Decarbonization of Agriculture: The Greenhouse Gas Impacts and Economics of Existing and Emerging Climate-Smart Practices

The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends...

Full description

Saved in:
Bibliographic Details
Published inACS Engineering Au Vol. 3; no. 6; pp. 426 - 442
Main Authors Kazimierczuk, Kamila, Barrows, Sarah E., Olarte, Mariefel V., Qafoku, Nikolla P.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture’s GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigationparticularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.
AbstractList The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture’s GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigationparticularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.
The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.
The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO emissions (i.e., N O and CH ), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.
Author Qafoku, Nikolla P.
Kazimierczuk, Kamila
Olarte, Mariefel V.
Barrows, Sarah E.
AuthorAffiliation Department of Civil and Environmental Engineering
University of Washington
AuthorAffiliation_xml – name: Department of Civil and Environmental Engineering
– name: University of Washington
Author_xml – sequence: 1
  givenname: Kamila
  orcidid: 0000-0002-0568-1410
  surname: Kazimierczuk
  fullname: Kazimierczuk, Kamila
  email: kamila.kazimierczuk@pnnl.gov
– sequence: 2
  givenname: Sarah E.
  surname: Barrows
  fullname: Barrows, Sarah E.
  email: sarah.barrows@pnnl.gov
– sequence: 3
  givenname: Mariefel V.
  orcidid: 0000-0003-2989-1110
  surname: Olarte
  fullname: Olarte, Mariefel V.
– sequence: 4
  givenname: Nikolla P.
  orcidid: 0000-0002-3258-5379
  surname: Qafoku
  fullname: Qafoku, Nikolla P.
  organization: University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38144676$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2204779$$D View this record in Osti.gov
BookMark eNqNkktvEzEUhUeoiD7oX0AjVmxS_JqHWSBVIS2RKoFEWVv2nTuJoxk72B6J8utxOqFC3cDKr-8cnet7z4sT5x0WRUnJFSWMvtcQ0W2sQwzWbfR0xYEQwumL4ozVUiyYaNuTv_anxWWMu4ywinJWk1fFKW-pEHVTnxUPnxB0MN7ZXzpZ70rfl9ebYGEa0hTwQ3m_xfI2ILqtn2Le6liux72GFEvtunIF3vnRQjwIVz9tTDnT_DJi2BwOy8GOOuHi26hDKr-GrLWA8XXxstdDxMvjelF8v1ndLz8v7r7crpfXdwstOE8LXVesaihHIEJj24ORleloRzHXZojpCTcADaNQ93ULjBnSsoqxxoiq6ojhF8V69u283ql9yGHCg_LaqscLHzYq57IwoNI9l5qKWsq2E30tJAdmatZITUQvNWSvt7OXz3WqCDYhbPMPOISkGCOiaWSG3s3QPvgfE8akRhsBh0E7zH-omCRV09JGNhl9c0QnM2L3lO5PfzLQzgAEH2PA_gmhRB2mQT2fBnWchiz9-Eya4z72OAVth_8xELNBJtTOT8HlNv1b9hvBX9Su
CitedBy_id crossref_primary_10_3390_en17215330
crossref_primary_10_1016_j_jare_2024_05_027
crossref_primary_10_1007_s43979_025_00118_x
crossref_primary_10_3390_su16146070
crossref_primary_10_1021_acssusresmgt_4c00075
crossref_primary_10_1016_j_cscee_2024_100666
crossref_primary_10_3390_en18051031
crossref_primary_10_48077_scihor7_2024_127
Cites_doi 10.1016/j.agsy.2019.05.007
10.5194/essd-14-1795-2022
10.1007/978-94-007-0394-0_34
10.1186/s40100-023-00247-w
10.1002/aepp.13145
10.3389/fmicb.2018.03035
10.1016/j.agee.2016.09.026
10.1088/1748-9326/aaa9c4
10.1038/s41598-019-47861-7
10.3390/w14010006
10.1016/j.still.2021.105042
10.1016/j.biosystemseng.2023.03.013
10.1038/nature13809
10.31223/X5QW7J
10.26868/25222708.2017.479
10.1155/2013/617504
10.1016/j.agee.2016.11.021
10.3390/agriculture13040904
10.1007/s11119-022-09925-z
10.1007/s11356-023-26244-6
10.1093/erae/jbz019
10.1038/srep36105
10.1126/science.aav0294
10.17700/jai.2015.6.4.212
10.1016/j.landusepol.2018.12.038
10.1016/j.jclepro.2022.134841
10.3390/su10124429
10.1016/j.energy.2022.124243
10.1016/j.geoderma.2017.01.002
10.2134/jeq2011.0069
10.3390/ijerph120606879
10.1016/j.geoderma.2022.116028
10.2134/agronj2016.07.0418
10.3389/fsufs.2020.00066
10.1111/gcb.14535
10.1016/j.gfs.2018.03.005
10.1177/0030727021998063
10.1007/s11027-016-9716-x
10.1016/j.scitotenv.2020.138767
10.3390/su14095676
10.21273/HORTSCI14073-19
10.1111/cjag.12161
10.7717/peerj.4428
10.1002/bbb.2347
10.15302/J-FASE-2019294
10.1016/j.jclepro.2020.122888
10.1021/acsestengg.1c00269
10.1016/j.compag.2020.105930
10.1016/j.geoderma.2019.04.025
10.2134/agronj2018.12.0779
10.3389/fsufs.2020.577723
10.1111/gcbb.12757
10.1038/s41893-022-00911-x
10.1111/gcb.14644
10.3390/s20041042
10.3390/su12083436
10.1016/j.scitotenv.2018.10.060
10.1038/s41561-022-00925-2
10.1016/j.scitotenv.2016.02.174
10.1016/j.still.2011.10.015
10.3390/agronomy10020207
10.1038/nclimate2292
10.1016/j.geoderma.2019.114071
10.1016/j.compag.2020.105626
10.1016/j.eja.2022.126663
10.1016/j.rser.2021.110786
10.1098/rstb.2007.2184
10.3389/fclim.2021.742320
10.1111/gcb.14478
10.1002/eap.2598
10.1038/ncomms13630
10.1016/j.still.2018.05.006
10.1109/IS.2018.8710531
10.1098/rsbl.2016.0714
10.1201/b18759-2
10.5194/esurf-6-319-2018
10.1038/nature16069
10.1007/s13593-015-0348-4
10.21273/HORTSCI15327-20
10.1007/s11119-022-09934-y
10.1126/science.aaq0216
10.1098/rstb.2021.0084
10.1016/j.still.2020.104747
10.3390/su11154124
10.3390/agronomy11020199
10.1016/j.scitotenv.2013.07.023
10.1111/gcb.15342
10.1007/978-3-030-34065-0_2
10.4018/IJAEIS.2019010103
10.1007/978-981-10-5589-8_4
10.1111/gcb.13980
10.1016/j.fcr.2019.107580
10.2489/jswc.69.6.471
10.1111/j.1747-0765.2007.00174.x
10.1016/j.agee.2006.05.014
10.3390/su9081339
10.1126/science.abo2364
10.3389/fclim.2019.00008
10.1126/science.aba7357
10.2489/jswc.71.3.68A
10.1111/gcbb.12885
10.1016/j.scitotenv.2021.152073
10.1109/ACCESS.2021.3115258
10.1098/rstb.2010.0172
10.1038/s41558-018-0087-z
10.3389/fchem.2022.848320
10.1016/j.still.2019.04.020
10.1017/aae.2018.27
10.1016/j.agsy.2018.09.011
10.1017/9781009157988.007
10.31274/farmprogressreports-180814-2405
10.5194/bg-17-103-2020
10.1073/pnas.1815901115
10.1088/1748-9326/ac2fe0
10.1038/s41477-018-0108-y
10.1111/gcbb.12180
10.3390/s23073502
10.1038/s43016-020-0031-z
10.1007/s11119-019-09653-x
10.1042/ETLS20190205
10.1088/1748-9326/ab794e
10.1016/j.agee.2014.10.024
10.4081/ija.2011.e5
10.3390/su10093337
10.1139/facets-2021-0017
10.1038/s41558-021-01198-0
10.1016/j.still.2009.09.005
10.3390/su15010304
10.1002/ldr.4248
10.1111/gcb.12274
10.1371/journal.pone.0196703
10.1038/s41586-020-2448-9
10.1007/978-3-642-13440-1_14
10.1016/j.procir.2017.11.048
10.1007/s11119-012-9273-6
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society.
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society.
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOA
DOI 10.1021/acsengineeringau.3c00031
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2488
EndPage 442
ExternalDocumentID oai_doaj_org_article_af39a146998d4f6493c2b6279a04f9ac
2204779
38144676
10_1021_acsengineeringau_3c00031
c327686658
Genre Journal Article
Review
GroupedDBID ACS
AELXD
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
OTOTI
ID FETCH-LOGICAL-a433t-a6525713ec04ae8fcb95bd1d1e248b0bf03bcc721c6f68c22b0825227b455d0b3
IEDL.DBID N~.
ISSN 2694-2488
IngestDate Wed Aug 27 01:29:30 EDT 2025
Mon Dec 25 05:01:15 EST 2023
Thu Jul 10 21:00:29 EDT 2025
Wed Feb 19 02:05:53 EST 2025
Tue Jul 01 00:23:11 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Fri Dec 22 03:18:21 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords precision agriculture
soil carbon cycle
economics
controlled environment agriculture
regenerative agriculture
greenhouse gas emissions
digital agriculture
climate-smart agriculture
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2023 The Authors. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-a6525713ec04ae8fcb95bd1d1e248b0bf03bcc721c6f68c22b0825227b455d0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
USDOE
DEAC0576RL01830
ORCID 0000-0002-0568-1410
0000-0002-3258-5379
0000-0003-2989-1110
0000000205681410
0000000232585379
0000000329891110
OpenAccessLink https://doaj.org/article/af39a146998d4f6493c2b6279a04f9ac
PMID 38144676
PQID 2905781797
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_af39a146998d4f6493c2b6279a04f9ac
osti_scitechconnect_2204779
proquest_miscellaneous_2905781797
pubmed_primary_38144676
crossref_primary_10_1021_acsengineeringau_3c00031
crossref_citationtrail_10_1021_acsengineeringau_3c00031
acs_journals_10_1021_acsengineeringau_3c00031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Engineering Au
PublicationTitleAlternate ACS Eng. Au
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
Edelmann B. (ref67/cit67) 2021
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref89/cit89
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
Qafoku N. P. (ref10/cit10) 2015; 131
ref38/cit38
Lewandowski A. (ref35/cit35) 2000
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
EASAC (ref68/cit68) 2018
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
Ehmke T. (ref117/cit117) 2022
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref168/cit168
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
Poudel M. R. (ref116/cit116) 2017
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref121/cit121
ref87/cit87
Md. Rayhan S. (ref104/cit104) 2022
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
SARE (ref128/cit128) 2012
ref154/cit154
ref27/cit27
ref150/cit150
ref151/cit151
ref56/cit56
ref159/cit159
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref158/cit158
Schimmelpfennig D. (ref140/cit140) 2016; 41
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
U.S. DOE (ref36/cit36) 2020
Owen J. (ref49/cit49) 2014
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref160/cit160
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref166/cit166
Biardeau L. (ref122/cit122) 2016
Pia Oberč B. (ref19/cit19) 2020
ref149/cit149
ref162/cit162
ref46/cit46
ref164/cit164
ref75/cit75
Smith P. (ref7/cit7) 2007
ref24/cit24
Nawar S. (ref141/cit141) 2017; 143
ref50/cit50
ref78/cit78
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
Al-Kaisi M. (ref63/cit63) 2001
ref26/cit26
ref161/cit161
ref142/cit142
ref73/cit73
ref69/cit69
ref165/cit165
ref15/cit15
ref62/cit62
Sahu N. (ref33/cit33) 2017
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
References_xml – ident: ref108/cit108
  doi: 10.1016/j.agsy.2019.05.007
– ident: ref2/cit2
  doi: 10.5194/essd-14-1795-2022
– ident: ref47/cit47
  doi: 10.1007/978-94-007-0394-0_34
– ident: ref145/cit145
  doi: 10.1186/s40100-023-00247-w
– ident: ref148/cit148
  doi: 10.1002/aepp.13145
– volume-title: Greenhouse Carbon Dioxide Supplementation
  year: 2017
  ident: ref116/cit116
– ident: ref77/cit77
  doi: 10.3389/fmicb.2018.03035
– ident: ref90/cit90
  doi: 10.1016/j.agee.2016.09.026
– ident: ref42/cit42
  doi: 10.1088/1748-9326/aaa9c4
– ident: ref59/cit59
  doi: 10.1038/s41598-019-47861-7
– ident: ref144/cit144
  doi: 10.3390/w14010006
– ident: ref62/cit62
  doi: 10.1016/j.still.2021.105042
– volume-title: Organic Matter Management
  year: 2000
  ident: ref35/cit35
– ident: ref100/cit100
  doi: 10.1016/j.biosystemseng.2023.03.013
– ident: ref126/cit126
  doi: 10.1038/nature13809
– ident: ref167/cit167
  doi: 10.31223/X5QW7J
– volume: 131
  start-page: 111
  volume-title: Advances in Agronomy
  year: 2015
  ident: ref10/cit10
– ident: ref162/cit162
  doi: 10.26868/25222708.2017.479
– volume-title: Enhanced weathering: When climate research takes unexpected turns
  year: 2021
  ident: ref67/cit67
– ident: ref23/cit23
– ident: ref69/cit69
  doi: 10.1155/2013/617504
– ident: ref74/cit74
  doi: 10.1016/j.agee.2016.11.021
– ident: ref103/cit103
  doi: 10.3390/agriculture13040904
– ident: ref102/cit102
  doi: 10.1007/s11119-022-09925-z
– ident: ref164/cit164
  doi: 10.1007/s11356-023-26244-6
– ident: ref123/cit123
  doi: 10.1093/erae/jbz019
– ident: ref72/cit72
  doi: 10.1038/srep36105
– ident: ref32/cit32
  doi: 10.1126/science.aav0294
– ident: ref150/cit150
  doi: 10.17700/jai.2015.6.4.212
– ident: ref21/cit21
  doi: 10.1016/j.landusepol.2018.12.038
– ident: ref101/cit101
  doi: 10.1016/j.jclepro.2022.134841
– volume-title: Vertical Farms Must Trim Costs, Hone Business Models to Achieve Profitability
  year: 2022
  ident: ref117/cit117
– ident: ref160/cit160
  doi: 10.3390/su10124429
– volume-title: Soil Science
  year: 2022
  ident: ref104/cit104
– ident: ref168/cit168
  doi: 10.1016/j.energy.2022.124243
– ident: ref44/cit44
  doi: 10.1016/j.geoderma.2017.01.002
– ident: ref86/cit86
  doi: 10.2134/jeq2011.0069
– ident: ref114/cit114
  doi: 10.3390/ijerph120606879
– ident: ref58/cit58
  doi: 10.1016/j.geoderma.2022.116028
– ident: ref139/cit139
  doi: 10.2134/agronj2016.07.0418
– ident: ref22/cit22
  doi: 10.3389/fsufs.2020.00066
– ident: ref48/cit48
  doi: 10.1111/gcb.14535
– ident: ref109/cit109
  doi: 10.1016/j.gfs.2018.03.005
– ident: ref20/cit20
  doi: 10.1177/0030727021998063
– ident: ref70/cit70
  doi: 10.1007/s11027-016-9716-x
– ident: ref76/cit76
  doi: 10.1016/j.scitotenv.2020.138767
– ident: ref158/cit158
  doi: 10.3390/su14095676
– ident: ref155/cit155
  doi: 10.21273/HORTSCI14073-19
– ident: ref163/cit163
  doi: 10.1111/cjag.12161
– ident: ref26/cit26
  doi: 10.7717/peerj.4428
– ident: ref132/cit132
  doi: 10.1002/bbb.2347
– ident: ref97/cit97
  doi: 10.15302/J-FASE-2019294
– ident: ref118/cit118
– ident: ref115/cit115
  doi: 10.1016/j.jclepro.2020.122888
– ident: ref120/cit120
  doi: 10.1021/acsestengg.1c00269
– ident: ref146/cit146
  doi: 10.1016/j.compag.2020.105930
– ident: ref79/cit79
  doi: 10.1016/j.geoderma.2019.04.025
– ident: ref119/cit119
– ident: ref135/cit135
  doi: 10.2134/agronj2018.12.0779
– volume-title: Soil health and carbon sequestration in US croplands: a policy analysis
  year: 2016
  ident: ref122/cit122
– volume-title: Managing Cover Crops Profitably
  year: 2012
  ident: ref128/cit128
– ident: ref37/cit37
  doi: 10.3389/fsufs.2020.577723
– ident: ref84/cit84
  doi: 10.1111/gcbb.12757
– ident: ref165/cit165
– volume-title: Greenhouse Gas Mitigation Opportunities in California Agriculture: Review of Emissions and Mitigation Potential of Animal Manure Management and Land Application of Manure
  year: 2014
  ident: ref49/cit49
– ident: ref28/cit28
  doi: 10.1038/s41893-022-00911-x
– ident: ref56/cit56
  doi: 10.1111/gcb.14644
– ident: ref143/cit143
  doi: 10.3390/s20041042
– ident: ref52/cit52
  doi: 10.3390/su12083436
– ident: ref78/cit78
  doi: 10.1016/j.scitotenv.2018.10.060
– ident: ref83/cit83
  doi: 10.1038/s41561-022-00925-2
– ident: ref166/cit166
– ident: ref159/cit159
  doi: 10.1016/j.scitotenv.2016.02.174
– ident: ref40/cit40
  doi: 10.1016/j.still.2011.10.015
– ident: ref130/cit130
– volume-title: Negative emission technologies: What role in meeting Paris Agreement targets?
  year: 2018
  ident: ref68/cit68
– start-page: 497
  volume-title: Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC
  year: 2007
  ident: ref7/cit7
– ident: ref131/cit131
– ident: ref24/cit24
  doi: 10.3390/agronomy10020207
– ident: ref64/cit64
  doi: 10.1038/nclimate2292
– ident: ref85/cit85
  doi: 10.1016/j.geoderma.2019.114071
– ident: ref106/cit106
  doi: 10.1016/j.compag.2020.105626
– ident: ref99/cit99
  doi: 10.1016/j.eja.2022.126663
– ident: ref30/cit30
  doi: 10.1016/j.rser.2021.110786
– ident: ref129/cit129
– ident: ref5/cit5
  doi: 10.1098/rstb.2007.2184
– ident: ref94/cit94
  doi: 10.3389/fclim.2021.742320
– ident: ref4/cit4
– ident: ref45/cit45
  doi: 10.1111/gcb.14478
– ident: ref127/cit127
  doi: 10.1002/eap.2598
– ident: ref34/cit34
  doi: 10.1038/ncomms13630
– volume: 143
  start-page: 175
  volume-title: Advances in Agronomy
  year: 2017
  ident: ref141/cit141
– ident: ref157/cit157
– ident: ref80/cit80
  doi: 10.1016/j.still.2018.05.006
– ident: ref152/cit152
  doi: 10.1109/IS.2018.8710531
– ident: ref41/cit41
  doi: 10.1098/rsbl.2016.0714
– ident: ref136/cit136
  doi: 10.1201/b18759-2
– ident: ref66/cit66
  doi: 10.5194/esurf-6-319-2018
– ident: ref71/cit71
  doi: 10.1038/nature16069
– ident: ref110/cit110
  doi: 10.1007/s13593-015-0348-4
– ident: ref50/cit50
  doi: 10.21273/HORTSCI15327-20
– ident: ref147/cit147
  doi: 10.1007/s11119-022-09934-y
– ident: ref1/cit1
  doi: 10.1126/science.aaq0216
– volume: 41
  start-page: 97
  issue: 1
  year: 2016
  ident: ref140/cit140
  publication-title: Journal of Agricultural and Resource Economics
– ident: ref11/cit11
  doi: 10.1098/rstb.2021.0084
– ident: ref91/cit91
  doi: 10.1016/j.still.2020.104747
– ident: ref111/cit111
  doi: 10.3390/su11154124
– ident: ref92/cit92
  doi: 10.3390/agronomy11020199
– ident: ref93/cit93
  doi: 10.1016/j.scitotenv.2013.07.023
– ident: ref51/cit51
  doi: 10.1111/gcb.15342
– ident: ref105/cit105
– ident: ref113/cit113
  doi: 10.1007/978-3-030-34065-0_2
– ident: ref138/cit138
  doi: 10.4018/IJAEIS.2019010103
– start-page: 69
  volume-title: Agriculturally Important Microbes for Sustainable Agriculture
  year: 2017
  ident: ref33/cit33
  doi: 10.1007/978-981-10-5589-8_4
– ident: ref38/cit38
– ident: ref53/cit53
  doi: 10.1111/gcb.13980
– ident: ref81/cit81
  doi: 10.1016/j.fcr.2019.107580
– ident: ref39/cit39
  doi: 10.2489/jswc.69.6.471
– ident: ref89/cit89
  doi: 10.1111/j.1747-0765.2007.00174.x
– ident: ref61/cit61
  doi: 10.1016/j.agee.2006.05.014
– ident: ref96/cit96
  doi: 10.3390/su9081339
– ident: ref17/cit17
  doi: 10.1126/science.abo2364
– ident: ref12/cit12
  doi: 10.3389/fclim.2019.00008
– ident: ref154/cit154
– ident: ref8/cit8
  doi: 10.1126/science.aba7357
– ident: ref9/cit9
  doi: 10.2489/jswc.71.3.68A
– ident: ref87/cit87
  doi: 10.1111/gcbb.12885
– ident: ref13/cit13
– ident: ref125/cit125
  doi: 10.1016/j.scitotenv.2021.152073
– ident: ref29/cit29
  doi: 10.1109/ACCESS.2021.3115258
– ident: ref6/cit6
– ident: ref98/cit98
  doi: 10.1098/rstb.2010.0172
– ident: ref156/cit156
– ident: ref54/cit54
  doi: 10.1038/s41558-018-0087-z
– ident: ref107/cit107
  doi: 10.3389/fchem.2022.848320
– ident: ref46/cit46
– ident: ref57/cit57
  doi: 10.1016/j.still.2019.04.020
– volume-title: Energy.gov
  year: 2020
  ident: ref36/cit36
– ident: ref142/cit142
  doi: 10.1017/aae.2018.27
– ident: ref153/cit153
  doi: 10.1016/j.agsy.2018.09.011
– ident: ref15/cit15
  doi: 10.1017/9781009157988.007
– volume-title: Impact of Tillage and Crop Rotation Systems on Carbon Sequestration
  year: 2001
  ident: ref63/cit63
  doi: 10.31274/farmprogressreports-180814-2405
– ident: ref82/cit82
  doi: 10.5194/bg-17-103-2020
– ident: ref121/cit121
  doi: 10.1073/pnas.1815901115
– ident: ref18/cit18
  doi: 10.1088/1748-9326/ac2fe0
– ident: ref65/cit65
  doi: 10.1038/s41477-018-0108-y
– ident: ref124/cit124
  doi: 10.1111/gcbb.12180
– ident: ref161/cit161
  doi: 10.3390/s23073502
– ident: ref3/cit3
– ident: ref16/cit16
  doi: 10.1038/s43016-020-0031-z
– ident: ref149/cit149
  doi: 10.1007/s11119-019-09653-x
– ident: ref27/cit27
  doi: 10.1042/ETLS20190205
– ident: ref133/cit133
  doi: 10.1088/1748-9326/ab794e
– ident: ref55/cit55
  doi: 10.1016/j.agee.2014.10.024
– ident: ref137/cit137
  doi: 10.4081/ija.2011.e5
– ident: ref25/cit25
  doi: 10.3390/su10093337
– ident: ref43/cit43
  doi: 10.1139/facets-2021-0017
– ident: ref14/cit14
  doi: 10.1038/s41558-021-01198-0
– ident: ref88/cit88
  doi: 10.1016/j.still.2009.09.005
– ident: ref31/cit31
  doi: 10.3390/su15010304
– ident: ref73/cit73
  doi: 10.1002/ldr.4248
– ident: ref75/cit75
  doi: 10.1111/gcb.12274
– ident: ref60/cit60
  doi: 10.1371/journal.pone.0196703
– ident: ref95/cit95
  doi: 10.1038/s41586-020-2448-9
– ident: ref134/cit134
  doi: 10.1007/978-3-642-13440-1_14
– ident: ref112/cit112
  doi: 10.1016/j.procir.2017.11.048
– ident: ref151/cit151
  doi: 10.1007/s11119-012-9273-6
– volume-title: Approaches to sustainable agriculture
  year: 2020
  ident: ref19/cit19
SSID ssj0002513260
Score 2.306154
SecondaryResourceType review_article
Snippet The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural...
SourceID doaj
osti
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 426
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA7Sp_og1uuxWiL4GpvNZjeJb7UXqqAIWuhbSGaTKtQ95ewp6L93ZjfneCqIffBpr4Ewl8w3ZOYLY6-siboKuRLJZCt0ozoRo2tESqEJ1uWmA-p3_vCxPT3T78-b842jvqgmbKIHngS3H3LtArozpgWdzq12NajYKuOC1NkFoNUXY95GMkVrMEZtxCWylO5gHNsPMKTfDH_h-nUNlA9UFJVguBGVRvJ-vMzRyf4OPMcAdHKf3SvIkR9MM95hd1L_gN3d4BN8yH4eJQiLOF81V_J55gcXi0Kvkd5wNAo-Vtp8xYQfb8PA341tkgMPfcdXXcoDDTz-Qe7fX0xfqEuTHg4vvyHGTeLzdxQd_1R6rIZH7Ozk-MvhqShnK4ig63opQks0qFWdQOqQbAZUUOyqrkpK2yhjlnUEwPQQ2txaUCpSLqkUqrZpOhnrx2yrn_fpKePWZhNBZQPUlpo7Z1TS0aBSlLRg3YwJlLAvvjH4cdtbVf5PjfiikRkzK114KETldF7G5S1GVuuRVxNZxy3GvCV1r_8nuu3xBRqhL0bo_2WEM7ZLxuIRtRD1LlCNEiy9UlIbgwJ4ubIhj85LOzKhT6hnrxzCZYtropmxJ5NxrSeCUApTddM--x8T3GXbCtEZ1eEo-ZxtLRfX6QWiqWXcGx3nF-fuICU
  priority: 102
  providerName: Directory of Open Access Journals
Title Decarbonization of Agriculture: The Greenhouse Gas Impacts and Economics of Existing and Emerging Climate-Smart Practices
URI http://dx.doi.org/10.1021/acsengineeringau.3c00031
https://www.ncbi.nlm.nih.gov/pubmed/38144676
https://www.proquest.com/docview/2905781797
https://www.osti.gov/biblio/2204779
https://doaj.org/article/af39a146998d4f6493c2b6279a04f9ac
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcoEDgvLalq6MxNUlmTixw61dtipIrZBKpd4se2IXpJKtNlsJLv3tzGSzC0UqKpe8J4o8M5lvbM9nId5aE3TuU66iSVbpEhoVQl2qGH3pbZ3KBrne-fikOjrTn87L8w0Bd4zgQ_7OYxd_U_P5670CGchTxvMAKmvZGU9u9tb9KhSvCZFw1wrXaCogAx0m8PzrZRybsLsVm3oKf9rNyNXuhp99GDp8Ih4P-FHuLxX-VGzEdks8-oNV8Jn4-SGin4fZqsRSzpLcv5gPJBvxvSTTkP18m6-U9tOh7-THvliyk75t5KpWuWPB6Q_-CbQXyztcq8knk8tvhHSjOv1Olic_D5VW3XNxdjj9MjlSwwoLyuuiWChfMRlqXkTMtI82IakpNHmTR2q3kIWUFQGRkkSsUmURIHBGCUAKLssmC8ULsdnO2vhKSGuTCQjJIBenpqY2EHUwBEcgs2jrkVDUwm7wkM71g9-Qu7814gaNjIRZ6cLhQFfOq2Zc3kMyX0teLSk77iFzwOpeP8-k2_0FskQ3-LDzqag9RRbKUBudKl0XCKECU_tMp9rjSOywsTjCLkzAizxTCRcOINPGUAO8WdmQIxfmcRnfRtKzg5pAs6U_oxmJl0vjWn8IASpK2E21_Z_NtyMeAsExnngD2WuxuZhfx12CT4swpvRhcjruOx9oe3wzHfce9At34R0s
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAHVN5LeRiJq0viOLHNrfShLbQrJFqpN8ue2AWpZNFmK9ELv52ZrHfbIoHKKYkTW5ZnJvON7fnM2Fujgyp9KkXUyQhVy1aEYGsRo6-9salugfKdDyfN-Fh9PKlPrhz1hZ3osaV-WMS_ZBco32FZvGTo8-ebFRCex8DnNmKSmmxy8mtzNb2CbhuBCc2wUKqmkKineR_PvxojFwX9NRc1MPnjZYoW93cUOnijvXV2P8NIvrWQ-wN2K3YP2b0r5IKP2MVOBD8L02WmJZ8mvnU6y1wb8T1HDeHDtpuvGP3jre_5_pAz2XPftXyZstxTxd2f9C_oThdvKGWTHrbPviHgjeLLd1RA_jknXPWP2fHe7tH2WOSDFoRXVTUXviFO1LKKUCgfTQKUVmjLtow4bqEIqagCAMaK0KTGgJSBAkspUc513RahesLWumkXnzFuTNIBZNJAOaqptVpGFTSiElkYMHbEBI6wy4bSu2ENXJbuT4m4LJER00tZOMis5XR4xtkNaparmj8WzB03qPOBxL36nri3hwLURpdN2flUWY8OBgPVVqVG2QpkaKS2vlDJehixDVIWhxCGeHiBNizB3ElZKK1xAN4sdcihJdPyjO8iytlJi9jZ4A9Sj9jThXKtOoK4CuN23Tz_z-F7ze6Mjw4P3MH-5NMGuysRodFeHFm8YGvz2Xl8iYhqHl4NtvMb0KYfsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAcEG-W8jASV5fEcWKbW2m7anmsKkGl3iw_C1JJqvWuBBd-OzNZ7_KQQOW02SSOIs9M5pt4vi-EvFDSidqmmkWZFBMtD8w53bIYbWuVTm3wyHd-P-sOT8Sb0_a09OYgFwZuIsOV8riIj1F9EVJRGKhfwv74U6XPLncaj5geip-rgEoqjMvZ953NKxZI3QBO8C0L0jUZB18tvTz_uhimKZ9_S1Ojmj_8DBB1f0eiY0aa3iI3C5Skuyvb3yZXYn-H3PhFYPAu-bYfvZ27Yc22pEOiu2fzorcRX1HwEjq23nwalhk2baZHI28yU9sHuqYtZxx48BWfB_3Z6gjSNvHP3vlnAL2RffgCTkiPC-kq3yMn04OPe4esfGyBWdE0C2Y71EWtm-grYaNKHizmQh3qCPPmKpeqxnkP9aLvUqc85w6LS87B1m0bKtfcJ1v90MeHhCqVpPM8SY881RS05FE4CciEV8orPSEMZtiUYMlmXAfntfnTIqZYZELk2hbGF-Vy_IDG-SVG1puRFyv1jkuMeY3m3pyP-tvjDvBIU8LZ2NRoC0kGitUgUid047nruNS2EklbPyHb6CwGYAxq8XpsWvILw3klpIQJeL72IQPRjEs0to9gZ8M14GcFD0k5IQ9WzrW5EcBWULvL7tF_Tt8zcu14f2reHc3ebpPrHEAatuPw6jHZWsyX8QmAqoV7OobOD9nSIMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decarbonization+of+Agriculture%3A+The+Greenhouse+Gas+Impacts+and+Economics+of+Existing+and+Emerging+Climate-Smart+Practices&rft.jtitle=ACS+Engineering+Au&rft.au=Kazimierczuk%2C+Kamila&rft.au=Barrows%2C+Sarah+E&rft.au=Olarte%2C+Mariefel+V&rft.au=Qafoku%2C+Nikolla+P&rft.date=2023-12-20&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=426&rft_id=info:doi/10.1021%2Facsengineeringau.3c00031&rft_id=info%3Apmid%2F38144676&rft.externalDocID=38144676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon