Tailored Platinum Group Metal/Spinel Oxide Catalysts for Dynamically Enhanced Methane Oxidation

A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natu...

Full description

Saved in:
Bibliographic Details
Published inACS Engineering Au Vol. 4; no. 2; pp. 193 - 203
Main Authors Chen, Pak Wing, Maiti, Debtanu, Liu, Ru-Fen, Grabow, Lars C., Harold, Michael P.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.04.2024
Subjects
Online AccessGet full text
ISSN2694-2488
2694-2488
DOI10.1021/acsengineeringau.3c00053

Cover

Loading…
Abstract A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natural gas vehicles (NGVs) and engines (NGEs) for transportation, commerce, and industrial applications. NGVs and NGEs emit less CO2 than their petroleum-derived counterparts but may emit uncombusted methane, an even more potent GHG. For stoichiometric engines, methane oxidation catalysts containing PGM and spinel oxide in layered architectures offer increased methane oxidation activity and lower light-off temperatures (T 50). The reducible spinel oxide has direct and indirect roles that are effectively described by the bulk oxygen vacancy formation energy (E vac). We apply density functional theory (DFT) to identify several earth-abundant, cobalt-rich spinel oxides with favorable E vac, shown to correlate with dynamic oxygen storage capacity (DOSC) and CO and H2 oxidation activity. We experimentally rank-order the DFT-identified spinel oxides in combination with Pt+Pd for their methane oxidation activity measurements, under both time-invariant and modulated feed conditions. We show good agreement between the activity and the DFT-computed reducibility of the spinel oxide. The findings suggest spinel reducibility is a key factor in achieving enhanced low-temperature methane conversion, enabled through a balance of methane activation on the PGM sites and subsequent oxidation of the intermediates and byproducts on spinel oxides. In agreement with its computationally predicted E vac, NiCo2O4 was confirmed to have the highest DOSC and lowest T 50 among the tested spinel samples.
AbstractList A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natural gas vehicles (NGVs) and engines (NGEs) for transportation, commerce, and industrial applications. NGVs and NGEs emit less CO2 than their petroleum-derived counterparts but may emit uncombusted methane, an even more potent GHG. For stoichiometric engines, methane oxidation catalysts containing PGM and spinel oxide in layered architectures offer increased methane oxidation activity and lower light-off temperatures (T 50). The reducible spinel oxide has direct and indirect roles that are effectively described by the bulk oxygen vacancy formation energy (E vac). We apply density functional theory (DFT) to identify several earth-abundant, cobalt-rich spinel oxides with favorable E vac, shown to correlate with dynamic oxygen storage capacity (DOSC) and CO and H2 oxidation activity. We experimentally rank-order the DFT-identified spinel oxides in combination with Pt+Pd for their methane oxidation activity measurements, under both time-invariant and modulated feed conditions. We show good agreement between the activity and the DFT-computed reducibility of the spinel oxide. The findings suggest spinel reducibility is a key factor in achieving enhanced low-temperature methane conversion, enabled through a balance of methane activation on the PGM sites and subsequent oxidation of the intermediates and byproducts on spinel oxides. In agreement with its computationally predicted E vac, NiCo2O4 was confirmed to have the highest DOSC and lowest T 50 among the tested spinel samples.
A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natural gas vehicles (NGVs) and engines (NGEs) for transportation, commerce, and industrial applications. NGVs and NGEs emit less CO than their petroleum-derived counterparts but may emit uncombusted methane, an even more potent GHG. For stoichiometric engines, methane oxidation catalysts containing PGM and spinel oxide in layered architectures offer increased methane oxidation activity and lower light-off temperatures ( ). The reducible spinel oxide has direct and indirect roles that are effectively described by the bulk oxygen vacancy formation energy ( ). We apply density functional theory (DFT) to identify several earth-abundant, cobalt-rich spinel oxides with favorable , shown to correlate with dynamic oxygen storage capacity (DOSC) and CO and H oxidation activity. We experimentally rank-order the DFT-identified spinel oxides in combination with Pt+Pd for their methane oxidation activity measurements, under both time-invariant and modulated feed conditions. We show good agreement between the activity and the DFT-computed reducibility of the spinel oxide. The findings suggest spinel reducibility is a key factor in achieving enhanced low-temperature methane conversion, enabled through a balance of methane activation on the PGM sites and subsequent oxidation of the intermediates and byproducts on spinel oxides. In agreement with its computationally predicted , NiCo O was confirmed to have the highest DOSC and lowest among the tested spinel samples.
A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natural gas vehicles (NGVs) and engines (NGEs) for transportation, commerce, and industrial applications. NGVs and NGEs emit less CO2 than their petroleum-derived counterparts but may emit uncombusted methane, an even more potent GHG. For stoichiometric engines, methane oxidation catalysts containing PGM and spinel oxide in layered architectures offer increased methane oxidation activity and lower light-off temperatures (T50). The reducible spinel oxide has direct and indirect roles that are effectively described by the bulk oxygen vacancy formation energy (Evac). We apply density functional theory (DFT) to identify several earth-abundant, cobalt-rich spinel oxides with favorable Evac, shown to correlate with dynamic oxygen storage capacity (DOSC) and CO and H2 oxidation activity. We experimentally rank-order the DFT-identified spinel oxides in combination with Pt+Pd for their methane oxidation activity measurements, under both time-invariant and modulated feed conditions. We show good agreement between the activity and the DFT-computed reducibility of the spinel oxide. The findings suggest spinel reducibility is a key factor in achieving enhanced low-temperature methane conversion, enabled through a balance of methane activation on the PGM sites and subsequent oxidation of the intermediates and byproducts on spinel oxides. In agreement with its computationally predicted Evac, NiCo2O4 was confirmed to have the highest DOSC and lowest T50 among the tested spinel samples.A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced methane oxidation activity. With a reduction in greenhouse gas (GHG) emissions urgently needed, there is renewed interest in the use of natural gas vehicles (NGVs) and engines (NGEs) for transportation, commerce, and industrial applications. NGVs and NGEs emit less CO2 than their petroleum-derived counterparts but may emit uncombusted methane, an even more potent GHG. For stoichiometric engines, methane oxidation catalysts containing PGM and spinel oxide in layered architectures offer increased methane oxidation activity and lower light-off temperatures (T50). The reducible spinel oxide has direct and indirect roles that are effectively described by the bulk oxygen vacancy formation energy (Evac). We apply density functional theory (DFT) to identify several earth-abundant, cobalt-rich spinel oxides with favorable Evac, shown to correlate with dynamic oxygen storage capacity (DOSC) and CO and H2 oxidation activity. We experimentally rank-order the DFT-identified spinel oxides in combination with Pt+Pd for their methane oxidation activity measurements, under both time-invariant and modulated feed conditions. We show good agreement between the activity and the DFT-computed reducibility of the spinel oxide. The findings suggest spinel reducibility is a key factor in achieving enhanced low-temperature methane conversion, enabled through a balance of methane activation on the PGM sites and subsequent oxidation of the intermediates and byproducts on spinel oxides. In agreement with its computationally predicted Evac, NiCo2O4 was confirmed to have the highest DOSC and lowest T50 among the tested spinel samples.
Author Chen, Pak Wing
Liu, Ru-Fen
Grabow, Lars C.
Maiti, Debtanu
Harold, Michael P.
AuthorAffiliation William A Brookshire Department of Chemical and Biomolecular Engineering
Texas Center for Superconductivity at the University of Houston (TcSUH)
CDTi Advanced Materials, Inc
AuthorAffiliation_xml – name: CDTi Advanced Materials, Inc
– name: William A Brookshire Department of Chemical and Biomolecular Engineering
– name: Texas Center for Superconductivity at the University of Houston (TcSUH)
Author_xml – sequence: 1
  givenname: Pak Wing
  orcidid: 0000-0002-9335-5438
  surname: Chen
  fullname: Chen, Pak Wing
  organization: William A Brookshire Department of Chemical and Biomolecular Engineering
– sequence: 2
  givenname: Debtanu
  surname: Maiti
  fullname: Maiti, Debtanu
  organization: William A Brookshire Department of Chemical and Biomolecular Engineering
– sequence: 3
  givenname: Ru-Fen
  surname: Liu
  fullname: Liu, Ru-Fen
  organization: CDTi Advanced Materials, Inc
– sequence: 4
  givenname: Lars C.
  orcidid: 0000-0002-7766-8856
  surname: Grabow
  fullname: Grabow, Lars C.
  email: grabow@uh.edu
  organization: Texas Center for Superconductivity at the University of Houston (TcSUH)
– sequence: 5
  givenname: Michael P.
  surname: Harold
  fullname: Harold, Michael P.
  email: mpharold@central.uh.edu
  organization: William A Brookshire Department of Chemical and Biomolecular Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38646517$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2263289$$D View this record in Osti.gov
BookMark eNqNkU9v1DAQxS1URMvSr4AiTly29b843gsS2pZSqahIlLM1cSZbrxx7sROJ_faYzVKhXuDk0fj33oz9XpOTEAMSUjF6wShnl2Azho0LiMmFDUwXwlJKa_GCnHG1kksutT75qz4l5zlvC8JrJriir8ip0EqqmjVnxDyA8zFhV331MLowDdVNitOu-oIj-MtvuzLHV_c_XYfVGkprn8dc9TFVV_sAg7Pg_b66Do8QbDEpqlLhQVDsYnhDXvbgM54fzwX5_un6Yf15eXd_c7v-eLcEKcS4bPVKtFDXjVVK69ayUoMCxRT0FLTW2LRYr7AH5NLWSkDXChBNJ21je67EgtzOvl2ErdklN0DamwjOHBoxbQyk0VmPRmshJMUypdWypUxry23frVaikTUvlwvybvaKeXQmWzeifbQxBLSj4WUYL9suyPsZ2qX4Y8I8msFli96X58cpG0GlaBqtGS3o2yM6tQN2T9v9SaEAegZsijkn7J8QRs3vzM3zzM0x8yL98Exa1j38_JhKsv9jIGeDQphtnFIoMf1b9gsWkMvG
CitedBy_id crossref_primary_10_1016_j_apcata_2024_120034
crossref_primary_10_1021_acs_iecr_4c00158
crossref_primary_10_1021_acs_jpcc_4c00179
Cites_doi 10.1016/j.cattod.2020.02.039
10.1016/S0009-2509(54)80005-4
10.1021/acs.iecr.0c05187
10.1016/S0926-860X(01)00765-7
10.4271/2015-01-1007
10.1016/j.apcatb.2009.07.016
10.1103/PhysRevB.47.558
10.1103/PhysRevB.73.195107
10.1021/ja202411v
10.1016/j.cattod.2020.01.026
10.1103/PhysRevB.85.235149
10.1063/1.4983360
10.1021/nl404557w
10.1016/j.apcatb.2021.120607
10.1002/jcc.20575
10.1016/S0926-860X(01)00818-3
10.1103/PhysRevB.54.11169
10.1016/j.tsf.2022.139361
10.1039/D2CY00270A
10.1103/PhysRevB.76.165119
10.4271/2017-01-0999
10.1016/j.jcat.2012.06.010
10.1007/s10562-010-0446-5
10.1007/s11244-009-9379-x
10.1016/j.apcatb.2017.07.037
10.1103/PhysRevB.49.14251
10.1103/PhysRevB.59.1758
10.1016/j.susc.2018.11.019
10.1063/1.4812323
10.1039/C5TA10284G
10.1039/C7EE03383D
10.1038/nmat4760
10.1016/0021-9517(84)90371-3
10.1016/j.cattod.2018.05.059
10.1016/j.cattod.2006.06.003
10.1016/j.ces.2016.11.016
10.1016/j.commatsci.2005.04.010
10.1016/0927-0256(96)00008-0
10.1023/A:1009096106758
10.1016/j.matlet.2017.04.076
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society.
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society.
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOA
DOI 10.1021/acsengineeringau.3c00053
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2488
EndPage 203
ExternalDocumentID oai_doaj_org_article_883340e8bcb84b0188c2cfd993745283
2263289
38646517
10_1021_acsengineeringau_3c00053
a147924135
Genre Journal Article
GroupedDBID ACS
AELXD
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
OTOTI
ID FETCH-LOGICAL-a433t-b893ba557c6688bc1a55a6a616af0a888e7be59efae24c563adb3a37d4c7cf263
IEDL.DBID N~.
ISSN 2694-2488
IngestDate Wed Aug 27 01:30:43 EDT 2025
Mon Apr 22 04:53:17 EDT 2024
Fri Jul 11 16:30:18 EDT 2025
Mon Jul 21 05:57:08 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Tue Jul 01 00:23:11 EDT 2025
Thu Apr 18 07:30:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords precious metal catalysts
spinel oxides
dynamic oxygen storage
CH4 conversion
automotive catalysis
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2023 The Authors. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-b893ba557c6688bc1a55a6a616af0a888e7be59efae24c563adb3a37d4c7cf263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
EE0008332
ORCID 0000-0002-9335-5438
0000-0002-7766-8856
0000000277668856
0000000293355438
OpenAccessLink https://doaj.org/article/883340e8bcb84b0188c2cfd993745283
PMID 38646517
PQID 3043778810
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_883340e8bcb84b0188c2cfd993745283
osti_scitechconnect_2263289
proquest_miscellaneous_3043778810
pubmed_primary_38646517
crossref_primary_10_1021_acsengineeringau_3c00053
crossref_citationtrail_10_1021_acsengineeringau_3c00053
acs_journals_10_1021_acsengineeringau_3c00053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Apr-17
PublicationDateYYYYMMDD 2024-04-17
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-Apr-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Engineering Au
PublicationTitleAlternate ACS Eng. Au
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1016/j.cattod.2020.02.039
– ident: ref18/cit18
  doi: 10.1016/S0009-2509(54)80005-4
– ident: ref13/cit13
  doi: 10.1021/acs.iecr.0c05187
– ident: ref38/cit38
  doi: 10.1016/S0926-860X(01)00765-7
– ident: ref7/cit7
  doi: 10.4271/2015-01-1007
– ident: ref8/cit8
  doi: 10.1016/j.apcatb.2009.07.016
– ident: ref19/cit19
  doi: 10.1103/PhysRevB.47.558
– ident: ref24/cit24
  doi: 10.1103/PhysRevB.73.195107
– ident: ref28/cit28
  doi: 10.1021/ja202411v
– ident: ref12/cit12
  doi: 10.1016/j.cattod.2020.01.026
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.85.235149
– ident: ref32/cit32
  doi: 10.1063/1.4983360
– ident: ref36/cit36
  doi: 10.1021/nl404557w
– ident: ref5/cit5
  doi: 10.1016/j.apcatb.2021.120607
– ident: ref26/cit26
  doi: 10.1002/jcc.20575
– ident: ref3/cit3
  doi: 10.1016/S0926-860X(01)00818-3
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.54.11169
– ident: ref35/cit35
  doi: 10.1016/j.tsf.2022.139361
– ident: ref6/cit6
  doi: 10.1039/D2CY00270A
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.76.165119
– ident: ref2/cit2
  doi: 10.4271/2017-01-0999
– ident: ref16/cit16
  doi: 10.1016/j.jcat.2012.06.010
– ident: ref17/cit17
  doi: 10.1007/s10562-010-0446-5
– ident: ref29/cit29
  doi: 10.1007/s11244-009-9379-x
– ident: ref1/cit1
  doi: 10.1016/j.apcatb.2017.07.037
– ident: ref20/cit20
  doi: 10.1103/PhysRevB.49.14251
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.59.1758
– ident: ref30/cit30
  doi: 10.1016/j.susc.2018.11.019
– ident: ref37/cit37
  doi: 10.1063/1.4812323
– ident: ref31/cit31
  doi: 10.1039/C5TA10284G
– ident: ref40/cit40
  doi: 10.1039/C7EE03383D
– ident: ref15/cit15
  doi: 10.1038/nmat4760
– ident: ref10/cit10
  doi: 10.1016/0021-9517(84)90371-3
– ident: ref11/cit11
  doi: 10.1016/j.cattod.2018.05.059
– ident: ref14/cit14
  doi: 10.1016/j.cattod.2006.06.003
– ident: ref9/cit9
  doi: 10.1016/j.ces.2016.11.016
– ident: ref27/cit27
  doi: 10.1016/j.commatsci.2005.04.010
– ident: ref21/cit21
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref39/cit39
  doi: 10.1023/A:1009096106758
– ident: ref34/cit34
  doi: 10.1016/j.matlet.2017.04.076
SSID ssj0002513260
Score 2.2809165
Snippet A combined experimental and molecular modeling study identifies a family of spinel oxides that in combination with PGM (platinum group metals) provide enhanced...
SourceID doaj
osti
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 193
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS90wFA_ikz6MubmtcxsZ-NrZNGmSPjo_kIFTUMG3kKSnTLjrlbUX9L_3nLRe7wZjPuypoeRAOB85vzSnv8PYbrC1aI23uW8LnythILdVSUUAqqkRbntIfchOv-uTK_XturpeafVFNWEjPfCouD1qhqsKsCEGq0IhrI1lbBtKq4qISWj3xZy3cpiiPRizNuKSYirdwTy252MPTwx_fvFFxvQjKmWl2P-WlRJ5Pz7mGGR_B54pAR2_ZC8m5Mj3xxVvsTXoXrHNFT7B18xd-hs8f0PDz6nErVv85OnbEj8FKhe9uMWpM352d9MAP6DvNvf90HOErfxwbEzvZ7N7ftT9SGUBJIUjSALJgNvs6vjo8uAknzoo5F5JOeRoCRl8VZmotUUVChx77bXQZBo8_IIJUNXQeihVrLT0TZBemkZFE9tSyzdsvZt38I5xtFtLwYzwQKioQw1NlC1E0UJQ0cuM5ahHN0VA79Lldincn3p3k94zZh417uJER05dMWbPkBRLyduRkuMZMl_JqMv5RKqdXqCrucnV3L9cLWM75BIOsQkR7EaqRIqDK4ny3tYZ-_zoKQ5DlO5d0ETzRe8k8UcRbX-RsbejCy0XIq2mbvTm_f9Y4A7bKBFz0WWXMB_Y-vBrAR8RMw3hUwqPB06yFgE
  priority: 102
  providerName: Directory of Open Access Journals
Title Tailored Platinum Group Metal/Spinel Oxide Catalysts for Dynamically Enhanced Methane Oxidation
URI http://dx.doi.org/10.1021/acsengineeringau.3c00053
https://www.ncbi.nlm.nih.gov/pubmed/38646517
https://www.proquest.com/docview/3043778810
https://www.osti.gov/biblio/2263289
https://doaj.org/article/883340e8bcb84b0188c2cfd993745283
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S9NIeSt910y4q9Op09bBsH9vthlDYtpAEchOSPKaBjTfUXmgu-e2d0TrbB6SkF9sYjTHzQJ9Go28A3oaqlm3pq9y3U58bWWJeFYqLAExTE9z2mPqQLT7bwxPz6bQ43QF1ww6-ku987PEXNZ9f7-uYTpDegbvKkvdxs8ur_W1eheZrQiScWuEzmrkiBx0LeP71MZ6bYv_H3JQo_Om2olC7GX6maejgITwY8aN4vzH4I9jB7jHc_41V8Am4Y39Gq3BsxFcudOvW5yJlmMQCuWj06IKGLsWXH2cNihlnby77oRcEXsXHTXt6v1xeinn3LRUHsBQ9YRJIZnwKJwfz49lhPvZRyL3ResjJHjr4oiijJYWFKOnZW2-lZQPREhjLgEWNrUdlYmG1b4L2umxMLGOrrH4Gu92qwxcgyHothzSBBGmiDTU2UbcYZYvBRK8zyEmPboyD3qUtbiXd33p3o94zKK817uJISs69MZa3kJRbyYsNMcctZD6wUbfjmVo7vSB_c2OkOu6-bKZIegqVCVNZVVHFtmEcZ5gJJ4M9dglHCIVpdiPXI8XBKSa-r-oM3lx7iqNA5d0XMtFq3TvNLFJM3j_N4PnGhbY_oivLPenLl_-pvj24pwhk8e6WLF_B7vB9ja8JJA1hQouE2dEkpRjouriaT1Kc_AQ7iRPV
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHKAH3o9QHkbimmUdO7ZzLEurBboFqVup4mLZjiMqttmKJBLLr2fGm6alEqhwShRlLGf82f5sT74h5LXTBauU1amtxjYVTIVU5xkGAYiyALptQ8xDNtuX00Px4Sg_upDqCyrRQElNPMQ_Vxdgb-BZOFfos92I-_gj6XVyAzhJhuDenhwM2yswbQMxwR0W_FUzzQCnfRzP3wrDKco3v01RUckfLkvocX9moXE22r1DvgzfEYNQvo261o38z0sSj__1oXfJ7Z6j0u01qO6Ra6G-TzYvKBc-IGZuj2GlH0r6GYPp6u6Exl0sOgsYmHpwCq8u6Kcfx2WgE9whWjVtQ4Eg03er2kaJgsWK7tRfYwACWsFdiAYRKg_J4e7OfDJN-1wNqRWctym0OXc2z5WXUmvnGdxbaSWTCAJYZgflQl6EyoZM-FxyWzpuuSqFV77KJH9ENuplHZ4QCgipcNgAIsKEl64IpedV8KwKTnjLE5KCj0zf1xoTj9EzZi47zvSOS4g6a07je-FzzL-xuIIlGyxP1-IfV7B5i4gZ3kf57vgA2tn0o4HBDM9iHMBPTgs3Zlr7zFclckWBajsJ2UK8GWBBKOXrMebJtyZDcX1dJOTVGQwNDAZ4wgNNtOwaw1GpChMEjBPyeI3PoSJcS8x7r57-o_tekpvT-WzP7L3f_7hFbmVA6vA0jalnZKP93oXnQMpa9yJ2v183zDWU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5aQfRB6rVjvUTwdepkkkkyj9p2qZeuBVvoW0gyCRa2s4szC_bF3-452XSrglKfJgw5IZwL-ZKcfIeQ1063LCqrSxsrWwqmQqmbGpMARNcC3LYh1SE7nMqDE_HhtDnNuTn4FgYmMcBIQ7rEx6hedDEzDLA38D9csfTZ5Q736THpTXILUEmFlRumP3bWRyywdAM4wVMWfK5Z1uCrOZfnX4PhMuWH35apxOYPnzlE3d-RaFqRJpvkXoaS9O3K9vfJjdA_IHd_IRh8SMyxPYMNeejoEea89ctzmg6b6GHA_NEvC-g6o5-_n3WB7uJBzsUwDhRwLN1bVaq3s9kF3e-_pjwBlIJWSALJoo_IyWT_ePegzCUVSis4H0swDXe2aZSXUmvnGbSttJJJtBXshoNyoWlDtKEWvpHcdo5brjrhlY-15I_JRj_vwxahYMiI0Q14gQkvXRs6z2PwLAYnvOUFKUGPJofEYNJtd83Mn3o3We8FUZcaNz7zk2OZjNk1JNlacrHi6LiGzDs06ro_smynH-B3JgetwULMogqgJ6eFq5jWvvaxQ0gnkBSnINvoEgbACjLuekxN8qOpkQNftwV5dekpBmIWL2LARPPlYDgSSiGPf1WQJysXWk-Ea4nl6dXT_1TfS3L7aG9iPr2fftwmd2qAXnjnxdQzsjF-W4bnAJ1G9yIFyE9mAhdp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailored+Platinum+Group+Metal%2FSpinel+Oxide+Catalysts+for+Dynamically+Enhanced+Methane+Oxidation&rft.jtitle=ACS+Engineering+Au&rft.au=Chen%2C+Pak+Wing&rft.au=Maiti%2C+Debtanu&rft.au=Liu%2C+Ru-Fen&rft.au=Grabow%2C+Lars+C.&rft.date=2024-04-17&rft.issn=2694-2488&rft.eissn=2694-2488&rft.volume=4&rft.issue=2&rft.spage=193&rft.epage=203&rft_id=info:doi/10.1021%2Facsengineeringau.3c00053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsengineeringau_3c00053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon