Lithium Isotope Fractionation During Intensive Felsic Magmatic Differentiation
The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 24; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.04.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization.
Plain Language Summary
In the past, magmatic differentiation was thought not to produce resolvable Li isotopic fractionation based on studies of basaltic rocks. Overall, only sparse studies on Li isotopes of highly evolved granites have been reported, and thus possible isotope fractionation of Li isotopes during differentiation of felsic magma could have been neglected. In this study, we present evidence of Li isotope fractionation during the differentiation of granitic magma. The most evolved (late‐stage) rare‐metal‐rich granites are systematically enriched in heavier Li isotopes. The chemical and isotopic compositions of both bulk rocks and mineral separates (e.g., zircon and mica) indicate that equilibrium fractionation during fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the residual melts. Our quantitative modeling also supports the equilibrium fractionation between minerals and magma as the primary mechanism for the observed Li isotopic variations.
Key Points
Large Li isotopic fractionations are observed in rare‐metal‐rich peraluminous granites
Fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the highly evolved granites
Lithium isotopes provide new insights into the granitic magmatic differentiation process and rare‐metal mineralization |
---|---|
AbstractList | The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ
7
Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ
7
Li shows good correlations with SiO
2
and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ
7
Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of
7
Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization.
In the past, magmatic differentiation was thought not to produce resolvable Li isotopic fractionation based on studies of basaltic rocks. Overall, only sparse studies on Li isotopes of highly evolved granites have been reported, and thus possible isotope fractionation of Li isotopes during differentiation of felsic magma could have been neglected. In this study, we present evidence of Li isotope fractionation during the differentiation of granitic magma. The most evolved (late‐stage) rare‐metal‐rich granites are systematically enriched in heavier Li isotopes. The chemical and isotopic compositions of both bulk rocks and mineral separates (e.g., zircon and mica) indicate that equilibrium fractionation during fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the residual melts. Our quantitative modeling also supports the equilibrium fractionation between minerals and magma as the primary mechanism for the observed Li isotopic variations.
Large Li isotopic fractionations are observed in rare‐metal‐rich peraluminous granites
Fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the highly evolved granites
Lithium isotopes provide new insights into the granitic magmatic differentiation process and rare‐metal mineralization Abstract The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization. The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization. The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits. The δ7Li values of Phase A (early stage), B (middle stage), and C (late stage) from the Xihuashan pluton are 1.0–1.2‰, 1.1–3.0‰, and 2.4–2.8‰ respectively, increasing through chemical evolution. The granites from the Yaogangxian pluton also display gradually enriched in heavy Li isotopes in a later stage, although systematically lighter than those of the Xihuashan pluton. In both plutons, the δ7Li shows good correlations with SiO2 and Li concentrations as well as Rb/Sr, Nb/Ta, and Zr/Hf ratios, indicating Li isotopic fractionation most likely caused by magmatic differentiation. In situ analyses show that the minerals of Xihuashan pluton record a continuous elemental spectrum, reflecting the results of progressive magmatic differentiation. The δ7Li values of quartz, feldspar, mica, and zircon all correlate well with the chemical evolutions of granitic magma, systematically elevated in Phases B and C relative to Phase A. The Li isotope data of the mineral separates further document that the enrichment of 7Li in the residual melt was most likely due to the equilibrium fractionation between the mineral and melts. The data are interpreted to reflect that intense magmatic differentiation was responsible for Li isotopic variations coupled with the enrichment in the Li, F, P, and rare metals in the late‐phase granites of the Xihuashan pluton. The lithium isotope behavior documented in this study provides new insights into magmatic differentiation and associated rare‐metal mineralization. Plain Language Summary In the past, magmatic differentiation was thought not to produce resolvable Li isotopic fractionation based on studies of basaltic rocks. Overall, only sparse studies on Li isotopes of highly evolved granites have been reported, and thus possible isotope fractionation of Li isotopes during differentiation of felsic magma could have been neglected. In this study, we present evidence of Li isotope fractionation during the differentiation of granitic magma. The most evolved (late‐stage) rare‐metal‐rich granites are systematically enriched in heavier Li isotopes. The chemical and isotopic compositions of both bulk rocks and mineral separates (e.g., zircon and mica) indicate that equilibrium fractionation during fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the residual melts. Our quantitative modeling also supports the equilibrium fractionation between minerals and magma as the primary mechanism for the observed Li isotopic variations. Key Points Large Li isotopic fractionations are observed in rare‐metal‐rich peraluminous granites Fractional crystallization governs Li isotopic behavior and enriches heavier Li isotopes in the highly evolved granites Lithium isotopes provide new insights into the granitic magmatic differentiation process and rare‐metal mineralization |
Author | Yang, Jie‐Hua Chen, Heng Zhou, Mei‐Fu Hu, Rui‐Zhong Williams‐Jones, Anthony E. |
Author_xml | – sequence: 1 givenname: Jie‐Hua surname: Yang fullname: Yang, Jie‐Hua email: yangjiehua@vip.gyig.ac.cn organization: Chinese Academy of Sciences – sequence: 2 givenname: Heng orcidid: 0000-0002-3971-6124 surname: Chen fullname: Chen, Heng email: hengchen@ldeo.columbia.edu organization: Columbia University – sequence: 3 givenname: Mei‐Fu surname: Zhou fullname: Zhou, Mei‐Fu organization: Chinese Academy of Sciences – sequence: 4 givenname: Rui‐Zhong surname: Hu fullname: Hu, Rui‐Zhong organization: Chinese Academy of Sciences – sequence: 5 givenname: Anthony E. surname: Williams‐Jones fullname: Williams‐Jones, Anthony E. organization: McGill University |
BookMark | eNp9kU1LAzEQhoNUsK3e_AELXq3mczc5Sj_WQtWLnkOana0p201Ntkr_vduuggh6yYSZ5315hxmgXu1rQOiS4BuCqbqlmNJ8jAnOMnKC-kRQMWp7We_H_wwNYlxjTLgQso8eF655dbtNMo--8VtIZsHYxvnaHJ5ksguuXiXzuoE6uvd2DFV0Nnkwq01L2GTiyhIC1I07Cs7RaWmqCBdfdYheZtPn8f1o8ZTPx3eLkeGM01FRyowqnnLLM8sET0XBQBhlGSjGCBaKFMpQAji1XKSqJEtiUliSAgspCbAhmne-hTdrvQ1uY8Jee-P0seHDSpvQ5qtAAy9YRihnKi14BtKkFCRWllPAVnLZel11Xtvg33YQG732u1C38TWVOCUZZ1S0FO0oG3yMAUptXXPcuQnGVZpgfbiB_nmDVnT9S_Qd9Q-cdfiHq2D_L6vzPJ9Shjlln-GPlVU |
CitedBy_id | crossref_primary_10_3389_feart_2023_1149020 crossref_primary_10_3390_min13050701 crossref_primary_10_1080_00206814_2024_2309490 |
Cites_doi | 10.1007/s00710-017-0509-z 10.1016/s0016-7037(98)00318-4 10.1029/2019jb019237 10.1007/s00410-014-1009-3 10.1016/j.gca.2014.02.006 10.1038/srep16878 10.1016/j.gca.2014.09.003 10.1111/j.1751-908x.2011.00117.x 10.1016/s0039-9140(99)00318-5 10.1029/jz069i004p00759 10.1016/j.epsl.2006.01.005 10.1016/j.chemgeo.2011.07.014 10.1016/j.chemgeo.2019.02.027 10.1016/j.lithos.2012.06.014 10.1016/j.gca.2018.05.029 10.1093/petrology/egp082 10.1130/g37712.1 10.1016/j.gca.2006.07.025 10.1180/minmag.1997.061.409.05 10.1016/j.oregeorev.2017.12.023 10.1016/j.gca.2018.08.021 10.1016/B0-08-043751-6/03016-4 10.1016/j.chemgeo.2008.06.021 10.2138/rmg.2017.82.6 10.1016/j.chemgeo.2006.12.003 10.1016/s0012-821x(02)00707-0 10.1016/j.gca.2004.03.031 10.1016/j.chemgeo.2015.06.029 10.7185/geochemlet.1726 10.1016/j.chemgeo.2018.03.002 10.1016/j.gca.2015.11.020 10.1016/j.lithos.2004.02.009 10.1007/978-3-319-01430-2 10.1016/s0016-7037(02)00924-9 10.2138/am.2006.2083 10.1016/j.gca.2009.10.016 10.7185/geochemlet.1807 10.2138/am-2001-5-607 10.1016/j.chemgeo.2004.08.008 10.1180/002646100549850 10.1016/s0016-7037(03)00174-1 10.2113/gscanmin.43.5.1643 10.1111/j.1751-908x.2005.tb00904.x 10.2138/gsrmg.55.1.153 10.1007/s00410-005-0049-0 10.1016/j.chemgeo.2011.02.002 10.1016/j.epsl.2007.08.005 10.1016/j.epsl.2009.08.026 10.1017/s0263593300000973 10.1016/s0012-821x(03)00348-0 10.1016/j.chemgeo.2014.09.004 10.1111/j.1755-6724.2012.00617.x 10.1016/j.chemgeo.2016.06.004 10.1016/j.chemgeo.2006.12.001 10.1127/0935-1221/2011/0023-2095 10.1007/bf01081387 10.1016/j.lithos.2011.11.014 |
ContentType | Journal Article |
Copyright | 2023. The Authors. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ GUQSH H96 HCIFZ KL. L.G M2O M2P MBDVC PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U DOA |
DOI | 10.1029/2022GC010771 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Science Database Research Library (Corporate) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e4d37124396d47e8a62e809c42e0c848 10_1029_2022GC010771 GGGE23042 |
Genre | researchArticle |
GrantInformation_xml | – fundername: K.C.Wong Education Foundation funderid: GJTD‐2020‐13 – fundername: National Science Foundation of China funderid: 42073046 – fundername: CAS “Light of West China” Program – fundername: Columbia Climate School for research – fundername: High‐Level Overseas Talents of Guizhou Province funderid: [2020]03 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 3V. 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD WYJ ZZTAW ~02 ~OA AAFWJ AAYXX AGQPQ CITATION PHGZM PHGZT 7TG 7TN 7XB 8FK AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W H96 KL. L.G MBDVC PKEHL PQEST PQUKI Q9U WIN PUEGO |
ID | FETCH-LOGICAL-a4342-df8729464c47c35465d3e5a9c3e93310591d9a21e06c4569f1b1a6eb1d05881e3 |
IEDL.DBID | 24P |
ISSN | 1525-2027 |
IngestDate | Wed Aug 27 01:32:26 EDT 2025 Wed Aug 13 05:28:43 EDT 2025 Tue Jul 01 03:16:08 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Jan 22 16:21:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4342-df8729464c47c35465d3e5a9c3e93310591d9a21e06c4569f1b1a6eb1d05881e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3971-6124 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GC010771 |
PQID | 2806174325 |
PQPubID | 54722 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4d37124396d47e8a62e809c42e0c848 proquest_journals_2806174325 crossref_citationtrail_10_1029_2022GC010771 crossref_primary_10_1029_2022GC010771 wiley_primary_10_1029_2022GC010771_GGGE23042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2006; 70 2018; 483 2018; 240 2017; 82 2017; 3 2007; 262 2004; 68 2000; 51 2012; 132–133 2020; 125 2017; 111 2014; 132 2005; 29 2001; 86 2018; 6 2011; 289 2004; 212 2016; 439 2015; 411 2019; 22 1987 2003; 3 2009; 287 2019; 510 2011; 23 2011; 284 2010; 74 2006; 243 2014; 167 2016; 44 2006; 91 2015; 5 1997; 61 2000; 64 2006; 151 2007 2005; 43 2005; 80 1964; 69 1999; 63 2012; 36 2003; 214 2012; 148 2009; 258 1988; 2 2004; 55 2007; 239 2004; 95 1973; 20 2007; 238 2002; 201 2002; 66 2018; 235 2016 2015 2011; 47 2018; 93 2014; 30 2014; 144 2016; 175 2010; 51 2012; 86 2003; 67 2014; 388 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_54_1 Chen Y.‐R. (e_1_2_9_9_1) 1988; 2 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Li S.‐T. (e_1_2_9_24_1) 2011; 47 Wu Y. L. (e_1_2_9_59_1) 1987 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_32_1 e_1_2_9_55_1 Mao J. (e_1_2_9_33_1) 2019 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Chi Q. (e_1_2_9_10_1) 2007 Dong S.‐H. (e_1_2_9_13_1) 2014; 30 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 167 start-page: 1 issue: 6 year: 2014 end-page: 8 article-title: The key role of mica during igneous concentration of tantalum publication-title: Contributions to Mineralogy and Petrology – volume: 510 start-page: 56 year: 2019 end-page: 71 article-title: Tracking chemical alteration in magmatic zircon using rare Earth element abundances publication-title: Chemical Geology – start-page: 98 year: 2007 end-page: 115 – volume: 30 start-page: 2749 issue: 9 year: 2014 end-page: 2765 article-title: Petrogenesis of the Yaogangxian granites and implications for W mineralization, Hunan Province publication-title: Acta Petrologica Sinica – volume: 80 start-page: 281 issue: 1 year: 2005 end-page: 303 article-title: Granitic pegmatites: An assessment of current concepts and directions for the future publication-title: Lithos – start-page: 80 year: 2015 end-page: 81 – volume: 22 start-page: 411 year: 2019 end-page: 482 – volume: 69 start-page: 759 issue: 4 year: 1964 end-page: 773 article-title: The granite system at pressures of 4 to 10 kilobars publication-title: Journal of Geophysical Research – volume: 93 start-page: 382 year: 2018 end-page: 403 article-title: In‐situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons: Implication for Jurassic granitoid‐related Cu‐Pb‐Zn and W mineralization in the Nanling Range, South China publication-title: Ore Geology Reviews – volume: 95 start-page: 125 issue: 1–2 year: 2004 end-page: 140 article-title: Low‐ and high‐temperature granites publication-title: Earth & Environmental Science Transactions of the Royal Society of Edinburgh – volume: 66 start-page: 3293 issue: 18 year: 2002 end-page: 3301 article-title: Melt composition control of Zr/Hf fractionation in magmatic processes publication-title: Geochimica et Cosmochimica Acta – volume: 51 start-page: 537 issue: 1–2 year: 2010 end-page: 571 article-title: Continental and oceanic crust recycling‐induced melt–peridotite interactions in the trans‐North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle Xenoliths publication-title: Journal of Petrology – volume: 44 start-page: 655 issue: 8 year: 2016 end-page: 658 article-title: Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium‐cesium‐tantalum pegmatites publication-title: Geology – volume: 439 start-page: 71 year: 2016 end-page: 82 article-title: Lithium isotope fractionation during incongruent melting: Constraints from post‐collisional leucogranite and residual enclaves from Bengbu Uplift, China publication-title: Chemical Geology – volume: 238 start-page: 277 issue: 3–4 year: 2007 end-page: 290 article-title: Lithium isotope fractionation between Li‐bearing staurolite, Li‐mica and aqueous fluids: An experimental study publication-title: Chemical Geology – volume: 67 start-page: 3905 issue: 20 year: 2003 end-page: 3923 article-title: Isotope fractionation by chemical diffusion between molten basalt and rhyolite publication-title: Geochimica et Cosmochimica Acta – volume: 258 start-page: 78 issue: 1 year: 2009 end-page: 91 article-title: Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation publication-title: Chemical Geology – volume: 6 start-page: 39 year: 2018 end-page: 42 article-title: Diffusive fractionation of Li isotopes in wet, highly silicic melts publication-title: Geochemical Perspectives Letters – volume: 287 start-page: 434 issue: 3–4 year: 2009 end-page: 441 article-title: The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland publication-title: Earth and Planetary Science Letters – volume: 289 start-page: 76 issue: 1 year: 2011 end-page: 85 article-title: The behavior of lithium in amphibolite‐to granulite‐facies rocks of the Ivrea–Verbano Zone, NW Italy publication-title: Chemical Geology – volume: 239 start-page: 1 issue: 1–2 year: 2007 end-page: 12 article-title: Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine publication-title: Chemical Geology – volume: 240 start-page: 64 year: 2018 end-page: 79 article-title: Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare‐metal granites publication-title: Geochimica et Cosmochimica Acta – volume: 132–133 start-page: 21 year: 2012 end-page: 36 article-title: Significant Li isotope fractionation in geochemically evolved rare element‐bearing pegmatites from the little Nahanni Pegmatite Group, NWT, Canada publication-title: Lithos – volume: 47 start-page: 143 issue: 02 year: 2011 end-page: 150 article-title: Chronological characteristics of the Yaogangxian composite pluton in Hunan Province publication-title: Geology and Exploration – volume: 125 issue: 5 year: 2020 article-title: Trace elements and Li isotope compositions across the Kamchatka arc: Constraints on slab‐derived fluid sources publication-title: Journal of Geophysical Research: Solid Earth – volume: 70 start-page: 4813 issue: 18 year: 2006 end-page: 4825 article-title: Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites publication-title: Geochimica et Cosmochimica Acta – volume: 5 issue: 1 year: 2015 article-title: Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora) publication-title: Scientific Reports – volume: 214 start-page: 327 issue: 1–2 year: 2003 end-page: 339 article-title: Lithium‐isotope fractionation during continental weathering processes publication-title: Earth and Planetary Science Letters – volume: 111 start-page: 435 issue: 4 year: 2017 end-page: 457 article-title: Zircon and whole‐rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany) publication-title: Mineralogy and Petrology – volume: 43 start-page: 1643 issue: 5 year: 2005 end-page: 1651 article-title: The structure of lithium‐containing silicate and germanate glasses publication-title: The Canadian Mineralogist – volume: 82 start-page: 165 issue: 1 year: 2017 end-page: 217 article-title: Lithium isotope geochemistry publication-title: Reviews in Mineralogy and Geochemistry – volume: 212 start-page: 45 issue: 1 year: 2004 end-page: 57 article-title: Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina publication-title: Chemical Geology – volume: 2 start-page: 62 issue: 1 year: 1988 end-page: 72 article-title: Geological and geochemical characteristics and diagenetic‐minerogenetic processes of Yaogangxian granite publication-title: Mineral Resources and Geology – volume: 144 start-page: 43 year: 2014 end-page: 58 article-title: Sedimentary input to the source of Lesser Antilles lavas: A Li perspective publication-title: Geochimica et Cosmochimica Acta – volume: 411 start-page: 97 year: 2015 end-page: 111 article-title: The Genesis of LCT‐type granitic pegmatites, as illustrated by lithium isotopes in micas publication-title: Chemical Geology – volume: 51 start-page: 507 issue: 3 year: 2000 end-page: 513 article-title: Determination of trace elements in granites by inductively coupled plasma mass spectrometry publication-title: Talanta – volume: 175 start-page: 299 year: 2016 end-page: 318 article-title: Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe‐Ankole Belt (Rwanda) publication-title: Geochimica et Cosmochimica Acta – volume: 235 start-page: 360 year: 2018 end-page: 375 article-title: Equilibrium lithium isotope fractionation in Li‐bearing minerals publication-title: Geochimica et Cosmochimica Acta – volume: 61 start-page: 809 issue: 6 year: 1997 end-page: 834 article-title: On Li‐bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation publication-title: Mineralogical Magazine – year: 1987 – volume: 36 start-page: 75 issue: 1 year: 2012 end-page: 81 article-title: Lithium isotope composition of ultramafic geological reference materials JP‐1 and DTS‐2 publication-title: Geostandards and Geoanalytical Research – volume: 483 start-page: 372 year: 2018 end-page: 384 article-title: Lithium isotope behavior during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F‐rich granite and associated rare‐metal mineralization publication-title: Chemical Geology – volume: 55 start-page: 153 issue: 1 year: 2004 end-page: 195 article-title: Developments in the understanding and application of lithium isotopes in the Earth and planetary Sciences publication-title: Reviews in Mineralogy and Geochemistry – year: 2016 – volume: 201 start-page: 187 issue: 1 year: 2002 end-page: 201 article-title: Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater–basalt exchange at ODP sites 504B and 896A publication-title: Earth and Planetary Science Letters – volume: 74 start-page: 274 issue: 1 year: 2010 end-page: 292 article-title: Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model publication-title: Geochimica et Cosmochimica Acta – volume: 132 start-page: 349 year: 2014 end-page: 374 article-title: Alkali metal and rare Earth element evolution of rock‐forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal‐melt fractionation in the regional zonation of pegmatite groups publication-title: Geochimica et Cosmochimica Acta – volume: 91 start-page: 1488 issue: 10 year: 2006 end-page: 1498 article-title: Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota publication-title: American Mineralogist – volume: 284 start-page: 26 issue: 1 year: 2011 end-page: 34 article-title: Lithium isotope fractionation during magma degassing: Constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island) publication-title: Chemical Geology – volume: 23 start-page: 333 issue: 3 year: 2011 end-page: 342 article-title: Li‐isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment publication-title: European Journal of Mineralogy – volume: 3 start-page: 1 year: 2003 end-page: 64 – volume: 29 start-page: 333 issue: 3 year: 2005 end-page: 338 article-title: GeoReM: A new geochemical database for reference materials and isotopic standards publication-title: Geostandards and Geoanalytical Research – volume: 243 start-page: 336 issue: 3–4 year: 2006 end-page: 353 article-title: New constraints on the lithium isotope compositions of the Moon and terrestrial planets publication-title: Earth and Planetary Science Letters – volume: 63 start-page: 907 issue: 6 year: 1999 end-page: 910 article-title: The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP‐MS publication-title: Geochimica et Cosmochimica Acta – volume: 388 start-page: 98 issue: 0 year: 2014 end-page: 111 article-title: Neoproterozoic boninite‐series rocks in South China: A depleted mantle source modified by sediment‐derived melt publication-title: Chemical Geology – volume: 3 start-page: 230 issue: 2 year: 2017 end-page: 236 article-title: Global climate stabilisation by chemical weathering during the Hirnantian glaciation publication-title: Geochemical Perspectives Letters – volume: 20 start-page: 107 issue: 2 year: 1973 end-page: 130 article-title: Experimental studies of granitoids from the central and southern coast ranges, California publication-title: Tschermaks Mineralogische und Petrographische Mitteilungen – volume: 86 start-page: 131 issue: 1 year: 2012 end-page: 152 article-title: Petrogenesis of the Xihuashan granite in southern Jiangxi Province, South China: Constraints from zircon U‐Pb geochronology, geochemistry and Nd isotopes publication-title: Acta Geologica Sinica‐English Edition – volume: 68 start-page: 4167 issue: 20 year: 2004 end-page: 4178 article-title: Lithium isotopic composition and concentration of the upper continental crust publication-title: Geochimica et Cosmochimica Acta – volume: 86 start-page: 667 issue: 5–6 year: 2001 end-page: 680 article-title: Rare Earth elements in synthetic zircon: Part 1. Synthesis, and rare Earth element and phosphorus doping publication-title: American Mineralogist – volume: 262 start-page: 563 issue: 3 year: 2007 end-page: 580 article-title: The lithium isotopic composition of orogenic eclogites and deep subducted slabs publication-title: Earth and Planetary Science Letters – volume: 148 start-page: 209 year: 2012 end-page: 227 article-title: Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in‐situ analyses of zircon U‐Pb‐Hf‐O isotopes publication-title: Lithos – volume: 64 start-page: 867 issue: 5 year: 2000 end-page: 877 article-title: Chemistry of Hf‐rich zircons from the Laoshan I‐ and A‐type granites, Eastern China publication-title: Mineralogical Magazine – volume: 151 start-page: 112 issue: 1 year: 2006 end-page: 120 article-title: Temperature‐dependent isotopic fractionation of lithium between clinopyroxene and high‐pressure hydrous fluids publication-title: Contributions to Mineralogy and Petrology – ident: e_1_2_9_5_1 doi: 10.1007/s00710-017-0509-z – ident: e_1_2_9_54_1 doi: 10.1016/s0016-7037(98)00318-4 – ident: e_1_2_9_26_1 doi: 10.1029/2019jb019237 – start-page: 411 volume-title: Geology and metallogeny of tungsten and tin deposits in China year: 2019 ident: e_1_2_9_33_1 – ident: e_1_2_9_45_1 doi: 10.1007/s00410-014-1009-3 – ident: e_1_2_9_20_1 doi: 10.1016/j.gca.2014.02.006 – ident: e_1_2_9_15_1 doi: 10.1038/srep16878 – ident: e_1_2_9_47_1 doi: 10.1016/j.gca.2014.09.003 – ident: e_1_2_9_14_1 doi: 10.1111/j.1751-908x.2011.00117.x – ident: e_1_2_9_38_1 doi: 10.1016/s0039-9140(99)00318-5 – ident: e_1_2_9_30_1 doi: 10.1029/jz069i004p00759 – ident: e_1_2_9_32_1 doi: 10.1016/j.epsl.2006.01.005 – ident: e_1_2_9_39_1 doi: 10.1016/j.chemgeo.2011.07.014 – ident: e_1_2_9_4_1 doi: 10.1016/j.chemgeo.2019.02.027 – ident: e_1_2_9_16_1 doi: 10.1016/j.lithos.2012.06.014 – ident: e_1_2_9_27_1 doi: 10.1016/j.gca.2018.05.029 – volume-title: Geology of the Xihuashan tungsten ore field year: 1987 ident: e_1_2_9_59_1 – volume: 2 start-page: 62 issue: 1 year: 1988 ident: e_1_2_9_9_1 article-title: Geological and geochemical characteristics and diagenetic‐minerogenetic processes of Yaogangxian granite publication-title: Mineral Resources and Geology – ident: e_1_2_9_28_1 doi: 10.1093/petrology/egp082 – ident: e_1_2_9_31_1 doi: 10.1130/g37712.1 – ident: e_1_2_9_3_1 doi: 10.1016/j.gca.2006.07.025 – ident: e_1_2_9_51_1 doi: 10.1180/minmag.1997.061.409.05 – ident: e_1_2_9_64_1 doi: 10.1016/j.oregeorev.2017.12.023 – ident: e_1_2_9_23_1 doi: 10.1016/j.gca.2018.08.021 – ident: e_1_2_9_41_1 doi: 10.1016/B0-08-043751-6/03016-4 – ident: e_1_2_9_43_1 doi: 10.1016/j.chemgeo.2008.06.021 – start-page: 98 volume-title: Handbook of elemental abundance for applied geochemistry (in Chinese) year: 2007 ident: e_1_2_9_10_1 – ident: e_1_2_9_22_1 – ident: e_1_2_9_35_1 doi: 10.2138/rmg.2017.82.6 – ident: e_1_2_9_50_1 doi: 10.1016/j.chemgeo.2006.12.003 – ident: e_1_2_9_6_1 doi: 10.1016/s0012-821x(02)00707-0 – ident: e_1_2_9_48_1 doi: 10.1016/j.gca.2004.03.031 – ident: e_1_2_9_11_1 doi: 10.1016/j.chemgeo.2015.06.029 – ident: e_1_2_9_57_1 doi: 10.7185/geochemlet.1726 – ident: e_1_2_9_8_1 doi: 10.1016/j.chemgeo.2018.03.002 – ident: e_1_2_9_19_1 doi: 10.1016/j.gca.2015.11.020 – ident: e_1_2_9_29_1 doi: 10.1016/j.lithos.2004.02.009 – ident: e_1_2_9_53_1 doi: 10.1007/978-3-319-01430-2 – ident: e_1_2_9_25_1 doi: 10.1016/s0016-7037(02)00924-9 – ident: e_1_2_9_49_1 doi: 10.2138/am.2006.2083 – ident: e_1_2_9_12_1 doi: 10.1016/j.gca.2009.10.016 – volume: 30 start-page: 2749 issue: 9 year: 2014 ident: e_1_2_9_13_1 article-title: Petrogenesis of the Yaogangxian granites and implications for W mineralization, Hunan Province publication-title: Acta Petrologica Sinica – ident: e_1_2_9_18_1 doi: 10.7185/geochemlet.1807 – ident: e_1_2_9_17_1 doi: 10.2138/am-2001-5-607 – ident: e_1_2_9_42_1 doi: 10.1016/j.chemgeo.2004.08.008 – ident: e_1_2_9_58_1 doi: 10.1180/002646100549850 – ident: e_1_2_9_40_1 doi: 10.1016/s0016-7037(03)00174-1 – ident: e_1_2_9_44_1 doi: 10.2113/gscanmin.43.5.1643 – ident: e_1_2_9_21_1 doi: 10.1111/j.1751-908x.2005.tb00904.x – ident: e_1_2_9_52_1 doi: 10.2138/gsrmg.55.1.153 – volume: 47 start-page: 143 issue: 02 year: 2011 ident: e_1_2_9_24_1 article-title: Chronological characteristics of the Yaogangxian composite pluton in Hunan Province publication-title: Geology and Exploration – ident: e_1_2_9_61_1 doi: 10.1007/s00410-005-0049-0 – ident: e_1_2_9_56_1 doi: 10.1016/j.chemgeo.2011.02.002 – ident: e_1_2_9_34_1 doi: 10.1016/j.epsl.2007.08.005 – ident: e_1_2_9_55_1 doi: 10.1016/j.epsl.2009.08.026 – ident: e_1_2_9_7_1 doi: 10.1017/s0263593300000973 – ident: e_1_2_9_36_1 doi: 10.1016/s0012-821x(03)00348-0 – ident: e_1_2_9_65_1 doi: 10.1016/j.chemgeo.2014.09.004 – ident: e_1_2_9_63_1 doi: 10.1111/j.1755-6724.2012.00617.x – ident: e_1_2_9_46_1 doi: 10.1016/j.chemgeo.2016.06.004 – ident: e_1_2_9_60_1 doi: 10.1016/j.chemgeo.2006.12.001 – ident: e_1_2_9_62_1 doi: 10.1127/0935-1221/2011/0023-2095 – ident: e_1_2_9_37_1 doi: 10.1007/bf01081387 – ident: e_1_2_9_2_1 doi: 10.1016/j.lithos.2011.11.014 |
SSID | ssj0014558 |
Score | 2.422287 |
Snippet | The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten deposits.... Abstract The Xihuashan and Yaogangxian granitic plutons in South China comprise highly evolved multiphase Li‐rich granites and host quartz‐vein‐type tungsten... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crystallization Equilibrium Feldspars Fractionation Granite Igneous rocks Isotope composition Isotope fractionation Isotopes Lava Lithium Lithium isotopes Magma magmatic differentiation Metals Mineralization Minerals Plutons Quartz Silica Tungsten tungsten deposit Zircon |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4ikCBXmACSISPxJ7BNqkINqJSt0sx3agErRVmw78e2wnrdoBWFijG6z7ktx3vscHwBUr01IRU1oEKA1JzJKQae3acpQqbQRXiXKDwr1-0h2Q5yEdrkl9uZ6wej1w7bg7QzRObRDCPNEkNUwmyLCIK4JMpBjxY7425i2TqaZ-QChlTZt7hLjL8FHuZKzTNN4IQH5P_wa5XKeoPsZk-2CvIYfwvj7UAdgy40Owk3vx3a8j0H8ZVe-jxSd8mk-qydTAbFaPJXjvwrafOISrpnSY2bg3UrAn3_xeVthuxFCqGo5jMMg6r4_dsNFDCCXBBIW6ZJYKk4QokirsVMw1NlRyhQ3H2BGlWHOJYhMlyvIiXsZFLBP7M9YRZSw2-ARsjydjcwoglkURY6psMoOJpQQ8lUoyo7i7EtJGBuBm6SShmmXhTrPiQ_iiNeJi3aUBuF5ZT-slGT_YPTh_r2zcamv_wAIuGsDFX4AHoLVESzTf21y4-rDLrRANwK1H8NeDiDzPO-46HJ39x5HOwa5Toa8belpgu5otzIXlKlVx6V_Lb7SC3_g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaUKVeEPShLo_Kh3KCqIkfiX1CPHZDEawqVCRukXfswEqwWXbDgX-Px_Fu4QDXyIqsGXvm87w-Qn6puqhBuNprQMpEZCpPlLVYlgNQew8OOWCj8MUwP70SZ9fyOgbc5rGscmETg6G2DWCM_DdmABE9M3kwfUiQNQqzq5FC4yNZ9SZY-cfX6lF_-PdymUcQUqpY7p4yjS99ViKddVFkrxxRmNf_CmS-hKrB1wzWyVoEifSw0-oG-eAmX8inMpDwPn0lw_Nxezt-vKd_5k3bTB0dzLr2hCBlehI6D-myOJ0OvP8bA70wN2E-Kz2JpChtp5Zv5GrQ_3d8mkRehMQILlhia-UhscgFiAI4splb7qTRwJ3mHAFTZrVhmUtz8PhI19koM7k3yjaVSmWOfycrk2bifhDKzWiUcQn-UcOFhwa6MGCUA42hIetMj-wthFRBHBqO3BV3VUheM129FGmP7C5XT7thGW-sO0J5L9fgiOvwoZndVPHGVE5YXnj0wXVuReGUyZlTqQbBXApKqB7ZXmirivduXv0_JT2yHzT47kaqsiz7GBZnm-__bYt8Rp75rmRnm6y0s0e349FIO_oZj9wzrSnZwQ priority: 102 providerName: ProQuest |
Title | Lithium Isotope Fractionation During Intensive Felsic Magmatic Differentiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GC010771 https://www.proquest.com/docview/2806174325 https://doaj.org/article/e4d37124396d47e8a62e809c42e0c848 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7iELyIP3E6Rw560uKapG1ydLp1ig4RBW8lTVId6Da27uB_b16alXlQ8FoSaN9r8r6XvPd9CJ3yIikUM4X1QBQFLORxwLWGshylChvBVaygUfhhGA9e2N1r9OoP3KAXpuKHqA_cYGW4_RoWuMznnmwAODJt1k5SkKZOoIW8Ad21wJ1P2GN9i8Aip88JEj8BJPm-8N3Ov1yd_SMkOeb-H3BzFbS6qNPfRlseLuKryr87aM2Md9FG6uR4v_bQ8H5Uvo8Wn_h2PiknU4P7s6pRwdkb37geRFyXqeO-jYQjhR_km2NqxTdeHqWsHLSPXvq95-tB4BUSAskoI4EuuAXH9sMVSxQFXXNNTSSFokZQCtAp1EKS0HRiZZGSKMI8lLHdnnUn4jw09ACtjydjc4gwlXke0kjZ9IYyCxJEIpXkRgk4JNJGNtH50kiZ8vThoGLxkblrbCKyVZM20Vk9elrRZvwyrgv2rscA2bV7MJm9ZX7tZIZpmlgcQkWsWWK4jInhHaEYMR3FGW-i1tJbmV-B8wxujCHbIlETXTgP_vkiWZqmPTggJ0f_G36MNkGBvirmaaH1crYwJxanlHnb_Yxt1Oj2ho9PbZftfwO4fd0P |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAguqLxE2gI-0BOs2PVj1z4gRJtkE5pECLVSb8axvSUSzabJVqh_it-I7d0N7YHeel1Z1mpm7PlmPDMfwDteZIWmtnAaYCyiCU8jbowvy9G6cB5cp9o3Ck-m6fCUfj1jZ1vwp-2F8WWV7Z0YLmpTap8j_-hfAD16xuzz8jLyrFH-dbWl0KjN4the_3Yh2_rTqOf0e4DxoH9yNIwaVoFIUUJxZAruACVNqaaZJp4L3BDLlNDEuuDew43ECIUTG6faoQtRJLNEpe5KMzHjPLHE7fsAtilxoUwHtg_702_fN-8WlDHelNfHWPjMAs49fXaWJbccX-AHuAVqb0Lj4NsGO_CkAaXoS21FT2HLLp7BwzyQ_l4_h-l4Xv2cX12g0bqsyqVFg1XdDhG0inqh0xFtiuHRwPnbuUYTdR7mwaJeQ8JS1WbwAk7vRWIvobMoF_YVIKJms4Qw7YIoQh0UEZnSilstfCrKWNWF962QpG6GlHuujF8yPJZjIW-KtAsHm9XLejjHf9Ydenlv1viR2uFDuTqXzQmVlhqSObRDRGpoZrlKseWx0BTbWHPKu7Dfaks253wt_1llFz4EDd75IzLP875Pw-Pdu3d7C4-GJ5OxHI-mx3vw2HPc1-VC-9CpVlf2tUNC1exNY34Ifty3xf8FA24Uew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRa16qfoUSyn1oZzaiMSPxD6gqrCbsAVWqCoSt9RrO3SldrPsBiH-Wn9dbcfZwqHcuEaWFc2MPd-MZ-YD-MCrrFLUVFYDjEU04WnEtXZlOUpV1oOrVLlG4ZNxenhGv56z8zX40_XCuLLK7k70F7WulcuR77oXQIeeMdutQlnE6SD_PL-MHIOUe2nt6DRaEzkyN9c2fFvujQZW1zsY58PvB4dRYBiIJCUUR7riFlzSlCqaKeJ4wTUxTApFjA30HfRItJA4MXGqLNIQVTJJZGqvNx0zzhND7L6PYD2zUVHcg_X94fj02-oNgzLGQ6l9jIXLMuDCUWlnWXLHCXqugDsA9zZM9n4ufw7PAkBFX1qLegFrZvYSHheeAPjmFYyPp83P6dVvNFrWTT03KF-0rRFew2jgux7RqjAe5db3ThU6kRd-NiwaBEKWpjWJ13D2IBJ7A71ZPTMbgIicTBLClA2oCLWwRGRSSW6UcGkpbWQfPnZCKlUYWO54M36V_uEci_K2SPuws1o9bwd1_GfdvpP3ao0br-0_1IuLMpzW0lBNMot8iEg1zQyXKTY8FopiEytOeR-2Om2V4cwvy38W2odPXoP3_khZFMXQpeTx5v27vYcn1tLL49H46C08dXT3beXQFvSaxZV5Z0FRM9kO1ofgx0Mb_F8SqRiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Isotope+Fractionation+During+Intensive+Felsic+Magmatic+Differentiation&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Yang%2C+Jie%E2%80%90Hua&rft.au=Chen%2C+Heng&rft.au=Zhou%2C+Mei%E2%80%90Fu&rft.au=Hu%2C+Rui%E2%80%90Zhong&rft.date=2023-04-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=24&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022GC010771&rft.externalDBID=10.1029%252F2022GC010771&rft.externalDocID=GGGE23042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |