Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance
The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 14; pp. 13039 - 13057 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field. |
---|---|
AbstractList | The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field. The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field.The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field. |
Author | Naebe, Maryam Pakdel, Esfandiar Wang, Xungai Sun, Lu |
AuthorAffiliation | Institute for Frontier Materials Deakin University |
AuthorAffiliation_xml | – name: Institute for Frontier Materials – name: Deakin University |
Author_xml | – sequence: 1 givenname: Esfandiar orcidid: 0000-0003-1705-0226 surname: Pakdel fullname: Pakdel, Esfandiar email: e.pakdel@research.deakin.edu.au – sequence: 2 givenname: Maryam orcidid: 0000-0002-5266-9246 surname: Naebe fullname: Naebe, Maryam – sequence: 3 givenname: Lu orcidid: 0000-0003-2999-1250 surname: Sun fullname: Sun, Lu – sequence: 4 givenname: Xungai surname: Wang fullname: Wang, Xungai email: xungai.wang@deakin.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30892859$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLAzEQh4NU7EOvHmWPIrTmvdljKa0KlXqo55DNTtuUfdRkV_C_d8u2HgTxlCHzfcMwvyHqlVUJCN0SPCGYkkdjgyncRKUkwTK-QAOScD5WVNDeT815Hw1D2GMsGcXiCvUZVglVIhmg1TT7NKWFLFo0pa1dVZo8WrjUV02IXk0N3pk8RJvKR_Ny15HrHfii8rBtclO7chu9gW-B4ti9RpebVoCb0ztC74v5evY8Xq6eXmbT5dhwxuqxzYzYgM1wmlmZqCQGkmZYUiwFJrECbGNpiUkBJAcmKDHMWiJAZZKplFk2Qvfd3IOvPhoItS5csJDnpoR2dU0pi4XAnKr_UZIIKhUXSYvendAmLSDTB-8K47_0-V4twDvA-ioEDxttXW2OZ6u9cbkmWB9j0V0s-hRLq01-aefJfwoPndD-633V-DaW8Bf8DXminvc |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2020_09_117 crossref_primary_10_1016_j_eurpolymj_2023_111890 crossref_primary_10_1016_j_matchemphys_2019_122008 crossref_primary_10_1021_acs_chemmater_0c03392 crossref_primary_10_1016_j_ijthermalsci_2021_106899 crossref_primary_10_1021_acsnano_4c00967 crossref_primary_10_1016_j_applthermaleng_2020_115122 crossref_primary_10_1016_j_pmatsci_2024_101380 crossref_primary_10_1016_j_porgcoat_2020_105553 crossref_primary_10_1016_j_buildenv_2024_111169 crossref_primary_10_1016_j_cej_2021_133688 crossref_primary_10_1108_IJCST_01_2024_0019 crossref_primary_10_1016_j_est_2023_109027 crossref_primary_10_1080_17543266_2024_2347299 crossref_primary_10_1002_advs_202308200 crossref_primary_10_1002_adma_201904957 crossref_primary_10_3390_polym12010189 crossref_primary_10_1016_j_enbuild_2020_110011 crossref_primary_10_1021_acsami_0c20868 crossref_primary_10_1016_j_est_2021_103030 crossref_primary_10_1002_adma_202305546 crossref_primary_10_1155_2023_6656692 crossref_primary_10_1039_D2SM01548J crossref_primary_10_1016_j_enbuild_2023_113864 crossref_primary_10_1002_adfm_202304073 crossref_primary_10_1016_j_enchem_2022_100071 crossref_primary_10_1021_acsami_0c10802 crossref_primary_10_1002_adfm_202005033 crossref_primary_10_1177_00405175241231811 crossref_primary_10_1016_j_nanoms_2023_10_004 crossref_primary_10_1007_s10853_022_07896_0 crossref_primary_10_1016_j_apmt_2021_101025 crossref_primary_10_1021_acsami_0c04486 crossref_primary_10_3390_textiles3030022 crossref_primary_10_1021_acsami_9b12934 crossref_primary_10_1039_D1TC02240G crossref_primary_10_1016_j_compositesa_2022_107037 crossref_primary_10_3390_molecules26123686 crossref_primary_10_1016_j_molliq_2023_122603 crossref_primary_10_1002_adfm_202400221 crossref_primary_10_1002_adma_202403223 crossref_primary_10_1021_acsaom_3c00330 crossref_primary_10_1016_j_polymer_2022_125252 crossref_primary_10_1021_acssuschemeng_2c04155 crossref_primary_10_1177_00405175231154018 crossref_primary_10_1016_j_cej_2024_149281 crossref_primary_10_1016_j_cej_2024_157359 crossref_primary_10_1016_j_isci_2022_104226 crossref_primary_10_1016_j_adna_2025_03_001 crossref_primary_10_1021_acsnano_2c05067 crossref_primary_10_1007_s12274_022_4987_x crossref_primary_10_1016_j_isci_2022_104584 crossref_primary_10_1039_D3MH01881D crossref_primary_10_1016_j_jcis_2022_07_155 crossref_primary_10_1080_00405000_2020_1721696 crossref_primary_10_1016_j_xcrp_2024_102108 crossref_primary_10_1021_acssuschemeng_2c00189 crossref_primary_10_1021_acsami_4c02706 crossref_primary_10_1002_aesr_202100168 crossref_primary_10_1016_j_rser_2022_112998 crossref_primary_10_1016_j_enbuild_2021_111747 crossref_primary_10_1002_adfm_201907851 crossref_primary_10_1021_acssuschemeng_2c05481 crossref_primary_10_1002_marc_202200948 crossref_primary_10_3389_fmats_2021_681678 crossref_primary_10_1016_j_cej_2024_155729 crossref_primary_10_1016_j_sna_2020_112514 crossref_primary_10_1016_j_mtcomm_2023_107251 crossref_primary_10_1116_6_0002206 crossref_primary_10_1007_s10570_021_03890_y crossref_primary_10_1080_00405000_2022_2145424 crossref_primary_10_1016_j_mtener_2021_100925 crossref_primary_10_1007_s44258_025_00050_w crossref_primary_10_1016_j_cej_2022_138012 crossref_primary_10_1007_s42765_023_00264_w crossref_primary_10_1016_j_applthermaleng_2020_115960 crossref_primary_10_3390_nano13162313 crossref_primary_10_1016_j_enmm_2021_100504 crossref_primary_10_1007_s10118_022_2773_6 crossref_primary_10_1021_acsapm_3c01389 crossref_primary_10_1016_j_carbpol_2024_122649 crossref_primary_10_1016_j_enbuild_2024_114887 crossref_primary_10_1016_j_eurpolymj_2020_110245 crossref_primary_10_1016_j_solmat_2023_112322 crossref_primary_10_1007_s10570_022_04548_z crossref_primary_10_7216_teksmuh_1271662 crossref_primary_10_3390_plants14060862 crossref_primary_10_1039_D0TC03368E crossref_primary_10_1021_acsnano_2c00755 crossref_primary_10_1080_15440478_2023_2222554 crossref_primary_10_1177_00405175211027799 crossref_primary_10_1002_cphc_202300234 crossref_primary_10_1007_s11814_024_00082_9 crossref_primary_10_1021_acsami_2c05155 crossref_primary_10_1039_D4TA01734J crossref_primary_10_1021_acsaem_0c01788 crossref_primary_10_1016_j_jcis_2023_08_044 crossref_primary_10_2478_aut_2022_0035 crossref_primary_10_1021_acsnano_2c10279 crossref_primary_10_1016_j_solmat_2024_113149 crossref_primary_10_3390_polym11101616 crossref_primary_10_3390_fib11010003 crossref_primary_10_1088_1674_1056_ac8cdc crossref_primary_10_1016_j_cej_2024_149157 crossref_primary_10_1002_adfm_202209029 crossref_primary_10_3390_biology12071024 crossref_primary_10_1002_aesr_202100195 crossref_primary_10_1002_aenm_201903921 crossref_primary_10_1016_j_compositesb_2021_109299 crossref_primary_10_1021_acssuschemeng_3c02704 crossref_primary_10_1016_j_matdes_2023_112006 crossref_primary_10_1016_j_jiec_2021_03_050 crossref_primary_10_1039_D3MA00049D crossref_primary_10_1016_j_mtphys_2021_100342 crossref_primary_10_1016_j_mtphys_2021_100465 crossref_primary_10_1016_j_cej_2024_151040 crossref_primary_10_1016_j_colcom_2024_100782 crossref_primary_10_1016_j_nanoen_2022_107323 crossref_primary_10_1016_j_solmat_2024_113078 crossref_primary_10_1021_acsnano_2c04971 crossref_primary_10_1021_acsami_9b15612 crossref_primary_10_1002_app_52416 crossref_primary_10_1016_j_eurpolymj_2024_112777 crossref_primary_10_1016_j_gerr_2023_100010 crossref_primary_10_1109_RBME_2020_3043623 crossref_primary_10_1016_j_polymer_2024_126979 crossref_primary_10_1002_pi_6461 crossref_primary_10_1016_j_pmatsci_2023_101172 crossref_primary_10_1016_j_nxener_2023_100083 crossref_primary_10_1016_j_cej_2021_133093 crossref_primary_10_1016_j_mser_2024_100842 crossref_primary_10_1016_j_nanoen_2024_110361 crossref_primary_10_1016_j_solener_2022_02_043 crossref_primary_10_1016_j_engstruct_2020_110292 crossref_primary_10_1021_acsami_3c08195 crossref_primary_10_1002_pssa_202100572 crossref_primary_10_1007_s11467_021_1107_4 crossref_primary_10_3390_polym13193309 crossref_primary_10_1016_j_nanoen_2023_108821 crossref_primary_10_1021_acsami_2c12610 crossref_primary_10_1021_acsami_4c09549 crossref_primary_10_1016_j_cis_2020_102116 crossref_primary_10_1021_acs_iecr_1c00278 crossref_primary_10_1002_admt_201901155 |
Cites_doi | 10.1016/j.tca.2011.01.014 10.1016/j.applthermaleng.2016.06.187 10.1108/03699421311288742 10.1016/B978-0-08-101273-4.00008-1 10.1021/acsnano.7b06295 10.1021/acsami.5b11622 10.1364/OE.26.015995 10.1177/0040517516648510 10.1016/j.compositesb.2017.10.002 10.1038/s41893-018-0023-2 10.1177/0040517514530033 10.1016/j.rser.2010.11.018 10.1016/j.apenergy.2016.08.136 10.1016/j.rser.2016.12.012 10.1007/s12221-012-0529-6 10.1016/j.renene.2017.01.018 10.1533/9780857098450.1.17 10.1177/0040517514551462 10.1021/acsphotonics.6b00644 10.1016/j.jphotochemrev.2011.08.005 10.1021/nl5036572 10.1016/j.apenergy.2018.02.158 10.1016/j.applthermaleng.2017.08.037 10.1016/j.apenergy.2018.12.018 10.1002/adma.201706807 10.1016/j.matdes.2015.09.013 10.1080/00140139.2011.556260 10.1016/j.polymdegradstab.2018.12.006 10.1016/B978-0-08-100453-1.00005-2 10.1016/j.rser.2014.08.039 10.1111/j.1751-1097.2009.00680.x 10.1016/j.ergon.2013.01.001 10.1007/s10570-017-1374-y 10.1016/j.apenergy.2016.05.097 10.1016/j.ceramint.2015.01.057 10.1016/B978-0-08-100904-8.00006-7 10.1039/C4TA02764G 10.1016/j.apenergy.2017.11.001 10.1126/sciadv.1700895 10.1126/science.aaf5471 10.1021/acsami.6b03632 10.1021/acsphotonics.6b01005 10.1016/B978-0-08-100263-6.00014-9 10.1126/science.aab3564 10.1021/acs.chemmater.5b04419 10.1021/acsphotonics.5b00140 10.1088/1757-899X/254/10/102002 10.1021/jp066363o 10.1016/j.solener.2015.04.004 10.1016/j.surfcoat.2016.10.066 10.1016/j.solmat.2014.12.011 10.1038/srep13971 10.1039/c3cs60426h 10.1016/j.rser.2012.10.022 10.1002/app.33858 10.1016/j.applthermaleng.2017.02.119 10.1002/app.33979 10.1016/j.tca.2013.07.023 10.1111/j.1744-7402.2010.02599.x 10.1007/s12221-010-0967-y 10.1080/00405000.2014.995461 10.1016/j.tca.2009.09.005 10.1533/9781845691622.1.34 10.1016/j.solmat.2015.06.039 10.1016/j.jtherbio.2015.01.003 10.1016/j.pmatsci.2014.03.005 10.1016/j.jcis.2013.03.016 10.1016/j.rser.2016.10.042 10.1016/B978-0-08-100263-6.00008-3 10.1002/adma.201802152 10.1016/j.enconman.2015.01.084 10.1016/j.apenergy.2011.02.026 10.1038/nnano.2011.169 10.1080/00405000.2014.895088 10.1016/j.apsusc.2014.10.018 10.1039/c0ee00686f 10.1021/am1005089 10.1007/s11998-016-9854-9 10.1177/0040517506070065 10.1016/j.ceramint.2014.09.096 10.1038/s41467-017-00614-4 10.1021/acsbiomaterials.8b00068 10.1177/1528083708098915 10.1002/9781119460367.ch8 10.1016/j.erss.2015.05.007 10.1016/B978-0-08-100570-5.00004-9 10.1021/nn9005973 10.1533/9780857090645.2.165 10.1021/acssuschemeng.7b03423 10.1039/C6NJ00353B 10.1002/app.21438 10.1007/s12221-015-1156-9 10.1016/j.enbuild.2017.08.089 10.1126/science.aai7899 10.1016/j.rser.2015.09.040 10.1016/B978-0-08-100904-8.00012-2 10.4172/2165-8064.1000e120 10.1080/00405000.2012.757007 10.1177/1528083715601512 10.1021/acsami.5b02141 10.1016/j.jcis.2014.10.032 10.1016/j.arr.2014.03.006 10.1016/j.compositesb.2013.04.037 10.1108/RJTA-08-02-2004-B008 10.1016/j.tca.2014.05.037 10.1016/j.carbpol.2017.02.074 10.1016/j.tca.2012.04.013 10.1016/j.apsusc.2012.10.141 10.1016/j.applthermaleng.2007.08.009 10.1016/j.renene.2014.05.063 10.1021/acs.est.5b06043 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.8b19067 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 13057 |
ExternalDocumentID | 30892859 10_1021_acsami_8b19067 d63675953 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a433t-cda5fecd0bdc69897e1bd0620650178e0c76c1abee64e3521a3cc15e8d638b3c3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 16:51:18 EDT 2025 Fri Jul 11 10:25:12 EDT 2025 Wed Feb 19 02:35:21 EST 2025 Thu Apr 24 22:52:00 EDT 2025 Tue Jul 01 04:06:21 EDT 2025 Thu Aug 27 13:44:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | passive cooling and heating thermoregulating textiles functional coatings phase change materials (PCMs) thermal comfort |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a433t-cda5fecd0bdc69897e1bd0620650178e0c76c1abee64e3521a3cc15e8d638b3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5266-9246 0000-0003-1705-0226 0000-0003-2999-1250 |
PMID | 30892859 |
PQID | 2195268459 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2237550428 proquest_miscellaneous_2195268459 pubmed_primary_30892859 crossref_citationtrail_10_1021_acsami_8b19067 crossref_primary_10_1021_acsami_8b19067 acs_journals_10_1021_acsami_8b19067 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-10 |
PublicationDateYYYYMMDD | 2019-04-10 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 Lewin M. (ref35/cit35) 2007 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref74/cit74 doi: 10.1016/j.tca.2011.01.014 – ident: ref79/cit79 doi: 10.1016/j.applthermaleng.2016.06.187 – ident: ref110/cit110 doi: 10.1108/03699421311288742 – ident: ref12/cit12 doi: 10.1016/B978-0-08-101273-4.00008-1 – ident: ref41/cit41 doi: 10.1021/acsnano.7b06295 – ident: ref113/cit113 doi: 10.1021/acsami.5b11622 – ident: ref47/cit47 doi: 10.1364/OE.26.015995 – ident: ref91/cit91 doi: 10.1177/0040517516648510 – ident: ref38/cit38 doi: 10.1016/j.compositesb.2017.10.002 – ident: ref55/cit55 doi: 10.1038/s41893-018-0023-2 – ident: ref13/cit13 doi: 10.1177/0040517514530033 – ident: ref64/cit64 doi: 10.1016/j.rser.2010.11.018 – ident: ref84/cit84 doi: 10.1016/j.apenergy.2016.08.136 – ident: ref59/cit59 doi: 10.1016/j.rser.2016.12.012 – ident: ref90/cit90 doi: 10.1007/s12221-012-0529-6 – ident: ref43/cit43 doi: 10.1016/j.renene.2017.01.018 – ident: ref9/cit9 doi: 10.1533/9780857098450.1.17 – ident: ref34/cit34 doi: 10.1177/0040517514551462 – ident: ref42/cit42 doi: 10.1021/acsphotonics.6b00644 – ident: ref100/cit100 doi: 10.1016/j.jphotochemrev.2011.08.005 – ident: ref52/cit52 doi: 10.1021/nl5036572 – ident: ref16/cit16 doi: 10.1016/j.apenergy.2018.02.158 – volume-title: Handbook of fiber chemistry year: 2007 ident: ref35/cit35 – ident: ref69/cit69 doi: 10.1016/j.applthermaleng.2017.08.037 – ident: ref48/cit48 doi: 10.1016/j.apenergy.2018.12.018 – ident: ref56/cit56 doi: 10.1002/adma.201706807 – ident: ref21/cit21 doi: 10.1016/j.matdes.2015.09.013 – ident: ref88/cit88 doi: 10.1080/00140139.2011.556260 – ident: ref106/cit106 doi: 10.1016/j.polymdegradstab.2018.12.006 – ident: ref10/cit10 doi: 10.1016/B978-0-08-100453-1.00005-2 – ident: ref3/cit3 doi: 10.1016/j.rser.2014.08.039 – ident: ref105/cit105 doi: 10.1111/j.1751-1097.2009.00680.x – ident: ref92/cit92 doi: 10.1016/j.ergon.2013.01.001 – ident: ref103/cit103 doi: 10.1007/s10570-017-1374-y – ident: ref65/cit65 doi: 10.1016/j.apenergy.2016.05.097 – ident: ref26/cit26 – ident: ref30/cit30 doi: 10.1016/j.ceramint.2015.01.057 – ident: ref8/cit8 doi: 10.1016/B978-0-08-100904-8.00006-7 – ident: ref112/cit112 doi: 10.1039/C4TA02764G – ident: ref82/cit82 doi: 10.1016/j.apenergy.2017.11.001 – ident: ref50/cit50 doi: 10.1126/sciadv.1700895 – ident: ref32/cit32 – ident: ref49/cit49 doi: 10.1126/science.aaf5471 – ident: ref107/cit107 doi: 10.1021/acsami.6b03632 – ident: ref46/cit46 doi: 10.1021/acsphotonics.6b01005 – ident: ref7/cit7 doi: 10.1016/B978-0-08-100263-6.00014-9 – ident: ref20/cit20 doi: 10.1126/science.aab3564 – ident: ref2/cit2 doi: 10.1021/acs.chemmater.5b04419 – ident: ref45/cit45 doi: 10.1021/acsphotonics.5b00140 – ident: ref116/cit116 doi: 10.1088/1757-899X/254/10/102002 – ident: ref17/cit17 doi: 10.1021/jp066363o – ident: ref4/cit4 doi: 10.1016/j.solener.2015.04.004 – ident: ref28/cit28 doi: 10.1016/j.surfcoat.2016.10.066 – ident: ref27/cit27 doi: 10.1016/j.solmat.2014.12.011 – ident: ref53/cit53 doi: 10.1038/srep13971 – ident: ref83/cit83 doi: 10.1039/c3cs60426h – ident: ref60/cit60 doi: 10.1016/j.rser.2012.10.022 – ident: ref108/cit108 doi: 10.1002/app.33858 – ident: ref86/cit86 doi: 10.1016/j.applthermaleng.2017.02.119 – ident: ref39/cit39 doi: 10.1002/app.33979 – ident: ref66/cit66 doi: 10.1016/j.tca.2013.07.023 – ident: ref23/cit23 doi: 10.1111/j.1744-7402.2010.02599.x – ident: ref76/cit76 doi: 10.1007/s12221-010-0967-y – ident: ref98/cit98 doi: 10.1080/00405000.2014.995461 – ident: ref71/cit71 doi: 10.1016/j.tca.2009.09.005 – ident: ref73/cit73 doi: 10.1533/9781845691622.1.34 – ident: ref78/cit78 doi: 10.1016/j.solmat.2015.06.039 – ident: ref93/cit93 doi: 10.1016/j.jtherbio.2015.01.003 – ident: ref58/cit58 doi: 10.1016/j.pmatsci.2014.03.005 – ident: ref102/cit102 doi: 10.1016/j.jcis.2013.03.016 – ident: ref25/cit25 – ident: ref1/cit1 doi: 10.1016/j.rser.2016.10.042 – ident: ref6/cit6 doi: 10.1016/B978-0-08-100263-6.00008-3 – ident: ref51/cit51 doi: 10.1002/adma.201802152 – ident: ref62/cit62 doi: 10.1016/j.enconman.2015.01.084 – ident: ref85/cit85 doi: 10.1016/j.apenergy.2011.02.026 – ident: ref95/cit95 doi: 10.1038/nnano.2011.169 – ident: ref115/cit115 – ident: ref94/cit94 doi: 10.1080/00405000.2014.895088 – ident: ref99/cit99 doi: 10.1016/j.apsusc.2014.10.018 – ident: ref117/cit117 doi: 10.1039/c0ee00686f – ident: ref101/cit101 doi: 10.1021/am1005089 – ident: ref24/cit24 doi: 10.1007/s11998-016-9854-9 – ident: ref36/cit36 doi: 10.1177/0040517506070065 – ident: ref31/cit31 doi: 10.1016/j.ceramint.2014.09.096 – ident: ref54/cit54 doi: 10.1038/s41467-017-00614-4 – ident: ref97/cit97 doi: 10.1021/acsbiomaterials.8b00068 – ident: ref37/cit37 doi: 10.1177/1528083708098915 – ident: ref15/cit15 doi: 10.1002/9781119460367.ch8 – ident: ref5/cit5 doi: 10.1016/j.erss.2015.05.007 – ident: ref14/cit14 doi: 10.1016/B978-0-08-100570-5.00004-9 – ident: ref96/cit96 doi: 10.1021/nn9005973 – ident: ref87/cit87 doi: 10.1533/9780857090645.2.165 – ident: ref19/cit19 doi: 10.1021/acssuschemeng.7b03423 – ident: ref29/cit29 doi: 10.1039/C6NJ00353B – ident: ref72/cit72 doi: 10.1002/app.21438 – ident: ref81/cit81 doi: 10.1007/s12221-015-1156-9 – ident: ref22/cit22 doi: 10.1016/j.enbuild.2017.08.089 – ident: ref44/cit44 doi: 10.1126/science.aai7899 – ident: ref63/cit63 doi: 10.1016/j.rser.2015.09.040 – ident: ref11/cit11 doi: 10.1016/B978-0-08-100904-8.00012-2 – ident: ref77/cit77 doi: 10.4172/2165-8064.1000e120 – ident: ref40/cit40 doi: 10.1080/00405000.2012.757007 – ident: ref67/cit67 doi: 10.1177/1528083715601512 – ident: ref109/cit109 doi: 10.1021/acsami.5b02141 – ident: ref104/cit104 doi: 10.1016/j.jcis.2014.10.032 – ident: ref18/cit18 doi: 10.1016/j.arr.2014.03.006 – ident: ref33/cit33 doi: 10.1016/j.compositesb.2013.04.037 – ident: ref68/cit68 doi: 10.1108/RJTA-08-02-2004-B008 – ident: ref70/cit70 doi: 10.1016/j.tca.2014.05.037 – ident: ref75/cit75 doi: 10.1016/j.carbpol.2017.02.074 – ident: ref57/cit57 doi: 10.1016/j.tca.2012.04.013 – ident: ref111/cit111 doi: 10.1016/j.apsusc.2012.10.141 – ident: ref61/cit61 doi: 10.1016/j.applthermaleng.2007.08.009 – ident: ref80/cit80 doi: 10.1016/j.renene.2014.05.063 – ident: ref114/cit114 doi: 10.1021/acs.est.5b06043 |
SSID | ssj0063205 |
Score | 2.6139736 |
SecondaryResourceType | review_article |
Snippet | The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13039 |
SubjectTerms | air cooling energy engineering fabrics heat transfer liquids nanopores photons |
Title | Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance |
URI | http://dx.doi.org/10.1021/acsami.8b19067 https://www.ncbi.nlm.nih.gov/pubmed/30892859 https://www.proquest.com/docview/2195268459 https://www.proquest.com/docview/2237550428 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODA-zFeKgKJU6Bt0qQ7TtOmCWmABJN2q1onFRKoQ2t34dfjpO0GTAPOdV-OHX-Ok8-EXCkFnIMWVCuuKG-lnCZSSco54zKV4CpLpD24F_0hvxsFo_l6x88Kvu_dxpCbVjhhgqFLyFWy5gv0YAOCOk_1nCuYbzcrYkbOaYgRq6ZnXLjfBCHIvwehJcjSRpjeVkl3lFtiQrOx5PVmWiQ38LFI2_jnx2-TzQpmOu3SLnbIis52ycYX8sE98tCuyv9OD2NbuSTo9DB7Hk9zZxAXpWk6CGqdbvZSSqJRTczOXNu_Hp_iPM7PHeyTYa_73OnTqr0CjTljBQUVB6kG5SYKTBtJqb1EucI3oM2ToXZBCvDiRGvBNeI0L2YAXqBDhT6bMGAHpJGNM31EHHM9ZSpNmQYuEHVoEAGOss9jgQCEN8klaiKq3COPbOXb96JSPVGlniah9ahEUDGUm0YZb0vlr2fy7yU3x1LJi3qQI3QfUxOJM43qjHDCtoQ3QesXGZ9JTOQwUWuSw9JCZu9jbtgyHIDH__rDE7KOgMtWozz3lDSKyVSfIagpknNrz58SiPJ5 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1LWIJA4GZLYsdNjVbUqS6ESVOIWJbYjJFBAJL3w9YydpGwqgmsyceLx2PMmHr8BOFZKMiY1J1oxRVgzZSQRShDGKBOpkK6yRNr9a94bsov74H4KzuqzMPgRObaU2038D3YB7wyvmYo4YYIejItpmEUk4huTbrVv66WXU9_mLGJgzkiIjqtmafzxvPFFMv_qiyYATOtoukswGH-izS95PB0Vyal8-8be-I8-LMNiBTqdVmklKzCls1VY-ERFuAY3rSoZwOmipyt_EDpdjKWfR7nTj4vSUB2EuE4neygl0cReTZ6urWaPrTiDj1MI6zDsdu7aPVIVWyAxo7QgUsVBqqVyEyVNUUmhvUS53DcQzhOhdqXg0osTrTnTiNq8mErpBTpUOIMTKukGzGTPmd4Cx9xPqUpTqiXjiEG05AGOuc9ijnCENeAINRFVkyWP7D6470WleqJKPQ0g9eBEsuIrN2UznibKn4zlX0qmjomSh_VYRziZzA5JnGlUZ4TLt6W_CZq_yPhUYFiHYVsDNktDGb-PumHTMAJu_6mHBzDXu-tfRVfn15c7MI9QzO5Tee4uzBSvI72HcKdI9q2JvwOJjfra |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT4QwEJ54JEYfvI_1xGjiU1egpWUfNyrx2tVETXwj0JaYaNiNsC_-eqeFXa-s0VcYCp3OdL4y7TcAh0pJxqTmRCumCGtljKRCCcIYZSIT0lWWSLvT5ecP7PIxeKzPcZuzMPgRBbZU2CS-8eq-ymqGAe8Yr5uqOGGKUYyLSZg2OTtj1u2Tu-H0y6lv9y3i4pyREIPXkKnxx_MmHsniazwaAzJtsIkW4H70mXaPyXNzUKZN-faNwfGf_ViE-Rp8Ou3KWpZgQufLMPeJknAFbtr1pgAnwohX_Sh0IlxT9waF00nKymAdhLrOWf5USaKpvZr9uraqPbbi3H6cRliFh-js_uSc1EUXSMIoLYlUSZBpqdxUSVNcUmgvVS73DZTzRKhdKbj0klRrzjSiNy-hUnqBDhV6ckolXYOpvJfrDXDM_YyqLKNaMo5YREse4Nj7LOEIS1gDDlATce00RWzz4b4XV-qJa_U0gAwHKJY1b7kpn_EyVv5oJN-vGDvGSu4PxztGpzKZkiTXqM4Yp3FLgxO0fpHxqcDlHS7fGrBeGcvofdQNW4YZcPNPPdyDmdvTKL6-6F5twSwiMpuu8txtmCpfB3oHUU-Z7lorfwetcP1d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Functional+Fibrous+Materials+for+Enhanced+Thermoregulating+Performance&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Pakdel%2C+Esfandiar&rft.au=Naebe%2C+Maryam&rft.au=Sun%2C+Lu&rft.au=Wang%2C+Xungai&rft.date=2019-04-10&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=14&rft.spage=13039&rft.epage=13057&rft_id=info:doi/10.1021%2Facsami.8b19067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_8b19067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |