QCM‑D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy
Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment...
Saved in:
Published in | The journal of physical chemistry. B Vol. 127; no. 11; pp. 2466 - 2474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin–streptavidin and maleimide–PDP chemistries. Comparatively, the use of DNA–lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol–DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble. |
---|---|
AbstractList | Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin–streptavidin and maleimide–PDP chemistries. Comparatively, the use of DNA–lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol–DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble. Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin–streptavidin and maleimide–PDP chemistries. Comparatively, the use of DNA–lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol–DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble. |
Author | Batchelor, Damien V. B. Evans, Stephen D. Johnson, Benjamin R. G. Armistead, Fern J. |
AuthorAffiliation | Molecular and Nanoscale Physics Group, School of Physics and Astronomy |
AuthorAffiliation_xml | – name: Molecular and Nanoscale Physics Group, School of Physics and Astronomy |
Author_xml | – sequence: 1 givenname: Fern J. surname: Armistead fullname: Armistead, Fern J. – sequence: 2 givenname: Damien V. B. orcidid: 0000-0001-6489-9578 surname: Batchelor fullname: Batchelor, Damien V. B. – sequence: 3 givenname: Benjamin R. G. surname: Johnson fullname: Johnson, Benjamin R. G. – sequence: 4 givenname: Stephen D. orcidid: 0000-0001-8342-5335 surname: Evans fullname: Evans, Stephen D. email: s.d.evans@leeds.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36917458$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1OGzEUhS1EVX7aPavKyy5Iev0znskKoQAFKYAqhS2Wx2MnRhN7sGeQ2PEKiDfkSWpIitpFF5Yt-5xz7_W3h7Z98AahAwJjApT8UDqN7zpdj6mGkhZiC-2SgsIor3J7cxYExA7aS-kOgBa0Ep_RDhMTUvKi2kW3v6aXr0_PJ_jCP5jUu4XqXfAJB4-ny9DmKxND-_r0cnJ1jOemX5ro_AIHi2euCymsTMJ9wJdOx1APdZ0d2IaI51mouscv6JNVbTJfN_s-ujk7nU_PR7PrnxfT49lIccb7ESdW0wKoaBpFJ5apqhLUNqUArSjQsiKKwaRpSAUaOGOFtZMaOGWaNYoQyvbR0Tq3G-qVabTxfVSt7KJbqfgog3Ly3xfvlnIRHiQB4EQwnhO-bxJiuB_y3HLlkjZtq7wJQ5K5CVERylmVpbCW5plTisZ-1CEg37jIzEW-cZEbLtny7e_-Pgx_QGTB4Vrwbg1D9Pm7_p_3G-hUnd0 |
CitedBy_id | crossref_primary_10_3390_pharmaceutics16030434 crossref_primary_10_1039_D4LC00443D crossref_primary_10_1002_cphc_202300758 crossref_primary_10_1016_j_microc_2024_109967 |
Cites_doi | 10.1007/BF01337937 10.1039/C8PY01721B 10.1016/j.jconrel.2016.10.007 10.1002/sia.5494 10.1063/5.0040213 10.1021/acsami.0c07022 10.1021/la0482305 10.1016/j.jconrel.2018.04.018 10.1021/ja048514b 10.7150/thno.49670 10.1021/acs.langmuir.2c02303 10.7150/thno.5616 10.1016/j.jconrel.2020.06.011 10.1016/j.addr.2013.12.010 10.1038/micronano.2017.87 10.1016/j.biomaterials.2019.119250 10.1002/jmr.826 10.3390/pharmaceutics9020012 10.1016/j.ultrasmedbio.2019.11.004 10.1109/TBME.2009.2030335 10.1002/cbic.200390055 10.1002/nano.202000129 10.1016/j.canlet.2016.12.032 10.1021/ja073200k 10.1021/acsami.1c16446 10.1021/la304093t 10.1016/j.ultrasmedbio.2020.01.027 10.1039/D0SC00518E 10.1016/j.cocis.2021.101456 10.1016/S0006-3495(03)74722-5 10.5281/zenodo.3952714 10.1116/1.2889062 10.1016/j.bpj.2017.05.034 10.3390/pharmaceutics14030622 10.1186/s12645-019-0055-y 10.1021/la702382d 10.1016/j.jconrel.2009.12.026 10.1016/j.nano.2021.102401 10.1039/c2lc40634a 10.1016/j.jconrel.2016.07.037 10.1016/j.actbio.2015.03.014 10.1021/acsabm.0c00982 10.1109/TUFFC.2016.2613991 10.1021/ja029783+ |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acs.jpcb.2c07256 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 2474 |
ExternalDocumentID | 10_1021_acs_jpcb_2c07256 36917458 c610021186 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/M009084/1 – fundername: ; grantid: MR/M009084/1 – fundername: ; grantid: EP/P023266/1 – fundername: ; grantid: EP/S001069/1 – fundername: ; grantid: EP/W033151/1 |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 55A 5VS 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZGI ~02 53G AAHBH ABJNI ACBEA CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a434t-41fc25026dda29f3a8862fd760ca202781a309dd180c04335ff9b0423c3da1123 |
IEDL.DBID | ACS |
ISSN | 1520-6106 |
IngestDate | Tue Sep 17 21:35:48 EDT 2024 Fri Aug 16 22:54:42 EDT 2024 Fri Dec 06 05:50:25 EST 2024 Tue Aug 27 13:45:18 EDT 2024 Sun Mar 26 06:04:58 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a434t-41fc25026dda29f3a8862fd760ca202781a309dd180c04335ff9b0423c3da1123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6489-9578 0000-0001-8342-5335 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10041634 |
PMID | 36917458 |
PQID | 2786812438 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10041634 proquest_miscellaneous_2786812438 crossref_primary_10_1021_acs_jpcb_2c07256 pubmed_primary_36917458 acs_journals_10_1021_acs_jpcb_2c07256 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-23 |
PublicationDateYYYYMMDD | 2023-03-23 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1007/BF01337937 – ident: ref9/cit9 doi: 10.1039/C8PY01721B – ident: ref18/cit18 doi: 10.1016/j.jconrel.2016.10.007 – ident: ref41/cit41 doi: 10.1002/sia.5494 – ident: ref31/cit31 – ident: ref33/cit33 doi: 10.1063/5.0040213 – ident: ref37/cit37 doi: 10.1021/acsami.0c07022 – ident: ref43/cit43 doi: 10.1021/la0482305 – ident: ref45/cit45 doi: 10.1016/j.jconrel.2018.04.018 – ident: ref27/cit27 doi: 10.1021/ja048514b – ident: ref20/cit20 doi: 10.7150/thno.49670 – ident: ref34/cit34 doi: 10.1021/acs.langmuir.2c02303 – ident: ref5/cit5 doi: 10.7150/thno.5616 – ident: ref39/cit39 doi: 10.1016/j.jconrel.2020.06.011 – ident: ref12/cit12 doi: 10.1016/j.addr.2013.12.010 – ident: ref11/cit11 doi: 10.1038/micronano.2017.87 – ident: ref13/cit13 doi: 10.1016/j.biomaterials.2019.119250 – ident: ref29/cit29 doi: 10.1002/jmr.826 – ident: ref14/cit14 doi: 10.3390/pharmaceutics9020012 – ident: ref1/cit1 doi: 10.1016/j.ultrasmedbio.2019.11.004 – ident: ref2/cit2 doi: 10.1109/TBME.2009.2030335 – ident: ref26/cit26 doi: 10.1002/cbic.200390055 – ident: ref47/cit47 doi: 10.1002/nano.202000129 – ident: ref4/cit4 doi: 10.1016/j.canlet.2016.12.032 – ident: ref23/cit23 doi: 10.1021/ja073200k – ident: ref30/cit30 doi: 10.1021/acsami.1c16446 – ident: ref19/cit19 doi: 10.1016/j.jconrel.2020.06.011 – ident: ref46/cit46 doi: 10.1021/la304093t – ident: ref21/cit21 doi: 10.1016/j.ultrasmedbio.2020.01.027 – ident: ref32/cit32 doi: 10.1039/D0SC00518E – ident: ref44/cit44 doi: 10.1016/j.cocis.2021.101456 – ident: ref42/cit42 doi: 10.1016/S0006-3495(03)74722-5 – ident: ref35/cit35 doi: 10.5281/zenodo.3952714 – ident: ref24/cit24 doi: 10.1116/1.2889062 – ident: ref25/cit25 doi: 10.1016/j.bpj.2017.05.034 – ident: ref40/cit40 doi: 10.3390/pharmaceutics14030622 – ident: ref16/cit16 doi: 10.1186/s12645-019-0055-y – ident: ref48/cit48 doi: 10.1021/la702382d – ident: ref7/cit7 doi: 10.1016/j.jconrel.2009.12.026 – ident: ref10/cit10 doi: 10.1016/j.nano.2021.102401 – ident: ref17/cit17 doi: 10.1039/c2lc40634a – ident: ref3/cit3 doi: 10.1016/j.jconrel.2016.07.037 – ident: ref6/cit6 doi: 10.1016/j.actbio.2015.03.014 – ident: ref15/cit15 – ident: ref36/cit36 doi: 10.1021/acsami.0c07022 – ident: ref38/cit38 doi: 10.1021/acsabm.0c00982 – ident: ref8/cit8 doi: 10.1109/TUFFC.2016.2613991 – ident: ref22/cit22 doi: 10.1021/ja029783+ |
SSID | ssj0025286 |
Score | 2.5027857 |
Snippet | Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route... Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2466 |
SubjectTerms | B: Biomaterials and Membranes Cholesterol DNA, Complementary Lipid Bilayers Liposomes Microbubbles Polyethylene Glycols |
Title | QCM‑D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy |
URI | http://dx.doi.org/10.1021/acs.jpcb.2c07256 https://www.ncbi.nlm.nih.gov/pubmed/36917458 https://search.proquest.com/docview/2786812438 https://pubmed.ncbi.nlm.nih.gov/PMC10041634 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4HMqFR1tgecmV2kMPWRI79maPKIAQ6iIhFolTIz-BPpIVyV448RcQ_5Bfwkyyu7BQVVwTx7JnxppvMuNvCPnaia0UXEaBNEoE4CHgSDGvApUYvNmonYjwonDvRB6dx8cX4uKZJud1Bp9Fu8qU7V8Do9vMhB1w0LNknnUg-kYYlJ5NgivB6q6O4I4wHArHKcl_zYCOyJTTjugNunxdJPnC6xwuNe2LypqsEItNfreHlW6b27dUju_Y0DJZHIFPutdYywqZcflH8iEd93z7RH6epr3Hu_t9-oJ-A8ySFjlNsZEusioUfx7vHvZP9mjfNZcHL2nh6Y_rQVEWf11Jq4L2sMpPD7WGLyigYtpvuAs-k_PDg356FIw6MAQq5nEFuvMGMBKT1irW9VwlEAB525GhUfjXJIkUD7vWRklokAlNeN_VWGljuFWA5PgqmcuL3K0TmnjmhBFOQgAWx9jL0GqjpWWhFcInukW-gWCy0Qkqszo5zqKsfgjSykbSapHvY7Vlg4aQ4z9jv4z1moEgMRWiclcMywyWjsRrMU9aZK3R82Q2LiGEhRW2SDJlAZMByMg9_Sa_vqqZuZF-DwBuvPHOzWySBWxfjzVtjG-Ruepm6LYB5FR6p7buJ7Rr-Ts |
link.rule.ids | 230,314,780,784,885,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VcigXypu0PBYJDhyc2rtexzlWLlWAJBKQSj1h7RPKw46wc-mpfwHxD_tLmLHj0BSE4GqvV7Mzs5oZz8w3AE8HsU2kSKIgMUoGaCHwSnGvApUa6mzUTkbUKDyZJqOj-NWxPN6AqOuFQSIq3Klqkvi_0AWiPXr2aW50n5twgHb6ClyVNLGSvKHs3SrGkrwZ7ohWiaKisMtM_mkHskemWrdHvzmZl2slLxifw214uyK7qTn53F_Uum9OLyE6_te5bsD1pSvK9lvduQkbrrgFW1k3Ae42vH-TTc7Pvh-wC2AcqKSsLFhGY3UJY6H8cn7242C6z2aubSX8wErPxifzsiq_uorVJZtQzZ9eaI1fMPSR2axFMrgDR4cvZtkoWM5jCFQs4hol6Q16TDyxVvGhFyrFcMjbQRIaRf9Q0kiJcGhtlIaGcNGk90NNdTdGWIV-nbgLm0VZuPvAUs-dNNIlGI7FMU02tNroxPLQSulT3YNnyJh8eZ-qvEmV8yhvHiK38iW3evC8k14-b-E5_rL2SSfeHBlJiRFVuHJR5Ug6wbDFIu3BvVbcq91EggEtUtiDdE0RVgsIn3v9TXHyscHpJjA-dHfjnX88zGPYGs0m43z8cvp6F67RYHuqduPiAWzW3xbuIbo_tX7UKPxP5EIBtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VIgGX8obwXCQ4cHBqr72Oc4wcogJNBCJFPWHtk7a0dlQ7F079C4h_2F_CjB9RUxCC63q9mt2Z9cx4Zr4BeDmITCzCOPBiLYWHGgKvFHfSk4mmykZlRUCFwtNZvLMXvdsX-xsguloYJKLElco6iE-3emFcizAQbNP40UKrPtf-AHX1Fbgq8GNLmVyj9NPKzxK8bvCImok8I7-LTv5pBdJJulzXSb8ZmpfzJS8ooMlN-Lwivc47-dZfVqqvv19Cdfzvvd2CrdYkZaNGhm7Dhs3vwPW06wR3F758TKfnZz_G7AIoBworK3KWUntdwloojs_Pfo5nIza3TUnhV1Y4tnu4KMrixJasKtiUcv_UUil8g6GtzOYNosE92Ju8mac7XtuXwZNRGFXIUafRcuKxMZIPXSgTdIucGcS-lvQvJQlk6A-NCRJfEz6acG6oKP9Gh0aifRfeh828yO1DYInjVmhhY3TLoog6HBqlVWy4b4RwierBKzyYrL1XZVaHzHmQ1YN4Wll7Wj143XEwWzQwHX-Z-6JjcYYHSQESmdtiWWZIOsGxRWHSgwcNy1erhTE6tkhhD5I1YVhNIJzu9Sf54UGN102gfGj2Ro_-cTPP4dqH8STbfTt7_xhuUH97Snrj4RPYrE6X9ilaQZV6Vsv8LycaBDo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QCM%E2%80%91D+Investigations+on+Cholesterol%E2%80%93DNA+Tethering+of+Liposomes+to+Microbubbles+for+Therapy&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Armistead%2C+Fern+J.&rft.au=Batchelor%2C+Damien+V.+B.&rft.au=Johnson%2C+Benjamin+R.+G.&rft.au=Evans%2C+Stephen+D.&rft.date=2023-03-23&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=127&rft.issue=11&rft.spage=2466&rft.epage=2474&rft_id=info:doi/10.1021%2Facs.jpcb.2c07256&rft.externalDocID=c610021186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |