Lithium Isotope Fractionation During Intensive Felsic Magmatic Differentiation

The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 24; no. 4
Main Authors Yang, Jie‐Hua, Chen, Heng, Zhou, Mei‐Fu, Hu, Rui‐Zhong, Williams‐Jones, Anthony E.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.04.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization. Plain Language Summary In the past, magmatic differentiation was thought not to produce resolvable Li isotopic fractionation based on studies of basaltic rocks. Overall, only sparse studies on Li isotopes of highly evolved granites have been reported, and thus possible isotope fractionation of Li isotopes during differentiation of felsic magma could have been neglected. In this study, we present evidence of Li isotope fractionation during the differentiation of granitic magma. The most evolved (late‐stage) rare‐metal‐rich granites are systematically enriched in heavier Li isotopes. The chemical and isotopic compositions of both bulk rocks and mineral separates (e.g., zircon and mica) indicate that equilibrium fractionation during fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the residual melts. Our quantitative modeling also supports the equilibrium fractionation between minerals and magma as the primary mechanism for the observed Li isotopic variations. Key Points Large Li isotopic fractionations are observed in rare‐metal‐rich peraluminous granites Fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the highly evolved granites Lithium isotopes provide new insights into the granitic magmatic differentiation process and rare‐metal mineralization
AbstractList The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ 7 Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ 7 Li shows good correlations with SiO 2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ 7 Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7 Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization. In the past, magmatic differentiation was thought not to produce resolvable Li isotopic fractionation based on studies of basaltic rocks. Overall, only sparse studies on Li isotopes of highly evolved granites have been reported, and thus possible isotope fractionation of Li isotopes during differentiation of felsic magma could have been neglected. In this study, we present evidence of Li isotope fractionation during the differentiation of granitic magma. The most evolved (late‐stage) rare‐metal‐rich granites are systematically enriched in heavier Li isotopes. The chemical and isotopic compositions of both bulk rocks and mineral separates (e.g., zircon and mica) indicate that equilibrium fractionation during fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the residual melts. Our quantitative modeling also supports the equilibrium fractionation between minerals and magma as the primary mechanism for the observed Li isotopic variations. Large Li isotopic fractionations are observed in rare‐metal‐rich peraluminous granites Fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the highly evolved granites Lithium isotopes provide new insights into the granitic magmatic differentiation process and rare‐metal mineralization
Abstract The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization.
The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization.
The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization. Plain Language Summary In the past, magmatic differentiation was thought not to produce resolvable Li isotopic fractionation based on studies of basaltic rocks. Overall, only sparse studies on Li isotopes of highly evolved granites have been reported, and thus possible isotope fractionation of Li isotopes during differentiation of felsic magma could have been neglected. In this study, we present evidence of Li isotope fractionation during the differentiation of granitic magma. The most evolved (late‐stage) rare‐metal‐rich granites are systematically enriched in heavier Li isotopes. The chemical and isotopic compositions of both bulk rocks and mineral separates (e.g., zircon and mica) indicate that equilibrium fractionation during fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the residual melts. Our quantitative modeling also supports the equilibrium fractionation between minerals and magma as the primary mechanism for the observed Li isotopic variations. Key Points Large Li isotopic fractionations are observed in rare‐metal‐rich peraluminous granites Fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the highly evolved granites Lithium isotopes provide new insights into the granitic magmatic differentiation process and rare‐metal mineralization
Author Yang, Jie‐Hua
Chen, Heng
Zhou, Mei‐Fu
Hu, Rui‐Zhong
Williams‐Jones, Anthony E.
Author_xml – sequence: 1
  givenname: Jie‐Hua
  surname: Yang
  fullname: Yang, Jie‐Hua
  email: yangjiehua@vip.gyig.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Heng
  orcidid: 0000-0002-3971-6124
  surname: Chen
  fullname: Chen, Heng
  email: hengchen@ldeo.columbia.edu
  organization: Columbia University
– sequence: 3
  givenname: Mei‐Fu
  surname: Zhou
  fullname: Zhou, Mei‐Fu
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Rui‐Zhong
  surname: Hu
  fullname: Hu, Rui‐Zhong
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Anthony E.
  surname: Williams‐Jones
  fullname: Williams‐Jones, Anthony E.
  organization: McGill University
BookMark eNp9kU1LAzEQhoNUsK3e_AELXq3mczc5Sj_WQtWLnkOana0p201Ntkr_vduuggh6yYSZ5315hxmgXu1rQOiS4BuCqbqlmNJ8jAnOMnKC-kRQMWp7We_H_wwNYlxjTLgQso8eF655dbtNMo--8VtIZsHYxvnaHJ5ksguuXiXzuoE6uvd2DFV0Nnkwq01L2GTiyhIC1I07Cs7RaWmqCBdfdYheZtPn8f1o8ZTPx3eLkeGM01FRyowqnnLLM8sET0XBQBhlGSjGCBaKFMpQAji1XKSqJEtiUliSAgspCbAhmne-hTdrvQ1uY8Jee-P0seHDSpvQ5qtAAy9YRihnKi14BtKkFCRWllPAVnLZel11Xtvg33YQG732u1C38TWVOCUZZ1S0FO0oG3yMAUptXXPcuQnGVZpgfbiB_nmDVnT9S_Qd9Q-cdfiHq2D_L6vzPJ9Shjlln-GPlVU
CitedBy_id crossref_primary_10_3389_feart_2023_1149020
crossref_primary_10_3390_min13050701
crossref_primary_10_1080_00206814_2024_2309490
Cites_doi 10.1007/s00710-017-0509-z
10.1016/s0016-7037(98)00318-4
10.1029/2019jb019237
10.1007/s00410-014-1009-3
10.1016/j.gca.2014.02.006
10.1038/srep16878
10.1016/j.gca.2014.09.003
10.1111/j.1751-908x.2011.00117.x
10.1016/s0039-9140(99)00318-5
10.1029/jz069i004p00759
10.1016/j.epsl.2006.01.005
10.1016/j.chemgeo.2011.07.014
10.1016/j.chemgeo.2019.02.027
10.1016/j.lithos.2012.06.014
10.1016/j.gca.2018.05.029
10.1093/petrology/egp082
10.1130/g37712.1
10.1016/j.gca.2006.07.025
10.1180/minmag.1997.061.409.05
10.1016/j.oregeorev.2017.12.023
10.1016/j.gca.2018.08.021
10.1016/B0-08-043751-6/03016-4
10.1016/j.chemgeo.2008.06.021
10.2138/rmg.2017.82.6
10.1016/j.chemgeo.2006.12.003
10.1016/s0012-821x(02)00707-0
10.1016/j.gca.2004.03.031
10.1016/j.chemgeo.2015.06.029
10.7185/geochemlet.1726
10.1016/j.chemgeo.2018.03.002
10.1016/j.gca.2015.11.020
10.1016/j.lithos.2004.02.009
10.1007/978-3-319-01430-2
10.1016/s0016-7037(02)00924-9
10.2138/am.2006.2083
10.1016/j.gca.2009.10.016
10.7185/geochemlet.1807
10.2138/am-2001-5-607
10.1016/j.chemgeo.2004.08.008
10.1180/002646100549850
10.1016/s0016-7037(03)00174-1
10.2113/gscanmin.43.5.1643
10.1111/j.1751-908x.2005.tb00904.x
10.2138/gsrmg.55.1.153
10.1007/s00410-005-0049-0
10.1016/j.chemgeo.2011.02.002
10.1016/j.epsl.2007.08.005
10.1016/j.epsl.2009.08.026
10.1017/s0263593300000973
10.1016/s0012-821x(03)00348-0
10.1016/j.chemgeo.2014.09.004
10.1111/j.1755-6724.2012.00617.x
10.1016/j.chemgeo.2016.06.004
10.1016/j.chemgeo.2006.12.001
10.1127/0935-1221/2011/0023-2095
10.1007/bf01081387
10.1016/j.lithos.2011.11.014
ContentType Journal Article
Copyright 2023. The Authors.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7TG
7TN
7XB
88I
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M2O
M2P
MBDVC
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1029/2022GC010771
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library
Science Database
Research Library (Corporate)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e4d37124396d47e8a62e809c42e0c848
10_1029_2022GC010771
GGGE23042
Genre researchArticle
GrantInformation_xml – fundername: K.C.Wong Education Foundation
  funderid: GJTD‐2020‐13
– fundername: National Science Foundation of China
  funderid: 42073046
– fundername: CAS “Light of West China” Program
– fundername: Columbia Climate School for research
– fundername: High‐Level Overseas Talents of Guizhou Province
  funderid: [2020]03
GroupedDBID 05W
0R~
1OC
24P
31~
3V.
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WYJ
ZZTAW
~02
~OA
AAFWJ
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
7TG
7TN
7XB
8FK
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
H96
KL.
L.G
MBDVC
PKEHL
PQEST
PQUKI
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-a4342-df8729464c47c35465d3e5a9c3e93310591d9a21e06c4569f1b1a6eb1d05881e3
IEDL.DBID 24P
ISSN 1525-2027
IngestDate Wed Aug 27 01:32:26 EDT 2025
Wed Aug 13 05:28:43 EDT 2025
Tue Jul 01 03:16:08 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Jan 22 16:21:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4342-df8729464c47c35465d3e5a9c3e93310591d9a21e06c4569f1b1a6eb1d05881e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3971-6124
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GC010771
PQID 2806174325
PQPubID 54722
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_e4d37124396d47e8a62e809c42e0c848
proquest_journals_2806174325
crossref_citationtrail_10_1029_2022GC010771
crossref_primary_10_1029_2022GC010771
wiley_primary_10_1029_2022GC010771_GGGE23042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2006; 70
2018; 483
2018; 240
2017; 82
2017; 3
2007; 262
2004; 68
2000; 51
2012; 132–133
2020; 125
2017; 111
2014; 132
2005; 29
2001; 86
2018; 6
2011; 289
2004; 212
2016; 439
2015; 411
2019; 22
1987
2003; 3
2009; 287
2019; 510
2011; 23
2011; 284
2010; 74
2006; 243
2014; 167
2016; 44
2006; 91
2015; 5
1997; 61
2000; 64
2006; 151
2007
2005; 43
2005; 80
1964; 69
1999; 63
2012; 36
2003; 214
2012; 148
2009; 258
1988; 2
2004; 55
2007; 239
2004; 95
1973; 20
2007; 238
2002; 201
2002; 66
2018; 235
2016
2015
2011; 47
2018; 93
2014; 30
2014; 144
2016; 175
2010; 51
2012; 86
2003; 67
2014; 388
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
Chen Y.‐R. (e_1_2_9_9_1) 1988; 2
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Li S.‐T. (e_1_2_9_24_1) 2011; 47
Wu Y. L. (e_1_2_9_59_1) 1987
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
e_1_2_9_55_1
Mao J. (e_1_2_9_33_1) 2019
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Chi Q. (e_1_2_9_10_1) 2007
Dong S.‐H. (e_1_2_9_13_1) 2014; 30
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 167
  start-page: 1
  issue: 6
  year: 2014
  end-page: 8
  article-title: The key role of mica during igneous concentration of tantalum
  publication-title: Contributions to Mineralogy and Petrology
– volume: 510
  start-page: 56
  year: 2019
  end-page: 71
  article-title: Tracking chemical alteration in magmatic zircon using rare Earth element abundances
  publication-title: Chemical Geology
– start-page: 98
  year: 2007
  end-page: 115
– volume: 30
  start-page: 2749
  issue: 9
  year: 2014
  end-page: 2765
  article-title: Petrogenesis of the Yaogangxian granites and implications for W mineralization, Hunan Province
  publication-title: Acta Petrologica Sinica
– volume: 80
  start-page: 281
  issue: 1
  year: 2005
  end-page: 303
  article-title: Granitic pegmatites: An assessment of current concepts and directions for the future
  publication-title: Lithos
– start-page: 80
  year: 2015
  end-page: 81
– volume: 22
  start-page: 411
  year: 2019
  end-page: 482
– volume: 69
  start-page: 759
  issue: 4
  year: 1964
  end-page: 773
  article-title: The granite system at pressures of 4 to 10 kilobars
  publication-title: Journal of Geophysical Research
– volume: 93
  start-page: 382
  year: 2018
  end-page: 403
  article-title: In‐situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons: Implication for Jurassic granitoid‐related Cu‐Pb‐Zn and W mineralization in the Nanling Range, South China
  publication-title: Ore Geology Reviews
– volume: 95
  start-page: 125
  issue: 1–2
  year: 2004
  end-page: 140
  article-title: Low‐ and high‐temperature granites
  publication-title: Earth & Environmental Science Transactions of the Royal Society of Edinburgh
– volume: 66
  start-page: 3293
  issue: 18
  year: 2002
  end-page: 3301
  article-title: Melt composition control of Zr/Hf fractionation in magmatic processes
  publication-title: Geochimica et Cosmochimica Acta
– volume: 51
  start-page: 537
  issue: 1–2
  year: 2010
  end-page: 571
  article-title: Continental and oceanic crust recycling‐induced melt–peridotite interactions in the trans‐North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle Xenoliths
  publication-title: Journal of Petrology
– volume: 44
  start-page: 655
  issue: 8
  year: 2016
  end-page: 658
  article-title: Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium‐cesium‐tantalum pegmatites
  publication-title: Geology
– volume: 439
  start-page: 71
  year: 2016
  end-page: 82
  article-title: Lithium isotope fractionation during incongruent melting: Constraints from post‐collisional leucogranite and residual enclaves from Bengbu Uplift, China
  publication-title: Chemical Geology
– volume: 238
  start-page: 277
  issue: 3–4
  year: 2007
  end-page: 290
  article-title: Lithium isotope fractionation between Li‐bearing staurolite, Li‐mica and aqueous fluids: An experimental study
  publication-title: Chemical Geology
– volume: 67
  start-page: 3905
  issue: 20
  year: 2003
  end-page: 3923
  article-title: Isotope fractionation by chemical diffusion between molten basalt and rhyolite
  publication-title: Geochimica et Cosmochimica Acta
– volume: 258
  start-page: 78
  issue: 1
  year: 2009
  end-page: 91
  article-title: Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation
  publication-title: Chemical Geology
– volume: 6
  start-page: 39
  year: 2018
  end-page: 42
  article-title: Diffusive fractionation of Li isotopes in wet, highly silicic melts
  publication-title: Geochemical Perspectives Letters
– volume: 287
  start-page: 434
  issue: 3–4
  year: 2009
  end-page: 441
  article-title: The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland
  publication-title: Earth and Planetary Science Letters
– volume: 289
  start-page: 76
  issue: 1
  year: 2011
  end-page: 85
  article-title: The behavior of lithium in amphibolite‐to granulite‐facies rocks of the Ivrea–Verbano Zone, NW Italy
  publication-title: Chemical Geology
– volume: 239
  start-page: 1
  issue: 1–2
  year: 2007
  end-page: 12
  article-title: Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine
  publication-title: Chemical Geology
– volume: 240
  start-page: 64
  year: 2018
  end-page: 79
  article-title: Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare‐metal granites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 132–133
  start-page: 21
  year: 2012
  end-page: 36
  article-title: Significant Li isotope fractionation in geochemically evolved rare element‐bearing pegmatites from the little Nahanni Pegmatite Group, NWT, Canada
  publication-title: Lithos
– volume: 47
  start-page: 143
  issue: 02
  year: 2011
  end-page: 150
  article-title: Chronological characteristics of the Yaogangxian composite pluton in Hunan Province
  publication-title: Geology and Exploration
– volume: 125
  issue: 5
  year: 2020
  article-title: Trace elements and Li isotope compositions across the Kamchatka arc: Constraints on slab‐derived fluid sources
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 70
  start-page: 4813
  issue: 18
  year: 2006
  end-page: 4825
  article-title: Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 5
  issue: 1
  year: 2015
  article-title: Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora)
  publication-title: Scientific Reports
– volume: 214
  start-page: 327
  issue: 1–2
  year: 2003
  end-page: 339
  article-title: Lithium‐isotope fractionation during continental weathering processes
  publication-title: Earth and Planetary Science Letters
– volume: 111
  start-page: 435
  issue: 4
  year: 2017
  end-page: 457
  article-title: Zircon and whole‐rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany)
  publication-title: Mineralogy and Petrology
– volume: 43
  start-page: 1643
  issue: 5
  year: 2005
  end-page: 1651
  article-title: The structure of lithium‐containing silicate and germanate glasses
  publication-title: The Canadian Mineralogist
– volume: 82
  start-page: 165
  issue: 1
  year: 2017
  end-page: 217
  article-title: Lithium isotope geochemistry
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 212
  start-page: 45
  issue: 1
  year: 2004
  end-page: 57
  article-title: Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina
  publication-title: Chemical Geology
– volume: 2
  start-page: 62
  issue: 1
  year: 1988
  end-page: 72
  article-title: Geological and geochemical characteristics and diagenetic‐minerogenetic processes of Yaogangxian granite
  publication-title: Mineral Resources and Geology
– volume: 144
  start-page: 43
  year: 2014
  end-page: 58
  article-title: Sedimentary input to the source of Lesser Antilles lavas: A Li perspective
  publication-title: Geochimica et Cosmochimica Acta
– volume: 411
  start-page: 97
  year: 2015
  end-page: 111
  article-title: The Genesis of LCT‐type granitic pegmatites, as illustrated by lithium isotopes in micas
  publication-title: Chemical Geology
– volume: 51
  start-page: 507
  issue: 3
  year: 2000
  end-page: 513
  article-title: Determination of trace elements in granites by inductively coupled plasma mass spectrometry
  publication-title: Talanta
– volume: 175
  start-page: 299
  year: 2016
  end-page: 318
  article-title: Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe‐Ankole Belt (Rwanda)
  publication-title: Geochimica et Cosmochimica Acta
– volume: 235
  start-page: 360
  year: 2018
  end-page: 375
  article-title: Equilibrium lithium isotope fractionation in Li‐bearing minerals
  publication-title: Geochimica et Cosmochimica Acta
– volume: 61
  start-page: 809
  issue: 6
  year: 1997
  end-page: 834
  article-title: On Li‐bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation
  publication-title: Mineralogical Magazine
– year: 1987
– volume: 36
  start-page: 75
  issue: 1
  year: 2012
  end-page: 81
  article-title: Lithium isotope composition of ultramafic geological reference materials JP‐1 and DTS‐2
  publication-title: Geostandards and Geoanalytical Research
– volume: 483
  start-page: 372
  year: 2018
  end-page: 384
  article-title: Lithium isotope behavior during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F‐rich granite and associated rare‐metal mineralization
  publication-title: Chemical Geology
– volume: 55
  start-page: 153
  issue: 1
  year: 2004
  end-page: 195
  article-title: Developments in the understanding and application of lithium isotopes in the Earth and planetary Sciences
  publication-title: Reviews in Mineralogy and Geochemistry
– year: 2016
– volume: 201
  start-page: 187
  issue: 1
  year: 2002
  end-page: 201
  article-title: Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater–basalt exchange at ODP sites 504B and 896A
  publication-title: Earth and Planetary Science Letters
– volume: 74
  start-page: 274
  issue: 1
  year: 2010
  end-page: 292
  article-title: Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model
  publication-title: Geochimica et Cosmochimica Acta
– volume: 132
  start-page: 349
  year: 2014
  end-page: 374
  article-title: Alkali metal and rare Earth element evolution of rock‐forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal‐melt fractionation in the regional zonation of pegmatite groups
  publication-title: Geochimica et Cosmochimica Acta
– volume: 91
  start-page: 1488
  issue: 10
  year: 2006
  end-page: 1498
  article-title: Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota
  publication-title: American Mineralogist
– volume: 284
  start-page: 26
  issue: 1
  year: 2011
  end-page: 34
  article-title: Lithium isotope fractionation during magma degassing: Constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island)
  publication-title: Chemical Geology
– volume: 23
  start-page: 333
  issue: 3
  year: 2011
  end-page: 342
  article-title: Li‐isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment
  publication-title: European Journal of Mineralogy
– volume: 3
  start-page: 1
  year: 2003
  end-page: 64
– volume: 29
  start-page: 333
  issue: 3
  year: 2005
  end-page: 338
  article-title: GeoReM: A new geochemical database for reference materials and isotopic standards
  publication-title: Geostandards and Geoanalytical Research
– volume: 243
  start-page: 336
  issue: 3–4
  year: 2006
  end-page: 353
  article-title: New constraints on the lithium isotope compositions of the Moon and terrestrial planets
  publication-title: Earth and Planetary Science Letters
– volume: 63
  start-page: 907
  issue: 6
  year: 1999
  end-page: 910
  article-title: The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP‐MS
  publication-title: Geochimica et Cosmochimica Acta
– volume: 388
  start-page: 98
  issue: 0
  year: 2014
  end-page: 111
  article-title: Neoproterozoic boninite‐series rocks in South China: A depleted mantle source modified by sediment‐derived melt
  publication-title: Chemical Geology
– volume: 3
  start-page: 230
  issue: 2
  year: 2017
  end-page: 236
  article-title: Global climate stabilisation by chemical weathering during the Hirnantian glaciation
  publication-title: Geochemical Perspectives Letters
– volume: 20
  start-page: 107
  issue: 2
  year: 1973
  end-page: 130
  article-title: Experimental studies of granitoids from the central and southern coast ranges, California
  publication-title: Tschermaks Mineralogische und Petrographische Mitteilungen
– volume: 86
  start-page: 131
  issue: 1
  year: 2012
  end-page: 152
  article-title: Petrogenesis of the Xihuashan granite in southern Jiangxi Province, South China: Constraints from zircon U‐Pb geochronology, geochemistry and Nd isotopes
  publication-title: Acta Geologica Sinica‐English Edition
– volume: 68
  start-page: 4167
  issue: 20
  year: 2004
  end-page: 4178
  article-title: Lithium isotopic composition and concentration of the upper continental crust
  publication-title: Geochimica et Cosmochimica Acta
– volume: 86
  start-page: 667
  issue: 5–6
  year: 2001
  end-page: 680
  article-title: Rare Earth elements in synthetic zircon: Part 1. Synthesis, and rare Earth element and phosphorus doping
  publication-title: American Mineralogist
– volume: 262
  start-page: 563
  issue: 3
  year: 2007
  end-page: 580
  article-title: The lithium isotopic composition of orogenic eclogites and deep subducted slabs
  publication-title: Earth and Planetary Science Letters
– volume: 148
  start-page: 209
  year: 2012
  end-page: 227
  article-title: Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in‐situ analyses of zircon U‐Pb‐Hf‐O isotopes
  publication-title: Lithos
– volume: 64
  start-page: 867
  issue: 5
  year: 2000
  end-page: 877
  article-title: Chemistry of Hf‐rich zircons from the Laoshan I‐ and A‐type granites, Eastern China
  publication-title: Mineralogical Magazine
– volume: 151
  start-page: 112
  issue: 1
  year: 2006
  end-page: 120
  article-title: Temperature‐dependent isotopic fractionation of lithium between clinopyroxene and high‐pressure hydrous fluids
  publication-title: Contributions to Mineralogy and Petrology
– ident: e_1_2_9_5_1
  doi: 10.1007/s00710-017-0509-z
– ident: e_1_2_9_54_1
  doi: 10.1016/s0016-7037(98)00318-4
– ident: e_1_2_9_26_1
  doi: 10.1029/2019jb019237
– start-page: 411
  volume-title: Geology and metallogeny of tungsten and tin deposits in China
  year: 2019
  ident: e_1_2_9_33_1
– ident: e_1_2_9_45_1
  doi: 10.1007/s00410-014-1009-3
– ident: e_1_2_9_20_1
  doi: 10.1016/j.gca.2014.02.006
– ident: e_1_2_9_15_1
  doi: 10.1038/srep16878
– ident: e_1_2_9_47_1
  doi: 10.1016/j.gca.2014.09.003
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1751-908x.2011.00117.x
– ident: e_1_2_9_38_1
  doi: 10.1016/s0039-9140(99)00318-5
– ident: e_1_2_9_30_1
  doi: 10.1029/jz069i004p00759
– ident: e_1_2_9_32_1
  doi: 10.1016/j.epsl.2006.01.005
– ident: e_1_2_9_39_1
  doi: 10.1016/j.chemgeo.2011.07.014
– ident: e_1_2_9_4_1
  doi: 10.1016/j.chemgeo.2019.02.027
– ident: e_1_2_9_16_1
  doi: 10.1016/j.lithos.2012.06.014
– ident: e_1_2_9_27_1
  doi: 10.1016/j.gca.2018.05.029
– volume-title: Geology of the Xihuashan tungsten ore field
  year: 1987
  ident: e_1_2_9_59_1
– volume: 2
  start-page: 62
  issue: 1
  year: 1988
  ident: e_1_2_9_9_1
  article-title: Geological and geochemical characteristics and diagenetic‐minerogenetic processes of Yaogangxian granite
  publication-title: Mineral Resources and Geology
– ident: e_1_2_9_28_1
  doi: 10.1093/petrology/egp082
– ident: e_1_2_9_31_1
  doi: 10.1130/g37712.1
– ident: e_1_2_9_3_1
  doi: 10.1016/j.gca.2006.07.025
– ident: e_1_2_9_51_1
  doi: 10.1180/minmag.1997.061.409.05
– ident: e_1_2_9_64_1
  doi: 10.1016/j.oregeorev.2017.12.023
– ident: e_1_2_9_23_1
  doi: 10.1016/j.gca.2018.08.021
– ident: e_1_2_9_41_1
  doi: 10.1016/B0-08-043751-6/03016-4
– ident: e_1_2_9_43_1
  doi: 10.1016/j.chemgeo.2008.06.021
– start-page: 98
  volume-title: Handbook of elemental abundance for applied geochemistry (in Chinese)
  year: 2007
  ident: e_1_2_9_10_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_35_1
  doi: 10.2138/rmg.2017.82.6
– ident: e_1_2_9_50_1
  doi: 10.1016/j.chemgeo.2006.12.003
– ident: e_1_2_9_6_1
  doi: 10.1016/s0012-821x(02)00707-0
– ident: e_1_2_9_48_1
  doi: 10.1016/j.gca.2004.03.031
– ident: e_1_2_9_11_1
  doi: 10.1016/j.chemgeo.2015.06.029
– ident: e_1_2_9_57_1
  doi: 10.7185/geochemlet.1726
– ident: e_1_2_9_8_1
  doi: 10.1016/j.chemgeo.2018.03.002
– ident: e_1_2_9_19_1
  doi: 10.1016/j.gca.2015.11.020
– ident: e_1_2_9_29_1
  doi: 10.1016/j.lithos.2004.02.009
– ident: e_1_2_9_53_1
  doi: 10.1007/978-3-319-01430-2
– ident: e_1_2_9_25_1
  doi: 10.1016/s0016-7037(02)00924-9
– ident: e_1_2_9_49_1
  doi: 10.2138/am.2006.2083
– ident: e_1_2_9_12_1
  doi: 10.1016/j.gca.2009.10.016
– volume: 30
  start-page: 2749
  issue: 9
  year: 2014
  ident: e_1_2_9_13_1
  article-title: Petrogenesis of the Yaogangxian granites and implications for W mineralization, Hunan Province
  publication-title: Acta Petrologica Sinica
– ident: e_1_2_9_18_1
  doi: 10.7185/geochemlet.1807
– ident: e_1_2_9_17_1
  doi: 10.2138/am-2001-5-607
– ident: e_1_2_9_42_1
  doi: 10.1016/j.chemgeo.2004.08.008
– ident: e_1_2_9_58_1
  doi: 10.1180/002646100549850
– ident: e_1_2_9_40_1
  doi: 10.1016/s0016-7037(03)00174-1
– ident: e_1_2_9_44_1
  doi: 10.2113/gscanmin.43.5.1643
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1751-908x.2005.tb00904.x
– ident: e_1_2_9_52_1
  doi: 10.2138/gsrmg.55.1.153
– volume: 47
  start-page: 143
  issue: 02
  year: 2011
  ident: e_1_2_9_24_1
  article-title: Chronological characteristics of the Yaogangxian composite pluton in Hunan Province
  publication-title: Geology and Exploration
– ident: e_1_2_9_61_1
  doi: 10.1007/s00410-005-0049-0
– ident: e_1_2_9_56_1
  doi: 10.1016/j.chemgeo.2011.02.002
– ident: e_1_2_9_34_1
  doi: 10.1016/j.epsl.2007.08.005
– ident: e_1_2_9_55_1
  doi: 10.1016/j.epsl.2009.08.026
– ident: e_1_2_9_7_1
  doi: 10.1017/s0263593300000973
– ident: e_1_2_9_36_1
  doi: 10.1016/s0012-821x(03)00348-0
– ident: e_1_2_9_65_1
  doi: 10.1016/j.chemgeo.2014.09.004
– ident: e_1_2_9_63_1
  doi: 10.1111/j.1755-6724.2012.00617.x
– ident: e_1_2_9_46_1
  doi: 10.1016/j.chemgeo.2016.06.004
– ident: e_1_2_9_60_1
  doi: 10.1016/j.chemgeo.2006.12.001
– ident: e_1_2_9_62_1
  doi: 10.1127/0935-1221/2011/0023-2095
– ident: e_1_2_9_37_1
  doi: 10.1007/bf01081387
– ident: e_1_2_9_2_1
  doi: 10.1016/j.lithos.2011.11.014
SSID ssj0014558
Score 2.422287
Snippet The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits....
Abstract The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crystallization
Equilibrium
Feldspars
Fractionation
Granite
Igneous rocks
Isotope composition
Isotope fractionation
Isotopes
Lava
Lithium
Lithium isotopes
Magma
magmatic differentiation
Metals
Mineralization
Minerals
Plutons
Quartz
Silica
Tungsten
tungsten deposit
Zircon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4ikCBXmACSISPxJ7BNqkINqJSt0sx3agErRVmw78e2wnrdoBWFijG6z7ktx3vscHwBUr01IRU1oEKA1JzJKQae3acpQqbQRXiXKDwr1-0h2Q5yEdrkl9uZ6wej1w7bg7QzRObRDCPNEkNUwmyLCIK4JMpBjxY7425i2TqaZ-QChlTZt7hLjL8FHuZKzTNN4IQH5P_wa5XKeoPsZk-2CvIYfwvj7UAdgy40Owk3vx3a8j0H8ZVe-jxSd8mk-qydTAbFaPJXjvwrafOISrpnSY2bg3UrAn3_xeVthuxFCqGo5jMMg6r4_dsNFDCCXBBIW6ZJYKk4QokirsVMw1NlRyhQ3H2BGlWHOJYhMlyvIiXsZFLBP7M9YRZSw2-ARsjydjcwoglkURY6psMoOJpQQ8lUoyo7i7EtJGBuBm6SShmmXhTrPiQ_iiNeJi3aUBuF5ZT-slGT_YPTh_r2zcamv_wAIuGsDFX4AHoLVESzTf21y4-rDLrRANwK1H8NeDiDzPO-46HJ39x5HOwa5Toa8belpgu5otzIXlKlVx6V_Lb7SC3_g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaUKVeEPShLo_Kh3KCqIkfiX1CPHZDEawqVCRukXfswEqwWXbDgX-Px_Fu4QDXyIqsGXvm87w-Qn6puqhBuNprQMpEZCpPlLVYlgNQew8OOWCj8MUwP70SZ9fyOgbc5rGscmETg6G2DWCM_DdmABE9M3kwfUiQNQqzq5FC4yNZ9SZY-cfX6lF_-PdymUcQUqpY7p4yjS99ViKddVFkrxxRmNf_CmS-hKrB1wzWyVoEifSw0-oG-eAmX8inMpDwPn0lw_Nxezt-vKd_5k3bTB0dzLr2hCBlehI6D-myOJ0OvP8bA70wN2E-Kz2JpChtp5Zv5GrQ_3d8mkRehMQILlhia-UhscgFiAI4splb7qTRwJ3mHAFTZrVhmUtz8PhI19koM7k3yjaVSmWOfycrk2bifhDKzWiUcQn-UcOFhwa6MGCUA42hIetMj-wthFRBHBqO3BV3VUheM129FGmP7C5XT7thGW-sO0J5L9fgiOvwoZndVPHGVE5YXnj0wXVuReGUyZlTqQbBXApKqB7ZXmirivduXv0_JT2yHzT47kaqsiz7GBZnm-__bYt8Rp75rmRnm6y0s0e349FIO_oZj9wzrSnZwQ
  priority: 102
  providerName: ProQuest
Title Lithium Isotope Fractionation During Intensive Felsic Magmatic Differentiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GC010771
https://www.proquest.com/docview/2806174325
https://doaj.org/article/e4d37124396d47e8a62e809c42e0c848
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7iELyIP3E6Rw560uKapG1ydLp1ig4RBW8lTVId6Da27uB_b16alXlQ8FoSaN9r8r6XvPd9CJ3yIikUM4X1QBQFLORxwLWGshylChvBVaygUfhhGA9e2N1r9OoP3KAXpuKHqA_cYGW4_RoWuMznnmwAODJt1k5SkKZOoIW8Ad21wJ1P2GN9i8Aip88JEj8BJPm-8N3Ov1yd_SMkOeb-H3BzFbS6qNPfRlseLuKryr87aM2Md9FG6uR4v_bQ8H5Uvo8Wn_h2PiknU4P7s6pRwdkb37geRFyXqeO-jYQjhR_km2NqxTdeHqWsHLSPXvq95-tB4BUSAskoI4EuuAXH9sMVSxQFXXNNTSSFokZQCtAp1EKS0HRiZZGSKMI8lLHdnnUn4jw09ACtjydjc4gwlXke0kjZ9IYyCxJEIpXkRgk4JNJGNtH50kiZ8vThoGLxkblrbCKyVZM20Vk9elrRZvwyrgv2rscA2bV7MJm9ZX7tZIZpmlgcQkWsWWK4jInhHaEYMR3FGW-i1tJbmV-B8wxujCHbIlETXTgP_vkiWZqmPTggJ0f_G36MNkGBvirmaaH1crYwJxanlHnb_Yxt1Oj2ho9PbZftfwO4fd0P
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAguqLxE2gI-0BOs2PVj1z4gRJtkE5pECLVSb8axvSUSzabJVqh_it-I7d0N7YHeel1Z1mpm7PlmPDMfwDteZIWmtnAaYCyiCU8jbowvy9G6cB5cp9o3Ck-m6fCUfj1jZ1vwp-2F8WWV7Z0YLmpTap8j_-hfAD16xuzz8jLyrFH-dbWl0KjN4the_3Yh2_rTqOf0e4DxoH9yNIwaVoFIUUJxZAruACVNqaaZJp4L3BDLlNDEuuDew43ECIUTG6faoQtRJLNEpe5KMzHjPLHE7fsAtilxoUwHtg_702_fN-8WlDHelNfHWPjMAs49fXaWJbccX-AHuAVqb0Lj4NsGO_CkAaXoS21FT2HLLp7BwzyQ_l4_h-l4Xv2cX12g0bqsyqVFg1XdDhG0inqh0xFtiuHRwPnbuUYTdR7mwaJeQ8JS1WbwAk7vRWIvobMoF_YVIKJms4Qw7YIoQh0UEZnSilstfCrKWNWF962QpG6GlHuujF8yPJZjIW-KtAsHm9XLejjHf9Ydenlv1viR2uFDuTqXzQmVlhqSObRDRGpoZrlKseWx0BTbWHPKu7Dfaks253wt_1llFz4EDd75IzLP875Pw-Pdu3d7C4-GJ5OxHI-mx3vw2HPc1-VC-9CpVlf2tUNC1exNY34Ifty3xf8FA24Uew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRa16qfoUSyn1oZzaiMSPxD6gqrCbsAVWqCoSt9RrO3SldrPsBiH-Wn9dbcfZwqHcuEaWFc2MPd-MZ-YD-MCrrFLUVFYDjEU04WnEtXZlOUpV1oOrVLlG4ZNxenhGv56z8zX40_XCuLLK7k70F7WulcuR77oXQIeeMdutQlnE6SD_PL-MHIOUe2nt6DRaEzkyN9c2fFvujQZW1zsY58PvB4dRYBiIJCUUR7riFlzSlCqaKeJ4wTUxTApFjA30HfRItJA4MXGqLNIQVTJJZGqvNx0zzhND7L6PYD2zUVHcg_X94fj02-oNgzLGQ6l9jIXLMuDCUWlnWXLHCXqugDsA9zZM9n4ufw7PAkBFX1qLegFrZvYSHheeAPjmFYyPp83P6dVvNFrWTT03KF-0rRFew2jgux7RqjAe5db3ThU6kRd-NiwaBEKWpjWJ13D2IBJ7A71ZPTMbgIicTBLClA2oCLWwRGRSSW6UcGkpbWQfPnZCKlUYWO54M36V_uEci_K2SPuws1o9bwd1_GfdvpP3ao0br-0_1IuLMpzW0lBNMot8iEg1zQyXKTY8FopiEytOeR-2Om2V4cwvy38W2odPXoP3_khZFMXQpeTx5v27vYcn1tLL49H46C08dXT3beXQFvSaxZV5Z0FRM9kO1ofgx0Mb_F8SqRiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Isotope+Fractionation+During+Intensive+Felsic+Magmatic+Differentiation&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Yang%2C+Jie%E2%80%90Hua&rft.au=Chen%2C+Heng&rft.au=Zhou%2C+Mei%E2%80%90Fu&rft.au=Hu%2C+Rui%E2%80%90Zhong&rft.date=2023-04-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=24&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022GC010771&rft.externalDBID=10.1029%252F2022GC010771&rft.externalDocID=GGGE23042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon