Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endotheli...
Saved in:
Published in | ACS omega Vol. 7; no. 36; pp. 31935 - 31944 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.09.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm. |
---|---|
AbstractList | The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm. The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm. The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC 0.79 μM) while also showing a reduction of >3 log TCID /mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm. The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC 50 0.79 μM) while also showing a reduction of >3 log TCID 50 /mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm. |
Author | Johnson, Nicole J. Scholle, Frank Cunha, Fernando Q. Gomes, Giovanni F. Puhl, Ana C. Pearce, Kenneth H. Alves-Filho, José C. Hurst, Brett L. Cunha, Thiago M. Ekins, Sean Damasceno, Samara Dickmander, Rebekah J. Fritch, Ethan J. Batah, Sabrina S. Levi, James A. Baric, Ralph S. Premkumar, Lakshmanane Veras, Flavio P. Lee-Montiel, Felipe Yount, Boyd L. Fabro, Alexandre T. Moorman, Nathaniel J. |
AuthorAffiliation | Utah State University University of North Carolina University of São Paulo Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School Institute for Antiviral Research Department of Epidemiology, Gillings School of Public Health Department of Pathology and Legal Medicine, Ribeirão Preto Medical School UNC Lineberger Comprehensive Cancer Center Department of Microbiology and Immunology Rapidly Emerging Antiviral Drug Discovery Initiative PhenoVista Biosciences Department of Biological Sciences Department of Animal, Dairy and Veterinary Sciences University of North Carolina at Chapel Hill Collaborations Pharmaceuticals, Inc |
AuthorAffiliation_xml | – name: Department of Microbiology and Immunology – name: Utah State University – name: Institute for Antiviral Research – name: Department of Animal, Dairy and Veterinary Sciences – name: Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy – name: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – name: Collaborations Pharmaceuticals, Inc – name: University of North Carolina at Chapel Hill – name: Department of Pathology and Legal Medicine, Ribeirão Preto Medical School – name: University of North Carolina – name: Rapidly Emerging Antiviral Drug Discovery Initiative – name: Department of Epidemiology, Gillings School of Public Health – name: Department of Biological Sciences – name: UNC Lineberger Comprehensive Cancer Center – name: University of São Paulo – name: PhenoVista Biosciences |
Author_xml | – sequence: 1 givenname: Ana C. orcidid: 0000-0002-1456-8882 surname: Puhl fullname: Puhl, Ana C. email: ana@collaborationspharma.com organization: Collaborations Pharmaceuticals, Inc – sequence: 2 givenname: Giovanni F. surname: Gomes fullname: Gomes, Giovanni F. organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – sequence: 3 givenname: Samara surname: Damasceno fullname: Damasceno, Samara organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – sequence: 4 givenname: Ethan J. surname: Fritch fullname: Fritch, Ethan J. organization: Department of Microbiology and Immunology – sequence: 5 givenname: James A. surname: Levi fullname: Levi, James A. organization: Department of Biological Sciences – sequence: 6 givenname: Nicole J. surname: Johnson fullname: Johnson, Nicole J. organization: Department of Biological Sciences – sequence: 7 givenname: Frank surname: Scholle fullname: Scholle, Frank organization: Department of Biological Sciences – sequence: 8 givenname: Lakshmanane surname: Premkumar fullname: Premkumar, Lakshmanane organization: Department of Microbiology and Immunology – sequence: 9 givenname: Brett L. surname: Hurst fullname: Hurst, Brett L. organization: Utah State University – sequence: 10 givenname: Felipe surname: Lee-Montiel fullname: Lee-Montiel, Felipe organization: PhenoVista Biosciences – sequence: 11 givenname: Flavio P. orcidid: 0000-0002-6222-4064 surname: Veras fullname: Veras, Flavio P. organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – sequence: 12 givenname: Sabrina S. surname: Batah fullname: Batah, Sabrina S. organization: University of São Paulo – sequence: 13 givenname: Alexandre T. surname: Fabro fullname: Fabro, Alexandre T. organization: University of São Paulo – sequence: 14 givenname: Nathaniel J. surname: Moorman fullname: Moorman, Nathaniel J. organization: University of North Carolina – sequence: 15 givenname: Boyd L. surname: Yount fullname: Yount, Boyd L. organization: Department of Epidemiology, Gillings School of Public Health – sequence: 16 givenname: Rebekah J. surname: Dickmander fullname: Dickmander, Rebekah J. organization: University of North Carolina – sequence: 17 givenname: Ralph S. surname: Baric fullname: Baric, Ralph S. organization: Department of Epidemiology, Gillings School of Public Health – sequence: 18 givenname: Kenneth H. surname: Pearce fullname: Pearce, Kenneth H. organization: UNC Lineberger Comprehensive Cancer Center – sequence: 19 givenname: Fernando Q. surname: Cunha fullname: Cunha, Fernando Q. organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – sequence: 20 givenname: José C. surname: Alves-Filho fullname: Alves-Filho, José C. email: jcafilho@usp.br organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – sequence: 21 givenname: Thiago M. surname: Cunha fullname: Cunha, Thiago M. email: thicunha@fmrp.usp.br organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School – sequence: 22 givenname: Sean orcidid: 0000-0002-5691-5790 surname: Ekins fullname: Ekins, Sean email: sean@collaborationspharma.com organization: Collaborations Pharmaceuticals, Inc |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36097511$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kElPwzAQRi1URMty54Ry5EDAW-L4gigRSyUQEgWuluNM2kBilzhB6r8nqIvgwMkj-X3fjN4-GlhnAaFjgs8JpuRCG-9qmOlzajAVku-gEeUCh4RxNvg1D9GR9-8YYxInNKHxHhqyGEsRETJCV2_a5tBqW2bBdeXMhw_aOQTpsnUfpYVg2rqmDkobTMfP0zB1byENJ7YA00IePJYGDtFuoSsPR-v3AL3e3ryk9-HD090kHT-EmjPWhgnRkRA0NtJIkhVCAhZakihjiSkKHAlJSU5oVAgjNRgAxnJmaJRxmuWsEOwAXa56F11WQ27Ato2u1KIpa90sldOl-vtjy7mauS8lecRpnPQFp-uCxn124FtVl95AVWkLrvOKCsJxzKVgPYpXqGmc9w0U2zUEqx_3auNerd33kZPf520DG9M9cLYC-qh6d11je1v_930D3OmRRQ |
CitedBy_id | crossref_primary_10_1016_j_antiviral_2023_105654 crossref_primary_10_1073_pnas_2308342120 crossref_primary_10_1021_acsomega_3c01110 crossref_primary_10_1016_j_drudis_2023_103723 crossref_primary_10_1172_JCI163105 crossref_primary_10_3390_v15020568 crossref_primary_10_3390_ph17020240 crossref_primary_10_2174_1568026623666230825094341 crossref_primary_10_1016_j_arr_2024_102195 crossref_primary_10_1002_iub_2793 |
Cites_doi | 10.1016/j.jaci.2020.05.008 10.1038/s41467-020-19891-7 10.1016/j.clim.2020.108448 10.1371/journal.ppat.1009195 10.1016/j.cytogfr.2020.12.005 10.1016/j.celrep.2020.108234 10.1038/s41375-020-01045-9 10.1038/s41423-020-00616-1 10.1007/s11095-020-02851-7 10.1038/s41579-021-00573-0 10.4269/ajtmh.20-0762 10.2174/1389450122666210215112150 10.3389/fimmu.2021.633769 10.1080/22221751.2020.1780953 10.1128/JVI.02012-06 10.1038/s41564-018-0288-2 10.1016/j.cytogfr.2020.06.001 10.1016/j.molcel.2020.08.006 10.1126/science.abg5827 10.1038/s41467-021-21085-8 10.1080/21645515.2021.1945901 10.3389/fimmu.2021.589095 10.1007/s12020-021-02650-z 10.1038/s41586-020-2312-y 10.1093/ofid/ofaa407 10.1038/s41590-020-0794-2 10.3389/fphar.2020.583777 10.1021/acs.jmedchem.0c01467 10.1186/s12985-021-01588-y 10.3390/cells10010030 10.1038/s41418-020-00720-9 10.1016/j.cell.2020.10.005 10.1038/s41421-020-00222-5 10.1016/j.clinthera.2011.11.011 10.1007/BF01863914 10.1038/s41586-020-2577-1 10.1056/NEJMoa2007764 10.1038/s41586-020-2943-z 10.1021/acsinfecdis.2c00091 10.1016/j.currproblcancer.2013.06.001 10.1056/NEJMoa2031994 10.4103/0976-0105.177703 10.1126/scitranslmed.aal3653 10.1056/NEJMoa2021436 10.1056/NEJMoa2101643 10.1101/2022.01.03.474779 10.1684/ecn.2020.0451 10.1021/acsomega.0c05996 10.1016/j.csbj.2020.12.033 10.1038/s41541-021-00292-w 10.1038/s41591-021-01569-2 10.1038/nm1105 10.1016/S0140-6736(20)30183-5 10.1172/jci.insight.144455 10.1165/ajrcmb.22.6.3779 10.1016/j.cell.2020.11.007 10.1016/j.arcmed.2020.06.012 10.1111/j.2044-8295.1908.tb00176.x 10.1073/pnas.95.26.15809 10.3390/v13040700 10.2165/11209300-000000000-00000 10.1093/infdis/jiaa363 10.1021/acscentsci.0c00489 10.1038/35060098 10.1164/rccm.200809-1522ST 10.1038/s41591-021-01283-z 10.1016/j.cell.2020.05.042 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society. 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society. – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | N~. NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsomega.2c02794 |
DatabaseName | American Chemical Society (ACS) Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 31944 |
ExternalDocumentID | 10_1021_acsomega_2c02794 36097511 b747125741 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI142759 – fundername: NCCIH NIH HHS grantid: R43 AT010585 – fundername: NIAID NIH HHS grantid: R01 AI108197 – fundername: ; grantid: 2013/08216-2 – fundername: ; grantid: AI142759 – fundername: ; grantid: AI108197 – fundername: ; grantid: 88887.507155/2020-00 – fundername: ; grantid: NA – fundername: ; grantid: 2020/04860-8 – fundername: ; grantid: 1R43AT010585-01 |
GroupedDBID | 53G ABFRP ABUCX ACS ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE N~. OK1 RPM VF5 AAFWJ AAHBH AFPKN M~E NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a433t-81a57726c9c91bf79e07a915b38cff057921d125f7c9aecee33d3c25b42bd3f73 |
IEDL.DBID | RPM |
ISSN | 2470-1343 |
IngestDate | Tue Sep 17 20:41:14 EDT 2024 Sat Oct 26 03:55:07 EDT 2024 Fri Dec 06 02:18:54 EST 2024 Sat Nov 02 12:27:59 EDT 2024 Thu Sep 15 03:44:33 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
License | 2022 The Authors. Published by American Chemical Society. https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a433t-81a57726c9c91bf79e07a915b38cff057921d125f7c9aecee33d3c25b42bd3f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5691-5790 0000-0002-1456-8882 0000-0002-6222-4064 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454268/ |
PMID | 36097511 |
PQID | 2714064973 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9454268 proquest_miscellaneous_2714064973 crossref_primary_10_1021_acsomega_2c02794 pubmed_primary_36097511 acs_journals_10_1021_acsomega_2c02794 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-13 |
PublicationDateYYYYMMDD | 2022-09-13 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref41/cit41 doi: 10.1016/j.jaci.2020.05.008 – ident: ref33/cit33 doi: 10.1038/s41467-020-19891-7 – ident: ref19/cit19 doi: 10.1016/j.clim.2020.108448 – ident: ref67/cit67 doi: 10.1371/journal.ppat.1009195 – ident: ref14/cit14 doi: 10.1016/j.cytogfr.2020.12.005 – ident: ref16/cit16 doi: 10.1016/j.celrep.2020.108234 – ident: ref29/cit29 doi: 10.1038/s41375-020-01045-9 – ident: ref68/cit68 doi: 10.1038/s41423-020-00616-1 – ident: ref24/cit24 doi: 10.1007/s11095-020-02851-7 – ident: ref35/cit35 doi: 10.1038/s41579-021-00573-0 – ident: ref69/cit69 doi: 10.4269/ajtmh.20-0762 – ident: ref7/cit7 doi: 10.2174/1389450122666210215112150 – ident: ref18/cit18 doi: 10.3389/fimmu.2021.633769 – ident: ref17/cit17 doi: 10.1080/22221751.2020.1780953 – ident: ref32/cit32 doi: 10.1128/JVI.02012-06 – ident: ref22/cit22 doi: 10.1038/s41564-018-0288-2 – ident: ref10/cit10 doi: 10.1016/j.cytogfr.2020.06.001 – ident: ref37/cit37 doi: 10.1016/j.molcel.2020.08.006 – ident: ref54/cit54 doi: 10.1126/science.abg5827 – ident: ref48/cit48 doi: 10.1038/s41467-021-21085-8 – ident: ref3/cit3 doi: 10.1080/21645515.2021.1945901 – ident: ref12/cit12 doi: 10.3389/fimmu.2021.589095 – ident: ref58/cit58 doi: 10.1007/s12020-021-02650-z – ident: ref66/cit66 doi: 10.1038/s41586-020-2312-y – ident: ref44/cit44 doi: 10.1093/ofid/ofaa407 – ident: ref70/cit70 doi: 10.1038/s41590-020-0794-2 – ident: ref20/cit20 doi: 10.3389/fphar.2020.583777 – ident: ref30/cit30 doi: 10.1021/acs.jmedchem.0c01467 – ident: ref15/cit15 doi: 10.1186/s12985-021-01588-y – ident: ref25/cit25 doi: 10.3390/cells10010030 – ident: ref36/cit36 doi: 10.1038/s41418-020-00720-9 – ident: ref39/cit39 doi: 10.1016/j.cell.2020.10.005 – ident: ref27/cit27 doi: 10.1038/s41421-020-00222-5 – ident: ref55/cit55 doi: 10.1016/j.clinthera.2011.11.011 – ident: ref63/cit63 doi: 10.1007/BF01863914 – ident: ref28/cit28 doi: 10.1038/s41586-020-2577-1 – ident: ref51/cit51 doi: 10.1056/NEJMoa2007764 – ident: ref71/cit71 doi: 10.1038/s41586-020-2943-z – ident: ref64/cit64 doi: 10.1021/acsinfecdis.2c00091 – ident: ref56/cit56 doi: 10.1016/j.currproblcancer.2013.06.001 – ident: ref5/cit5 doi: 10.1056/NEJMoa2031994 – ident: ref57/cit57 doi: 10.4103/0976-0105.177703 – ident: ref50/cit50 doi: 10.1126/scitranslmed.aal3653 – ident: ref6/cit6 doi: 10.1056/NEJMoa2021436 – ident: ref52/cit52 doi: 10.1056/NEJMoa2101643 – ident: ref61/cit61 doi: 10.1101/2022.01.03.474779 – ident: ref21/cit21 doi: 10.1684/ecn.2020.0451 – ident: ref59/cit59 doi: 10.1021/acsomega.0c05996 – ident: ref1/cit1 doi: 10.1016/j.csbj.2020.12.033 – ident: ref2/cit2 doi: 10.1038/s41541-021-00292-w – ident: ref11/cit11 doi: 10.1056/NEJMoa2021436 – ident: ref53/cit53 doi: 10.1038/s41591-021-01569-2 – ident: ref45/cit45 doi: 10.1038/nm1105 – ident: ref40/cit40 doi: 10.1016/S0140-6736(20)30183-5 – ident: ref43/cit43 doi: 10.1172/jci.insight.144455 – ident: ref46/cit46 doi: 10.1165/ajrcmb.22.6.3779 – ident: ref26/cit26 doi: 10.1016/j.cell.2020.11.007 – ident: ref65/cit65 doi: 10.1038/s41467-020-19891-7 – ident: ref13/cit13 doi: 10.1016/j.arcmed.2020.06.012 – ident: ref62/cit62 doi: 10.1111/j.2044-8295.1908.tb00176.x – ident: ref47/cit47 doi: 10.1073/pnas.95.26.15809 – ident: ref9/cit9 doi: 10.3390/v13040700 – ident: ref38/cit38 doi: 10.2165/11209300-000000000-00000 – ident: ref42/cit42 doi: 10.1093/infdis/jiaa363 – ident: ref4/cit4 doi: 10.1021/acscentsci.0c00489 – ident: ref23/cit23 doi: 10.1038/35060098 – ident: ref72/cit72 doi: 10.1164/rccm.200809-1522ST – ident: ref34/cit34 doi: 10.1038/s41586-020-2312-y – ident: ref31/cit31 doi: 10.1126/science.abg5827 – ident: ref49/cit49 doi: 10.1007/s11095-020-02851-7 – ident: ref8/cit8 doi: 10.1038/s41591-021-01283-z – ident: ref60/cit60 doi: 10.1016/j.cell.2020.05.042 |
SSID | ssj0001682826 |
Score | 2.312425 |
Snippet | The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone,... The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone,... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 31935 |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMctKAMsiDflJSPBwGCoH7HjjVKBAAkGCogtcmwHqooEkTKw8Nk5pylQQIg5lqX8bfl-5_PdIbRjVSyp845IbT0RjhkSinwT7lwcwmBO65AofHEpT2_E-V1091km53sEn9EDY8vi0d-bfWbBhdJiEk0xBZwTmly-7X_ep0jwHaruakyoFqFc8Doq-dskwRbZctwW_QDM7-8kvxiekzk0WxMjbg-XeB5N-HwBTXdGjdoW0eFtuAgGyOul-AhsU7_EQHW48zoo-sCQuAtu9SPu5bjbvuqSTnFLGDmr3mB5hy_goFhCNyfH151TUjdGIEZwPiAxNRFQsbTaappmSvuWMppGKY9tloX0UkYdkEumrDYezCDnjlsWpYKljmeKL6NGXuR-FWFJqVHacpsKACPGtaUZ9V6D3yqNo3ET7YJQSb2xy6SKWTOajARNakGbaG8kZfI0rJPxx9jtkdYJSBUiFCb3xUuZsFA-UAqteBOtDLX_mI3LllaAh02kxlblY0AolD3-Je89VAWztYgAROK1f_7LOpphIckhNIrgG6gxeH7xm4Aeg3Sr2nPv_LzUFQ priority: 102 providerName: American Chemical Society |
Title | Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice |
URI | http://dx.doi.org/10.1021/acsomega.2c02794 https://www.ncbi.nlm.nih.gov/pubmed/36097511 https://www.proquest.com/docview/2714064973 https://pubmed.ncbi.nlm.nih.gov/PMC9454268 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6iXOCCGD87tsqTxoGDW2wndnwbRENsUhGigLhFju1A1TVBtBy47G_fc5ogukkcdsnFThR9fsr3vbxfAF-tSiRz3lGpraeR44aGJt9UOJeEMJjTOhQKDy_k-U308y6-W4G4rYWpk_ZtPu6Xv6b9cvxQ51Y-Tu2gzRMbXA5THcVILMmgAx2k3zcuev1jRaITwduQJFLYwNhZNfX3ps8tOmE6jOIR8lirOIwN6uDqMif9IzT_zpd8Q0Bnm7DRKEdysnjDD7Diyy1YS9uBbdvw7Tb8EEaxN87JKXLUZEZQ3ZH0ZV5NUEuSEbrXUzIuyejkakTT6pZy-qPOxfKODPGDsQM3Z9-v03PaDEigJhJiThNmYlTH0mqrWV4o7Y-V0SzORWKLIpSZcuZQwRTKauORDoVwwvI4j3juRKHELqyWVen3gUjGjNJW2DxCgcSFtqxg3mv0X6VxLOnCIQKVNQY-y-rYNWdZi23WYNuFoxbK7HHRL-OdvV9arDOEKkQqTOmr51nGQxtBGWklurC3wP71ae3RdUEtncrrhtAwe3kF7ahunN3Yzcf_vvMA1nkofwgjJMQnWJ0_PfvPKErmeQ9FeTrq1S49Xi9-93u1Wf4BXFLklA |
link.rule.ids | 230,314,727,780,784,864,885,2765,27076,27080,27924,27925,53791,53793,56738,56762,56788,56812 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RONBLRaEfCxRciR56MF1_xI5v0BVoaVkOXUDcIsd22hUiQWQ5cOlv7zibQLcg1GtijZJnJ_PG43kDsON0qpgPnirjApWeWxpFvqnwPo1pMG9MLBQenajhmfx2kVwsAOtqYfAharRUN0n8B3UB9gWvVVfhp93lDiMpI1_AUqLwS469Ln_vPmyrKAwhmiZrXOo-ZUKKNjn5lJHoklw975Ie8cx_j0v-5X8OV-BVSxzJ_mymX8NCKFdhedD1a1uDvfO4H4xcb5KTr-iiLmuC5I4M7qbVJVJJMsbo-opMSjLe_zGmg-qccnrUHMUKnozwf_EGzg4PTgdD2vZHoFYKMaUpswmSY-WMMywvtAl9bQ1LcpG6oohVppx5JDCFdsYG9IZCeOF4kkuee1Fo8RYWy6oM74Eoxqw2TrhcIj_iwjhWsBAMhq_Kepb24BMClbXru86a1DVnWQdo1gLag88dlNn1TC7jmbEfO6wzhComKmwZqts641FFUEmjRQ_ezbC_tyZU32hkiT3Qc7NyPyDqZc_fKSe_Gt1sIxPkI-n6f77LNiwPT0fH2fHRyfcNeMlj3UPsHSE2YXF6cxs-IBuZ5lvN-vsD_LPZxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgGXljdLeQQJDhy8XT9ixzeWwKoFWiGWrnqLHNuB1apJ1WQP8OsZZ5OFLQjBNbEs22N7vvHMfAPw3KpEUucdkdp6IhwzJJB8E-5cEtxgTuuQKHx0LA9OxLvT-HQL4j4XBgdRY09168QPp_rcFR3DAN3H79WZ_2KGzKI1pcUVuBrjZRsiucbp9OfTikQzoi20xoQaEcoF7xyUf-okqCVbb6ql37Dm5ZDJX3TQZBdm69G3oSeL4bLJh_b7JWLH_57eTdjpUGk0Xm2jW7Dly9twPe2Lwd2BV7Pw2IxAcp5Hr1H_LeoIkWOUfmuqBeLUaIqm-1k0L6Pp-NOUpNWMMHLYxnl5Fx3hZXQXTiZvP6cHpCu-QIzgvCEJNTEib2m11TQvlPYjZTSNc57YoggprIw6REeFstp4VLWcO25ZnAuWO14ofg-2y6r0DyCSlBqlLbe5QPDFuLa0oN5rtI2lcTQZwAucetYdnjpr_eKMZv16ZN16DOBlL6PsfMXF8Ze2z3ohZrhUwQtiSl8t64wFikIptOIDuL8S6ro3LkdaIQQdgNoQ97pBIOPe_FPOv7ak3FrECHaSh_84l6dw7eObSfbh8Pj9HtxgIaci1KXgj2C7uVj6x4h0mvxJu69_AHyH-C4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vandetanib+Blocks+the+Cytokine+Storm+in+SARS-CoV-2-Infected+Mice&rft.jtitle=ACS+omega&rft.au=Puhl%2C+Ana+C.&rft.au=Gomes%2C+Giovanni+F.&rft.au=Damasceno%2C+Samara&rft.au=Fritch%2C+Ethan+J.&rft.date=2022-09-13&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=7&rft.issue=36&rft.spage=31935&rft.epage=31944&rft_id=info:doi/10.1021%2Facsomega.2c02794&rft.externalDocID=b747125741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |