Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endotheli...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 7; no. 36; pp. 31935 - 31944
Main Authors Puhl, Ana C., Gomes, Giovanni F., Damasceno, Samara, Fritch, Ethan J., Levi, James A., Johnson, Nicole J., Scholle, Frank, Premkumar, Lakshmanane, Hurst, Brett L., Lee-Montiel, Felipe, Veras, Flavio P., Batah, Sabrina S., Fabro, Alexandre T., Moorman, Nathaniel J., Yount, Boyd L., Dickmander, Rebekah J., Baric, Ralph S., Pearce, Kenneth H., Cunha, Fernando Q., Alves-Filho, José C., Cunha, Thiago M., Ekins, Sean
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.09.2022
Online AccessGet full text

Cover

Loading…
Abstract The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
AbstractList The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC 0.79 μM) while also showing a reduction of >3 log TCID /mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC 50 0.79 μM) while also showing a reduction of >3 log TCID 50 /mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
Author Johnson, Nicole J.
Scholle, Frank
Cunha, Fernando Q.
Gomes, Giovanni F.
Puhl, Ana C.
Pearce, Kenneth H.
Alves-Filho, José C.
Hurst, Brett L.
Cunha, Thiago M.
Ekins, Sean
Damasceno, Samara
Dickmander, Rebekah J.
Fritch, Ethan J.
Batah, Sabrina S.
Levi, James A.
Baric, Ralph S.
Premkumar, Lakshmanane
Veras, Flavio P.
Lee-Montiel, Felipe
Yount, Boyd L.
Fabro, Alexandre T.
Moorman, Nathaniel J.
AuthorAffiliation Utah State University
University of North Carolina
University of São Paulo
Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
Institute for Antiviral Research
Department of Epidemiology, Gillings School of Public Health
Department of Pathology and Legal Medicine, Ribeirão Preto Medical School
UNC Lineberger Comprehensive Cancer Center
Department of Microbiology and Immunology
Rapidly Emerging Antiviral Drug Discovery Initiative
PhenoVista Biosciences
Department of Biological Sciences
Department of Animal, Dairy and Veterinary Sciences
University of North Carolina at Chapel Hill
Collaborations Pharmaceuticals, Inc
AuthorAffiliation_xml – name: Department of Microbiology and Immunology
– name: Utah State University
– name: Institute for Antiviral Research
– name: Department of Animal, Dairy and Veterinary Sciences
– name: Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
– name: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– name: Collaborations Pharmaceuticals, Inc
– name: University of North Carolina at Chapel Hill
– name: Department of Pathology and Legal Medicine, Ribeirão Preto Medical School
– name: University of North Carolina
– name: Rapidly Emerging Antiviral Drug Discovery Initiative
– name: Department of Epidemiology, Gillings School of Public Health
– name: Department of Biological Sciences
– name: UNC Lineberger Comprehensive Cancer Center
– name: University of São Paulo
– name: PhenoVista Biosciences
Author_xml – sequence: 1
  givenname: Ana C.
  orcidid: 0000-0002-1456-8882
  surname: Puhl
  fullname: Puhl, Ana C.
  email: ana@collaborationspharma.com
  organization: Collaborations Pharmaceuticals, Inc
– sequence: 2
  givenname: Giovanni F.
  surname: Gomes
  fullname: Gomes, Giovanni F.
  organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– sequence: 3
  givenname: Samara
  surname: Damasceno
  fullname: Damasceno, Samara
  organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– sequence: 4
  givenname: Ethan J.
  surname: Fritch
  fullname: Fritch, Ethan J.
  organization: Department of Microbiology and Immunology
– sequence: 5
  givenname: James A.
  surname: Levi
  fullname: Levi, James A.
  organization: Department of Biological Sciences
– sequence: 6
  givenname: Nicole J.
  surname: Johnson
  fullname: Johnson, Nicole J.
  organization: Department of Biological Sciences
– sequence: 7
  givenname: Frank
  surname: Scholle
  fullname: Scholle, Frank
  organization: Department of Biological Sciences
– sequence: 8
  givenname: Lakshmanane
  surname: Premkumar
  fullname: Premkumar, Lakshmanane
  organization: Department of Microbiology and Immunology
– sequence: 9
  givenname: Brett L.
  surname: Hurst
  fullname: Hurst, Brett L.
  organization: Utah State University
– sequence: 10
  givenname: Felipe
  surname: Lee-Montiel
  fullname: Lee-Montiel, Felipe
  organization: PhenoVista Biosciences
– sequence: 11
  givenname: Flavio P.
  orcidid: 0000-0002-6222-4064
  surname: Veras
  fullname: Veras, Flavio P.
  organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– sequence: 12
  givenname: Sabrina S.
  surname: Batah
  fullname: Batah, Sabrina S.
  organization: University of São Paulo
– sequence: 13
  givenname: Alexandre T.
  surname: Fabro
  fullname: Fabro, Alexandre T.
  organization: University of São Paulo
– sequence: 14
  givenname: Nathaniel J.
  surname: Moorman
  fullname: Moorman, Nathaniel J.
  organization: University of North Carolina
– sequence: 15
  givenname: Boyd L.
  surname: Yount
  fullname: Yount, Boyd L.
  organization: Department of Epidemiology, Gillings School of Public Health
– sequence: 16
  givenname: Rebekah J.
  surname: Dickmander
  fullname: Dickmander, Rebekah J.
  organization: University of North Carolina
– sequence: 17
  givenname: Ralph S.
  surname: Baric
  fullname: Baric, Ralph S.
  organization: Department of Epidemiology, Gillings School of Public Health
– sequence: 18
  givenname: Kenneth H.
  surname: Pearce
  fullname: Pearce, Kenneth H.
  organization: UNC Lineberger Comprehensive Cancer Center
– sequence: 19
  givenname: Fernando Q.
  surname: Cunha
  fullname: Cunha, Fernando Q.
  organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– sequence: 20
  givenname: José C.
  surname: Alves-Filho
  fullname: Alves-Filho, José C.
  email: jcafilho@usp.br
  organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– sequence: 21
  givenname: Thiago M.
  surname: Cunha
  fullname: Cunha, Thiago M.
  email: thicunha@fmrp.usp.br
  organization: Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School
– sequence: 22
  givenname: Sean
  orcidid: 0000-0002-5691-5790
  surname: Ekins
  fullname: Ekins, Sean
  email: sean@collaborationspharma.com
  organization: Collaborations Pharmaceuticals, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36097511$$D View this record in MEDLINE/PubMed
BookMark eNp1kElPwzAQRi1URMty54Ry5EDAW-L4gigRSyUQEgWuluNM2kBilzhB6r8nqIvgwMkj-X3fjN4-GlhnAaFjgs8JpuRCG-9qmOlzajAVku-gEeUCh4RxNvg1D9GR9-8YYxInNKHxHhqyGEsRETJCV2_a5tBqW2bBdeXMhw_aOQTpsnUfpYVg2rqmDkobTMfP0zB1byENJ7YA00IePJYGDtFuoSsPR-v3AL3e3ryk9-HD090kHT-EmjPWhgnRkRA0NtJIkhVCAhZakihjiSkKHAlJSU5oVAgjNRgAxnJmaJRxmuWsEOwAXa56F11WQ27Ato2u1KIpa90sldOl-vtjy7mauS8lecRpnPQFp-uCxn124FtVl95AVWkLrvOKCsJxzKVgPYpXqGmc9w0U2zUEqx_3auNerd33kZPf520DG9M9cLYC-qh6d11je1v_930D3OmRRQ
CitedBy_id crossref_primary_10_1016_j_antiviral_2023_105654
crossref_primary_10_1073_pnas_2308342120
crossref_primary_10_1021_acsomega_3c01110
crossref_primary_10_1016_j_drudis_2023_103723
crossref_primary_10_1172_JCI163105
crossref_primary_10_3390_v15020568
crossref_primary_10_3390_ph17020240
crossref_primary_10_2174_1568026623666230825094341
crossref_primary_10_1016_j_arr_2024_102195
crossref_primary_10_1002_iub_2793
Cites_doi 10.1016/j.jaci.2020.05.008
10.1038/s41467-020-19891-7
10.1016/j.clim.2020.108448
10.1371/journal.ppat.1009195
10.1016/j.cytogfr.2020.12.005
10.1016/j.celrep.2020.108234
10.1038/s41375-020-01045-9
10.1038/s41423-020-00616-1
10.1007/s11095-020-02851-7
10.1038/s41579-021-00573-0
10.4269/ajtmh.20-0762
10.2174/1389450122666210215112150
10.3389/fimmu.2021.633769
10.1080/22221751.2020.1780953
10.1128/JVI.02012-06
10.1038/s41564-018-0288-2
10.1016/j.cytogfr.2020.06.001
10.1016/j.molcel.2020.08.006
10.1126/science.abg5827
10.1038/s41467-021-21085-8
10.1080/21645515.2021.1945901
10.3389/fimmu.2021.589095
10.1007/s12020-021-02650-z
10.1038/s41586-020-2312-y
10.1093/ofid/ofaa407
10.1038/s41590-020-0794-2
10.3389/fphar.2020.583777
10.1021/acs.jmedchem.0c01467
10.1186/s12985-021-01588-y
10.3390/cells10010030
10.1038/s41418-020-00720-9
10.1016/j.cell.2020.10.005
10.1038/s41421-020-00222-5
10.1016/j.clinthera.2011.11.011
10.1007/BF01863914
10.1038/s41586-020-2577-1
10.1056/NEJMoa2007764
10.1038/s41586-020-2943-z
10.1021/acsinfecdis.2c00091
10.1016/j.currproblcancer.2013.06.001
10.1056/NEJMoa2031994
10.4103/0976-0105.177703
10.1126/scitranslmed.aal3653
10.1056/NEJMoa2021436
10.1056/NEJMoa2101643
10.1101/2022.01.03.474779
10.1684/ecn.2020.0451
10.1021/acsomega.0c05996
10.1016/j.csbj.2020.12.033
10.1038/s41541-021-00292-w
10.1038/s41591-021-01569-2
10.1038/nm1105
10.1016/S0140-6736(20)30183-5
10.1172/jci.insight.144455
10.1165/ajrcmb.22.6.3779
10.1016/j.cell.2020.11.007
10.1016/j.arcmed.2020.06.012
10.1111/j.2044-8295.1908.tb00176.x
10.1073/pnas.95.26.15809
10.3390/v13040700
10.2165/11209300-000000000-00000
10.1093/infdis/jiaa363
10.1021/acscentsci.0c00489
10.1038/35060098
10.1164/rccm.200809-1522ST
10.1038/s41591-021-01283-z
10.1016/j.cell.2020.05.042
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society.
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society.
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID N~.
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsomega.2c02794
DatabaseName American Chemical Society (ACS) Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 31944
ExternalDocumentID 10_1021_acsomega_2c02794
36097511
b747125741
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI142759
– fundername: NCCIH NIH HHS
  grantid: R43 AT010585
– fundername: NIAID NIH HHS
  grantid: R01 AI108197
– fundername: ;
  grantid: 2013/08216-2
– fundername: ;
  grantid: AI142759
– fundername: ;
  grantid: AI108197
– fundername: ;
  grantid: 88887.507155/2020-00
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: 2020/04860-8
– fundername: ;
  grantid: 1R43AT010585-01
GroupedDBID 53G
ABFRP
ABUCX
ACS
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AFPKN
M~E
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a433t-81a57726c9c91bf79e07a915b38cff057921d125f7c9aecee33d3c25b42bd3f73
IEDL.DBID RPM
ISSN 2470-1343
IngestDate Tue Sep 17 20:41:14 EDT 2024
Sat Oct 26 03:55:07 EDT 2024
Fri Dec 06 02:18:54 EST 2024
Sat Nov 02 12:27:59 EDT 2024
Thu Sep 15 03:44:33 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License 2022 The Authors. Published by American Chemical Society.
https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-81a57726c9c91bf79e07a915b38cff057921d125f7c9aecee33d3c25b42bd3f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5691-5790
0000-0002-1456-8882
0000-0002-6222-4064
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454268/
PMID 36097511
PQID 2714064973
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9454268
proquest_miscellaneous_2714064973
crossref_primary_10_1021_acsomega_2c02794
pubmed_primary_36097511
acs_journals_10_1021_acsomega_2c02794
PublicationCentury 2000
PublicationDate 2022-09-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref41/cit41
  doi: 10.1016/j.jaci.2020.05.008
– ident: ref33/cit33
  doi: 10.1038/s41467-020-19891-7
– ident: ref19/cit19
  doi: 10.1016/j.clim.2020.108448
– ident: ref67/cit67
  doi: 10.1371/journal.ppat.1009195
– ident: ref14/cit14
  doi: 10.1016/j.cytogfr.2020.12.005
– ident: ref16/cit16
  doi: 10.1016/j.celrep.2020.108234
– ident: ref29/cit29
  doi: 10.1038/s41375-020-01045-9
– ident: ref68/cit68
  doi: 10.1038/s41423-020-00616-1
– ident: ref24/cit24
  doi: 10.1007/s11095-020-02851-7
– ident: ref35/cit35
  doi: 10.1038/s41579-021-00573-0
– ident: ref69/cit69
  doi: 10.4269/ajtmh.20-0762
– ident: ref7/cit7
  doi: 10.2174/1389450122666210215112150
– ident: ref18/cit18
  doi: 10.3389/fimmu.2021.633769
– ident: ref17/cit17
  doi: 10.1080/22221751.2020.1780953
– ident: ref32/cit32
  doi: 10.1128/JVI.02012-06
– ident: ref22/cit22
  doi: 10.1038/s41564-018-0288-2
– ident: ref10/cit10
  doi: 10.1016/j.cytogfr.2020.06.001
– ident: ref37/cit37
  doi: 10.1016/j.molcel.2020.08.006
– ident: ref54/cit54
  doi: 10.1126/science.abg5827
– ident: ref48/cit48
  doi: 10.1038/s41467-021-21085-8
– ident: ref3/cit3
  doi: 10.1080/21645515.2021.1945901
– ident: ref12/cit12
  doi: 10.3389/fimmu.2021.589095
– ident: ref58/cit58
  doi: 10.1007/s12020-021-02650-z
– ident: ref66/cit66
  doi: 10.1038/s41586-020-2312-y
– ident: ref44/cit44
  doi: 10.1093/ofid/ofaa407
– ident: ref70/cit70
  doi: 10.1038/s41590-020-0794-2
– ident: ref20/cit20
  doi: 10.3389/fphar.2020.583777
– ident: ref30/cit30
  doi: 10.1021/acs.jmedchem.0c01467
– ident: ref15/cit15
  doi: 10.1186/s12985-021-01588-y
– ident: ref25/cit25
  doi: 10.3390/cells10010030
– ident: ref36/cit36
  doi: 10.1038/s41418-020-00720-9
– ident: ref39/cit39
  doi: 10.1016/j.cell.2020.10.005
– ident: ref27/cit27
  doi: 10.1038/s41421-020-00222-5
– ident: ref55/cit55
  doi: 10.1016/j.clinthera.2011.11.011
– ident: ref63/cit63
  doi: 10.1007/BF01863914
– ident: ref28/cit28
  doi: 10.1038/s41586-020-2577-1
– ident: ref51/cit51
  doi: 10.1056/NEJMoa2007764
– ident: ref71/cit71
  doi: 10.1038/s41586-020-2943-z
– ident: ref64/cit64
  doi: 10.1021/acsinfecdis.2c00091
– ident: ref56/cit56
  doi: 10.1016/j.currproblcancer.2013.06.001
– ident: ref5/cit5
  doi: 10.1056/NEJMoa2031994
– ident: ref57/cit57
  doi: 10.4103/0976-0105.177703
– ident: ref50/cit50
  doi: 10.1126/scitranslmed.aal3653
– ident: ref6/cit6
  doi: 10.1056/NEJMoa2021436
– ident: ref52/cit52
  doi: 10.1056/NEJMoa2101643
– ident: ref61/cit61
  doi: 10.1101/2022.01.03.474779
– ident: ref21/cit21
  doi: 10.1684/ecn.2020.0451
– ident: ref59/cit59
  doi: 10.1021/acsomega.0c05996
– ident: ref1/cit1
  doi: 10.1016/j.csbj.2020.12.033
– ident: ref2/cit2
  doi: 10.1038/s41541-021-00292-w
– ident: ref11/cit11
  doi: 10.1056/NEJMoa2021436
– ident: ref53/cit53
  doi: 10.1038/s41591-021-01569-2
– ident: ref45/cit45
  doi: 10.1038/nm1105
– ident: ref40/cit40
  doi: 10.1016/S0140-6736(20)30183-5
– ident: ref43/cit43
  doi: 10.1172/jci.insight.144455
– ident: ref46/cit46
  doi: 10.1165/ajrcmb.22.6.3779
– ident: ref26/cit26
  doi: 10.1016/j.cell.2020.11.007
– ident: ref65/cit65
  doi: 10.1038/s41467-020-19891-7
– ident: ref13/cit13
  doi: 10.1016/j.arcmed.2020.06.012
– ident: ref62/cit62
  doi: 10.1111/j.2044-8295.1908.tb00176.x
– ident: ref47/cit47
  doi: 10.1073/pnas.95.26.15809
– ident: ref9/cit9
  doi: 10.3390/v13040700
– ident: ref38/cit38
  doi: 10.2165/11209300-000000000-00000
– ident: ref42/cit42
  doi: 10.1093/infdis/jiaa363
– ident: ref4/cit4
  doi: 10.1021/acscentsci.0c00489
– ident: ref23/cit23
  doi: 10.1038/35060098
– ident: ref72/cit72
  doi: 10.1164/rccm.200809-1522ST
– ident: ref34/cit34
  doi: 10.1038/s41586-020-2312-y
– ident: ref31/cit31
  doi: 10.1126/science.abg5827
– ident: ref49/cit49
  doi: 10.1007/s11095-020-02851-7
– ident: ref8/cit8
  doi: 10.1038/s41591-021-01283-z
– ident: ref60/cit60
  doi: 10.1016/j.cell.2020.05.042
SSID ssj0001682826
Score 2.312425
Snippet The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone,...
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone,...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31935
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMctKAMsiDflJSPBwGCoH7HjjVKBAAkGCogtcmwHqooEkTKw8Nk5pylQQIg5lqX8bfl-5_PdIbRjVSyp845IbT0RjhkSinwT7lwcwmBO65AofHEpT2_E-V1091km53sEn9EDY8vi0d-bfWbBhdJiEk0xBZwTmly-7X_ep0jwHaruakyoFqFc8Doq-dskwRbZctwW_QDM7-8kvxiekzk0WxMjbg-XeB5N-HwBTXdGjdoW0eFtuAgGyOul-AhsU7_EQHW48zoo-sCQuAtu9SPu5bjbvuqSTnFLGDmr3mB5hy_goFhCNyfH151TUjdGIEZwPiAxNRFQsbTaappmSvuWMppGKY9tloX0UkYdkEumrDYezCDnjlsWpYKljmeKL6NGXuR-FWFJqVHacpsKACPGtaUZ9V6D3yqNo3ET7YJQSb2xy6SKWTOajARNakGbaG8kZfI0rJPxx9jtkdYJSBUiFCb3xUuZsFA-UAqteBOtDLX_mI3LllaAh02kxlblY0AolD3-Je89VAWztYgAROK1f_7LOpphIckhNIrgG6gxeH7xm4Aeg3Sr2nPv_LzUFQ
  priority: 102
  providerName: American Chemical Society
Title Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice
URI http://dx.doi.org/10.1021/acsomega.2c02794
https://www.ncbi.nlm.nih.gov/pubmed/36097511
https://www.proquest.com/docview/2714064973
https://pubmed.ncbi.nlm.nih.gov/PMC9454268
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6iXOCCGD87tsqTxoGDW2wndnwbRENsUhGigLhFju1A1TVBtBy47G_fc5ogukkcdsnFThR9fsr3vbxfAF-tSiRz3lGpraeR44aGJt9UOJeEMJjTOhQKDy_k-U308y6-W4G4rYWpk_ZtPu6Xv6b9cvxQ51Y-Tu2gzRMbXA5THcVILMmgAx2k3zcuev1jRaITwduQJFLYwNhZNfX3ps8tOmE6jOIR8lirOIwN6uDqMif9IzT_zpd8Q0Bnm7DRKEdysnjDD7Diyy1YS9uBbdvw7Tb8EEaxN87JKXLUZEZQ3ZH0ZV5NUEuSEbrXUzIuyejkakTT6pZy-qPOxfKODPGDsQM3Z9-v03PaDEigJhJiThNmYlTH0mqrWV4o7Y-V0SzORWKLIpSZcuZQwRTKauORDoVwwvI4j3juRKHELqyWVen3gUjGjNJW2DxCgcSFtqxg3mv0X6VxLOnCIQKVNQY-y-rYNWdZi23WYNuFoxbK7HHRL-OdvV9arDOEKkQqTOmr51nGQxtBGWklurC3wP71ae3RdUEtncrrhtAwe3kF7ahunN3Yzcf_vvMA1nkofwgjJMQnWJ0_PfvPKErmeQ9FeTrq1S49Xi9-93u1Wf4BXFLklA
link.rule.ids 230,314,727,780,784,864,885,2765,27076,27080,27924,27925,53791,53793,56738,56762,56788,56812
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RONBLRaEfCxRciR56MF1_xI5v0BVoaVkOXUDcIsd22hUiQWQ5cOlv7zibQLcg1GtijZJnJ_PG43kDsON0qpgPnirjApWeWxpFvqnwPo1pMG9MLBQenajhmfx2kVwsAOtqYfAharRUN0n8B3UB9gWvVVfhp93lDiMpI1_AUqLwS469Ln_vPmyrKAwhmiZrXOo-ZUKKNjn5lJHoklw975Ie8cx_j0v-5X8OV-BVSxzJ_mymX8NCKFdhedD1a1uDvfO4H4xcb5KTr-iiLmuC5I4M7qbVJVJJMsbo-opMSjLe_zGmg-qccnrUHMUKnozwf_EGzg4PTgdD2vZHoFYKMaUpswmSY-WMMywvtAl9bQ1LcpG6oohVppx5JDCFdsYG9IZCeOF4kkuee1Fo8RYWy6oM74Eoxqw2TrhcIj_iwjhWsBAMhq_Kepb24BMClbXru86a1DVnWQdo1gLag88dlNn1TC7jmbEfO6wzhComKmwZqts641FFUEmjRQ_ezbC_tyZU32hkiT3Qc7NyPyDqZc_fKSe_Gt1sIxPkI-n6f77LNiwPT0fH2fHRyfcNeMlj3UPsHSE2YXF6cxs-IBuZ5lvN-vsD_LPZxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgGXljdLeQQJDhy8XT9ixzeWwKoFWiGWrnqLHNuB1apJ1WQP8OsZZ5OFLQjBNbEs22N7vvHMfAPw3KpEUucdkdp6IhwzJJB8E-5cEtxgTuuQKHx0LA9OxLvT-HQL4j4XBgdRY09168QPp_rcFR3DAN3H79WZ_2KGzKI1pcUVuBrjZRsiucbp9OfTikQzoi20xoQaEcoF7xyUf-okqCVbb6ql37Dm5ZDJX3TQZBdm69G3oSeL4bLJh_b7JWLH_57eTdjpUGk0Xm2jW7Dly9twPe2Lwd2BV7Pw2IxAcp5Hr1H_LeoIkWOUfmuqBeLUaIqm-1k0L6Pp-NOUpNWMMHLYxnl5Fx3hZXQXTiZvP6cHpCu-QIzgvCEJNTEib2m11TQvlPYjZTSNc57YoggprIw6REeFstp4VLWcO25ZnAuWO14ofg-2y6r0DyCSlBqlLbe5QPDFuLa0oN5rtI2lcTQZwAucetYdnjpr_eKMZv16ZN16DOBlL6PsfMXF8Ze2z3ohZrhUwQtiSl8t64wFikIptOIDuL8S6ro3LkdaIQQdgNoQ97pBIOPe_FPOv7ak3FrECHaSh_84l6dw7eObSfbh8Pj9HtxgIaci1KXgj2C7uVj6x4h0mvxJu69_AHyH-C4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vandetanib+Blocks+the+Cytokine+Storm+in+SARS-CoV-2-Infected+Mice&rft.jtitle=ACS+omega&rft.au=Puhl%2C+Ana+C.&rft.au=Gomes%2C+Giovanni+F.&rft.au=Damasceno%2C+Samara&rft.au=Fritch%2C+Ethan+J.&rft.date=2022-09-13&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=7&rft.issue=36&rft.spage=31935&rft.epage=31944&rft_id=info:doi/10.1021%2Facsomega.2c02794&rft.externalDocID=b747125741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon