Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents

The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination o...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 124; no. 8; pp. 1480 - 1488
Main Authors Curtis, Ethan R, Hannigan, Matthew D, Vitek, Andrew K, Zimmerman, Paul M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.02.2020
Online AccessGet full text

Cover

Loading…
Abstract The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.
AbstractList The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.
The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R 2 Mg + MgX 2 , has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ -(Cl, C), μ -(Cl, Cl), and μ -Cl, were found to be vital intermediates, which are stabilized by π -interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.
The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R Mg + MgX , has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.
The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.
Author Vitek, Andrew K
Curtis, Ethan R
Zimmerman, Paul M
Hannigan, Matthew D
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Ethan R
  surname: Curtis
  fullname: Curtis, Ethan R
– sequence: 2
  givenname: Matthew D
  orcidid: 0000-0002-2267-1388
  surname: Hannigan
  fullname: Hannigan, Matthew D
– sequence: 3
  givenname: Andrew K
  orcidid: 0000-0002-8940-6829
  surname: Vitek
  fullname: Vitek, Andrew K
– sequence: 4
  givenname: Paul M
  orcidid: 0000-0002-7444-1314
  surname: Zimmerman
  fullname: Zimmerman, Paul M
  email: paulzim@umich.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32011885$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAR_YA7J5QjB7KM7TiJL0hoaUulSggoZ8uxJxuXxN7aSSX49XW7WwRIcJoZzfuQ3jsmBz54JOQlhRUFRt9qk1bXW6NXsgMpW_GEHFHBoBSMioO8QytLUXN5SI5TugYAyln1jBxyBpS2rTgiw-dF-3mZivWAkzN6LC78LabZbfTsgi9CX3xwE0b3c3c7X8wDFl_NMKL_XpzeLG50XXRZIUOvBhe2A3oszqPbeB1t8QX1Bv2cnpOnvR4TvtjPE_Lt7PRq_bG8_HR-sX5_WeqK87lklgqLFdgKam4aaKQVLfaW99JWrWyarq2ZFH0njQVBaYcV40zajnVScmb4CXm3090u3YTWZO-oR7WNbtLxhwraqT8_3g1qE25VQxsALrPA671ADDdLjkJNLhkcR-0xLEkxLkAC1Ixl6KvfvX6ZPMabAfUOYGJIKWKvjJsfgszWblQU1H2PKveo7ntU-x4zEf4iPmr_h_JmR3n4hCX6HPO_4XckPrNx
CitedBy_id crossref_primary_10_1002_chem_202302222
crossref_primary_10_1021_jacs_1c09595
crossref_primary_10_1021_acs_organomet_3c00382
crossref_primary_10_1002_anie_202502104
crossref_primary_10_1107_S2056989023002190
crossref_primary_10_1021_acs_macromol_2c01521
crossref_primary_10_1039_D0QO00903B
crossref_primary_10_1039_D4PY00009A
Cites_doi 10.1021/ar800138a
10.1021/acs.accounts.6b00488
10.1002/cber.19290620422
10.1007/BF02265351
10.1021/cr9904009
10.1021/acs.joc.6b00807
10.1246/bcsj.20090232
10.1021/acs.macromol.6b01648
10.1021/ja00767a075
10.1080/00268976.2014.952696
10.1002/ejoc.200300757
10.1021/j100096a001
10.1039/qr9672100259
10.1021/ma101565u
10.1021/jp073685z
10.1063/1.4798224
10.1063/1.1677527
10.1002/marc.201100316
10.1002/jcc.23833
10.1139/p80-159
10.1021/acscatal.7b03974
10.1039/C8CP00044A
10.1007/BF00533485
10.1063/1.4804162
10.1002/jcc.540161202
10.1021/acscatal.7b01390
10.1016/0009-2614(80)80628-2
10.1021/jp810292n
10.1021/acs.jpcb.7b02716
10.1021/acs.jpca.5b11156
10.1007/978-3-642-36270-5_4
10.1021/cr900182s
10.1021/jp035653r
10.1039/c3972000144a
10.1021/om900088z
10.1063/1.462569
10.1016/0022-328X(91)86244-K
10.1021/ma401314x
10.1002/wcms.1354
10.1016/j.cplett.2007.02.018
10.1063/1.1674902
10.1039/b810189b
10.1021/ct400319w
10.1021/jp202762p
10.1002/jcc.23271
10.1016/j.tetasy.2009.03.015
10.1016/j.ccr.2018.07.015
10.1080/08927022.2014.894999
10.1103/PhysRevB.37.785
10.1002/bbpc.19820860608
10.1002/bbpc.19840880710
10.1080/00268977400100171
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acs.jpca.9b09985
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 1488
ExternalDocumentID PMC7170039
32011885
10_1021_acs_jpca_9b09985
a500301227
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM128830
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
5PM
ID FETCH-LOGICAL-a433t-2d15de40d4063c7079d58efd3f9d48977b86295fb9cd0511be42329db2b9932c3
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Thu Aug 21 14:12:52 EDT 2025
Fri Jul 11 09:05:35 EDT 2025
Mon Jul 21 06:00:43 EDT 2025
Tue Jul 01 01:11:42 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
Thu Aug 27 22:10:37 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-2d15de40d4063c7079d58efd3f9d48977b86295fb9cd0511be42329db2b9932c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2267-1388
0000-0002-8940-6829
0000-0002-7444-1314
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7170039
PMID 32011885
PQID 2350900622
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170039
proquest_miscellaneous_2350900622
pubmed_primary_32011885
crossref_citationtrail_10_1021_acs_jpca_9b09985
crossref_primary_10_1021_acs_jpca_9b09985
acs_journals_10_1021_acs_jpca_9b09985
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-27
PublicationDateYYYYMMDD 2020-02-27
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
Ashby E. C. (ref2/cit2) 1980; 52
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Grignard V. (ref1/cit1) 1900; 130
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1021/ar800138a
– ident: ref14/cit14
  doi: 10.1021/acs.accounts.6b00488
– volume: 52
  volume-title: A Detailed Description of the Mechanism of Reaction of Grignard Reagents with Ketones
  year: 1980
  ident: ref2/cit2
– ident: ref16/cit16
  doi: 10.1002/cber.19290620422
– ident: ref20/cit20
  doi: 10.1007/BF02265351
– ident: ref49/cit49
  doi: 10.1021/cr9904009
– ident: ref21/cit21
  doi: 10.1021/acs.joc.6b00807
– ident: ref4/cit4
  doi: 10.1246/bcsj.20090232
– ident: ref33/cit33
  doi: 10.1021/acs.macromol.6b01648
– ident: ref5/cit5
  doi: 10.1021/ja00767a075
– ident: ref38/cit38
  doi: 10.1080/00268976.2014.952696
– ident: ref8/cit8
  doi: 10.1002/ejoc.200300757
– ident: ref41/cit41
  doi: 10.1021/j100096a001
– ident: ref23/cit23
  doi: 10.1039/qr9672100259
– ident: ref15/cit15
  doi: 10.1021/ma101565u
– ident: ref53/cit53
  doi: 10.1021/jp073685z
– ident: ref54/cit54
  doi: 10.1063/1.4798224
– ident: ref44/cit44
  doi: 10.1063/1.1677527
– ident: ref12/cit12
  doi: 10.1002/marc.201100316
– ident: ref32/cit32
  doi: 10.1002/jcc.23833
– ident: ref40/cit40
  doi: 10.1139/p80-159
– ident: ref34/cit34
  doi: 10.1021/acscatal.7b03974
– ident: ref36/cit36
  doi: 10.1039/C8CP00044A
– ident: ref42/cit42
  doi: 10.1007/BF00533485
– ident: ref31/cit31
  doi: 10.1063/1.4804162
– ident: ref50/cit50
  doi: 10.1002/jcc.540161202
– ident: ref37/cit37
  doi: 10.1021/acscatal.7b01390
– ident: ref46/cit46
  doi: 10.1016/0009-2614(80)80628-2
– ident: ref48/cit48
  doi: 10.1021/jp810292n
– volume: 130
  start-page: 1322
  year: 1900
  ident: ref1/cit1
  publication-title: C. R. Hebd. Seances Acad. Sci.
– ident: ref25/cit25
  doi: 10.1021/acs.jpcb.7b02716
– ident: ref35/cit35
  doi: 10.1021/acs.jpca.5b11156
– ident: ref7/cit7
  doi: 10.1007/978-3-642-36270-5_4
– ident: ref11/cit11
  doi: 10.1021/cr900182s
– ident: ref22/cit22
  doi: 10.1021/jp035653r
– ident: ref6/cit6
  doi: 10.1039/c3972000144a
– ident: ref17/cit17
  doi: 10.1021/om900088z
– ident: ref51/cit51
  doi: 10.1063/1.462569
– ident: ref27/cit27
  doi: 10.1016/0022-328X(91)86244-K
– ident: ref10/cit10
  doi: 10.1021/ma401314x
– ident: ref55/cit55
  doi: 10.1002/wcms.1354
– ident: ref26/cit26
  doi: 10.1016/j.cplett.2007.02.018
– ident: ref45/cit45
  doi: 10.1063/1.1674902
– ident: ref47/cit47
  doi: 10.1039/b810189b
– ident: ref30/cit30
  doi: 10.1021/ct400319w
– ident: ref24/cit24
  doi: 10.1021/jp202762p
– ident: ref28/cit28
  doi: 10.1002/jcc.23271
– ident: ref3/cit3
  doi: 10.1016/j.tetasy.2009.03.015
– ident: ref13/cit13
  doi: 10.1016/j.ccr.2018.07.015
– ident: ref29/cit29
  doi: 10.1080/08927022.2014.894999
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.37.785
– ident: ref18/cit18
  doi: 10.1002/bbpc.19820860608
– ident: ref19/cit19
  doi: 10.1002/bbpc.19840880710
– ident: ref52/cit52
– ident: ref43/cit43
  doi: 10.1080/00268977400100171
SSID ssj0001324
Score 2.367621
Snippet The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1480
Title Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents
URI http://dx.doi.org/10.1021/acs.jpca.9b09985
https://www.ncbi.nlm.nih.gov/pubmed/32011885
https://www.proquest.com/docview/2350900622
https://pubmed.ncbi.nlm.nih.gov/PMC7170039
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHOilvFueMlJ74JCFtePEPqLlJSSQWkDiFvmVboB6Kdlc-PXMJNmFBYS4JrYVj8eZbzQz3xDyU1kPhkHoSFtuImQjjFQidZQn2hhreexrkqSz8-TkKj69FtfPNDmvI_isu6tt2bm5B_deGUAzUnwhMyyRKTpa-72L8V8XvKq4SaZXkQCz24Yk31sBDZEtJw3RG3T5OknyhdU5mmvaF5U1WSEmm9x2qqHp2Me3VI6f2NA8-daCT7rfaMsCmfJhkcz2Rj3flkj_dwWSrv7REY8AfcHDMQh0kNODAmM8TfEmLQIFAEkvbB-M1y09_F8VdQ0BrABDL_sFshYET48fir8BdJH-8RprucplcnV0eNk7idpeDJGOOR9GzHWF8_GeAwDALdLqOSF97niuXCwBRBpwjZTIjbIO7nnXeIwAK2eYAQTELF8h02EQ_A9C4aicFE7qNAffUFuZe2OFSmJwhfacZKvkF4goa-9SmdVhctbN6ocgt6yV2yrZHR1gZltCc-yrcffBjJ3xjPuGzOODsdsjncjgEDCMooMfVGXGOIAsrD2FL_3e6Mh4NY54SuLsdEJ7xgOQzXvyTSj6Nat3ikyJXK19cvfr5CtD1x-r69MNMj18qPwm4KOh2aovxhMBrw3r
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LUxQxEO5CPODFtwgqxio9eBhgJpPd5Eit4KpAlbBUcZvKa9wRzQKzc_HX2z0vWLQovc4kXUmnM_31dPoLwFtlPToGoSNtuYmIjTBSA6mjfKCNsZanviZJOjgcjE_Sz6fidAnirhYGB1GipLJO4l-xC8Rb9Oz7OUb5yiCokeIO3EUsklC8tTM67j--GFylzZl6FQn0vm1m8m8SyB_ZctEf_QEyb56VvOZ89h7AUT_s-szJ2WY1N5v21w1Gx_-a10O430JRttPYziNY8uExrIy6G-CewPRrhXqvfrKOVYBdY-WYBTbL2YeCMj5NKScrAkM4yY7tFF3ZGdu9qIq6ogAlYNPJtCAOg-DZx8viW0DLZEdeU2VX-RRO9nYno3HU3swQ6ZTzeZS4WDifbjuEA9wSyZ4T0ueO58qlEiGlwUBJidwo63DXx8ZTPlg5kxjEQ4nlz2A5zIJ_DgxXzEnhpB7mGClqK3NvrFCDFAOjbSeTNXiHKsranVVmddI8ibP6Ieota_W2BlvdOma2pTenWzZ-3NLjfd_jvKH2uKXtm840MlwESqro4GdVmSUcIRdVouJIVxtT6aVxQleSeg8XjKhvQNzei29CMa05vofEm8jV-j_O_jWsjCcH-9n-p8MvL-BeQj8FqO5--BKW55eVf4XIaW426r3yG1LwFkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKrW99EVb6NNIcOAQYON41z6ihS19gGiBilvkV7qB1rslm0t_fWfyEgsVaq-JPbLH48w3Gc9ngDVlPToGoSNtuYmIjTBSfamjrK-NsZYnviJJOjjs758mH8_E2QKIthYGB1GgpKJK4tOunrqsYRjobdHz8ylG-sogsJHiDtylrB3FXDvD4-4DjAFWUp-rV5FAD9xkJ_8mgXySLeZ90g2gef285BUHNHoE37qhV-dOLjbLmdm0v6-xOv733B7DwwaSsp3ahp7Agg9P4f6wvQluCcZfStR_-ZO17ALsCjvHJLBJxnZzyvzUJZ0sDwxhJTu2Y3RpF2zvV5lXlQUoAZuejHPiMgievb_Mvwe0UPbVa6rwKp7B6WjvZLgfNTc0RDrhfBbFriecT7YdwgJuiWzPCekzxzPlEonQ0mDApERmlHW4-3vGU15YORMbxEWx5c9hMUyCXwaGq-akcFIPMowYtZWZN1aofoIB0raT8Qqso4rSZocVaZU8j3tp9RD1ljZ6W4Gtdi1T29Cc020bP27psdH1mNYUH7e0XW3NI8VFoOSKDn5SFmnMEXpRRSqO9EVtLp00TihLUu_BnCF1DYjje_5NyMcV1_eA-BO5evmPs38H9452R-nnD4efXsGDmP4NUPn94DUszi5L_wYB1My8rbbLHzC0GM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Chemical+Investigation+of+Dimerization+in+the+Schlenk+Equilibrium+of+Thiophene+Grignard+Reagents&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Curtis%2C+Ethan+R&rft.au=Hannigan%2C+Matthew+D&rft.au=Vitek%2C+Andrew+K&rft.au=Zimmerman%2C+Paul+M&rft.date=2020-02-27&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=124&rft.issue=8&rft.spage=1480&rft_id=info:doi/10.1021%2Facs.jpca.9b09985&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon