Drivers of Firn Density on the Greenland Ice Sheet Revealed by Weather Station Observations and Modeling

Recent Arctic atmospheric warming induces more frequent surface melt in the accumulation area of the Greenland ice sheet. This increased melting modifies the near‐surface firn structure and density and may reduce the firn's capacity to retain meltwater. Yet few long‐term observational records a...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Earth surface Vol. 123; no. 10; pp. 2563 - 2576
Main Authors Vandecrux, B., Fausto, R. S., Langen, P. L., As, D., MacFerrin, M., Colgan, W. T., Ingeman‐Nielsen, T., Steffen, K., Jensen, N. S., Møller, M. T., Box, J. E.
Format Journal Article
LanguageEnglish
Published 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent Arctic atmospheric warming induces more frequent surface melt in the accumulation area of the Greenland ice sheet. This increased melting modifies the near‐surface firn structure and density and may reduce the firn's capacity to retain meltwater. Yet few long‐term observational records are available to determine the evolution and drivers of firn density. In this study, we compile and gap‐fill Greenland Climate Network (GC‐Net) automatic weather station data from Crawford Point, Dye‐2, NASA‐SE, and Summit between 1998 and 2015. These records then force a coupled surface energy balance and firn evolution model. We find at all sites except Summit that increasing summer turbulent heat fluxes to the surface are compensated by decreasing net radiative fluxes. After evaluating the model against firn cores, we find that, starting from 2006, the density of the top 20 m of firn at Dye‐2 increased by 11%, decreasing the pore volume by 18%. Crawford Point and Summit show stable near‐surface firn density over 1998–2010 and 2000–2015 respectively, while we calculate a 4% decrease of firn density at NASA‐SE over 1998–2015. For each year, the model identifies the drivers of density change in the top 20‐m firn and quantifies their contributions. The key driver, snowfall, explains alone 72 to 92% of the variance in day‐to‐day change in firn density while melt explains from 7 to 33%. Our result indicates that correct estimates of the magnitude and variability of precipitation are necessary to interpret or simulate the evolution of the firn. Plain Language Summary Arctic warming has led to more intense melt on the Greenland ice sheet. In recent decades this melt moved upglacier and started to alter the structure of perennial snow, or firn, in areas where melt was rarely recorded. In this study, we process 12–17 years of observations from four weather stations located in the vast high‐elevation area of the ice sheet. From these climate records, we calculate how much melt occurred each summer and why (e.g., warm air or sunlight absorption). We found that heat transfer from the air to the surface has become more intense but is compensated by a brightening of the surface, causing less sunlight to be absorbed and used for melting. We use a computer model that simulates firn evolution and shows a good match with independent observations of the firn density. Our simulations identify increasing firn density at a first site, stable density at two sites, and decreasing firn density at the last one. Day‐to‐day and year‐to‐year changes in the density of the top 20 m of firn were mostly due to the snowfall variability followed by surface melt. This work underlines the importance of accurate precipitation estimates in order to understand firn evolution. Key Points We gathered, processed, and gap‐filled underexploited climate observations at four sites from the Greenland ice sheet accumulation area Increasing turbulent heat fluxes were found at three sites over the 1998–2015 period, compensated by decreasing net radiative fluxes Our simulation of near‐surface firn density quantifies the role of its climatic drivers among which snowfall and surface melt are dominant
AbstractList Recent Arctic atmospheric warming induces more frequent surface melt in the accumulation area of the Greenland ice sheet. This increased melting modifies the near‐surface firn structure and density and may reduce the firn's capacity to retain meltwater. Yet few long‐term observational records are available to determine the evolution and drivers of firn density. In this study, we compile and gap‐fill Greenland Climate Network (GC‐Net) automatic weather station data from Crawford Point, Dye‐2, NASA‐SE, and Summit between 1998 and 2015. These records then force a coupled surface energy balance and firn evolution model. We find at all sites except Summit that increasing summer turbulent heat fluxes to the surface are compensated by decreasing net radiative fluxes. After evaluating the model against firn cores, we find that, starting from 2006, the density of the top 20 m of firn at Dye‐2 increased by 11%, decreasing the pore volume by 18%. Crawford Point and Summit show stable near‐surface firn density over 1998–2010 and 2000–2015 respectively, while we calculate a 4% decrease of firn density at NASA‐SE over 1998–2015. For each year, the model identifies the drivers of density change in the top 20‐m firn and quantifies their contributions. The key driver, snowfall, explains alone 72 to 92% of the variance in day‐to‐day change in firn density while melt explains from 7 to 33%. Our result indicates that correct estimates of the magnitude and variability of precipitation are necessary to interpret or simulate the evolution of the firn. Plain Language Summary Arctic warming has led to more intense melt on the Greenland ice sheet. In recent decades this melt moved upglacier and started to alter the structure of perennial snow, or firn, in areas where melt was rarely recorded. In this study, we process 12–17 years of observations from four weather stations located in the vast high‐elevation area of the ice sheet. From these climate records, we calculate how much melt occurred each summer and why (e.g., warm air or sunlight absorption). We found that heat transfer from the air to the surface has become more intense but is compensated by a brightening of the surface, causing less sunlight to be absorbed and used for melting. We use a computer model that simulates firn evolution and shows a good match with independent observations of the firn density. Our simulations identify increasing firn density at a first site, stable density at two sites, and decreasing firn density at the last one. Day‐to‐day and year‐to‐year changes in the density of the top 20 m of firn were mostly due to the snowfall variability followed by surface melt. This work underlines the importance of accurate precipitation estimates in order to understand firn evolution. Key Points We gathered, processed, and gap‐filled underexploited climate observations at four sites from the Greenland ice sheet accumulation area Increasing turbulent heat fluxes were found at three sites over the 1998–2015 period, compensated by decreasing net radiative fluxes Our simulation of near‐surface firn density quantifies the role of its climatic drivers among which snowfall and surface melt are dominant
Author Møller, M. T.
MacFerrin, M.
As, D.
Fausto, R. S.
Ingeman‐Nielsen, T.
Steffen, K.
Jensen, N. S.
Langen, P. L.
Box, J. E.
Colgan, W. T.
Vandecrux, B.
Author_xml – sequence: 1
  givenname: B.
  orcidid: 0000-0002-4169-8973
  surname: Vandecrux
  fullname: Vandecrux, B.
  email: bava@byg.dtu.dk
  organization: Technical University of Denmark
– sequence: 2
  givenname: R. S.
  orcidid: 0000-0003-1317-8185
  surname: Fausto
  fullname: Fausto, R. S.
  organization: Geological Survey of Denmark and Greenland
– sequence: 3
  givenname: P. L.
  orcidid: 0000-0003-2185-012X
  surname: Langen
  fullname: Langen, P. L.
  organization: Danish Meteorological Institute
– sequence: 4
  givenname: D.
  orcidid: 0000-0002-6553-8982
  surname: As
  fullname: As, D.
  organization: Geological Survey of Denmark and Greenland
– sequence: 5
  givenname: M.
  orcidid: 0000-0001-8157-7159
  surname: MacFerrin
  fullname: MacFerrin, M.
  organization: University of Colorado Boulder
– sequence: 6
  givenname: W. T.
  orcidid: 0000-0001-6334-1660
  surname: Colgan
  fullname: Colgan, W. T.
  organization: Geological Survey of Denmark and Greenland
– sequence: 7
  givenname: T.
  orcidid: 0000-0002-0776-4869
  surname: Ingeman‐Nielsen
  fullname: Ingeman‐Nielsen, T.
  organization: Technical University of Denmark
– sequence: 8
  givenname: K.
  surname: Steffen
  fullname: Steffen, K.
  organization: Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL)
– sequence: 9
  givenname: N. S.
  surname: Jensen
  fullname: Jensen, N. S.
  organization: Technical University of Denmark
– sequence: 10
  givenname: M. T.
  surname: Møller
  fullname: Møller, M. T.
  organization: Technical University of Denmark
– sequence: 11
  givenname: J. E.
  orcidid: 0000-0003-0052-8705
  surname: Box
  fullname: Box, J. E.
  organization: Geological Survey of Denmark and Greenland
BookMark eNpNUNFKw0AQPKSCtfbND9gfiO5drknvUVpTWyqFVvExXJI9exIvchci-XtTFXFedlhmBmYu2cg1jhi75njDUahbgTzdZIhyptIzNhY8UZFCzkd_HOMLNg3hDQfMhxcXY3ZcetuRD9AYyKx3sCQXbNtD46A9Eqw8kau1q2BdEhyORC3sqSNdUwVFDy-kB5mHQ6tbO3h2RSDfffMAJ9tjU1Ft3esVOze6DjT9vRP2nN0_LR6i7W61XtxtIy1jiZHR1VxUypRDC22oSGal4UpoOUfBVYkcSaYzUWCiNGFKEuNCFoO25EaVIoknLP7J_bQ19fmHt-_a9znH_LRS_n-lfLPaZwKVwPgLx19dzQ
CitedBy_id crossref_primary_10_1017_jog_2022_54
crossref_primary_10_1017_jog_2022_88
crossref_primary_10_1017_jog_2020_91
crossref_primary_10_5194_essd_10_1959_2018
crossref_primary_10_5194_tc_13_845_2019
crossref_primary_10_5194_essd_14_955_2022
crossref_primary_10_5194_gmd_13_4355_2020
crossref_primary_10_5331_seppyo_83_2_143
crossref_primary_10_1029_2020GL088293
crossref_primary_10_1029_2021JF006295
crossref_primary_10_5194_tc_13_2797_2019
crossref_primary_10_3390_rs14040932
crossref_primary_10_5194_tc_14_3785_2020
crossref_primary_10_1029_2020GL088864
crossref_primary_10_5194_tc_17_3955_2023
crossref_primary_10_3389_feart_2021_578978
crossref_primary_10_5194_tc_14_4181_2020
crossref_primary_10_1017_jog_2020_30
crossref_primary_10_5194_tc_15_4315_2021
ContentType Journal Article
Copyright 2018. The Authors.
Copyright_xml – notice: 2018. The Authors.
DBID 24P
WIN
DOI 10.1029/2017JF004597
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2169-9011
EndPage 2576
ExternalDocumentID JGRF20920
Genre article
GrantInformation_xml – fundername: NASA
  funderid: NAGW‐4248; 6779; 5031; 6817; NAG5‐5032
– fundername: Greenland Analogue Project (GAP)
– fundername: Danmarks Frie Forskningsfond
  funderid: 4002‐00234
– fundername: NSF/OPP
  funderid: 9423530
– fundername: Danish Council for Independent Research
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
7XC
8-1
88I
8FE
8FG
8FH
8G5
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJCF
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
BRXPI
CCPQU
DPXWK
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
~~A
ID FETCH-LOGICAL-a4340-fad82d9fc597afeb65cf192a480219c010e4752b069ae07e403b4b97ac1f9c263
IEDL.DBID 24P
ISSN 2169-9003
IngestDate Sat Aug 24 00:49:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4340-fad82d9fc597afeb65cf192a480219c010e4752b069ae07e403b4b97ac1f9c263
ORCID 0000-0003-2185-012X
0000-0001-8157-7159
0000-0002-4169-8973
0000-0002-0776-4869
0000-0003-1317-8185
0000-0002-6553-8982
0000-0001-6334-1660
0000-0003-0052-8705
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017JF004597
PageCount 14
ParticipantIDs wiley_primary_10_1029_2017JF004597_JGRF20920
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Journal of geophysical research. Earth surface
PublicationYear 2018
References 2017; 5
2011; 137
2015; 78
2002; 36
1984; 20
2013; 26
2017; 3
2017; 4
2017; 44
1991; 96
2013; 40
2005; 115
2016; 10
2008; 15
1996
2011; 57
2012; 39
1975; 11
2014; 41
2018; 45
2015; 9
2011; 6
2011; 5
2007; 34
2001; 106
1987; 38
2012; 51
2012; 491
2018; 6
2016; 6
2016; 7
2015; 28
2003; 108
2000; 14
2017; 38
2017; 11
2000; 31
2016; 43
2008; 21
2016
1981
2012; 6
2014; 8
2014; 7
2012; 117
2012; 5
2009; 59
2001; 96
References_xml – volume: 51
  start-page: 1079
  issue: 6
  year: 2012
  end-page: 1086
  article-title: A dynamic method for gap filling in daily temperature datasets
  publication-title: Journal of Applied Meteorology
– volume: 45
  start-page: 3164
  year: 2018
  end-page: 3172
  article-title: Ice core records of West Greenland melt and climate forcing
  publication-title: Geophysical Research Letters
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The ERA‐interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 57
  start-page: 755
  issue: 204
  year: 2011
  end-page: 762
  article-title: Microstructural evolution of fine‐grained layers through the firn column at summit, Greenland
  publication-title: Journal of Glaciology
– year: 1981
– volume: 96
  start-page: 671
  issue: C12
  year: 2001
  end-page: 676
  article-title: Preliminary firn‐densification model with 38‐site dataset
  publication-title: Journal of Glaciology
– volume: 31
  start-page: 133
  year: 2000
  end-page: 140
  article-title: The treatment of meltwater retention in mass‐balance parametrization of the Greenland ice sheet
  publication-title: Annals of Glaciology
– volume: 6
  start-page: 199
  issue: 1
  year: 2012
  end-page: 209
  article-title: Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record‐warm year 2010 explained by detailed energy balance observations
  publication-title: The Cryosphere
– volume: 5
  start-page: 773
  issue: 3
  year: 2012
  end-page: 791
  article-title: The detailed snowpack scheme Crocus and its implementation in SURFEXv7.2
  publication-title: Geoscientific Model Development
– volume: 8
  start-page: 257
  issue: 1
  year: 2014
  end-page: 274
  article-title: Solving Richards equation for snow improves snowpack meltwater runoff estimations in detailed multi‐layer snowpack model
  publication-title: The Cryosphere
– volume: 9
  start-page: 2163
  issue: 6
  year: 2015
  end-page: 2181
  article-title: Changing surface‐atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland
  publication-title: The Cryosphere
– volume: 38
  start-page: 159
  issue: 1‐2
  year: 1987
  end-page: 184
  article-title: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice
  publication-title: Boundary LayerMeteorol
– volume: 7
  start-page: 95
  issue: 2
  year: 2014
  end-page: 98
  article-title: Extensive liquid meltwater storage in firn within the Greenland ice sheet
  publication-title: Nature Geoscience
– volume: 44
  start-page: 6235
  year: 2017
  end-page: 6243
  article-title: The recent warming trend in North Greenland
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 1371
  issue: 3
  year: 2017
  end-page: 1386
  article-title: Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release
  publication-title: The Cryosphere
– volume: 3
  issue: 6
  year: 2017
  article-title: Decreasing cloud cover drives the recent mass loss on the Greenland ice sheet
  publication-title: Science Advances
– start-page: 98
  year: 1996
  end-page: 103
– volume: 43
  start-page: 2649
  year: 2016
  end-page: 2658
  article-title: The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 3207
  issue: 18
  year: 2000
  end-page: 3214
  article-title: Ice layer and surface crust permeability in seasonal snow pack
  publication-title: Hydrological Processes
– volume: 78
  issue: 4
  year: 2015
  article-title: Greenland ice sheet mass balance: A review
  publication-title: Reports on Progress in Physics
– volume: 106
  start-page: 33,951
  issue: D24
  year: 2001
  end-page: 33,964
  article-title: Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999
  publication-title: Journal of Glaciology
– volume: 106
  start-page: 33,839
  issue: D24
  year: 2001
  end-page: 33,851
  article-title: Local to regional‐scale variability of annual net accumulation on the Greenlandice sheet from PARCA cores
  publication-title: Journal of Glaciology
– volume: 9
  start-page: 1203
  issue: 3
  year: 2015
  end-page: 1211
  article-title: Changes in the firn structure of the western Greenland ice sheet caused by recent warming
  publication-title: The Cryosphere
– volume: 6
  issue: 51
  year: 2018
  article-title: A snow density dataset for improving surface boundary conditions in Greenland ice sheet firn modelling
  publication-title: Frontiers in Earth Science
– volume: 34
  year: 2007
  article-title: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007
  publication-title: Geophysical Research Letters
– volume: 6
  issue: 1
  year: 2011
  article-title: The role of albedo and accumulation in the 2010 melting record in Greenland
  publication-title: Environmental Research Letters
– volume: 38
  start-page: 53
  year: 2017
  end-page: 56
  article-title: Greenland, Canadian and Icelandic land‐ice albedo grids (2000–2016)
  publication-title: Geological Survey of Denmark and Greenland Bulletin
– volume: 26
  start-page: 6974
  issue: 18
  year: 2013
  end-page: 6989
  article-title: Greenland ice sheet mass balance reconstruction. Part II: Surface mass balance (1840–2010)
  publication-title: Journal of Climate
– volume: 10
  start-page: 2731
  issue: 6
  year: 2016
  end-page: 2744
  article-title: Simulating ice layer formation under the presence of preferential flow in layered snowpacks
  publication-title: The Cryosphere
– volume: 21
  start-page: 331
  issue: 2
  year: 2008
  end-page: 341
  article-title: Increased runoff from melt from the Greenland ice sheet: A response to global warming
  publication-title: Journal of Climate
– volume: 10
  start-page: 1933
  issue: 5
  year: 2016
  end-page: 1946
  article-title: On the recent contribution of the Greenland ice sheet to sea level change
  publication-title: The Cryosphere
– volume: 11
  start-page: 2507
  issue: 6
  year: 2017
  end-page: 2526
  article-title: The modelled liquid water balance of the Greenland ice sheet
  publication-title: The Cryosphere
– volume: 20
  start-page: 1853
  issue: 12
  year: 1984
  end-page: 1864
  article-title: Wetting front advance and freezing of meltwater within a snow cover. 1. Observations in the Canadian Arctic
  publication-title: Water Resources Research
– volume: 11
  start-page: 261
  issue: 2
  year: 1975
  end-page: 266
  article-title: A theory of water flow through a layered snowpack
  publication-title: Water Resources Research
– volume: 5
  start-page: 359
  issue: 2
  year: 2011
  end-page: 375
  article-title: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models
  publication-title: The Cryosphere
– volume: 6
  start-page: 390
  issue: 4
  year: 2016
  end-page: 393
  article-title: Greenland meltwater storage in firn limited by near‐surface ice formation
  publication-title: Nature Climate Change
– volume: 6
  start-page: 939
  issue: 5
  year: 2012
  end-page: 951
  article-title: 3‐D image‐based numerical computations of snow permeability: Links to specific surface area, density, and microstructural anisotropy
  publication-title: The Cryosphere
– volume: 96
  start-page: 22,117
  issue: C12
  year: 1991
  end-page: 22,124
  article-title: Retention of Greenland runoff by refreezing: Implication for projected future sea level change
  publication-title: Journal of Glaciology
– volume: 4
  issue: 110
  year: 2017
  article-title: Liquid water flow and retention on the Greenland ice sheet in the regional climate model HIRHAM5: Local and large‐scale impacts
  publication-title: Frontiers in Earth Science
– volume: 108
  issue: D8
  year: 2003
  article-title: Modelling of snow and ice melt at ETH camp (West Greenland): A study of surface albedo
  publication-title: Journal of Geophysical Research
– volume: 117
  year: 2012
  article-title: Very high resolution in regional climate model simulations for Greenland: Identifying added value
  publication-title: Journal of Geophysical Research
– volume: 6
  start-page: 821
  issue: 4
  year: 2012
  end-page: 839
  article-title: Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers
  publication-title: The Cryosphere
– volume: 5
  issue: 16
  year: 2017
  article-title: Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model
  publication-title: Frontiers in Earth Science
– volume: 36
  start-page: 2789
  issue: 15‐16
  year: 2002
  end-page: 2797
  article-title: Snow and firn properties and air–snow transport processes at summit, Greenland
  publication-title: Atmospheric Environment
– volume: 41
  start-page: 866
  year: 2014
  end-page: 872
  article-title: An improved mass budget for the Greenland ice sheet
  publication-title: Geophysical Research Letters
– volume: 15
  start-page: 61
  year: 2008
  end-page: 64
  article-title: A new programme for monitoring the mass loss of the Greenland ice sheet
  publication-title: Geological Survey of Denmark and Greenland Bulletin
– volume: 28
  start-page: 3694
  issue: 9
  year: 2015
  end-page: 3713
  article-title: Quantifying energy and mass fluxes controlling Godthåbsfjord freshwater input in a 5‐km simulation (1991–2012)
  publication-title: Journal of Climate
– volume: 40
  start-page: 2109
  year: 2013
  end-page: 2113
  article-title: Rapid loss of firn pore space accelerates 21st century Greenland mass loss
  publication-title: Geophysical Research Letters
– volume: 106
  start-page: 33,965
  issue: D24
  year: 2001
  end-page: 33,981
  article-title: Sublimation on the Greenland ice sheet from automated weather station observations
  publication-title: Journal of Geophysical Research
– volume: 7
  year: 2016
  article-title: Clouds enhance Greenland ice sheet meltwater runoff
  publication-title: Nature Communications
– volume: 491
  start-page: 240
  issue: 7423
  year: 2012
  end-page: 243
  article-title: Greenland ice‐sheet contribution to sea‐level rise buffered by meltwater storage in firn
  publication-title: Nature
– volume: 115
  start-page: 289
  issue: 2
  year: 2005
  end-page: 317
  article-title: The summer surface energy balance of the high Antartic plateau
  publication-title: Boundary‐Layer Meteorology
– volume: 59
  start-page: 143
  issue: 2‐3
  year: 2009
  end-page: 151
  article-title: A multiple snow layer model including a parameterization of vertical water channel process in snowpack
  publication-title: Cold Regions Science and Technology
– volume: 6
  start-page: 743
  issue: 4
  year: 2012
  end-page: 762
  article-title: Refreezing on the Greenland ice sheet: A comparison of parameterizations
  publication-title: The Cryosphere
– year: 2016
  article-title: Snow pit data from Greenland summit, 1989 to 1993
  publication-title: NSF Arctic Data Center
– volume: 39
  year: 2012
  article-title: The extreme melt across the Greenland ice sheet in 2012
  publication-title: Geophysical Research Letters
SSID ssj0000816912
Score 2.2170737
Snippet Recent Arctic atmospheric warming induces more frequent surface melt in the accumulation area of the Greenland ice sheet. This increased melting modifies the...
SourceID wiley
SourceType Publisher
StartPage 2563
SubjectTerms compaction
densification
firn
modeling
snow
surface energy balance
Title Drivers of Firn Density on the Greenland Ice Sheet Revealed by Weather Station Observations and Modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017JF004597
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIi3PDBi4cZOE4-IEkolHmqp6Bb5cVZZUtQGpP57fE5UlZEtkh0ruot9n-_xHSHXRgUzaR1n4FJgEoRnBrxnwvHM8p5y4LAa-fmlN5jI4TSdtg43rIVp-CHWDjfcGfG8xg2uzbIlG0COzGC5smGBkERl22QnIJsc_-pEvq19LNhUQsWAZxIeGDrt2tz3sMTt5gJ_oWm0LcU-2WtBIb1rtHhAtqA6JLP-IuZM0Lmnxeeion3MNa9XdF7RgNpozJjBvET6ZIGOZwA1HcEPAj9HzYp-NOCOjptgO301awfskuJr2AYNi9GPyKR4eL8fsLYvAtNSSM68dnnilLfhw7UH00utD0BNyzwYbGXDDQtkliYmiFoDz0ByYaQJc23XK5v0xDHpVPMKTgjNlJLcp0IJ5JHX4ZqtheYp5FgQm9ruKbmJcim_Gu6LMsasE1VuCq8cPo6COlTCz_43_ZzshoGGXrZ7QTr14hsug42vzVVU5C8K2Z7U
link.rule.ids 315,786,790,11589,27955,27956,46085,46509
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDeeGAkwo2dpB4RJbSlLagP0S3y46yypKgEpP57fElUlZHNw9mK7uTc53t8R8itlt5NGssCsBEEArgLNDgXcMsSw2JpwWI38mAYd6aiN4tm9ZxT7IWp-CHWATe8GeX_Gi84BqRrtgEkyfSuK-mliElksk12BHLBIbWzeFsHWXCqhCwznqFfBBi1q4vf_RH3mwf8xaalc0kPyH6NCulDZcZDsgX5EZm3l2XRBF04mn4sc9rGYvNiRRc59bCNliUzWJhIuwboeA5Q0BH8IPKzVK_oe4Xu6LjKttNXvY7AflHchnPQsBv9mEzTp8ljJ6gHIwRKcMECp2wrtNIZ_-HKgY4j4zxSU6LlPbY0_okFIolC7XWtgCUgGNdCe1nTdNKEMT8hjXyRwymhiZSCuYhLjkTyyr-zFVcsghZ2xEameUbuSr1knxX5RVYmrUOZbSov6z2PvDlkyM7_J35DdjuTQT_rd4cvF2TPC1Vcs81L0iiW33DlHX6hr0uj_gK2pqI8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIgFgQDxxgMjFm7iJPWIKKEtUKqWCrbIj7PKklalIPXf43OiqoxsHs5WdCfnPt_jO0KutfRu0ljOwCbABMSOaXCOxZZnhqfSgsVu5Jd-2hmL3kfyUQfcsBem4odYBdzwZoT_NV7wmXU12QByZHrPlfVyhCQy2yRbIvXgAZmdxWAVY8GhEjIkPCO_YBi0q2vf_RG36wf8habBt-R7ZLcGhfSusuI-2YDygEza81AzQaeO5p_zkrax1nyxpNOSetRGQ8UM1iXSrgE6mgAs6BB-EPhZqpf0vQJ3dFQl2-mrXgVgvyhuwzFo2Ix-SMb5w9t9h9VzEZgSseDMKduKrHTGf7hyoNPEOA_UlGh5hy2Nf2GByJJIe1Ur4BkIHmuhvaxpOmmiND4ijXJawjGhmZSCuySWMfLIK__MVrHiCbSwITYxzRNyE_RSzCruiyLkrCNZrCuv6D0OvTlkxE__J35FtgftvHju9p_OyI6XqZhmm-eksZh_w4V39wt9GWz6C_69oWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+of+Firn+Density+on+the+Greenland+Ice+Sheet+Revealed+by+Weather+Station+Observations+and+Modeling&rft.jtitle=Journal+of+geophysical+research.+Earth+surface&rft.au=Vandecrux%2C+B.&rft.au=Fausto%2C+R.+S.&rft.au=Langen%2C+P.+L.&rft.au=As%2C+D.&rft.date=2018-10-01&rft.issn=2169-9003&rft.eissn=2169-9011&rft.volume=123&rft.issue=10&rft.spage=2563&rft.epage=2576&rft_id=info:doi/10.1029%2F2017JF004597&rft.externalDBID=10.1029%252F2017JF004597&rft.externalDocID=JGRF20920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9003&client=summon