Decarbonization of Agriculture: The Greenhouse Gas Impacts and Economics of Existing and Emerging Climate-Smart Practices
The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends...
Saved in:
Published in | ACS Engineering Au Vol. 3; no. 6; pp. 426 - 442 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture’s GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigationparticularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers. |
---|---|
AbstractList | The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture’s GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigationparticularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers. The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers. The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO emissions (i.e., N O and CH ), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers. |
Author | Qafoku, Nikolla P. Kazimierczuk, Kamila Olarte, Mariefel V. Barrows, Sarah E. |
AuthorAffiliation | Department of Civil and Environmental Engineering University of Washington |
AuthorAffiliation_xml | – name: Department of Civil and Environmental Engineering – name: University of Washington |
Author_xml | – sequence: 1 givenname: Kamila orcidid: 0000-0002-0568-1410 surname: Kazimierczuk fullname: Kazimierczuk, Kamila email: kamila.kazimierczuk@pnnl.gov – sequence: 2 givenname: Sarah E. surname: Barrows fullname: Barrows, Sarah E. email: sarah.barrows@pnnl.gov – sequence: 3 givenname: Mariefel V. orcidid: 0000-0003-2989-1110 surname: Olarte fullname: Olarte, Mariefel V. – sequence: 4 givenname: Nikolla P. orcidid: 0000-0002-3258-5379 surname: Qafoku fullname: Qafoku, Nikolla P. organization: University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38144676$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2204779$$D View this record in Osti.gov |
BookMark | eNqNkktvEzEUhUeoiD7oX0AjVmxS_JqHWSBVIS2RKoFEWVv2nTuJoxk72B6J8utxOqFC3cDKr-8cnet7z4sT5x0WRUnJFSWMvtcQ0W2sQwzWbfR0xYEQwumL4ozVUiyYaNuTv_anxWWMu4ywinJWk1fFKW-pEHVTnxUPnxB0MN7ZXzpZ70rfl9ebYGEa0hTwQ3m_xfI2ILqtn2Le6liux72GFEvtunIF3vnRQjwIVz9tTDnT_DJi2BwOy8GOOuHi26hDKr-GrLWA8XXxstdDxMvjelF8v1ndLz8v7r7crpfXdwstOE8LXVesaihHIEJj24ORleloRzHXZojpCTcADaNQ93ULjBnSsoqxxoiq6ojhF8V69u283ql9yGHCg_LaqscLHzYq57IwoNI9l5qKWsq2E30tJAdmatZITUQvNWSvt7OXz3WqCDYhbPMPOISkGCOiaWSG3s3QPvgfE8akRhsBh0E7zH-omCRV09JGNhl9c0QnM2L3lO5PfzLQzgAEH2PA_gmhRB2mQT2fBnWchiz9-Eya4z72OAVth_8xELNBJtTOT8HlNv1b9hvBX9Su |
CitedBy_id | crossref_primary_10_3390_en17215330 crossref_primary_10_1016_j_jare_2024_05_027 crossref_primary_10_1007_s43979_025_00118_x crossref_primary_10_3390_su16146070 crossref_primary_10_1021_acssusresmgt_4c00075 crossref_primary_10_1016_j_cscee_2024_100666 crossref_primary_10_3390_en18051031 crossref_primary_10_48077_scihor7_2024_127 |
Cites_doi | 10.1016/j.agsy.2019.05.007 10.5194/essd-14-1795-2022 10.1007/978-94-007-0394-0_34 10.1186/s40100-023-00247-w 10.1002/aepp.13145 10.3389/fmicb.2018.03035 10.1016/j.agee.2016.09.026 10.1088/1748-9326/aaa9c4 10.1038/s41598-019-47861-7 10.3390/w14010006 10.1016/j.still.2021.105042 10.1016/j.biosystemseng.2023.03.013 10.1038/nature13809 10.31223/X5QW7J 10.26868/25222708.2017.479 10.1155/2013/617504 10.1016/j.agee.2016.11.021 10.3390/agriculture13040904 10.1007/s11119-022-09925-z 10.1007/s11356-023-26244-6 10.1093/erae/jbz019 10.1038/srep36105 10.1126/science.aav0294 10.17700/jai.2015.6.4.212 10.1016/j.landusepol.2018.12.038 10.1016/j.jclepro.2022.134841 10.3390/su10124429 10.1016/j.energy.2022.124243 10.1016/j.geoderma.2017.01.002 10.2134/jeq2011.0069 10.3390/ijerph120606879 10.1016/j.geoderma.2022.116028 10.2134/agronj2016.07.0418 10.3389/fsufs.2020.00066 10.1111/gcb.14535 10.1016/j.gfs.2018.03.005 10.1177/0030727021998063 10.1007/s11027-016-9716-x 10.1016/j.scitotenv.2020.138767 10.3390/su14095676 10.21273/HORTSCI14073-19 10.1111/cjag.12161 10.7717/peerj.4428 10.1002/bbb.2347 10.15302/J-FASE-2019294 10.1016/j.jclepro.2020.122888 10.1021/acsestengg.1c00269 10.1016/j.compag.2020.105930 10.1016/j.geoderma.2019.04.025 10.2134/agronj2018.12.0779 10.3389/fsufs.2020.577723 10.1111/gcbb.12757 10.1038/s41893-022-00911-x 10.1111/gcb.14644 10.3390/s20041042 10.3390/su12083436 10.1016/j.scitotenv.2018.10.060 10.1038/s41561-022-00925-2 10.1016/j.scitotenv.2016.02.174 10.1016/j.still.2011.10.015 10.3390/agronomy10020207 10.1038/nclimate2292 10.1016/j.geoderma.2019.114071 10.1016/j.compag.2020.105626 10.1016/j.eja.2022.126663 10.1016/j.rser.2021.110786 10.1098/rstb.2007.2184 10.3389/fclim.2021.742320 10.1111/gcb.14478 10.1002/eap.2598 10.1038/ncomms13630 10.1016/j.still.2018.05.006 10.1109/IS.2018.8710531 10.1098/rsbl.2016.0714 10.1201/b18759-2 10.5194/esurf-6-319-2018 10.1038/nature16069 10.1007/s13593-015-0348-4 10.21273/HORTSCI15327-20 10.1007/s11119-022-09934-y 10.1126/science.aaq0216 10.1098/rstb.2021.0084 10.1016/j.still.2020.104747 10.3390/su11154124 10.3390/agronomy11020199 10.1016/j.scitotenv.2013.07.023 10.1111/gcb.15342 10.1007/978-3-030-34065-0_2 10.4018/IJAEIS.2019010103 10.1007/978-981-10-5589-8_4 10.1111/gcb.13980 10.1016/j.fcr.2019.107580 10.2489/jswc.69.6.471 10.1111/j.1747-0765.2007.00174.x 10.1016/j.agee.2006.05.014 10.3390/su9081339 10.1126/science.abo2364 10.3389/fclim.2019.00008 10.1126/science.aba7357 10.2489/jswc.71.3.68A 10.1111/gcbb.12885 10.1016/j.scitotenv.2021.152073 10.1109/ACCESS.2021.3115258 10.1098/rstb.2010.0172 10.1038/s41558-018-0087-z 10.3389/fchem.2022.848320 10.1016/j.still.2019.04.020 10.1017/aae.2018.27 10.1016/j.agsy.2018.09.011 10.1017/9781009157988.007 10.31274/farmprogressreports-180814-2405 10.5194/bg-17-103-2020 10.1073/pnas.1815901115 10.1088/1748-9326/ac2fe0 10.1038/s41477-018-0108-y 10.1111/gcbb.12180 10.3390/s23073502 10.1038/s43016-020-0031-z 10.1007/s11119-019-09653-x 10.1042/ETLS20190205 10.1088/1748-9326/ab794e 10.1016/j.agee.2014.10.024 10.4081/ija.2011.e5 10.3390/su10093337 10.1139/facets-2021-0017 10.1038/s41558-021-01198-0 10.1016/j.still.2009.09.005 10.3390/su15010304 10.1002/ldr.4248 10.1111/gcb.12274 10.1371/journal.pone.0196703 10.1038/s41586-020-2448-9 10.1007/978-3-642-13440-1_14 10.1016/j.procir.2017.11.048 10.1007/s11119-012-9273-6 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society. |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society. |
DBID | AAYXX CITATION NPM 7X8 OTOTI DOA |
DOI | 10.1021/acsengineeringau.3c00031 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 442 |
ExternalDocumentID | oai_doaj_org_article_af39a146998d4f6493c2b6279a04f9ac 2204779 38144676 10_1021_acsengineeringau_3c00031 c327686658 |
Genre | Journal Article Review |
GroupedDBID | ACS AELXD ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 AAYXX ABBLG ADUCK CITATION NPM 7X8 OTOTI |
ID | FETCH-LOGICAL-a433t-a6525713ec04ae8fcb95bd1d1e248b0bf03bcc721c6f68c22b0825227b455d0b3 |
IEDL.DBID | N~. |
ISSN | 2694-2488 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Mon Dec 25 05:01:15 EST 2023 Thu Jul 10 21:00:29 EDT 2025 Wed Feb 19 02:05:53 EST 2025 Tue Jul 01 00:23:11 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Fri Dec 22 03:18:21 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | precision agriculture soil carbon cycle economics controlled environment agriculture regenerative agriculture greenhouse gas emissions digital agriculture climate-smart agriculture |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2023 The Authors. Published by American Chemical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a433t-a6525713ec04ae8fcb95bd1d1e248b0bf03bcc721c6f68c22b0825227b455d0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 USDOE DEAC0576RL01830 |
ORCID | 0000-0002-0568-1410 0000-0002-3258-5379 0000-0003-2989-1110 0000000205681410 0000000232585379 0000000329891110 |
OpenAccessLink | https://doaj.org/article/af39a146998d4f6493c2b6279a04f9ac |
PMID | 38144676 |
PQID | 2905781797 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af39a146998d4f6493c2b6279a04f9ac osti_scitechconnect_2204779 proquest_miscellaneous_2905781797 pubmed_primary_38144676 crossref_primary_10_1021_acsengineeringau_3c00031 crossref_citationtrail_10_1021_acsengineeringau_3c00031 acs_journals_10_1021_acsengineeringau_3c00031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec-20 |
PublicationDateYYYYMMDD | 2023-12-20 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng. Au |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 Edelmann B. (ref67/cit67) 2021 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref89/cit89 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 Qafoku N. P. (ref10/cit10) 2015; 131 ref38/cit38 Lewandowski A. (ref35/cit35) 2000 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 EASAC (ref68/cit68) 2018 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 Ehmke T. (ref117/cit117) 2022 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref168/cit168 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 Poudel M. R. (ref116/cit116) 2017 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref121/cit121 ref87/cit87 Md. Rayhan S. (ref104/cit104) 2022 ref106/cit106 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 SARE (ref128/cit128) 2012 ref154/cit154 ref27/cit27 ref150/cit150 ref151/cit151 ref56/cit56 ref159/cit159 ref92/cit92 ref155/cit155 ref156/cit156 ref157/cit157 ref158/cit158 Schimmelpfennig D. (ref140/cit140) 2016; 41 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 U.S. DOE (ref36/cit36) 2020 Owen J. (ref49/cit49) 2014 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref160/cit160 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref166/cit166 Biardeau L. (ref122/cit122) 2016 Pia Oberč B. (ref19/cit19) 2020 ref149/cit149 ref162/cit162 ref46/cit46 ref164/cit164 ref75/cit75 Smith P. (ref7/cit7) 2007 ref24/cit24 Nawar S. (ref141/cit141) 2017; 143 ref50/cit50 ref78/cit78 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 Al-Kaisi M. (ref63/cit63) 2001 ref26/cit26 ref161/cit161 ref142/cit142 ref73/cit73 ref69/cit69 ref165/cit165 ref15/cit15 ref62/cit62 Sahu N. (ref33/cit33) 2017 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 |
References_xml | – ident: ref108/cit108 doi: 10.1016/j.agsy.2019.05.007 – ident: ref2/cit2 doi: 10.5194/essd-14-1795-2022 – ident: ref47/cit47 doi: 10.1007/978-94-007-0394-0_34 – ident: ref145/cit145 doi: 10.1186/s40100-023-00247-w – ident: ref148/cit148 doi: 10.1002/aepp.13145 – volume-title: Greenhouse Carbon Dioxide Supplementation year: 2017 ident: ref116/cit116 – ident: ref77/cit77 doi: 10.3389/fmicb.2018.03035 – ident: ref90/cit90 doi: 10.1016/j.agee.2016.09.026 – ident: ref42/cit42 doi: 10.1088/1748-9326/aaa9c4 – ident: ref59/cit59 doi: 10.1038/s41598-019-47861-7 – ident: ref144/cit144 doi: 10.3390/w14010006 – ident: ref62/cit62 doi: 10.1016/j.still.2021.105042 – volume-title: Organic Matter Management year: 2000 ident: ref35/cit35 – ident: ref100/cit100 doi: 10.1016/j.biosystemseng.2023.03.013 – ident: ref126/cit126 doi: 10.1038/nature13809 – ident: ref167/cit167 doi: 10.31223/X5QW7J – volume: 131 start-page: 111 volume-title: Advances in Agronomy year: 2015 ident: ref10/cit10 – ident: ref162/cit162 doi: 10.26868/25222708.2017.479 – volume-title: Enhanced weathering: When climate research takes unexpected turns year: 2021 ident: ref67/cit67 – ident: ref23/cit23 – ident: ref69/cit69 doi: 10.1155/2013/617504 – ident: ref74/cit74 doi: 10.1016/j.agee.2016.11.021 – ident: ref103/cit103 doi: 10.3390/agriculture13040904 – ident: ref102/cit102 doi: 10.1007/s11119-022-09925-z – ident: ref164/cit164 doi: 10.1007/s11356-023-26244-6 – ident: ref123/cit123 doi: 10.1093/erae/jbz019 – ident: ref72/cit72 doi: 10.1038/srep36105 – ident: ref32/cit32 doi: 10.1126/science.aav0294 – ident: ref150/cit150 doi: 10.17700/jai.2015.6.4.212 – ident: ref21/cit21 doi: 10.1016/j.landusepol.2018.12.038 – ident: ref101/cit101 doi: 10.1016/j.jclepro.2022.134841 – volume-title: Vertical Farms Must Trim Costs, Hone Business Models to Achieve Profitability year: 2022 ident: ref117/cit117 – ident: ref160/cit160 doi: 10.3390/su10124429 – volume-title: Soil Science year: 2022 ident: ref104/cit104 – ident: ref168/cit168 doi: 10.1016/j.energy.2022.124243 – ident: ref44/cit44 doi: 10.1016/j.geoderma.2017.01.002 – ident: ref86/cit86 doi: 10.2134/jeq2011.0069 – ident: ref114/cit114 doi: 10.3390/ijerph120606879 – ident: ref58/cit58 doi: 10.1016/j.geoderma.2022.116028 – ident: ref139/cit139 doi: 10.2134/agronj2016.07.0418 – ident: ref22/cit22 doi: 10.3389/fsufs.2020.00066 – ident: ref48/cit48 doi: 10.1111/gcb.14535 – ident: ref109/cit109 doi: 10.1016/j.gfs.2018.03.005 – ident: ref20/cit20 doi: 10.1177/0030727021998063 – ident: ref70/cit70 doi: 10.1007/s11027-016-9716-x – ident: ref76/cit76 doi: 10.1016/j.scitotenv.2020.138767 – ident: ref158/cit158 doi: 10.3390/su14095676 – ident: ref155/cit155 doi: 10.21273/HORTSCI14073-19 – ident: ref163/cit163 doi: 10.1111/cjag.12161 – ident: ref26/cit26 doi: 10.7717/peerj.4428 – ident: ref132/cit132 doi: 10.1002/bbb.2347 – ident: ref97/cit97 doi: 10.15302/J-FASE-2019294 – ident: ref118/cit118 – ident: ref115/cit115 doi: 10.1016/j.jclepro.2020.122888 – ident: ref120/cit120 doi: 10.1021/acsestengg.1c00269 – ident: ref146/cit146 doi: 10.1016/j.compag.2020.105930 – ident: ref79/cit79 doi: 10.1016/j.geoderma.2019.04.025 – ident: ref119/cit119 – ident: ref135/cit135 doi: 10.2134/agronj2018.12.0779 – volume-title: Soil health and carbon sequestration in US croplands: a policy analysis year: 2016 ident: ref122/cit122 – volume-title: Managing Cover Crops Profitably year: 2012 ident: ref128/cit128 – ident: ref37/cit37 doi: 10.3389/fsufs.2020.577723 – ident: ref84/cit84 doi: 10.1111/gcbb.12757 – ident: ref165/cit165 – volume-title: Greenhouse Gas Mitigation Opportunities in California Agriculture: Review of Emissions and Mitigation Potential of Animal Manure Management and Land Application of Manure year: 2014 ident: ref49/cit49 – ident: ref28/cit28 doi: 10.1038/s41893-022-00911-x – ident: ref56/cit56 doi: 10.1111/gcb.14644 – ident: ref143/cit143 doi: 10.3390/s20041042 – ident: ref52/cit52 doi: 10.3390/su12083436 – ident: ref78/cit78 doi: 10.1016/j.scitotenv.2018.10.060 – ident: ref83/cit83 doi: 10.1038/s41561-022-00925-2 – ident: ref166/cit166 – ident: ref159/cit159 doi: 10.1016/j.scitotenv.2016.02.174 – ident: ref40/cit40 doi: 10.1016/j.still.2011.10.015 – ident: ref130/cit130 – volume-title: Negative emission technologies: What role in meeting Paris Agreement targets? year: 2018 ident: ref68/cit68 – start-page: 497 volume-title: Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC year: 2007 ident: ref7/cit7 – ident: ref131/cit131 – ident: ref24/cit24 doi: 10.3390/agronomy10020207 – ident: ref64/cit64 doi: 10.1038/nclimate2292 – ident: ref85/cit85 doi: 10.1016/j.geoderma.2019.114071 – ident: ref106/cit106 doi: 10.1016/j.compag.2020.105626 – ident: ref99/cit99 doi: 10.1016/j.eja.2022.126663 – ident: ref30/cit30 doi: 10.1016/j.rser.2021.110786 – ident: ref129/cit129 – ident: ref5/cit5 doi: 10.1098/rstb.2007.2184 – ident: ref94/cit94 doi: 10.3389/fclim.2021.742320 – ident: ref4/cit4 – ident: ref45/cit45 doi: 10.1111/gcb.14478 – ident: ref127/cit127 doi: 10.1002/eap.2598 – ident: ref34/cit34 doi: 10.1038/ncomms13630 – volume: 143 start-page: 175 volume-title: Advances in Agronomy year: 2017 ident: ref141/cit141 – ident: ref157/cit157 – ident: ref80/cit80 doi: 10.1016/j.still.2018.05.006 – ident: ref152/cit152 doi: 10.1109/IS.2018.8710531 – ident: ref41/cit41 doi: 10.1098/rsbl.2016.0714 – ident: ref136/cit136 doi: 10.1201/b18759-2 – ident: ref66/cit66 doi: 10.5194/esurf-6-319-2018 – ident: ref71/cit71 doi: 10.1038/nature16069 – ident: ref110/cit110 doi: 10.1007/s13593-015-0348-4 – ident: ref50/cit50 doi: 10.21273/HORTSCI15327-20 – ident: ref147/cit147 doi: 10.1007/s11119-022-09934-y – ident: ref1/cit1 doi: 10.1126/science.aaq0216 – volume: 41 start-page: 97 issue: 1 year: 2016 ident: ref140/cit140 publication-title: Journal of Agricultural and Resource Economics – ident: ref11/cit11 doi: 10.1098/rstb.2021.0084 – ident: ref91/cit91 doi: 10.1016/j.still.2020.104747 – ident: ref111/cit111 doi: 10.3390/su11154124 – ident: ref92/cit92 doi: 10.3390/agronomy11020199 – ident: ref93/cit93 doi: 10.1016/j.scitotenv.2013.07.023 – ident: ref51/cit51 doi: 10.1111/gcb.15342 – ident: ref105/cit105 – ident: ref113/cit113 doi: 10.1007/978-3-030-34065-0_2 – ident: ref138/cit138 doi: 10.4018/IJAEIS.2019010103 – start-page: 69 volume-title: Agriculturally Important Microbes for Sustainable Agriculture year: 2017 ident: ref33/cit33 doi: 10.1007/978-981-10-5589-8_4 – ident: ref38/cit38 – ident: ref53/cit53 doi: 10.1111/gcb.13980 – ident: ref81/cit81 doi: 10.1016/j.fcr.2019.107580 – ident: ref39/cit39 doi: 10.2489/jswc.69.6.471 – ident: ref89/cit89 doi: 10.1111/j.1747-0765.2007.00174.x – ident: ref61/cit61 doi: 10.1016/j.agee.2006.05.014 – ident: ref96/cit96 doi: 10.3390/su9081339 – ident: ref17/cit17 doi: 10.1126/science.abo2364 – ident: ref12/cit12 doi: 10.3389/fclim.2019.00008 – ident: ref154/cit154 – ident: ref8/cit8 doi: 10.1126/science.aba7357 – ident: ref9/cit9 doi: 10.2489/jswc.71.3.68A – ident: ref87/cit87 doi: 10.1111/gcbb.12885 – ident: ref13/cit13 – ident: ref125/cit125 doi: 10.1016/j.scitotenv.2021.152073 – ident: ref29/cit29 doi: 10.1109/ACCESS.2021.3115258 – ident: ref6/cit6 – ident: ref98/cit98 doi: 10.1098/rstb.2010.0172 – ident: ref156/cit156 – ident: ref54/cit54 doi: 10.1038/s41558-018-0087-z – ident: ref107/cit107 doi: 10.3389/fchem.2022.848320 – ident: ref46/cit46 – ident: ref57/cit57 doi: 10.1016/j.still.2019.04.020 – volume-title: Energy.gov year: 2020 ident: ref36/cit36 – ident: ref142/cit142 doi: 10.1017/aae.2018.27 – ident: ref153/cit153 doi: 10.1016/j.agsy.2018.09.011 – ident: ref15/cit15 doi: 10.1017/9781009157988.007 – volume-title: Impact of Tillage and Crop Rotation Systems on Carbon Sequestration year: 2001 ident: ref63/cit63 doi: 10.31274/farmprogressreports-180814-2405 – ident: ref82/cit82 doi: 10.5194/bg-17-103-2020 – ident: ref121/cit121 doi: 10.1073/pnas.1815901115 – ident: ref18/cit18 doi: 10.1088/1748-9326/ac2fe0 – ident: ref65/cit65 doi: 10.1038/s41477-018-0108-y – ident: ref124/cit124 doi: 10.1111/gcbb.12180 – ident: ref161/cit161 doi: 10.3390/s23073502 – ident: ref3/cit3 – ident: ref16/cit16 doi: 10.1038/s43016-020-0031-z – ident: ref149/cit149 doi: 10.1007/s11119-019-09653-x – ident: ref27/cit27 doi: 10.1042/ETLS20190205 – ident: ref133/cit133 doi: 10.1088/1748-9326/ab794e – ident: ref55/cit55 doi: 10.1016/j.agee.2014.10.024 – ident: ref137/cit137 doi: 10.4081/ija.2011.e5 – ident: ref25/cit25 doi: 10.3390/su10093337 – ident: ref43/cit43 doi: 10.1139/facets-2021-0017 – ident: ref14/cit14 doi: 10.1038/s41558-021-01198-0 – ident: ref88/cit88 doi: 10.1016/j.still.2009.09.005 – ident: ref31/cit31 doi: 10.3390/su15010304 – ident: ref73/cit73 doi: 10.1002/ldr.4248 – ident: ref75/cit75 doi: 10.1111/gcb.12274 – ident: ref60/cit60 doi: 10.1371/journal.pone.0196703 – ident: ref95/cit95 doi: 10.1038/s41586-020-2448-9 – ident: ref134/cit134 doi: 10.1007/978-3-642-13440-1_14 – ident: ref112/cit112 doi: 10.1016/j.procir.2017.11.048 – ident: ref151/cit151 doi: 10.1007/s11119-012-9273-6 – volume-title: Approaches to sustainable agriculture year: 2020 ident: ref19/cit19 |
SSID | ssj0002513260 |
Score | 2.306154 |
SecondaryResourceType | review_article |
Snippet | The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural... |
SourceID | doaj osti proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 426 |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA7Sp_og1uuxWiL4GpvNZjeJb7UXqqAIWuhbSGaTKtQ95ewp6L93ZjfneCqIffBpr4Ewl8w3ZOYLY6-siboKuRLJZCt0ozoRo2tESqEJ1uWmA-p3_vCxPT3T78-b842jvqgmbKIHngS3H3LtArozpgWdzq12NajYKuOC1NkFoNUXY95GMkVrMEZtxCWylO5gHNsPMKTfDH_h-nUNlA9UFJVguBGVRvJ-vMzRyf4OPMcAdHKf3SvIkR9MM95hd1L_gN3d4BN8yH4eJQiLOF81V_J55gcXi0Kvkd5wNAo-Vtp8xYQfb8PA341tkgMPfcdXXcoDDTz-Qe7fX0xfqEuTHg4vvyHGTeLzdxQd_1R6rIZH7Ozk-MvhqShnK4ig63opQks0qFWdQOqQbAZUUOyqrkpK2yhjlnUEwPQQ2txaUCpSLqkUqrZpOhnrx2yrn_fpKePWZhNBZQPUlpo7Z1TS0aBSlLRg3YwJlLAvvjH4cdtbVf5PjfiikRkzK114KETldF7G5S1GVuuRVxNZxy3GvCV1r_8nuu3xBRqhL0bo_2WEM7ZLxuIRtRD1LlCNEiy9UlIbgwJ4ubIhj85LOzKhT6hnrxzCZYtropmxJ5NxrSeCUApTddM--x8T3GXbCtEZ1eEo-ZxtLRfX6QWiqWXcGx3nF-fuICU priority: 102 providerName: Directory of Open Access Journals |
Title | Decarbonization of Agriculture: The Greenhouse Gas Impacts and Economics of Existing and Emerging Climate-Smart Practices |
URI | http://dx.doi.org/10.1021/acsengineeringau.3c00031 https://www.ncbi.nlm.nih.gov/pubmed/38144676 https://www.proquest.com/docview/2905781797 https://www.osti.gov/biblio/2204779 https://doaj.org/article/af39a146998d4f6493c2b6279a04f9ac |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcoEDgvLalq6MxNUlmTixw61dtipIrZBKpd4se2IXpJKtNlsJLv3tzGSzC0UqKpe8J4o8M5lvbM9nId5aE3TuU66iSVbpEhoVQl2qGH3pbZ3KBrne-fikOjrTn87L8w0Bd4zgQ_7OYxd_U_P5670CGchTxvMAKmvZGU9u9tb9KhSvCZFw1wrXaCogAx0m8PzrZRybsLsVm3oKf9rNyNXuhp99GDp8Ih4P-FHuLxX-VGzEdks8-oNV8Jn4-SGin4fZqsRSzpLcv5gPJBvxvSTTkP18m6-U9tOh7-THvliyk75t5KpWuWPB6Q_-CbQXyztcq8knk8tvhHSjOv1Olic_D5VW3XNxdjj9MjlSwwoLyuuiWChfMRlqXkTMtI82IakpNHmTR2q3kIWUFQGRkkSsUmURIHBGCUAKLssmC8ULsdnO2vhKSGuTCQjJIBenpqY2EHUwBEcgs2jrkVDUwm7wkM71g9-Qu7814gaNjIRZ6cLhQFfOq2Zc3kMyX0teLSk77iFzwOpeP8-k2_0FskQ3-LDzqag9RRbKUBudKl0XCKECU_tMp9rjSOywsTjCLkzAizxTCRcOINPGUAO8WdmQIxfmcRnfRtKzg5pAs6U_oxmJl0vjWn8IASpK2E21_Z_NtyMeAsExnngD2WuxuZhfx12CT4swpvRhcjruOx9oe3wzHfce9At34R0s |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAHVN5LeRiJq0viOLHNrfShLbQrJFqpN8ue2AWpZNFmK9ELv52ZrHfbIoHKKYkTW5ZnJvON7fnM2Fujgyp9KkXUyQhVy1aEYGsRo6-9salugfKdDyfN-Fh9PKlPrhz1hZ3osaV-WMS_ZBco32FZvGTo8-ebFRCex8DnNmKSmmxy8mtzNb2CbhuBCc2wUKqmkKineR_PvxojFwX9NRc1MPnjZYoW93cUOnijvXV2P8NIvrWQ-wN2K3YP2b0r5IKP2MVOBD8L02WmJZ8mvnU6y1wb8T1HDeHDtpuvGP3jre_5_pAz2XPftXyZstxTxd2f9C_oThdvKGWTHrbPviHgjeLLd1RA_jknXPWP2fHe7tH2WOSDFoRXVTUXviFO1LKKUCgfTQKUVmjLtow4bqEIqagCAMaK0KTGgJSBAkspUc513RahesLWumkXnzFuTNIBZNJAOaqptVpGFTSiElkYMHbEBI6wy4bSu2ENXJbuT4m4LJER00tZOMis5XR4xtkNaparmj8WzB03qPOBxL36nri3hwLURpdN2flUWY8OBgPVVqVG2QpkaKS2vlDJehixDVIWhxCGeHiBNizB3ElZKK1xAN4sdcihJdPyjO8iytlJi9jZ4A9Sj9jThXKtOoK4CuN23Tz_z-F7ze6Mjw4P3MH-5NMGuysRodFeHFm8YGvz2Xl8iYhqHl4NtvMb0KYfsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAcEG-W8jASV5fEcWKbW2m7anmsKkGl3iw_C1JJqvWuBBd-OzNZ7_KQQOW02SSOIs9M5pt4vi-EvFDSidqmmkWZFBMtD8w53bIYbWuVTm3wyHd-P-sOT8Sb0_a09OYgFwZuIsOV8riIj1F9EVJRGKhfwv74U6XPLncaj5geip-rgEoqjMvZ953NKxZI3QBO8C0L0jUZB18tvTz_uhimKZ9_S1Ojmj_8DBB1f0eiY0aa3iI3C5Skuyvb3yZXYn-H3PhFYPAu-bYfvZ27Yc22pEOiu2fzorcRX1HwEjq23nwalhk2baZHI28yU9sHuqYtZxx48BWfB_3Z6gjSNvHP3vlnAL2RffgCTkiPC-kq3yMn04OPe4esfGyBWdE0C2Y71EWtm-grYaNKHizmQh3qCPPmKpeqxnkP9aLvUqc85w6LS87B1m0bKtfcJ1v90MeHhCqVpPM8SY881RS05FE4CciEV8orPSEMZtiUYMlmXAfntfnTIqZYZELk2hbGF-Vy_IDG-SVG1puRFyv1jkuMeY3m3pyP-tvjDvBIU8LZ2NRoC0kGitUgUid047nruNS2EklbPyHb6CwGYAxq8XpsWvILw3klpIQJeL72IQPRjEs0to9gZ8M14GcFD0k5IQ9WzrW5EcBWULvL7tF_Tt8zcu14f2reHc3ebpPrHEAatuPw6jHZWsyX8QmAqoV7OobOD9nSIMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decarbonization+of+Agriculture%3A+The+Greenhouse+Gas+Impacts+and+Economics+of+Existing+and+Emerging+Climate-Smart+Practices&rft.jtitle=ACS+Engineering+Au&rft.au=Kazimierczuk%2C+Kamila&rft.au=Barrows%2C+Sarah+E&rft.au=Olarte%2C+Mariefel+V&rft.au=Qafoku%2C+Nikolla+P&rft.date=2023-12-20&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=426&rft_id=info:doi/10.1021%2Facsengineeringau.3c00031&rft_id=info%3Apmid%2F38144676&rft.externalDocID=38144676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |