Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance

The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 14; pp. 13039 - 13057
Main Authors Pakdel, Esfandiar, Naebe, Maryam, Sun, Lu, Wang, Xungai
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field.
AbstractList The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field.
The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field.The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field.
Author Naebe, Maryam
Pakdel, Esfandiar
Wang, Xungai
Sun, Lu
AuthorAffiliation Institute for Frontier Materials
Deakin University
AuthorAffiliation_xml – name: Institute for Frontier Materials
– name: Deakin University
Author_xml – sequence: 1
  givenname: Esfandiar
  orcidid: 0000-0003-1705-0226
  surname: Pakdel
  fullname: Pakdel, Esfandiar
  email: e.pakdel@research.deakin.edu.au
– sequence: 2
  givenname: Maryam
  orcidid: 0000-0002-5266-9246
  surname: Naebe
  fullname: Naebe, Maryam
– sequence: 3
  givenname: Lu
  orcidid: 0000-0003-2999-1250
  surname: Sun
  fullname: Sun, Lu
– sequence: 4
  givenname: Xungai
  surname: Wang
  fullname: Wang, Xungai
  email: xungai.wang@deakin.edu.au
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30892859$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLAzEQh4NU7EOvHmWPIrTmvdljKa0KlXqo55DNTtuUfdRkV_C_d8u2HgTxlCHzfcMwvyHqlVUJCN0SPCGYkkdjgyncRKUkwTK-QAOScD5WVNDeT815Hw1D2GMsGcXiCvUZVglVIhmg1TT7NKWFLFo0pa1dVZo8WrjUV02IXk0N3pk8RJvKR_Ny15HrHfii8rBtclO7chu9gW-B4ti9RpebVoCb0ztC74v5evY8Xq6eXmbT5dhwxuqxzYzYgM1wmlmZqCQGkmZYUiwFJrECbGNpiUkBJAcmKDHMWiJAZZKplFk2Qvfd3IOvPhoItS5csJDnpoR2dU0pi4XAnKr_UZIIKhUXSYvendAmLSDTB-8K47_0-V4twDvA-ioEDxttXW2OZ6u9cbkmWB9j0V0s-hRLq01-aefJfwoPndD-633V-DaW8Bf8DXminvc
CitedBy_id crossref_primary_10_1016_j_ceramint_2020_09_117
crossref_primary_10_1016_j_eurpolymj_2023_111890
crossref_primary_10_1016_j_matchemphys_2019_122008
crossref_primary_10_1021_acs_chemmater_0c03392
crossref_primary_10_1016_j_ijthermalsci_2021_106899
crossref_primary_10_1021_acsnano_4c00967
crossref_primary_10_1016_j_applthermaleng_2020_115122
crossref_primary_10_1016_j_pmatsci_2024_101380
crossref_primary_10_1016_j_porgcoat_2020_105553
crossref_primary_10_1016_j_buildenv_2024_111169
crossref_primary_10_1016_j_cej_2021_133688
crossref_primary_10_1108_IJCST_01_2024_0019
crossref_primary_10_1016_j_est_2023_109027
crossref_primary_10_1080_17543266_2024_2347299
crossref_primary_10_1002_advs_202308200
crossref_primary_10_1002_adma_201904957
crossref_primary_10_3390_polym12010189
crossref_primary_10_1016_j_enbuild_2020_110011
crossref_primary_10_1021_acsami_0c20868
crossref_primary_10_1016_j_est_2021_103030
crossref_primary_10_1002_adma_202305546
crossref_primary_10_1155_2023_6656692
crossref_primary_10_1039_D2SM01548J
crossref_primary_10_1016_j_enbuild_2023_113864
crossref_primary_10_1002_adfm_202304073
crossref_primary_10_1016_j_enchem_2022_100071
crossref_primary_10_1021_acsami_0c10802
crossref_primary_10_1002_adfm_202005033
crossref_primary_10_1177_00405175241231811
crossref_primary_10_1016_j_nanoms_2023_10_004
crossref_primary_10_1007_s10853_022_07896_0
crossref_primary_10_1016_j_apmt_2021_101025
crossref_primary_10_1021_acsami_0c04486
crossref_primary_10_3390_textiles3030022
crossref_primary_10_1021_acsami_9b12934
crossref_primary_10_1039_D1TC02240G
crossref_primary_10_1016_j_compositesa_2022_107037
crossref_primary_10_3390_molecules26123686
crossref_primary_10_1016_j_molliq_2023_122603
crossref_primary_10_1002_adfm_202400221
crossref_primary_10_1002_adma_202403223
crossref_primary_10_1021_acsaom_3c00330
crossref_primary_10_1016_j_polymer_2022_125252
crossref_primary_10_1021_acssuschemeng_2c04155
crossref_primary_10_1177_00405175231154018
crossref_primary_10_1016_j_cej_2024_149281
crossref_primary_10_1016_j_cej_2024_157359
crossref_primary_10_1016_j_isci_2022_104226
crossref_primary_10_1016_j_adna_2025_03_001
crossref_primary_10_1021_acsnano_2c05067
crossref_primary_10_1007_s12274_022_4987_x
crossref_primary_10_1016_j_isci_2022_104584
crossref_primary_10_1039_D3MH01881D
crossref_primary_10_1016_j_jcis_2022_07_155
crossref_primary_10_1080_00405000_2020_1721696
crossref_primary_10_1016_j_xcrp_2024_102108
crossref_primary_10_1021_acssuschemeng_2c00189
crossref_primary_10_1021_acsami_4c02706
crossref_primary_10_1002_aesr_202100168
crossref_primary_10_1016_j_rser_2022_112998
crossref_primary_10_1016_j_enbuild_2021_111747
crossref_primary_10_1002_adfm_201907851
crossref_primary_10_1021_acssuschemeng_2c05481
crossref_primary_10_1002_marc_202200948
crossref_primary_10_3389_fmats_2021_681678
crossref_primary_10_1016_j_cej_2024_155729
crossref_primary_10_1016_j_sna_2020_112514
crossref_primary_10_1016_j_mtcomm_2023_107251
crossref_primary_10_1116_6_0002206
crossref_primary_10_1007_s10570_021_03890_y
crossref_primary_10_1080_00405000_2022_2145424
crossref_primary_10_1016_j_mtener_2021_100925
crossref_primary_10_1007_s44258_025_00050_w
crossref_primary_10_1016_j_cej_2022_138012
crossref_primary_10_1007_s42765_023_00264_w
crossref_primary_10_1016_j_applthermaleng_2020_115960
crossref_primary_10_3390_nano13162313
crossref_primary_10_1016_j_enmm_2021_100504
crossref_primary_10_1007_s10118_022_2773_6
crossref_primary_10_1021_acsapm_3c01389
crossref_primary_10_1016_j_carbpol_2024_122649
crossref_primary_10_1016_j_enbuild_2024_114887
crossref_primary_10_1016_j_eurpolymj_2020_110245
crossref_primary_10_1016_j_solmat_2023_112322
crossref_primary_10_1007_s10570_022_04548_z
crossref_primary_10_7216_teksmuh_1271662
crossref_primary_10_3390_plants14060862
crossref_primary_10_1039_D0TC03368E
crossref_primary_10_1021_acsnano_2c00755
crossref_primary_10_1080_15440478_2023_2222554
crossref_primary_10_1177_00405175211027799
crossref_primary_10_1002_cphc_202300234
crossref_primary_10_1007_s11814_024_00082_9
crossref_primary_10_1021_acsami_2c05155
crossref_primary_10_1039_D4TA01734J
crossref_primary_10_1021_acsaem_0c01788
crossref_primary_10_1016_j_jcis_2023_08_044
crossref_primary_10_2478_aut_2022_0035
crossref_primary_10_1021_acsnano_2c10279
crossref_primary_10_1016_j_solmat_2024_113149
crossref_primary_10_3390_polym11101616
crossref_primary_10_3390_fib11010003
crossref_primary_10_1088_1674_1056_ac8cdc
crossref_primary_10_1016_j_cej_2024_149157
crossref_primary_10_1002_adfm_202209029
crossref_primary_10_3390_biology12071024
crossref_primary_10_1002_aesr_202100195
crossref_primary_10_1002_aenm_201903921
crossref_primary_10_1016_j_compositesb_2021_109299
crossref_primary_10_1021_acssuschemeng_3c02704
crossref_primary_10_1016_j_matdes_2023_112006
crossref_primary_10_1016_j_jiec_2021_03_050
crossref_primary_10_1039_D3MA00049D
crossref_primary_10_1016_j_mtphys_2021_100342
crossref_primary_10_1016_j_mtphys_2021_100465
crossref_primary_10_1016_j_cej_2024_151040
crossref_primary_10_1016_j_colcom_2024_100782
crossref_primary_10_1016_j_nanoen_2022_107323
crossref_primary_10_1016_j_solmat_2024_113078
crossref_primary_10_1021_acsnano_2c04971
crossref_primary_10_1021_acsami_9b15612
crossref_primary_10_1002_app_52416
crossref_primary_10_1016_j_eurpolymj_2024_112777
crossref_primary_10_1016_j_gerr_2023_100010
crossref_primary_10_1109_RBME_2020_3043623
crossref_primary_10_1016_j_polymer_2024_126979
crossref_primary_10_1002_pi_6461
crossref_primary_10_1016_j_pmatsci_2023_101172
crossref_primary_10_1016_j_nxener_2023_100083
crossref_primary_10_1016_j_cej_2021_133093
crossref_primary_10_1016_j_mser_2024_100842
crossref_primary_10_1016_j_nanoen_2024_110361
crossref_primary_10_1016_j_solener_2022_02_043
crossref_primary_10_1016_j_engstruct_2020_110292
crossref_primary_10_1021_acsami_3c08195
crossref_primary_10_1002_pssa_202100572
crossref_primary_10_1007_s11467_021_1107_4
crossref_primary_10_3390_polym13193309
crossref_primary_10_1016_j_nanoen_2023_108821
crossref_primary_10_1021_acsami_2c12610
crossref_primary_10_1021_acsami_4c09549
crossref_primary_10_1016_j_cis_2020_102116
crossref_primary_10_1021_acs_iecr_1c00278
crossref_primary_10_1002_admt_201901155
Cites_doi 10.1016/j.tca.2011.01.014
10.1016/j.applthermaleng.2016.06.187
10.1108/03699421311288742
10.1016/B978-0-08-101273-4.00008-1
10.1021/acsnano.7b06295
10.1021/acsami.5b11622
10.1364/OE.26.015995
10.1177/0040517516648510
10.1016/j.compositesb.2017.10.002
10.1038/s41893-018-0023-2
10.1177/0040517514530033
10.1016/j.rser.2010.11.018
10.1016/j.apenergy.2016.08.136
10.1016/j.rser.2016.12.012
10.1007/s12221-012-0529-6
10.1016/j.renene.2017.01.018
10.1533/9780857098450.1.17
10.1177/0040517514551462
10.1021/acsphotonics.6b00644
10.1016/j.jphotochemrev.2011.08.005
10.1021/nl5036572
10.1016/j.apenergy.2018.02.158
10.1016/j.applthermaleng.2017.08.037
10.1016/j.apenergy.2018.12.018
10.1002/adma.201706807
10.1016/j.matdes.2015.09.013
10.1080/00140139.2011.556260
10.1016/j.polymdegradstab.2018.12.006
10.1016/B978-0-08-100453-1.00005-2
10.1016/j.rser.2014.08.039
10.1111/j.1751-1097.2009.00680.x
10.1016/j.ergon.2013.01.001
10.1007/s10570-017-1374-y
10.1016/j.apenergy.2016.05.097
10.1016/j.ceramint.2015.01.057
10.1016/B978-0-08-100904-8.00006-7
10.1039/C4TA02764G
10.1016/j.apenergy.2017.11.001
10.1126/sciadv.1700895
10.1126/science.aaf5471
10.1021/acsami.6b03632
10.1021/acsphotonics.6b01005
10.1016/B978-0-08-100263-6.00014-9
10.1126/science.aab3564
10.1021/acs.chemmater.5b04419
10.1021/acsphotonics.5b00140
10.1088/1757-899X/254/10/102002
10.1021/jp066363o
10.1016/j.solener.2015.04.004
10.1016/j.surfcoat.2016.10.066
10.1016/j.solmat.2014.12.011
10.1038/srep13971
10.1039/c3cs60426h
10.1016/j.rser.2012.10.022
10.1002/app.33858
10.1016/j.applthermaleng.2017.02.119
10.1002/app.33979
10.1016/j.tca.2013.07.023
10.1111/j.1744-7402.2010.02599.x
10.1007/s12221-010-0967-y
10.1080/00405000.2014.995461
10.1016/j.tca.2009.09.005
10.1533/9781845691622.1.34
10.1016/j.solmat.2015.06.039
10.1016/j.jtherbio.2015.01.003
10.1016/j.pmatsci.2014.03.005
10.1016/j.jcis.2013.03.016
10.1016/j.rser.2016.10.042
10.1016/B978-0-08-100263-6.00008-3
10.1002/adma.201802152
10.1016/j.enconman.2015.01.084
10.1016/j.apenergy.2011.02.026
10.1038/nnano.2011.169
10.1080/00405000.2014.895088
10.1016/j.apsusc.2014.10.018
10.1039/c0ee00686f
10.1021/am1005089
10.1007/s11998-016-9854-9
10.1177/0040517506070065
10.1016/j.ceramint.2014.09.096
10.1038/s41467-017-00614-4
10.1021/acsbiomaterials.8b00068
10.1177/1528083708098915
10.1002/9781119460367.ch8
10.1016/j.erss.2015.05.007
10.1016/B978-0-08-100570-5.00004-9
10.1021/nn9005973
10.1533/9780857090645.2.165
10.1021/acssuschemeng.7b03423
10.1039/C6NJ00353B
10.1002/app.21438
10.1007/s12221-015-1156-9
10.1016/j.enbuild.2017.08.089
10.1126/science.aai7899
10.1016/j.rser.2015.09.040
10.1016/B978-0-08-100904-8.00012-2
10.4172/2165-8064.1000e120
10.1080/00405000.2012.757007
10.1177/1528083715601512
10.1021/acsami.5b02141
10.1016/j.jcis.2014.10.032
10.1016/j.arr.2014.03.006
10.1016/j.compositesb.2013.04.037
10.1108/RJTA-08-02-2004-B008
10.1016/j.tca.2014.05.037
10.1016/j.carbpol.2017.02.074
10.1016/j.tca.2012.04.013
10.1016/j.apsusc.2012.10.141
10.1016/j.applthermaleng.2007.08.009
10.1016/j.renene.2014.05.063
10.1021/acs.est.5b06043
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b19067
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 13057
ExternalDocumentID 30892859
10_1021_acsami_8b19067
d63675953
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a433t-cda5fecd0bdc69897e1bd0620650178e0c76c1abee64e3521a3cc15e8d638b3c3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 16:51:18 EDT 2025
Fri Jul 11 10:25:12 EDT 2025
Wed Feb 19 02:35:21 EST 2025
Thu Apr 24 22:52:00 EDT 2025
Tue Jul 01 04:06:21 EDT 2025
Thu Aug 27 13:44:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords passive cooling and heating
thermoregulating textiles
functional coatings
phase change materials (PCMs)
thermal comfort
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-cda5fecd0bdc69897e1bd0620650178e0c76c1abee64e3521a3cc15e8d638b3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5266-9246
0000-0003-1705-0226
0000-0003-2999-1250
PMID 30892859
PQID 2195268459
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2237550428
proquest_miscellaneous_2195268459
pubmed_primary_30892859
crossref_citationtrail_10_1021_acsami_8b19067
crossref_primary_10_1021_acsami_8b19067
acs_journals_10_1021_acsami_8b19067
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-10
PublicationDateYYYYMMDD 2019-04-10
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
Lewin M. (ref35/cit35) 2007
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref74/cit74
  doi: 10.1016/j.tca.2011.01.014
– ident: ref79/cit79
  doi: 10.1016/j.applthermaleng.2016.06.187
– ident: ref110/cit110
  doi: 10.1108/03699421311288742
– ident: ref12/cit12
  doi: 10.1016/B978-0-08-101273-4.00008-1
– ident: ref41/cit41
  doi: 10.1021/acsnano.7b06295
– ident: ref113/cit113
  doi: 10.1021/acsami.5b11622
– ident: ref47/cit47
  doi: 10.1364/OE.26.015995
– ident: ref91/cit91
  doi: 10.1177/0040517516648510
– ident: ref38/cit38
  doi: 10.1016/j.compositesb.2017.10.002
– ident: ref55/cit55
  doi: 10.1038/s41893-018-0023-2
– ident: ref13/cit13
  doi: 10.1177/0040517514530033
– ident: ref64/cit64
  doi: 10.1016/j.rser.2010.11.018
– ident: ref84/cit84
  doi: 10.1016/j.apenergy.2016.08.136
– ident: ref59/cit59
  doi: 10.1016/j.rser.2016.12.012
– ident: ref90/cit90
  doi: 10.1007/s12221-012-0529-6
– ident: ref43/cit43
  doi: 10.1016/j.renene.2017.01.018
– ident: ref9/cit9
  doi: 10.1533/9780857098450.1.17
– ident: ref34/cit34
  doi: 10.1177/0040517514551462
– ident: ref42/cit42
  doi: 10.1021/acsphotonics.6b00644
– ident: ref100/cit100
  doi: 10.1016/j.jphotochemrev.2011.08.005
– ident: ref52/cit52
  doi: 10.1021/nl5036572
– ident: ref16/cit16
  doi: 10.1016/j.apenergy.2018.02.158
– volume-title: Handbook of fiber chemistry
  year: 2007
  ident: ref35/cit35
– ident: ref69/cit69
  doi: 10.1016/j.applthermaleng.2017.08.037
– ident: ref48/cit48
  doi: 10.1016/j.apenergy.2018.12.018
– ident: ref56/cit56
  doi: 10.1002/adma.201706807
– ident: ref21/cit21
  doi: 10.1016/j.matdes.2015.09.013
– ident: ref88/cit88
  doi: 10.1080/00140139.2011.556260
– ident: ref106/cit106
  doi: 10.1016/j.polymdegradstab.2018.12.006
– ident: ref10/cit10
  doi: 10.1016/B978-0-08-100453-1.00005-2
– ident: ref3/cit3
  doi: 10.1016/j.rser.2014.08.039
– ident: ref105/cit105
  doi: 10.1111/j.1751-1097.2009.00680.x
– ident: ref92/cit92
  doi: 10.1016/j.ergon.2013.01.001
– ident: ref103/cit103
  doi: 10.1007/s10570-017-1374-y
– ident: ref65/cit65
  doi: 10.1016/j.apenergy.2016.05.097
– ident: ref26/cit26
– ident: ref30/cit30
  doi: 10.1016/j.ceramint.2015.01.057
– ident: ref8/cit8
  doi: 10.1016/B978-0-08-100904-8.00006-7
– ident: ref112/cit112
  doi: 10.1039/C4TA02764G
– ident: ref82/cit82
  doi: 10.1016/j.apenergy.2017.11.001
– ident: ref50/cit50
  doi: 10.1126/sciadv.1700895
– ident: ref32/cit32
– ident: ref49/cit49
  doi: 10.1126/science.aaf5471
– ident: ref107/cit107
  doi: 10.1021/acsami.6b03632
– ident: ref46/cit46
  doi: 10.1021/acsphotonics.6b01005
– ident: ref7/cit7
  doi: 10.1016/B978-0-08-100263-6.00014-9
– ident: ref20/cit20
  doi: 10.1126/science.aab3564
– ident: ref2/cit2
  doi: 10.1021/acs.chemmater.5b04419
– ident: ref45/cit45
  doi: 10.1021/acsphotonics.5b00140
– ident: ref116/cit116
  doi: 10.1088/1757-899X/254/10/102002
– ident: ref17/cit17
  doi: 10.1021/jp066363o
– ident: ref4/cit4
  doi: 10.1016/j.solener.2015.04.004
– ident: ref28/cit28
  doi: 10.1016/j.surfcoat.2016.10.066
– ident: ref27/cit27
  doi: 10.1016/j.solmat.2014.12.011
– ident: ref53/cit53
  doi: 10.1038/srep13971
– ident: ref83/cit83
  doi: 10.1039/c3cs60426h
– ident: ref60/cit60
  doi: 10.1016/j.rser.2012.10.022
– ident: ref108/cit108
  doi: 10.1002/app.33858
– ident: ref86/cit86
  doi: 10.1016/j.applthermaleng.2017.02.119
– ident: ref39/cit39
  doi: 10.1002/app.33979
– ident: ref66/cit66
  doi: 10.1016/j.tca.2013.07.023
– ident: ref23/cit23
  doi: 10.1111/j.1744-7402.2010.02599.x
– ident: ref76/cit76
  doi: 10.1007/s12221-010-0967-y
– ident: ref98/cit98
  doi: 10.1080/00405000.2014.995461
– ident: ref71/cit71
  doi: 10.1016/j.tca.2009.09.005
– ident: ref73/cit73
  doi: 10.1533/9781845691622.1.34
– ident: ref78/cit78
  doi: 10.1016/j.solmat.2015.06.039
– ident: ref93/cit93
  doi: 10.1016/j.jtherbio.2015.01.003
– ident: ref58/cit58
  doi: 10.1016/j.pmatsci.2014.03.005
– ident: ref102/cit102
  doi: 10.1016/j.jcis.2013.03.016
– ident: ref25/cit25
– ident: ref1/cit1
  doi: 10.1016/j.rser.2016.10.042
– ident: ref6/cit6
  doi: 10.1016/B978-0-08-100263-6.00008-3
– ident: ref51/cit51
  doi: 10.1002/adma.201802152
– ident: ref62/cit62
  doi: 10.1016/j.enconman.2015.01.084
– ident: ref85/cit85
  doi: 10.1016/j.apenergy.2011.02.026
– ident: ref95/cit95
  doi: 10.1038/nnano.2011.169
– ident: ref115/cit115
– ident: ref94/cit94
  doi: 10.1080/00405000.2014.895088
– ident: ref99/cit99
  doi: 10.1016/j.apsusc.2014.10.018
– ident: ref117/cit117
  doi: 10.1039/c0ee00686f
– ident: ref101/cit101
  doi: 10.1021/am1005089
– ident: ref24/cit24
  doi: 10.1007/s11998-016-9854-9
– ident: ref36/cit36
  doi: 10.1177/0040517506070065
– ident: ref31/cit31
  doi: 10.1016/j.ceramint.2014.09.096
– ident: ref54/cit54
  doi: 10.1038/s41467-017-00614-4
– ident: ref97/cit97
  doi: 10.1021/acsbiomaterials.8b00068
– ident: ref37/cit37
  doi: 10.1177/1528083708098915
– ident: ref15/cit15
  doi: 10.1002/9781119460367.ch8
– ident: ref5/cit5
  doi: 10.1016/j.erss.2015.05.007
– ident: ref14/cit14
  doi: 10.1016/B978-0-08-100570-5.00004-9
– ident: ref96/cit96
  doi: 10.1021/nn9005973
– ident: ref87/cit87
  doi: 10.1533/9780857090645.2.165
– ident: ref19/cit19
  doi: 10.1021/acssuschemeng.7b03423
– ident: ref29/cit29
  doi: 10.1039/C6NJ00353B
– ident: ref72/cit72
  doi: 10.1002/app.21438
– ident: ref81/cit81
  doi: 10.1007/s12221-015-1156-9
– ident: ref22/cit22
  doi: 10.1016/j.enbuild.2017.08.089
– ident: ref44/cit44
  doi: 10.1126/science.aai7899
– ident: ref63/cit63
  doi: 10.1016/j.rser.2015.09.040
– ident: ref11/cit11
  doi: 10.1016/B978-0-08-100904-8.00012-2
– ident: ref77/cit77
  doi: 10.4172/2165-8064.1000e120
– ident: ref40/cit40
  doi: 10.1080/00405000.2012.757007
– ident: ref67/cit67
  doi: 10.1177/1528083715601512
– ident: ref109/cit109
  doi: 10.1021/acsami.5b02141
– ident: ref104/cit104
  doi: 10.1016/j.jcis.2014.10.032
– ident: ref18/cit18
  doi: 10.1016/j.arr.2014.03.006
– ident: ref33/cit33
  doi: 10.1016/j.compositesb.2013.04.037
– ident: ref68/cit68
  doi: 10.1108/RJTA-08-02-2004-B008
– ident: ref70/cit70
  doi: 10.1016/j.tca.2014.05.037
– ident: ref75/cit75
  doi: 10.1016/j.carbpol.2017.02.074
– ident: ref57/cit57
  doi: 10.1016/j.tca.2012.04.013
– ident: ref111/cit111
  doi: 10.1016/j.apsusc.2012.10.141
– ident: ref61/cit61
  doi: 10.1016/j.applthermaleng.2007.08.009
– ident: ref80/cit80
  doi: 10.1016/j.renene.2014.05.063
– ident: ref114/cit114
  doi: 10.1021/acs.est.5b06043
SSID ssj0063205
Score 2.6139736
SecondaryResourceType review_article
Snippet The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13039
SubjectTerms air
cooling
energy
engineering
fabrics
heat transfer
liquids
nanopores
photons
Title Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance
URI http://dx.doi.org/10.1021/acsami.8b19067
https://www.ncbi.nlm.nih.gov/pubmed/30892859
https://www.proquest.com/docview/2195268459
https://www.proquest.com/docview/2237550428
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODA-zFeKgKJU6Bt0qQ7TtOmCWmABJN2q1onFRKoQ2t34dfjpO0GTAPOdV-OHX-Ok8-EXCkFnIMWVCuuKG-lnCZSSco54zKV4CpLpD24F_0hvxsFo_l6x88Kvu_dxpCbVjhhgqFLyFWy5gv0YAOCOk_1nCuYbzcrYkbOaYgRq6ZnXLjfBCHIvwehJcjSRpjeVkl3lFtiQrOx5PVmWiQ38LFI2_jnx2-TzQpmOu3SLnbIis52ycYX8sE98tCuyv9OD2NbuSTo9DB7Hk9zZxAXpWk6CGqdbvZSSqJRTczOXNu_Hp_iPM7PHeyTYa_73OnTqr0CjTljBQUVB6kG5SYKTBtJqb1EucI3oM2ToXZBCvDiRGvBNeI0L2YAXqBDhT6bMGAHpJGNM31EHHM9ZSpNmQYuEHVoEAGOss9jgQCEN8klaiKq3COPbOXb96JSPVGlniah9ahEUDGUm0YZb0vlr2fy7yU3x1LJi3qQI3QfUxOJM43qjHDCtoQ3QesXGZ9JTOQwUWuSw9JCZu9jbtgyHIDH__rDE7KOgMtWozz3lDSKyVSfIagpknNrz58SiPJ5
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1LWIJA4GZLYsdNjVbUqS6ESVOIWJbYjJFBAJL3w9YydpGwqgmsyceLx2PMmHr8BOFZKMiY1J1oxRVgzZSQRShDGKBOpkK6yRNr9a94bsov74H4KzuqzMPgRObaU2038D3YB7wyvmYo4YYIejItpmEUk4huTbrVv66WXU9_mLGJgzkiIjqtmafzxvPFFMv_qiyYATOtoukswGH-izS95PB0Vyal8-8be-I8-LMNiBTqdVmklKzCls1VY-ERFuAY3rSoZwOmipyt_EDpdjKWfR7nTj4vSUB2EuE4neygl0cReTZ6urWaPrTiDj1MI6zDsdu7aPVIVWyAxo7QgUsVBqqVyEyVNUUmhvUS53DcQzhOhdqXg0osTrTnTiNq8mErpBTpUOIMTKukGzGTPmd4Cx9xPqUpTqiXjiEG05AGOuc9ijnCENeAINRFVkyWP7D6470WleqJKPQ0g9eBEsuIrN2UznibKn4zlX0qmjomSh_VYRziZzA5JnGlUZ4TLt6W_CZq_yPhUYFiHYVsDNktDGb-PumHTMAJu_6mHBzDXu-tfRVfn15c7MI9QzO5Tee4uzBSvI72HcKdI9q2JvwOJjfra
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT4QwEJ54JEYfvI_1xGjiU1egpWUfNyrx2tVETXwj0JaYaNiNsC_-eqeFXa-s0VcYCp3OdL4y7TcAh0pJxqTmRCumCGtljKRCCcIYZSIT0lWWSLvT5ecP7PIxeKzPcZuzMPgRBbZU2CS-8eq-ymqGAe8Yr5uqOGGKUYyLSZg2OTtj1u2Tu-H0y6lv9y3i4pyREIPXkKnxx_MmHsniazwaAzJtsIkW4H70mXaPyXNzUKZN-faNwfGf_ViE-Rp8Ou3KWpZgQufLMPeJknAFbtr1pgAnwohX_Sh0IlxT9waF00nKymAdhLrOWf5USaKpvZr9uraqPbbi3H6cRliFh-js_uSc1EUXSMIoLYlUSZBpqdxUSVNcUmgvVS73DZTzRKhdKbj0klRrzjSiNy-hUnqBDhV6ckolXYOpvJfrDXDM_YyqLKNaMo5YREse4Nj7LOEIS1gDDlATce00RWzz4b4XV-qJa_U0gAwHKJY1b7kpn_EyVv5oJN-vGDvGSu4PxztGpzKZkiTXqM4Yp3FLgxO0fpHxqcDlHS7fGrBeGcvofdQNW4YZcPNPPdyDmdvTKL6-6F5twSwiMpuu8txtmCpfB3oHUU-Z7lorfwetcP1d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Functional+Fibrous+Materials+for+Enhanced+Thermoregulating+Performance&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Pakdel%2C+Esfandiar&rft.au=Naebe%2C+Maryam&rft.au=Sun%2C+Lu&rft.au=Wang%2C+Xungai&rft.date=2019-04-10&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=14&rft.spage=13039&rft.epage=13057&rft_id=info:doi/10.1021%2Facsami.8b19067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_8b19067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon