Probing the Dynamic Structure–Function and Structure-Free Energy Relationships of the Coronavirus Main Protease with Biodynamics Theory

The SARS-CoV-2 main protease (Mpro) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 Mpro crystal structures, are underway in many laboratories. However, little is known about the dynamic e...

Full description

Saved in:
Bibliographic Details
Published inACS pharmacology & translational science Vol. 3; no. 6; pp. 1111 - 1143
Main Authors Wan, Hongbin, Aravamuthan, Vibhas, Pearlstein, Robert A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The SARS-CoV-2 main protease (Mpro) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 Mpro crystal structures, are underway in many laboratories. However, little is known about the dynamic enzyme mechanism, which is needed to inform both assay development and structure-based inhibitor design. Here, we apply biodynamics theory to characterize the structural dynamics of substrate-induced Mpro activation under nonequilibrium conditions. The catalytic cycle is governed by concerted dynamic structural rearrangements of domain 3 and the m-shaped loop (residues 132–147) on which Cys145 (comprising the thiolate nucleophile and half of the oxyanion hole) and Gly143 (comprising the second half of the oxyanion hole) reside. In particular, we observed the following: (1) Domain 3 undergoes dynamic rigid-body rotation about the domain 2–3 linker, alternately visiting two primary conformational states (denoted as M1 pro ↔ M2 pro); (2) The Gly143-containing crest of the m-shaped loop undergoes up and down translations caused by conformational changes within the rising stem of the loop (Lys137–Asn142) in response to domain 3 rotation and dimerization (denoted as M1/down pro ↔ 2·M2/up pro) (noting that the Cys145-containing crest is fixed in the up position). We propose that substrates associate to the M1/down pro state, which promotes the M2/down pro state, dimerization (denoted as 2·M2/up pro–substrate), and catalysis. Here, we explore the state transitions of Mpro under nonequilibrium conditions, the mechanisms by which they are powered, and the implications thereof for efficacious inhibition under in vivo conditions.
AbstractList The SARS-CoV-2 main protease (Mpro) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 Mpro crystal structures, are underway in many laboratories. However, little is known about the dynamic enzyme mechanism, which is needed to inform both assay development and structure-based inhibitor design. Here, we apply biodynamics theory to characterize the structural dynamics of substrate-induced Mpro activation under nonequilibrium conditions. The catalytic cycle is governed by concerted dynamic structural rearrangements of domain 3 and the m-shaped loop (residues 132–147) on which Cys145 (comprising the thiolate nucleophile and half of the oxyanion hole) and Gly143 (comprising the second half of the oxyanion hole) reside. In particular, we observed the following: (1) Domain 3 undergoes dynamic rigid-body rotation about the domain 2–3 linker, alternately visiting two primary conformational states (denoted as M1 pro ↔ M2 pro); (2) The Gly143-containing crest of the m-shaped loop undergoes up and down translations caused by conformational changes within the rising stem of the loop (Lys137–Asn142) in response to domain 3 rotation and dimerization (denoted as M1/down pro ↔ 2·M2/up pro) (noting that the Cys145-containing crest is fixed in the up position). We propose that substrates associate to the M1/down pro state, which promotes the M2/down pro state, dimerization (denoted as 2·M2/up pro–substrate), and catalysis. Here, we explore the state transitions of Mpro under nonequilibrium conditions, the mechanisms by which they are powered, and the implications thereof for efficacious inhibition under in vivo conditions.
The SARS-CoV-2 main protease (M pro ) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 M pro crystal structures, are underway in many laboratories. However, little is known about the dynamic enzyme mechanism, which is needed to inform both assay development and structure-based inhibitor design. Here, we apply biodynamics theory to characterize the structural dynamics of substrate-induced M pro activation under nonequilibrium conditions . The catalytic cycle is governed by concerted dynamic structural rearrangements of domain 3 and the m-shaped loop (residues 132–147) on which Cys145 (comprising the thiolate nucleophile and half of the oxyanion hole) and Gly143 (comprising the second half of the oxyanion hole) reside. In particular, we observed the following: (1) Domain 3 undergoes dynamic rigid-body rotation about the domain 2–3 linker, alternately visiting two primary conformational states (denoted as M 1 pro ↔ M 2 pro ); (2) The Gly143-containing crest of the m-shaped loop undergoes up and down translations caused by conformational changes within the rising stem of the loop (Lys137–Asn142) in response to domain 3 rotation and dimerization (denoted as M 1/down pro ↔ 2·M 2/up pro ) (noting that the Cys145-containing crest is fixed in the up position). We propose that substrates associate to the M 1/down pro state, which promotes the M 2/down pro state, dimerization (denoted as 2·M 2/up pro –substrate), and catalysis. Here, we explore the state transitions of M pro under nonequilibrium conditions, the mechanisms by which they are powered, and the implications thereof for efficacious inhibition under in vivo conditions.
The SARS-CoV-2 main protease (M ) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 M crystal structures, are underway in many laboratories. However, little is known about the dynamic enzyme mechanism, which is needed to inform both assay development and structure-based inhibitor design. Here, we apply biodynamics theory to characterize the structural dynamics of substrate-induced M activation under nonequilibrium conditions. The catalytic cycle is governed by concerted dynamic structural rearrangements of domain 3 and the m-shaped loop (residues 132-147) on which Cys145 (comprising the thiolate nucleophile and half of the oxyanion hole) and Gly143 (comprising the second half of the oxyanion hole) reside. In particular, we observed the following: (1) Domain 3 undergoes dynamic rigid-body rotation about the domain 2-3 linker, alternately visiting two primary conformational states (denoted as M ↔ M ); (2) The Gly143-containing crest of the m-shaped loop undergoes up and down translations caused by conformational changes within the rising stem of the loop (Lys137-Asn142) in response to domain 3 rotation and dimerization (denoted as M ↔ 2·M ) (noting that the Cys145-containing crest is fixed in the up position). We propose that substrates associate to the M state, which promotes the M state, dimerization (denoted as 2·M -substrate), and catalysis. Here, we explore the state transitions of M under nonequilibrium conditions, the mechanisms by which they are powered, and the implications thereof for efficacious inhibition under conditions.
Author Wan, Hongbin
Aravamuthan, Vibhas
Pearlstein, Robert A
AuthorAffiliation Global Discovery Chemistry, Computer-Aided Drug Discovery
Vibhas Aravamuthan – NIBR Informatics
AuthorAffiliation_xml – name: Global Discovery Chemistry, Computer-Aided Drug Discovery
– name: Vibhas Aravamuthan – NIBR Informatics
Author_xml – sequence: 1
  givenname: Hongbin
  orcidid: 0000-0002-4875-531X
  surname: Wan
  fullname: Wan, Hongbin
  organization: Global Discovery Chemistry, Computer-Aided Drug Discovery
– sequence: 2
  givenname: Vibhas
  surname: Aravamuthan
  fullname: Aravamuthan, Vibhas
  organization: Vibhas Aravamuthan – NIBR Informatics
– sequence: 3
  givenname: Robert A
  orcidid: 0000-0002-4313-8136
  surname: Pearlstein
  fullname: Pearlstein, Robert A
  email: robert.pearlstein@novartis.com
  organization: Global Discovery Chemistry, Computer-Aided Drug Discovery
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33330838$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtPHDEUhS1EFB6hTxW5pMgQP-bZIMGGJZGIiBJSW177zo7RrL3YnkXb0VLzD_klmOzyKnBjy_e751z77KBN6ywg9JmSA0oY_SZVmMegzAFRhJC62UDbrKiKrKGk3nx13kJ7IVwmhBHCaUM-oi2eFql5vY1uf3s3MXaKYwf4-9LKmVH4b_SDioOH-5u78WBVNM5iafVLIRt7AHxiwU-X-A_08hEJnZkH7Nr_WiPnnZUL44eAf0ljcTKKIAPgaxM7fGycXrkFfNGB88tP6EMr-wB7630X_RufXIx-ZGfnpz9HR2eZzDmPGeNa6ppPWtJIoEpLTkvNi_T-Ujd6wvO85EWu61IpVqmq0YoAsJal6xwarvkuOlzpzofJDLQCG73sxdybmfRL4aQRbyvWdGLqFqIqK0oJTwL7awHvrgYIUcxMUND30oIbgmB5laZpClYllKxQ5V0IHtpnG0rEY4jiKUSxDjG1fHk93nPDU2QJ-LoCUqu4dIO36bfe13sAWGav4g
CitedBy_id crossref_primary_10_1016_j_drudis_2020_10_012
crossref_primary_10_1080_07391102_2021_1924271
crossref_primary_10_1021_acs_jcim_1c00449
crossref_primary_10_3389_fbinf_2021_717141
crossref_primary_10_1021_acsptsci_2c00138
crossref_primary_10_1107_S2059798322000948
crossref_primary_10_1007_s13346_021_01054_w
Cites_doi 10.1002/prot.24185
10.1016/0022-2836(85)90314-6
10.1021/acs.jctc.5b00255
10.1021/bi2002289
10.1111/j.1432-1033.1973.tb02660.x
10.1074/jbc.M112.426460
10.1021/acs.jctc.5b00439
10.1016/j.dsx.2020.04.020
10.1128/JVI.01716-09
10.1021/bi400604t
10.1101/2020.03.07.981928
10.1111/febs.12936
10.1016/j.bpj.2009.12.4272
10.1002/prot.22767
10.1002/prot.24659
10.1128/JVI.02114-07
10.1101/2020.09.12.293498
10.1111/j.1432-1033.1973.tb03140.x
10.1016/j.ab.2009.06.040
10.1016/S0021-9258(18)88300-4
10.1016/j.virol.2015.02.029
10.3390/ijms21093099
10.1128/mBio.01658-17
10.1016/j.bmcl.2013.08.112
10.1007/s10930-020-09901-4
10.2174/1568026617666170414152311
10.3201/eid1011.040195
10.1021/bi061746y
10.1093/nar/28.1.235
10.1038/s41586-020-2223-y
10.1371/journal.pbio.0060226
10.1007/s13238-010-0011-4
10.1128/JVI.02680-07
10.1002/prot.20249
10.1074/jbc.M115.651463
10.1074/jbc.M310875200
10.1021/ci500571h
10.1002/prot.24276
10.1021/jm400164c
10.1042/BCJ20200029
10.1093/emboj/19.6.1195
10.1101/2020.06.08.139899
10.1007/978-0-387-33012-9_106
10.1128/JVI.02612-07
10.1021/bi702107v
10.1038/s41467-020-18233-x
10.1073/pnas.1835675100
10.1371/journal.pone.0144865
10.1371/journal.pone.0202376
ContentType Journal Article
Copyright 2020 American Chemical Society
2020 American Chemical Society.
2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
– notice: 2020 American Chemical Society.
– notice: 2020 American Chemical Society 2020 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsptsci.0c00089
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2575-9108
EndPage 1143
ExternalDocumentID 10_1021_acsptsci_0c00089
33330838
g47709646
Genre Journal Article
GroupedDBID ABUCX
ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
53G
ABQRX
BAANH
CUPRZ
GGK
NPM
RPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a433t-23dad83bf09ae1cda316d350896d9db3446354d86cc27c79dc0ee2f24634e93d3
IEDL.DBID RPM
ISSN 2575-9108
IngestDate Tue Sep 17 21:27:05 EDT 2024
Fri Aug 16 07:41:28 EDT 2024
Fri Aug 23 02:26:23 EDT 2024
Sat Sep 28 08:26:50 EDT 2024
Tue Dec 15 13:18:35 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords solvation free energy
buried channels
drug design
caspase-1
nonequilibrium
binding kinetics
Language English
License 2020 American Chemical Society.
This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-23dad83bf09ae1cda316d350896d9db3446354d86cc27c79dc0ee2f24634e93d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
ORCID 0000-0002-4313-8136
0000-0002-4875-531X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671103/
PMID 33330838
PQID 2470899527
PQPubID 23479
PageCount 33
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7671103
proquest_miscellaneous_2470899527
crossref_primary_10_1021_acsptsci_0c00089
pubmed_primary_33330838
acs_journals_10_1021_acsptsci_0c00089
ProviderPackageCode ACS
VG9
ABUCX
VF5
PublicationCentury 2000
PublicationDate 2020-12-11
PublicationDateYYYYMMDD 2020-12-11
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS pharmacology & translational science
PublicationTitleAlternate ACS Pharmacol. Transl. Sci
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
Van Slyke D. D. (ref4/cit4) 1914; 19
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1002/prot.24185
– ident: ref27/cit27
  doi: 10.1016/0022-2836(85)90314-6
– ident: ref32/cit32
  doi: 10.1021/acs.jctc.5b00255
– ident: ref42/cit42
  doi: 10.1021/bi2002289
– ident: ref19/cit19
  doi: 10.1111/j.1432-1033.1973.tb02660.x
– ident: ref46/cit46
  doi: 10.1074/jbc.M112.426460
– ident: ref15/cit15
  doi: 10.1021/acs.jctc.5b00439
– ident: ref7/cit7
  doi: 10.1016/j.dsx.2020.04.020
– ident: ref10/cit10
  doi: 10.1128/JVI.01716-09
– ident: ref21/cit21
  doi: 10.1021/bi400604t
– ident: ref43/cit43
  doi: 10.1101/2020.03.07.981928
– ident: ref18/cit18
  doi: 10.1111/febs.12936
– ident: ref34/cit34
  doi: 10.1016/j.bpj.2009.12.4272
– ident: ref48/cit48
  doi: 10.1002/prot.22767
– ident: ref50/cit50
  doi: 10.1002/prot.24659
– ident: ref25/cit25
  doi: 10.1128/JVI.02114-07
– ident: ref29/cit29
  doi: 10.1101/2020.09.12.293498
– ident: ref22/cit22
  doi: 10.1111/j.1432-1033.1973.tb03140.x
– ident: ref5/cit5
  doi: 10.1016/j.ab.2009.06.040
– volume: 19
  start-page: 141
  issue: 2
  year: 1914
  ident: ref4/cit4
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)88300-4
  contributor:
    fullname: Van Slyke D. D.
– ident: ref39/cit39
  doi: 10.1016/j.bpj.2009.12.4272
– ident: ref9/cit9
  doi: 10.1016/j.virol.2015.02.029
– ident: ref17/cit17
  doi: 10.3390/ijms21093099
– ident: ref11/cit11
  doi: 10.1128/mBio.01658-17
– ident: ref30/cit30
  doi: 10.1016/j.bmcl.2013.08.112
– ident: ref40/cit40
  doi: 10.1007/s10930-020-09901-4
– ident: ref2/cit2
  doi: 10.2174/1568026617666170414152311
– ident: ref12/cit12
  doi: 10.3201/eid1011.040195
– ident: ref38/cit38
  doi: 10.1021/bi061746y
– ident: ref24/cit24
  doi: 10.1093/nar/28.1.235
– ident: ref26/cit26
  doi: 10.1038/s41586-020-2223-y
– ident: ref8/cit8
  doi: 10.1371/journal.pbio.0060226
– ident: ref35/cit35
  doi: 10.1007/s13238-010-0011-4
– ident: ref23/cit23
  doi: 10.1128/JVI.02680-07
– ident: ref13/cit13
  doi: 10.1002/prot.20249
– ident: ref44/cit44
  doi: 10.1074/jbc.M115.651463
– ident: ref45/cit45
  doi: 10.1074/jbc.M310875200
– ident: ref31/cit31
  doi: 10.1021/ci500571h
– ident: ref47/cit47
  doi: 10.1002/prot.24276
– ident: ref28/cit28
  doi: 10.1021/jm400164c
– ident: ref6/cit6
  doi: 10.1042/BCJ20200029
– ident: ref14/cit14
  doi: 10.1093/emboj/19.6.1195
– ident: ref3/cit3
  doi: 10.1101/2020.06.08.139899
– ident: ref16/cit16
  doi: 10.1007/978-0-387-33012-9_106
– ident: ref37/cit37
  doi: 10.1128/JVI.02612-07
– ident: ref20/cit20
  doi: 10.1021/bi702107v
– ident: ref41/cit41
  doi: 10.1038/s41467-020-18233-x
– ident: ref33/cit33
  doi: 10.1073/pnas.1835675100
– ident: ref36/cit36
  doi: 10.1371/journal.pone.0144865
– ident: ref1/cit1
  doi: 10.1371/journal.pone.0202376
SSID ssj0002003190
Score 2.246665
Snippet The SARS-CoV-2 main protease (Mpro) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of...
The SARS-CoV-2 main protease (M ) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo...
The SARS-CoV-2 main protease (M pro ) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1111
SummonAdditionalLinks – databaseName: ACS Journals: American Chemical Society Web Editions
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZauPRSQPSxFJCR2kMP3q4fGztHWFghJCokisQtcvwoEVJ2tdntoadeOfMP-SXMJNmFhQqRY2w5imes77Nn_A0hXwPAuO1LwdIkCqYAUpkJ0TCXSyVyqaPleMH59GdyfKFOLvuXDzI5TyP4gv-wrhpPAQ66PYeAlb4lqwITCJEGDc4X5ymYZMXrIxVwQiw_2DNtVPJ_gyAWuWoZi54RzKd5ko-AZ7jWVDCqar1CzDe57s6medf9fa7m-Ip_WifvW_5J9xuH2SBvQrlJbs5Qjan8TYEN0sOmRj09r5VlZ5Nw9-92COiHFqS29A8NbDgJgR7VtwfpIqvuqhhXdBTrsQaoj2D_FJNZRU9tUdIzlIUA4KR4_ksPipFvvlbRRiTgA7kYHv0aHLO2RgOzSsopE9Jbb2Qee6kN3HkreeIlsL408akHgytgNMobTM_WTqfe9UIQUcBrFVLp5UeyUo7K8JlQ048K2JALiYVtlLE2hlRFb2weE69N7JBvMG9Zu8aqrA6fC57NJzNrJ7NDvs-tmo0byY4X-u7NzZ7BusJgiS3DaFZlQmmMiPaF7pBPjRssRpPwAHU1HaKXHGTRATW7l1vK4qrW7taJBsIlt175L1_IO4EbfC4Y59tkBQwcdoAFTfPd2v3vATLnCQI
  priority: 102
  providerName: American Chemical Society
Title Probing the Dynamic Structure–Function and Structure-Free Energy Relationships of the Coronavirus Main Protease with Biodynamics Theory
URI http://dx.doi.org/10.1021/acsptsci.0c00089
https://www.ncbi.nlm.nih.gov/pubmed/33330838
https://search.proquest.com/docview/2470899527
https://pubmed.ncbi.nlm.nih.gov/PMC7671103
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9swGBZtT72UfXRd9lE06AqDKokl2bKPW9ZQChmGttCbkfWxeqxKiJNBb7vuvH-4X7JXsp00K_QwHy1ZNjwSzyO_7_sIoSMDNC5jRkmWWEo4UCpJjU2JKhmnJRNWRr7AefIlObvi59fx9RaKu1qYkLSvyqrvvt_2XXUTcitnt2rQ5YkN8slIJAJYiw220bZg7N4W_VuIrPnCnGEbkgQKG0hVzxZAKP2h8pTnjUIZXCA-gr-qqjc56YHQ_Ddf8h4BjZ-gvVY54o_NFz5FW8Y9Q8d5Yz19d4Iv15VU9Qk-xvnalPruOfqVe8Ml9xWD4MOfm2Po8UUwj13OzZ-fv8dAcB4kLJ1eN5Dx3Bh8GgoE8Spx7qaa1Xhqw1gjb4Egf1TzZY0nsnI4984PwI3Y_-LFn6qpbt5W48YHYB9djU8vR2ekPYaBSM7YglCmpU5ZaYeZNJHSkkWJZiDsskRnGjDlIFq4Tn0GtlAi02poDLUUbnOTMc1eoB03deYlwmlsOQgeZRIJO6VUSmsybnUqS5tokdoeeg9wFO0yqosQIadR0SFYtAj20IcOsGLWuHI80vddh2gBS8fHQ6Qz02VdUC580DOmoocOGoRXo3UTpIfEBvarDt6We7MFZmuw525n56v_fvI12qV-Vx9REkVv0A5Abt6C9FmUhyD9RxeHYcL_BeZGDAo
link.rule.ids 230,315,733,786,790,891,2782,27109,27957,27958,53827,53829,57093,57143
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFL0ahgVseIhXeRoJFixc6kdiZwllqgLT0YiZkWYXObHNREhp1bQsWLFlzR_yJVw7aYYOCEGWtuXYvrbOse_1McAzhzBuEsFplnpOJUIq1c5rWhZC8kIob1i44Dw7SKcn8t1pcroDbHMXBhvRYE1NdOKfqwuwl5i2WCEqDEdlwK3sElxOFG7HAxsaH_XHKiHWisWTFZyL4RXCke6ck3-qJEBS2WxD0m8882K45C_4M7kOH_qWx7CTT8P1qhiWXy6IOv5X127AtY6Nklft9LkJO66-Bd8OgzZT_ZEgNyRv2hfryVHUmV0v3Y-v3yeIhcGexNT2PINOls6RvXiXkPQxdmfVoiFzH-saB7UE87larhsyM1VNDoNIBMIoCafB5HU1t-3fGtJKBtyGk8ne8XhKuxcbqJFCrCgX1lgtCj_KjGOlNYKlViAHzFKbWTS_RH4jrQ7B2qpUmS1HznHPMVm6TFhxB3bree3uAdGJl8iNSpca3FRpY7zLpLfaFD61SvsBPMdxy7sV1-TRmc5ZvhnMvBvMAbzYGDdftAIefyn7dGP9HFdZcJ2Y2s3XTc6lCv7RhKsB3G1nQ1-bwA-JrB6A2ponfYGg4L2dU1dnUclbpQrpl7j_j315Alemx7P9fP_twfsHcJWHrT_jlLGHsIvGdo-QH62Kx3FF_ATRrBFt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jj9MwFH4aBglxYRFbWY0EBw4u9ZLYOUJnomGZUaVh0NwiJ7aZCCmtmpYDJ66c-Yf8Ep6dNNABIcjRsRwvz_q-vPf8GeCJQxg3ieA0Sz2nEiGVauc1rUoheSmUNywccD48Sg9O5OvT5HQHks1ZGOxEiy21MYgfdvXC-l5hgD3H8sUKkWE8qQJ2ZRfgYhLu7w6MaHo8uFZCvhWL3hW0x3AT4UT3Aco_NRJgqWq3Yek3rnk-ZfIXDMqvwvuh9zH15ON4vSrH1edzwo7_PbxrcKVnpeRFZ0bXYcc1N-DrLGg0NR8IckSy191cT46j3ux66b5_-ZYjJoZ1JaaxP1_QfOkc2Y9nCsmQa3dWL1oy97GtaVBNMJ_q5bolh6ZuyCyIRSCckuAVJi_rue2-1pJOOuAmnOT776YHtL-5gRopxIpyYY3VovSTzDhWWSNYagVywSy1mUUzkMhzpNUhaVtVKrPVxDnuORZLlwkrbsFuM2_cHSA68RI5UuVSgz9X2hjvMumtNqVPrdJ-BE9x3op-57VFDKpzVmwms-gncwTPNgtcLDohj7_UfbyxgAJ3WwihmMbN123BpQpx0oSrEdzuLGJoTeCDhFaPQG3ZylAhKHlvv2nqs6jorVKFNEzc_cexPIJLs728ePvq6M09uMyDB4Bxyth92MW1dg-QJq3Kh3FT_ABJNBPn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Dynamic+Structure%E2%80%93Function+and+Structure-Free+Energy+Relationships+of+the+Coronavirus+Main+Protease+with+Biodynamics+Theory&rft.jtitle=ACS+pharmacology+%26+translational+science&rft.au=Wan%2C+Hongbin&rft.au=Aravamuthan%2C+Vibhas&rft.au=Pearlstein%2C+Robert+A&rft.date=2020-12-11&rft.pub=American+Chemical+Society&rft.issn=2575-9108&rft.eissn=2575-9108&rft.volume=3&rft.issue=6&rft.spage=1111&rft.epage=1143&rft_id=info:doi/10.1021%2Facsptsci.0c00089&rft.externalDocID=g47709646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-9108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-9108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-9108&client=summon