QCM‑D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy

Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 127; no. 11; pp. 2466 - 2474
Main Authors Armistead, Fern J., Batchelor, Damien V. B., Johnson, Benjamin R. G., Evans, Stephen D.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin–streptavidin and maleimide–PDP chemistries. Comparatively, the use of DNA–lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol–DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.
AbstractList Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin–streptavidin and maleimide–PDP chemistries. Comparatively, the use of DNA–lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol–DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.
Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin–streptavidin and maleimide–PDP chemistries. Comparatively, the use of DNA–lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol–DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.
Author Batchelor, Damien V. B.
Evans, Stephen D.
Johnson, Benjamin R. G.
Armistead, Fern J.
AuthorAffiliation Molecular and Nanoscale Physics Group, School of Physics and Astronomy
AuthorAffiliation_xml – name: Molecular and Nanoscale Physics Group, School of Physics and Astronomy
Author_xml – sequence: 1
  givenname: Fern J.
  surname: Armistead
  fullname: Armistead, Fern J.
– sequence: 2
  givenname: Damien V. B.
  orcidid: 0000-0001-6489-9578
  surname: Batchelor
  fullname: Batchelor, Damien V. B.
– sequence: 3
  givenname: Benjamin R. G.
  surname: Johnson
  fullname: Johnson, Benjamin R. G.
– sequence: 4
  givenname: Stephen D.
  orcidid: 0000-0001-8342-5335
  surname: Evans
  fullname: Evans, Stephen D.
  email: s.d.evans@leeds.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36917458$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEUhS1EVX7aPavKyy5Iev0znskKoQAFKYAqhS2Wx2MnRhN7sGeQ2PEKiDfkSWpIitpFF5Yt-5xz7_W3h7Z98AahAwJjApT8UDqN7zpdj6mGkhZiC-2SgsIor3J7cxYExA7aS-kOgBa0Ep_RDhMTUvKi2kW3v6aXr0_PJ_jCP5jUu4XqXfAJB4-ny9DmKxND-_r0cnJ1jOemX5ro_AIHi2euCymsTMJ9wJdOx1APdZ0d2IaI51mouscv6JNVbTJfN_s-ujk7nU_PR7PrnxfT49lIccb7ESdW0wKoaBpFJ5apqhLUNqUArSjQsiKKwaRpSAUaOGOFtZMaOGWaNYoQyvbR0Tq3G-qVabTxfVSt7KJbqfgog3Ly3xfvlnIRHiQB4EQwnhO-bxJiuB_y3HLlkjZtq7wJQ5K5CVERylmVpbCW5plTisZ-1CEg37jIzEW-cZEbLtny7e_-Pgx_QGTB4Vrwbg1D9Pm7_p_3G-hUnd0
CitedBy_id crossref_primary_10_3390_pharmaceutics16030434
crossref_primary_10_1039_D4LC00443D
crossref_primary_10_1002_cphc_202300758
crossref_primary_10_1016_j_microc_2024_109967
Cites_doi 10.1007/BF01337937
10.1039/C8PY01721B
10.1016/j.jconrel.2016.10.007
10.1002/sia.5494
10.1063/5.0040213
10.1021/acsami.0c07022
10.1021/la0482305
10.1016/j.jconrel.2018.04.018
10.1021/ja048514b
10.7150/thno.49670
10.1021/acs.langmuir.2c02303
10.7150/thno.5616
10.1016/j.jconrel.2020.06.011
10.1016/j.addr.2013.12.010
10.1038/micronano.2017.87
10.1016/j.biomaterials.2019.119250
10.1002/jmr.826
10.3390/pharmaceutics9020012
10.1016/j.ultrasmedbio.2019.11.004
10.1109/TBME.2009.2030335
10.1002/cbic.200390055
10.1002/nano.202000129
10.1016/j.canlet.2016.12.032
10.1021/ja073200k
10.1021/acsami.1c16446
10.1021/la304093t
10.1016/j.ultrasmedbio.2020.01.027
10.1039/D0SC00518E
10.1016/j.cocis.2021.101456
10.1016/S0006-3495(03)74722-5
10.5281/zenodo.3952714
10.1116/1.2889062
10.1016/j.bpj.2017.05.034
10.3390/pharmaceutics14030622
10.1186/s12645-019-0055-y
10.1021/la702382d
10.1016/j.jconrel.2009.12.026
10.1016/j.nano.2021.102401
10.1039/c2lc40634a
10.1016/j.jconrel.2016.07.037
10.1016/j.actbio.2015.03.014
10.1021/acsabm.0c00982
10.1109/TUFFC.2016.2613991
10.1021/ja029783+
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acs.jpcb.2c07256
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 2474
ExternalDocumentID 10_1021_acs_jpcb_2c07256
36917458
c610021186
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/M009084/1
– fundername: ;
  grantid: MR/M009084/1
– fundername: ;
  grantid: EP/P023266/1
– fundername: ;
  grantid: EP/S001069/1
– fundername: ;
  grantid: EP/W033151/1
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
55A
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
53G
AAHBH
ABJNI
ACBEA
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a434t-41fc25026dda29f3a8862fd760ca202781a309dd180c04335ff9b0423c3da1123
IEDL.DBID ACS
ISSN 1520-6106
IngestDate Tue Sep 17 21:35:48 EDT 2024
Fri Aug 16 22:54:42 EDT 2024
Fri Dec 06 05:50:25 EST 2024
Tue Aug 27 13:45:18 EDT 2024
Sun Mar 26 06:04:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a434t-41fc25026dda29f3a8862fd760ca202781a309dd180c04335ff9b0423c3da1123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6489-9578
0000-0001-8342-5335
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10041634
PMID 36917458
PQID 2786812438
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10041634
proquest_miscellaneous_2786812438
crossref_primary_10_1021_acs_jpcb_2c07256
pubmed_primary_36917458
acs_journals_10_1021_acs_jpcb_2c07256
PublicationCentury 2000
PublicationDate 2023-03-23
PublicationDateYYYYMMDD 2023-03-23
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1007/BF01337937
– ident: ref9/cit9
  doi: 10.1039/C8PY01721B
– ident: ref18/cit18
  doi: 10.1016/j.jconrel.2016.10.007
– ident: ref41/cit41
  doi: 10.1002/sia.5494
– ident: ref31/cit31
– ident: ref33/cit33
  doi: 10.1063/5.0040213
– ident: ref37/cit37
  doi: 10.1021/acsami.0c07022
– ident: ref43/cit43
  doi: 10.1021/la0482305
– ident: ref45/cit45
  doi: 10.1016/j.jconrel.2018.04.018
– ident: ref27/cit27
  doi: 10.1021/ja048514b
– ident: ref20/cit20
  doi: 10.7150/thno.49670
– ident: ref34/cit34
  doi: 10.1021/acs.langmuir.2c02303
– ident: ref5/cit5
  doi: 10.7150/thno.5616
– ident: ref39/cit39
  doi: 10.1016/j.jconrel.2020.06.011
– ident: ref12/cit12
  doi: 10.1016/j.addr.2013.12.010
– ident: ref11/cit11
  doi: 10.1038/micronano.2017.87
– ident: ref13/cit13
  doi: 10.1016/j.biomaterials.2019.119250
– ident: ref29/cit29
  doi: 10.1002/jmr.826
– ident: ref14/cit14
  doi: 10.3390/pharmaceutics9020012
– ident: ref1/cit1
  doi: 10.1016/j.ultrasmedbio.2019.11.004
– ident: ref2/cit2
  doi: 10.1109/TBME.2009.2030335
– ident: ref26/cit26
  doi: 10.1002/cbic.200390055
– ident: ref47/cit47
  doi: 10.1002/nano.202000129
– ident: ref4/cit4
  doi: 10.1016/j.canlet.2016.12.032
– ident: ref23/cit23
  doi: 10.1021/ja073200k
– ident: ref30/cit30
  doi: 10.1021/acsami.1c16446
– ident: ref19/cit19
  doi: 10.1016/j.jconrel.2020.06.011
– ident: ref46/cit46
  doi: 10.1021/la304093t
– ident: ref21/cit21
  doi: 10.1016/j.ultrasmedbio.2020.01.027
– ident: ref32/cit32
  doi: 10.1039/D0SC00518E
– ident: ref44/cit44
  doi: 10.1016/j.cocis.2021.101456
– ident: ref42/cit42
  doi: 10.1016/S0006-3495(03)74722-5
– ident: ref35/cit35
  doi: 10.5281/zenodo.3952714
– ident: ref24/cit24
  doi: 10.1116/1.2889062
– ident: ref25/cit25
  doi: 10.1016/j.bpj.2017.05.034
– ident: ref40/cit40
  doi: 10.3390/pharmaceutics14030622
– ident: ref16/cit16
  doi: 10.1186/s12645-019-0055-y
– ident: ref48/cit48
  doi: 10.1021/la702382d
– ident: ref7/cit7
  doi: 10.1016/j.jconrel.2009.12.026
– ident: ref10/cit10
  doi: 10.1016/j.nano.2021.102401
– ident: ref17/cit17
  doi: 10.1039/c2lc40634a
– ident: ref3/cit3
  doi: 10.1016/j.jconrel.2016.07.037
– ident: ref6/cit6
  doi: 10.1016/j.actbio.2015.03.014
– ident: ref15/cit15
– ident: ref36/cit36
  doi: 10.1021/acsami.0c07022
– ident: ref38/cit38
  doi: 10.1021/acsabm.0c00982
– ident: ref8/cit8
  doi: 10.1109/TUFFC.2016.2613991
– ident: ref22/cit22
  doi: 10.1021/ja029783+
SSID ssj0025286
Score 2.5027857
Snippet Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route...
Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2466
SubjectTerms B: Biomaterials and Membranes
Cholesterol
DNA, Complementary
Lipid Bilayers
Liposomes
Microbubbles
Polyethylene Glycols
Title QCM‑D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy
URI http://dx.doi.org/10.1021/acs.jpcb.2c07256
https://www.ncbi.nlm.nih.gov/pubmed/36917458
https://search.proquest.com/docview/2786812438
https://pubmed.ncbi.nlm.nih.gov/PMC10041634
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4HMqFR1tgecmV2kMPWRI79maPKIAQ6iIhFolTIz-BPpIVyV448RcQ_5Bfwkyyu7BQVVwTx7JnxppvMuNvCPnaia0UXEaBNEoE4CHgSDGvApUYvNmonYjwonDvRB6dx8cX4uKZJud1Bp9Fu8qU7V8Do9vMhB1w0LNknnUg-kYYlJ5NgivB6q6O4I4wHArHKcl_zYCOyJTTjugNunxdJPnC6xwuNe2LypqsEItNfreHlW6b27dUju_Y0DJZHIFPutdYywqZcflH8iEd93z7RH6epr3Hu_t9-oJ-A8ySFjlNsZEusioUfx7vHvZP9mjfNZcHL2nh6Y_rQVEWf11Jq4L2sMpPD7WGLyigYtpvuAs-k_PDg356FIw6MAQq5nEFuvMGMBKT1irW9VwlEAB525GhUfjXJIkUD7vWRklokAlNeN_VWGljuFWA5PgqmcuL3K0TmnjmhBFOQgAWx9jL0GqjpWWhFcInukW-gWCy0Qkqszo5zqKsfgjSykbSapHvY7Vlg4aQ4z9jv4z1moEgMRWiclcMywyWjsRrMU9aZK3R82Q2LiGEhRW2SDJlAZMByMg9_Sa_vqqZuZF-DwBuvPHOzWySBWxfjzVtjG-Ruepm6LYB5FR6p7buJ7Rr-Ts
link.rule.ids 230,314,780,784,885,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VcigXypu0PBYJDhyc2rtexzlWLlWAJBKQSj1h7RPKw46wc-mpfwHxD_tLmLHj0BSE4GqvV7Mzs5oZz8w3AE8HsU2kSKIgMUoGaCHwSnGvApUa6mzUTkbUKDyZJqOj-NWxPN6AqOuFQSIq3Klqkvi_0AWiPXr2aW50n5twgHb6ClyVNLGSvKHs3SrGkrwZ7ohWiaKisMtM_mkHskemWrdHvzmZl2slLxifw214uyK7qTn53F_Uum9OLyE6_te5bsD1pSvK9lvduQkbrrgFW1k3Ae42vH-TTc7Pvh-wC2AcqKSsLFhGY3UJY6H8cn7242C6z2aubSX8wErPxifzsiq_uorVJZtQzZ9eaI1fMPSR2axFMrgDR4cvZtkoWM5jCFQs4hol6Q16TDyxVvGhFyrFcMjbQRIaRf9Q0kiJcGhtlIaGcNGk90NNdTdGWIV-nbgLm0VZuPvAUs-dNNIlGI7FMU02tNroxPLQSulT3YNnyJh8eZ-qvEmV8yhvHiK38iW3evC8k14-b-E5_rL2SSfeHBlJiRFVuHJR5Ug6wbDFIu3BvVbcq91EggEtUtiDdE0RVgsIn3v9TXHyscHpJjA-dHfjnX88zGPYGs0m43z8cvp6F67RYHuqduPiAWzW3xbuIbo_tX7UKPxP5EIBtw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VIgGX8obwXCQ4cHBqr72Oc4wcogJNBCJFPWHtk7a0dlQ7F079C4h_2F_CjB9RUxCC63q9mt2Z9cx4Zr4BeDmITCzCOPBiLYWHGgKvFHfSk4mmykZlRUCFwtNZvLMXvdsX-xsguloYJKLElco6iE-3emFcizAQbNP40UKrPtf-AHX1Fbgq8GNLmVyj9NPKzxK8bvCImok8I7-LTv5pBdJJulzXSb8ZmpfzJS8ooMlN-Lwivc47-dZfVqqvv19Cdfzvvd2CrdYkZaNGhm7Dhs3vwPW06wR3F758TKfnZz_G7AIoBworK3KWUntdwloojs_Pfo5nIza3TUnhV1Y4tnu4KMrixJasKtiUcv_UUil8g6GtzOYNosE92Ju8mac7XtuXwZNRGFXIUafRcuKxMZIPXSgTdIucGcS-lvQvJQlk6A-NCRJfEz6acG6oKP9Gh0aifRfeh828yO1DYInjVmhhY3TLoog6HBqlVWy4b4RwierBKzyYrL1XZVaHzHmQ1YN4Wll7Wj143XEwWzQwHX-Z-6JjcYYHSQESmdtiWWZIOsGxRWHSgwcNy1erhTE6tkhhD5I1YVhNIJzu9Sf54UGN102gfGj2Ro_-cTPP4dqH8STbfTt7_xhuUH97Snrj4RPYrE6X9ilaQZV6Vsv8LycaBDo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QCM%E2%80%91D+Investigations+on+Cholesterol%E2%80%93DNA+Tethering+of+Liposomes+to+Microbubbles+for+Therapy&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Armistead%2C+Fern+J.&rft.au=Batchelor%2C+Damien+V.+B.&rft.au=Johnson%2C+Benjamin+R.+G.&rft.au=Evans%2C+Stephen+D.&rft.date=2023-03-23&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=127&rft.issue=11&rft.spage=2466&rft.epage=2474&rft_id=info:doi/10.1021%2Facs.jpcb.2c07256&rft.externalDocID=c610021186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon