978 year: 2009 end-page: 3985 ident: bb0065 article-title: GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. – volume: 218 start-page: 173 year: 2017 end-page: 186 ident: bb0120 article-title: Landslide displacement prediction based on multivariate chaotic model and extreme learning machine publication-title: Eng. Geol. – volume: 101317 year: 2021 ident: bb0130 article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions publication-title: Geosci. Front. – volume: 12 start-page: 773 year: 2015 end-page: 785 ident: bb0270 article-title: Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system publication-title: Landslides – volume: 104(3) start-page: 2153 year: 2020 end-page: 2173 ident: bb0315 publication-title: Regional landslide hazard assessment through integrating susceptibility index and rainfall process – volume: 239–240 start-page: 1413 year: 2013 end-page: 1420 ident: bb0345 article-title: Time series prediction of landslide displacement using SVM model: application to Baishuihe landslide in Three Gorges Reservoir Area, China publication-title: Appl. Mech. Mater. – volume: 62 start-page: 23 year: 1980 end-page: 27 ident: bb0030 article-title: The rainfall intensity-duration control of shallow landslides and debris flows publication-title: Geogr. Ann. – volume: 11 start-page: 575 year: 2014 end-page: 588 ident: bb0200 article-title: Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya,India publication-title: Landslides – volume: 31 start-page: 393 year: 2020 end-page: 409 ident: bb0075 article-title: Influence of tectonics and morphometric features on the landslide distribution: a case study from the Mesima Basin (Calabria, South Italy) publication-title: J. Earth Sci. – volume: 245 start-page: 193 year: 2015 end-page: 206 ident: bb0190 article-title: Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China publication-title: Geomorphology – volume: 152 start-page: 291 year: 2014 end-page: 301 ident: bb0045 article-title: Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China publication-title: Remote Sens. Environ. – volume: 202 year: 2021 ident: bb0135 article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models publication-title: Catena – volume: 12 year: 2021 ident: bb0095 article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management publication-title: Geosci. Front. – volume: 79 start-page: 1 year: 2020 end-page: 10 ident: bb0015 article-title: Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS publication-title: Environ. Earth Sci. – volume: 32 start-page: 1069 year: 2021 end-page: 1078 ident: bb0150 article-title: An updated database and spatial distribution of landslides triggered by the Milin, Tibet M(w)6.4 earthquake of 18 November 2017 publication-title: J. Earth Sci. – volume: 15 start-page: 1483 year: 2018 end-page: 1501 ident: bb0275 article-title: A review of the recent literature on rainfall thresholds for landslide occurrence publication-title: Landslides – volume: 245 start-page: 193 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0190 article-title: Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.05.016 – volume: 14 start-page: 1266 issue: 7 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0215 article-title: Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil publication-title: J. Soils Sediments Prot. Risk Assess. Rem. doi: 10.1007/s11368-014-0886-4 – volume: 76 start-page: 405 issue: 11 year: 2017 ident: 10.1016/j.geomorph.2022.108236_bb0340 article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area,China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6731-5 – year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0240 article-title: A PSOGSA method to optimize the T-S fuzzy neural network for displacement prediction of landslide – volume: 202 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0135 article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models publication-title: Catena doi: 10.1016/j.catena.2021.105250 – volume: 32 year: 2007 ident: 10.1016/j.geomorph.2022.108236_bb0205 article-title: Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan publication-title: Earth Surf. Process. Landforms doi: 10.1002/esp.1491 – volume: 14 start-page: 317 issue: 2 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0300 article-title: Rainfall thresholds for shallow landslides occurrence in Calabria, southern Italy publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-14-317-2014 – volume: 175 start-page: 9 issue: 12 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0325 article-title: GIS-based landslide hazard predicting system and its real-time test during a typhoon, Zhejiang Province,Southeast China publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.03.005 – volume: 32 start-page: 1069 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0150 article-title: An updated database and spatial distribution of landslides triggered by the Milin, Tibet M(w)6.4 earthquake of 18 November 2017 publication-title: J. Earth Sci. doi: 10.1007/s12583-021-1433-z – volume: 31 start-page: 1121 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0335 article-title: Slope stability analysis based on group decision theory and fuzzy comprehensive evaluation publication-title: J. Earth Sci. doi: 10.1007/s12583-020-1101-8 – volume: 180 start-page: 60 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0255 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.03.001 – volume: 12 issue: 6 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0095 article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management publication-title: Geosci. Front. doi: 10.1016/j.gsf.2021.101249 – volume: 72 start-page: 272 issue: 1 year: 2005 ident: 10.1016/j.geomorph.2022.108236_bb0100 article-title: Probabilistic landslide hazard assessment at the basin scale publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.06.002 – volume: 164 start-page: 135 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0050 article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method publication-title: Catena doi: 10.1016/j.catena.2018.01.012 – volume: 16 start-page: 175 issue: 1 year: 2019 ident: 10.1016/j.geomorph.2022.108236_bb0070 article-title: Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area publication-title: Landslides doi: 10.1007/s10346-018-1072-3 – volume: 15 start-page: 1483 issue: 8 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0275 article-title: A review of the recent literature on rainfall thresholds for landslide occurrence publication-title: Landslides doi: 10.1007/s10346-018-0966-4 – volume: 285 start-page: 16 year: 2017 ident: 10.1016/j.geomorph.2022.108236_bb0260 article-title: Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.001 – volume: 101317 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0130 article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions publication-title: Geosci. Front. – volume: 139–140 start-page: 79 year: 2012 ident: 10.1016/j.geomorph.2022.108236_bb0230 article-title: Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.10.005 – volume: 84 start-page: 240 year: 2016 ident: 10.1016/j.geomorph.2022.108236_bb0235 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.07.005 – volume: 28 start-page: 3978 year: 2009 ident: 10.1016/j.geomorph.2022.108236_bb0065 article-title: GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. – volume: 123 start-page: 225 issue: 3 year: 2011 ident: 10.1016/j.geomorph.2022.108236_bb0195 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.09.006 – volume: 25 start-page: 991 issue: 5 year: 2006 ident: 10.1016/j.geomorph.2022.108236_bb0090 article-title: Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir publication-title: Chin. J. Rock Mech. Eng. – volume: 22 start-page: 47 issue: 1 year: 2013 ident: 10.1016/j.geomorph.2022.108236_bb0220 article-title: Extreme climatic phenomena and their impact in the shaping the current relief in the Bucegi-Leaota mountain complex publication-title: Georev. Sci. Ann. Stefan Cel Mare Univ. Suceava Geogr. – volume: 151 start-page: 147 year: 2017 ident: 10.1016/j.geomorph.2022.108236_bb0055 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2016.11.032 – volume: 11 start-page: 711 issue: 4 year: 2013 ident: 10.1016/j.geomorph.2022.108236_bb0310 article-title: Uncertainty assessment in quantitative rockfall risk assessment publication-title: Landslides doi: 10.1007/s10346-013-0447-8 – volume: 259 start-page: 105 year: 2016 ident: 10.1016/j.geomorph.2022.108236_bb0110 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 66 start-page: 707 issue: 2 year: 2013 ident: 10.1016/j.geomorph.2022.108236_bb0025 article-title: Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province,Vietnam publication-title: Nat. Hazards doi: 10.1007/s11069-012-0510-0 – volume: 47 start-page: 565 issue: 5 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0175 article-title: Spatial landslide hazard prediction using rainfall probability and a logistic regression model publication-title: Math. Geosci. doi: 10.1007/s11004-014-9560-z – volume: 218 start-page: 173 year: 2017 ident: 10.1016/j.geomorph.2022.108236_bb0120 article-title: Landslide displacement prediction based on multivariate chaotic model and extreme learning machine publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.01.016 – volume: 12 start-page: 419 issue: 3 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0020 article-title: A systematic review of landslide probability mapping using logistic regression publication-title: Landslides doi: 10.1007/s10346-014-0550-5 – volume: 104(3) start-page: 2153 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0315 – year: 2013 ident: 10.1016/j.geomorph.2022.108236_bb0225 article-title: Impact of rainfall estimation uncertainty on identification and use of precipitation thresholds for debris flow/landslide warning – volume: 6(3) start-page: 505 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0165 – volume: 59 start-page: 209 issue: 1 year: 2011 ident: 10.1016/j.geomorph.2022.108236_bb0035 article-title: Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning publication-title: Nat. Hazards doi: 10.1007/s11069-011-9747-2 – volume: 16 start-page: 265 issue: 2 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0040 article-title: A ROC analysis-based classification method for landslide susceptibility maps publication-title: Landslides doi: 10.1007/s10346-018-1063-4 – volume: 79 start-page: 1 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0015 article-title: Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS publication-title: Environ. Earth Sci. doi: 10.1007/s12665-020-08957-w – volume: 239–240 start-page: 1413 year: 2013 ident: 10.1016/j.geomorph.2022.108236_bb0345 article-title: Time series prediction of landslide displacement using SVM model: application to Baishuihe landslide in Three Gorges Reservoir Area, China publication-title: Appl. Mech. Mater. – start-page: 1 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0010 article-title: Landslide occurrence prediction using trainable cascade forward network and multilayer perceptron publication-title: Math. Probl. Eng. doi: 10.1155/2015/512158 – volume: 11 start-page: 575 issue: 4 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0200 article-title: Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya,India publication-title: Landslides doi: 10.1007/s10346-013-0408-2 – volume: 23 start-page: 249 issue: 3 year: 2008 ident: 10.1016/j.geomorph.2022.108236_bb0005 article-title: Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates publication-title: Int. J. Sediment Res. doi: 10.1016/S1001-6279(08)60022-0 – volume: 165 start-page: 520 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0145 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 62 start-page: 23 issue: 1–2 year: 1980 ident: 10.1016/j.geomorph.2022.108236_bb0030 article-title: The rainfall intensity-duration control of shallow landslides and debris flows publication-title: Geogr. Ann. – year: 2004 ident: 10.1016/j.geomorph.2022.108236_bb0140 article-title: Assessment of China's regional geohazards: present situation and problems – volume: PP start-page: 1 issue: 99 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0350 article-title: Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 39 start-page: 889 issue: 7 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0330 article-title: Landslide hazard warning based on effective rainfall intensity publication-title: Earth Sci. – volume: 207 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0210 article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103225 – volume: 152 start-page: 291 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0045 article-title: Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.07.004 – volume: 32 start-page: 1092 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0080 article-title: Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu County, Gansu Province, Northwest China publication-title: J. Earth Sci. doi: 10.1007/s12583-020-1380-0 – volume: 12 start-page: 773 issue: 4 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0270 article-title: Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system publication-title: Landslides doi: 10.1007/s10346-014-0502-0 – year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0085 – volume: 112 start-page: 96 issue: 1 year: 2009 ident: 10.1016/j.geomorph.2022.108236_bb0160 article-title: Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.05.008 – volume: 15(10) start-page: 2257 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0170 – volume: 31 start-page: 1068 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0290 article-title: An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of three Gorges Reservoir, China publication-title: J. Earth Sci. doi: 10.1007/s12583-020-1072-9 – volume: 35 start-page: 179 issue: 1 year: 2019 ident: 10.1016/j.geomorph.2022.108236_bb0265 article-title: Current and future status of GIS-based landslide susceptibility mapping: a literature review publication-title: Kor. J. Remote Sens. – volume: 32 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0180 article-title: Using physical model experiments for hazards assessment of rainfall-induced debris landslides publication-title: J. Earth Sci. doi: 10.1007/s12583-020-1398-3 – volume: 16 start-page: 647 issue: 3 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0245 article-title: A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan,Korea publication-title: Landslides doi: 10.1007/s10346-018-1112-z – volume: 17 start-page: 2919 issue: 12 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0115 article-title: Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model publication-title: Landslides doi: 10.1007/s10346-020-01473-9 – volume: 12 start-page: 4134 issue: 24 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0185 article-title: Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: influences of different data-based models and connections between collapses and environmental factors publication-title: Remote Sens. doi: 10.3390/rs12244134 – volume: 195 start-page: 63 year: 2015 ident: 10.1016/j.geomorph.2022.108236_bb0320 article-title: A simplified physically based coupled rainfall threshold model for triggering landslides publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.05.022 – volume: 49 start-page: 60 issue: 10 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0060 article-title: Displacement prediction of reservoir landslide considering lag effect of inducing factors publication-title: Yangtze River – volume: 10 start-page: 547 issue: 5 year: 2013 ident: 10.1016/j.geomorph.2022.108236_bb0285 article-title: Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California publication-title: Landslides doi: 10.1007/s10346-012-0341-9 – volume: 51 start-page: 350 issue: 2 year: 2012 ident: 10.1016/j.geomorph.2022.108236_bb0250 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – volume: 11 start-page: 167 issue: 2 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0155 article-title: The varnes classification of landslide types, an update publication-title: Landslides doi: 10.1007/s10346-013-0436-y – volume: 31 start-page: 393 issue: 2 year: 2020 ident: 10.1016/j.geomorph.2022.108236_bb0075 article-title: Influence of tectonics and morphometric features on the landslide distribution: a case study from the Mesima Basin (Calabria, South Italy) publication-title: J. Earth Sci. doi: 10.1007/s12583-019-1231-z – volume: 18 start-page: 3715 issue: 11 year: 2021 ident: 10.1016/j.geomorph.2022.108236_bb0125 article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments publication-title: Landslides doi: 10.1007/s10346-021-01756-9 – volume: 145 start-page: 164 year: 2016 ident: 10.1016/j.geomorph.2022.108236_bb0295 article-title: Comparison of a logistic regression and Naive Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 6 start-page: 85 year: 2018 ident: 10.1016/j.geomorph.2022.108236_bb0280 article-title: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00085 – start-page: 285 year: 2014 ident: 10.1016/j.geomorph.2022.108236_bb0305 article-title: Analysis on physical characteristics of rural solid waste in Dongjiang river source area, China publication-title: J. Agric. Res. Environ. – volume: 663 start-page: 1 year: 2019 ident: 10.1016/j.geomorph.2022.108236_bb0105 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.329 |
SSID | ssj0004790 |
Score | 2.6477864 |
Snippet | Rainfall-induced landslide hazard warning, which refers to the prediction of the spatial-temporal probability of landslide occurrence in a certain area under... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108236 |
SubjectTerms | China Critical rainfall threshold Effective rainfall intensity geomorphology Landslide hazard warning Landslide susceptibility prediction landslides prediction probability rain rain intensity rainfall duration Rainfall-induced landslides Random forest regression analysis support vector machines |
Title | Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold |
URI | https://dx.doi.org/10.1016/j.geomorph.2022.108236 https://www.proquest.com/docview/2660991240 |
Volume | 408 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QCMEF8RRvBYlr2JY2LTsiBAwQHHhI3KImcWDTaBHbhMaB346dtryExIFj26SP2LU_O34wthuZKFIWEtGyqRUo8EAYRLpCpq5tWx4VYtg9v7hMOrfx2Z26m2CHdS4MhVVWsr-U6UFaV2ca1Wo2nrrdxjXVEVEKjS0ZvCmUaB7HKXH53ttnmEecln4WHCxo9Jcs4R7SqHgs8HvQTpSSwu1kKNX8q4L6IaqD_jmeZ3MVcOQH5bstsAnIF9lM1cP8YbzIpk9Ck97xEnu7gvvg4ePU_8Fn_b5Ayxtp6HjI7O13HfCH7BWZg7-UnhFO2szxIv8yYjAahJiXED475o8ZlXK453idZ9xWLRI-HsGHyBUD2sxaZrfHRzeHHVH1WRBZHMVDoXzLeAAJcWLbKjWxN03pUjBoiiD8A5VaLw3lWisSAsm-V00AlTgVOe8gilbYZF7ksMq4k01LFWBc5tBSSz3eV7YNghjwSCIDa0zVi6ttVYScemH0dR1t1tM1UTQRRZdEWWONj3lPZRmOP2e0a9rpbwylUVf8OXenJrbGv422ULIcitFAI5xBSI2YqLn-j_tvsFk6KqN-N9nk8HkEW4hthmY7MO82mzo4Pe9cvgMJXvyn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLemTWi8oDFADAYECR7D3aVNu3vgAW2MG_vzAJu0t9AkznbTrZ3onabjYV-KL4idtmMgpD2gvTZNWtmO_bPj2ABvEpsk2mEmBy53khQeSktIV6rcD90gkEGMp-f7B9noKP18rI8X4Gd3F4bTKlvd3-j0qK3bJ72Wmr2L8bj3leuIaE3OlorRlC6zchfnl-S31e93tojJb5Xa_ni4OZJtawFZpEk6lToMbEBUmGZuqHObBttXPkdL6JsQD-rcBWX5erFmuc82gu4j6szrxAePHAUlvb-Ukrrgtgnvrn7nlaR5E9ihv5P8ezeuJZ-RUFTnFRGQHFOlOL9PxdrQ_7SIf9mGaPC2V-BBi1TFh4YYD2EBy1VYbpumn85X4d6n2BV4_giuvuBJDCkKbjgRislEkqtPQuNFvEo8GXsUp8UPkkZx2YRiBJtPL6ryxhv1rI5JNjFfdy7OC64dcSJoXBTCtT0Zrj8hpiSGNZ-ePYajO6H-E1gsqxKfgvCq77jkjC88uYZ5oHXV0BJqwkAyYXENdEdc49qq59x8Y2K69LYz0zHFMFNMw5Q16F3Pu2jqftw6Y9jxzvwhwYaM061zX3fMNrS9-cymKLGa1YbwE2F4AmH9Z_-x_itYHh3u75m9nYPd53CfR5qU43VYnH6f4QsCVlP7MgqygG93vXN-AaPrONA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+rainfall-induced+landslide+hazard+warning+based+on+landslide+susceptibility+mapping+and+a+critical+rainfall+threshold&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Huang%2C+Faming&rft.au=Chen%2C+Jiawu&rft.au=Liu%2C+Weiping&rft.au=Huang%2C+Jinsong&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-555X&rft.eissn=1872-695X&rft.volume=408&rft_id=info:doi/10.1016%2Fj.geomorph.2022.108236&rft.externalDocID=S0169555X22001295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon |