Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents
The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination o...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 124; no. 8; pp. 1480 - 1488 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.02.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions. |
---|---|
AbstractList | The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions.The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions. The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R 2 Mg + MgX 2 , has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ -(Cl, C), μ -(Cl, Cl), and μ -Cl, were found to be vital intermediates, which are stabilized by π -interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions. The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R Mg + MgX , has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions. The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the Schlenk equilibrium, formally 2RMgX ⇌ R2Mg + MgX2, has been subject to computational studies of simple methyl Grignards and NMR determination of thermodynamics. These studies neglect the effect the R group may have on the accessibility of intermediates in the Schlenk equilibrium. In this study, computational reaction discovery tools were employed to thoroughly search the chemical space for feasible dimerizations and pathways to ligand exchange for thiophene Grignards. Three bridged dimers, μ-(Cl, C), μ-(Cl, Cl), and μ-Cl, were found to be vital intermediates, which are stabilized by π-interactions involving the thiophene group. These dimers are approximately as thermodynamically stable as the Grignard monomers and its ligand exchange products, and therefore, their reactivity should be considered when examining mechanisms for aryl Grignard or cross-coupling reactions. |
Author | Vitek, Andrew K Curtis, Ethan R Zimmerman, Paul M Hannigan, Matthew D |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Ethan R surname: Curtis fullname: Curtis, Ethan R – sequence: 2 givenname: Matthew D orcidid: 0000-0002-2267-1388 surname: Hannigan fullname: Hannigan, Matthew D – sequence: 3 givenname: Andrew K orcidid: 0000-0002-8940-6829 surname: Vitek fullname: Vitek, Andrew K – sequence: 4 givenname: Paul M orcidid: 0000-0002-7444-1314 surname: Zimmerman fullname: Zimmerman, Paul M email: paulzim@umich.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32011885$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVAR_YA7J5QjB7KM7TiJL0hoaUulSggoZ8uxJxuXxN7aSSX49XW7WwRIcJoZzfuQ3jsmBz54JOQlhRUFRt9qk1bXW6NXsgMpW_GEHFHBoBSMioO8QytLUXN5SI5TugYAyln1jBxyBpS2rTgiw-dF-3mZivWAkzN6LC78LabZbfTsgi9CX3xwE0b3c3c7X8wDFl_NMKL_XpzeLG50XXRZIUOvBhe2A3oszqPbeB1t8QX1Bv2cnpOnvR4TvtjPE_Lt7PRq_bG8_HR-sX5_WeqK87lklgqLFdgKam4aaKQVLfaW99JWrWyarq2ZFH0njQVBaYcV40zajnVScmb4CXm3090u3YTWZO-oR7WNbtLxhwraqT8_3g1qE25VQxsALrPA671ADDdLjkJNLhkcR-0xLEkxLkAC1Ixl6KvfvX6ZPMabAfUOYGJIKWKvjJsfgszWblQU1H2PKveo7ntU-x4zEf4iPmr_h_JmR3n4hCX6HPO_4XckPrNx |
CitedBy_id | crossref_primary_10_1002_chem_202302222 crossref_primary_10_1021_jacs_1c09595 crossref_primary_10_1021_acs_organomet_3c00382 crossref_primary_10_1002_anie_202502104 crossref_primary_10_1107_S2056989023002190 crossref_primary_10_1021_acs_macromol_2c01521 crossref_primary_10_1039_D0QO00903B crossref_primary_10_1039_D4PY00009A |
Cites_doi | 10.1021/ar800138a 10.1021/acs.accounts.6b00488 10.1002/cber.19290620422 10.1007/BF02265351 10.1021/cr9904009 10.1021/acs.joc.6b00807 10.1246/bcsj.20090232 10.1021/acs.macromol.6b01648 10.1021/ja00767a075 10.1080/00268976.2014.952696 10.1002/ejoc.200300757 10.1021/j100096a001 10.1039/qr9672100259 10.1021/ma101565u 10.1021/jp073685z 10.1063/1.4798224 10.1063/1.1677527 10.1002/marc.201100316 10.1002/jcc.23833 10.1139/p80-159 10.1021/acscatal.7b03974 10.1039/C8CP00044A 10.1007/BF00533485 10.1063/1.4804162 10.1002/jcc.540161202 10.1021/acscatal.7b01390 10.1016/0009-2614(80)80628-2 10.1021/jp810292n 10.1021/acs.jpcb.7b02716 10.1021/acs.jpca.5b11156 10.1007/978-3-642-36270-5_4 10.1021/cr900182s 10.1021/jp035653r 10.1039/c3972000144a 10.1021/om900088z 10.1063/1.462569 10.1016/0022-328X(91)86244-K 10.1021/ma401314x 10.1002/wcms.1354 10.1016/j.cplett.2007.02.018 10.1063/1.1674902 10.1039/b810189b 10.1021/ct400319w 10.1021/jp202762p 10.1002/jcc.23271 10.1016/j.tetasy.2009.03.015 10.1016/j.ccr.2018.07.015 10.1080/08927022.2014.894999 10.1103/PhysRevB.37.785 10.1002/bbpc.19820860608 10.1002/bbpc.19840880710 10.1080/00268977400100171 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acs.jpca.9b09985 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 1488 |
ExternalDocumentID | PMC7170039 32011885 10_1021_acs_jpca_9b09985 a500301227 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM128830 |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 5PM |
ID | FETCH-LOGICAL-a433t-2d15de40d4063c7079d58efd3f9d48977b86295fb9cd0511be42329db2b9932c3 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Thu Aug 21 14:12:52 EDT 2025 Fri Jul 11 09:05:35 EDT 2025 Mon Jul 21 06:00:43 EDT 2025 Tue Jul 01 01:11:42 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 Thu Aug 27 22:10:37 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a433t-2d15de40d4063c7079d58efd3f9d48977b86295fb9cd0511be42329db2b9932c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2267-1388 0000-0002-8940-6829 0000-0002-7444-1314 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7170039 |
PMID | 32011885 |
PQID | 2350900622 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170039 proquest_miscellaneous_2350900622 pubmed_primary_32011885 crossref_citationtrail_10_1021_acs_jpca_9b09985 crossref_primary_10_1021_acs_jpca_9b09985 acs_journals_10_1021_acs_jpca_9b09985 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-27 |
PublicationDateYYYYMMDD | 2020-02-27 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 Ashby E. C. (ref2/cit2) 1980; 52 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Grignard V. (ref1/cit1) 1900; 130 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1021/ar800138a – ident: ref14/cit14 doi: 10.1021/acs.accounts.6b00488 – volume: 52 volume-title: A Detailed Description of the Mechanism of Reaction of Grignard Reagents with Ketones year: 1980 ident: ref2/cit2 – ident: ref16/cit16 doi: 10.1002/cber.19290620422 – ident: ref20/cit20 doi: 10.1007/BF02265351 – ident: ref49/cit49 doi: 10.1021/cr9904009 – ident: ref21/cit21 doi: 10.1021/acs.joc.6b00807 – ident: ref4/cit4 doi: 10.1246/bcsj.20090232 – ident: ref33/cit33 doi: 10.1021/acs.macromol.6b01648 – ident: ref5/cit5 doi: 10.1021/ja00767a075 – ident: ref38/cit38 doi: 10.1080/00268976.2014.952696 – ident: ref8/cit8 doi: 10.1002/ejoc.200300757 – ident: ref41/cit41 doi: 10.1021/j100096a001 – ident: ref23/cit23 doi: 10.1039/qr9672100259 – ident: ref15/cit15 doi: 10.1021/ma101565u – ident: ref53/cit53 doi: 10.1021/jp073685z – ident: ref54/cit54 doi: 10.1063/1.4798224 – ident: ref44/cit44 doi: 10.1063/1.1677527 – ident: ref12/cit12 doi: 10.1002/marc.201100316 – ident: ref32/cit32 doi: 10.1002/jcc.23833 – ident: ref40/cit40 doi: 10.1139/p80-159 – ident: ref34/cit34 doi: 10.1021/acscatal.7b03974 – ident: ref36/cit36 doi: 10.1039/C8CP00044A – ident: ref42/cit42 doi: 10.1007/BF00533485 – ident: ref31/cit31 doi: 10.1063/1.4804162 – ident: ref50/cit50 doi: 10.1002/jcc.540161202 – ident: ref37/cit37 doi: 10.1021/acscatal.7b01390 – ident: ref46/cit46 doi: 10.1016/0009-2614(80)80628-2 – ident: ref48/cit48 doi: 10.1021/jp810292n – volume: 130 start-page: 1322 year: 1900 ident: ref1/cit1 publication-title: C. R. Hebd. Seances Acad. Sci. – ident: ref25/cit25 doi: 10.1021/acs.jpcb.7b02716 – ident: ref35/cit35 doi: 10.1021/acs.jpca.5b11156 – ident: ref7/cit7 doi: 10.1007/978-3-642-36270-5_4 – ident: ref11/cit11 doi: 10.1021/cr900182s – ident: ref22/cit22 doi: 10.1021/jp035653r – ident: ref6/cit6 doi: 10.1039/c3972000144a – ident: ref17/cit17 doi: 10.1021/om900088z – ident: ref51/cit51 doi: 10.1063/1.462569 – ident: ref27/cit27 doi: 10.1016/0022-328X(91)86244-K – ident: ref10/cit10 doi: 10.1021/ma401314x – ident: ref55/cit55 doi: 10.1002/wcms.1354 – ident: ref26/cit26 doi: 10.1016/j.cplett.2007.02.018 – ident: ref45/cit45 doi: 10.1063/1.1674902 – ident: ref47/cit47 doi: 10.1039/b810189b – ident: ref30/cit30 doi: 10.1021/ct400319w – ident: ref24/cit24 doi: 10.1021/jp202762p – ident: ref28/cit28 doi: 10.1002/jcc.23271 – ident: ref3/cit3 doi: 10.1016/j.tetasy.2009.03.015 – ident: ref13/cit13 doi: 10.1016/j.ccr.2018.07.015 – ident: ref29/cit29 doi: 10.1080/08927022.2014.894999 – ident: ref39/cit39 doi: 10.1103/PhysRevB.37.785 – ident: ref18/cit18 doi: 10.1002/bbpc.19820860608 – ident: ref19/cit19 doi: 10.1002/bbpc.19840880710 – ident: ref52/cit52 – ident: ref43/cit43 doi: 10.1080/00268977400100171 |
SSID | ssj0001324 |
Score | 2.367621 |
Snippet | The Schlenk equilibrium of Grignard reagents describes the intricate relationships between monomers, aggregates, and exchange products. The core step of the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1480 |
Title | Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents |
URI | http://dx.doi.org/10.1021/acs.jpca.9b09985 https://www.ncbi.nlm.nih.gov/pubmed/32011885 https://www.proquest.com/docview/2350900622 https://pubmed.ncbi.nlm.nih.gov/PMC7170039 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHOilvFueMlJ74JCFtePEPqLlJSSQWkDiFvmVboB6Kdlc-PXMJNmFBYS4JrYVj8eZbzQz3xDyU1kPhkHoSFtuImQjjFQidZQn2hhreexrkqSz8-TkKj69FtfPNDmvI_isu6tt2bm5B_deGUAzUnwhMyyRKTpa-72L8V8XvKq4SaZXkQCz24Yk31sBDZEtJw3RG3T5OknyhdU5mmvaF5U1WSEmm9x2qqHp2Me3VI6f2NA8-daCT7rfaMsCmfJhkcz2Rj3flkj_dwWSrv7REY8AfcHDMQh0kNODAmM8TfEmLQIFAEkvbB-M1y09_F8VdQ0BrABDL_sFshYET48fir8BdJH-8RprucplcnV0eNk7idpeDJGOOR9GzHWF8_GeAwDALdLqOSF97niuXCwBRBpwjZTIjbIO7nnXeIwAK2eYAQTELF8h02EQ_A9C4aicFE7qNAffUFuZe2OFSmJwhfacZKvkF4goa-9SmdVhctbN6ocgt6yV2yrZHR1gZltCc-yrcffBjJ3xjPuGzOODsdsjncjgEDCMooMfVGXGOIAsrD2FL_3e6Mh4NY54SuLsdEJ7xgOQzXvyTSj6Nat3ikyJXK19cvfr5CtD1x-r69MNMj18qPwm4KOh2aovxhMBrw3r |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LUxQxEO5CPODFtwgqxio9eBhgJpPd5Eit4KpAlbBUcZvKa9wRzQKzc_HX2z0vWLQovc4kXUmnM_31dPoLwFtlPToGoSNtuYmIjTBSA6mjfKCNsZanviZJOjgcjE_Sz6fidAnirhYGB1GipLJO4l-xC8Rb9Oz7OUb5yiCokeIO3EUsklC8tTM67j--GFylzZl6FQn0vm1m8m8SyB_ZctEf_QEyb56VvOZ89h7AUT_s-szJ2WY1N5v21w1Gx_-a10O430JRttPYziNY8uExrIy6G-CewPRrhXqvfrKOVYBdY-WYBTbL2YeCMj5NKScrAkM4yY7tFF3ZGdu9qIq6ogAlYNPJtCAOg-DZx8viW0DLZEdeU2VX-RRO9nYno3HU3swQ6ZTzeZS4WDifbjuEA9wSyZ4T0ueO58qlEiGlwUBJidwo63DXx8ZTPlg5kxjEQ4nlz2A5zIJ_DgxXzEnhpB7mGClqK3NvrFCDFAOjbSeTNXiHKsranVVmddI8ibP6Ieota_W2BlvdOma2pTenWzZ-3NLjfd_jvKH2uKXtm840MlwESqro4GdVmSUcIRdVouJIVxtT6aVxQleSeg8XjKhvQNzei29CMa05vofEm8jV-j_O_jWsjCcH-9n-p8MvL-BeQj8FqO5--BKW55eVf4XIaW426r3yG1LwFkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKrW99EVb6NNIcOAQYON41z6ihS19gGiBilvkV7qB1rslm0t_fWfyEgsVaq-JPbLH48w3Gc9ngDVlPToGoSNtuYmIjTBSfamjrK-NsZYnviJJOjjs758mH8_E2QKIthYGB1GgpKJK4tOunrqsYRjobdHz8ylG-sogsJHiDtylrB3FXDvD4-4DjAFWUp-rV5FAD9xkJ_8mgXySLeZ90g2gef285BUHNHoE37qhV-dOLjbLmdm0v6-xOv733B7DwwaSsp3ahp7Agg9P4f6wvQluCcZfStR_-ZO17ALsCjvHJLBJxnZzyvzUJZ0sDwxhJTu2Y3RpF2zvV5lXlQUoAZuejHPiMgievb_Mvwe0UPbVa6rwKp7B6WjvZLgfNTc0RDrhfBbFriecT7YdwgJuiWzPCekzxzPlEonQ0mDApERmlHW4-3vGU15YORMbxEWx5c9hMUyCXwaGq-akcFIPMowYtZWZN1aofoIB0raT8Qqso4rSZocVaZU8j3tp9RD1ljZ6W4Gtdi1T29Cc020bP27psdH1mNYUH7e0XW3NI8VFoOSKDn5SFmnMEXpRRSqO9EVtLp00TihLUu_BnCF1DYjje_5NyMcV1_eA-BO5evmPs38H9452R-nnD4efXsGDmP4NUPn94DUszi5L_wYB1My8rbbLHzC0GM8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Chemical+Investigation+of+Dimerization+in+the+Schlenk+Equilibrium+of+Thiophene+Grignard+Reagents&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Curtis%2C+Ethan+R&rft.au=Hannigan%2C+Matthew+D&rft.au=Vitek%2C+Andrew+K&rft.au=Zimmerman%2C+Paul+M&rft.date=2020-02-27&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=124&rft.issue=8&rft.spage=1480&rft_id=info:doi/10.1021%2Facs.jpca.9b09985&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |