Reversible Thermal Hysteresis in Heating‐Cooling Cycles of Magnetic Susceptibility: A Fine Particle Effect of Magnetite

Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 50; no. 6
Main Authors Zhang, Qi, Appel, Erwin
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.03.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected. Plain Language Summary Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. A marked drop in κ‐T curves at ∼300–400°C is often considered to indicate the inversion of maghemite to hematite. Such a drop is often preceded by an increase in κ, creating a hump shape that is rarely noted in discussions. We report hump‐shaped κ‐T curves in magnetite‐bearing basalt. When heating up to ∼340°C and cooled subsequently, a large thermal hysteresis was observed. This hump shape and the thermal hysteresis behavior occur in a very similar way in repeated κ‐T cycles, ruling out changes in magnetic mineralogy. We hypothesize that the thermal hysteresis arises from configurations of coupled magnetic moments in clusters of fine particles, which is partly irreversible upon cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual particle moments. When heated to 700°C, grain boundaries may weld and internal stress effects are reduced, increasing the effective particle sizes and shifting the hump‐peak to a higher temperature. Our results indicate that fine particle behavior should be considered for all types of natural materials when a hump‐shaped κ‐T curve is observed rather than interpreting the drop in κ as maghemite inversion. Key Points We observed reversible thermal hysteresis behavior in hump‐shaped partial magnetic susceptibility cycles of magnetite‐bearing basalts The thermal hysteresis may be caused by blocked states of coupled nanoparticle moments modulating thermal activation Descending susceptibility in hump‐shaped curves is often due to single‐domain thermal relaxation rather than maghemite inversion
AbstractList Thermomagnetic curves of magnetic susceptibility ( κ ) are key to characterizing magnetic properties. We report hump‐shaped κ ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ ‐T behavior is detected. Thermomagnetic curves of magnetic susceptibility ( κ ) are key to characterizing magnetic properties. A marked drop in κ ‐T curves at ∼300–400°C is often considered to indicate the inversion of maghemite to hematite. Such a drop is often preceded by an increase in κ , creating a hump shape that is rarely noted in discussions. We report hump‐shaped κ ‐T curves in magnetite‐bearing basalt. When heating up to ∼340°C and cooled subsequently, a large thermal hysteresis was observed. This hump shape and the thermal hysteresis behavior occur in a very similar way in repeated κ ‐T cycles, ruling out changes in magnetic mineralogy. We hypothesize that the thermal hysteresis arises from configurations of coupled magnetic moments in clusters of fine particles, which is partly irreversible upon cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual particle moments. When heated to 700°C, grain boundaries may weld and internal stress effects are reduced, increasing the effective particle sizes and shifting the hump‐peak to a higher temperature. Our results indicate that fine particle behavior should be considered for all types of natural materials when a hump‐shaped κ ‐T curve is observed rather than interpreting the drop in κ as maghemite inversion. We observed reversible thermal hysteresis behavior in hump‐shaped partial magnetic susceptibility cycles of magnetite‐bearing basalts The thermal hysteresis may be caused by blocked states of coupled nanoparticle moments modulating thermal activation Descending susceptibility in hump‐shaped curves is often due to single‐domain thermal relaxation rather than maghemite inversion
Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected. Plain Language Summary Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. A marked drop in κ‐T curves at ∼300–400°C is often considered to indicate the inversion of maghemite to hematite. Such a drop is often preceded by an increase in κ, creating a hump shape that is rarely noted in discussions. We report hump‐shaped κ‐T curves in magnetite‐bearing basalt. When heating up to ∼340°C and cooled subsequently, a large thermal hysteresis was observed. This hump shape and the thermal hysteresis behavior occur in a very similar way in repeated κ‐T cycles, ruling out changes in magnetic mineralogy. We hypothesize that the thermal hysteresis arises from configurations of coupled magnetic moments in clusters of fine particles, which is partly irreversible upon cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual particle moments. When heated to 700°C, grain boundaries may weld and internal stress effects are reduced, increasing the effective particle sizes and shifting the hump‐peak to a higher temperature. Our results indicate that fine particle behavior should be considered for all types of natural materials when a hump‐shaped κ‐T curve is observed rather than interpreting the drop in κ as maghemite inversion. Key Points We observed reversible thermal hysteresis behavior in hump‐shaped partial magnetic susceptibility cycles of magnetite‐bearing basalts The thermal hysteresis may be caused by blocked states of coupled nanoparticle moments modulating thermal activation Descending susceptibility in hump‐shaped curves is often due to single‐domain thermal relaxation rather than maghemite inversion
Abstract Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected.
Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected.
Author Zhang, Qi
Appel, Erwin
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0001-5486-0354
  surname: Zhang
  fullname: Zhang, Qi
  organization: University of Tübingen
– sequence: 2
  givenname: Erwin
  orcidid: 0000-0002-0831-2936
  surname: Appel
  fullname: Appel, Erwin
  email: erwin.appel@uni-tuebingen.de
  organization: University of Tübingen
BookMark eNp9kc1uEzEUhS1UJNLCjgewxJaA_-IZs6uiNqkUBCplbd1xroOj6TjYTtHseASekSfBIUGqkGDlY_ucz0e-5-RsiAMS8pKzN5wJ81YwIRerg5TiCZlwo9S0Zaw5IxPGTNWi0c_Iec5bxphkkk_IeIsPmHLoeqR3XzDdQ0-XYy6YMIdMw0CXCCUMm5_ff8xj7Kui89H1mGn09D1sBizB0U_77HBXQhf6UMZ39JJehwHpR0j1tqKvvEdXHkUKPidPPfQZX5zWC_L5-upuvpyuPixu5perKSgp26lZS9Yajh2XnjmOqjXdYY8tOqcUQoem4Q4bnIEGxTu17oRmzWytALg38oLcHLnrCFu7S-Ee0mgjBPv7IKaNPbW0TjotkckGuVSNqzjpoWsVeC65NryyXh1ZuxS_7jEXu437NNT6VjSG65YJLapLHF0uxZwTeutCqZ8Yh5Ig9JYze5iRfTyuGnr9V-hP1X_YT298Cz2O__Xaxe1Kz7Rs5S8bhqcK
CitedBy_id crossref_primary_10_3389_feart_2023_1272317
crossref_primary_10_1029_2024GL110717
crossref_primary_10_1016_j_quascirev_2023_108202
crossref_primary_10_1007_s11600_024_01297_4
crossref_primary_10_1029_2023JB028460
crossref_primary_10_1016_j_jappgeo_2023_105211
Cites_doi 10.1111/j.1365-246X.2005.02564.x
10.1016/j.epsl.2005.07.010
10.1073/pnas.1719186115
10.1029/2006JB004567
10.1046/j.1365-246X.1998.1331468.x
10.1111/j.1365-246X.2009.04081.x
10.1007/s11430-010-4015-y
10.1029/2006JB004507
10.1038/337634a0
10.1029/GL011i003p00189
10.1016/S1464-1895(01)00135-1
10.1007/s11200-016-0819-3
10.1029/2021JB022693
10.1017/CBO9780511612794
10.1063/1.5030739
10.1098/rsta.1948.0007
10.1360/sb1999-44-S1-81
10.1023/A:1023278901491
10.1002/2014RG000462
10.3390/met7060215
10.1360/sb1999-44-S1-53
10.1029/2020JB020588
10.1016/j.jmmm.2005.10.061
10.1029/2008GC001987
10.1038/298542a0
10.1038/s41598-017-09897-5
10.1016/bs.ssp.2016.08.001
10.1029/2003JB002532
10.1063/1.4933381
10.1103/PhysRevB.93.054407
10.1029/2000GL008462
10.1063/1.3005988
10.1016/j.envpol.2015.08.041
10.1093/gji/ggaa394
10.1007/978-3-030-70443-8_17
10.1111/j.1365-246X.1996.tb06354.x
10.1093/gji/ggu247
10.1103/PhysRevB.99.174441
10.1063/1.2827478
10.1016/j.gloplacha.2013.08.003
10.1029/2021GL096147
10.1029/2019GC008761
ContentType Journal Article
Copyright 2023. The Authors.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1029/2023GL102932
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Proquest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Research Library Prep
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c3c63e037e1347c6a43fab84af131691
10_1029_2023GL102932
GRL65638
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42204082
– fundername: Deutsche Forschungsgemeinschaft
  funderid: AP 34/44‐1
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
3V.
7TG
7TN
7XB
8FD
8FE
8FG
8FK
AFPKN
F1W
FR3
H8D
H96
KL.
KR7
L.G
L6V
L7M
MBDVC
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-a4338-9d30891eb13f0c1e489b891ee8ecc44eabe971ce7e5a6a41b4db26075d4aa1f93
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:28:30 EDT 2025
Fri Jul 25 10:13:46 EDT 2025
Tue Jul 01 01:05:19 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Sun Jul 06 04:45:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4338-9d30891eb13f0c1e489b891ee8ecc44eabe971ce7e5a6a41b4db26075d4aa1f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5486-0354
0000-0002-0831-2936
OpenAccessLink https://doaj.org/article/c3c63e037e1347c6a43fab84af131691
PQID 2791680262
PQPubID 54723
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_c3c63e037e1347c6a43fab84af131691
proquest_journals_2791680262
crossref_citationtrail_10_1029_2023GL102932
crossref_primary_10_1029_2023GL102932
wiley_primary_10_1029_2023GL102932_GRL65638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 March 2023
PublicationDateYYYYMMDD 2023-03-28
PublicationDate_xml – month: 03
  year: 2023
  text: 28 March 2023
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 61
2017; 7
2021; 48
2007; 102
1948; 240
2010; 53
1989; 337
2000; 27
2019; 99
2021; 126
2021; 224
2018; 123
1949; 5
2005; 238
2008; 9
1997
2009; 177
1999; 44
2001; 26
2016; 93
2008; 104
2015; 207
2015; 107
2020; 125
2004; 109
1998; 133
2014; 199
1996; 124
2006; 111
1999b; 43
2005; 161
1984; 3
2021
1999a; 44
2018; 115
1982; 298
2013; 110
1980
2020; 21
2014; 52
1985; 56
2016; 67
2006; 300
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Appel E. (e_1_2_8_5_1) 1985; 56
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Néel L. (e_1_2_8_26_1) 1949; 5
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ramdohr P. (e_1_2_8_30_1) 1980
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 107
  issue: 15
  year: 2015
  article-title: Superferromagnetism in dipolarly coupled 1 FePt nanodots with perpendicular magnetization
  publication-title: Applied Physics Letters
– volume: 7
  issue: 1
  year: 2017
  article-title: Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe O nanoparticles
  publication-title: Scientific Reports
– volume: 300
  start-page: 192
  issue: 1
  year: 2006
  end-page: 197
  article-title: Collective states of interacting ferromagnetic nanoparticles
  publication-title: Journal of Magnetism and Magnetic Materials
– volume: 224
  start-page: 69
  issue: 1
  year: 2021
  end-page: 85
  article-title: Humidity related magnetite alteration in an experimental setup
  publication-title: Geophysical Journal International
– volume: 67
  start-page: 1
  year: 2016
  end-page: 101
  article-title: Chapter one ‐ collective effects in assemblies of magnetic nanoparticles
  publication-title: Solid State Physics
– volume: 133
  start-page: 201
  issue: 1
  year: 1998
  end-page: 206
  article-title: On the superparamagnetic‐stable single domain transition for magnetite, and frequency dependence of susceptibility
  publication-title: Geophysical Journal International
– volume: 240
  start-page: 599
  year: 1948
  end-page: 642
  article-title: A Mechanism of magnetic hysteresis in heterogeneous alloys
  publication-title: Philosophical Transactions of the Royal Society of London ‐ Series A: Mathematical and Physical Sciences
– volume: 110
  start-page: 302
  year: 2013
  end-page: 320
  article-title: VARIFORC: An optimized protocol for the calculation of non‐regular first‐order reversal curve (FORC) diagrams
  publication-title: Global and Planetary Change
– volume: 337
  start-page: 634
  issue: 6208
  year: 1989
  end-page: 637
  article-title: Three‐dimensional micromagnetic modelling of ferromagnetic domain structure
  publication-title: Nature
– volume: 99
  issue: 17
  year: 2019
  article-title: Thermal hysteresis of superparamagnetic Gd nanoparticle clusters
  publication-title: Physical Review, B
– volume: 123
  issue: 23
  year: 2018
  article-title: Dipolar effects on the magnetic phases of superparamagnetic clusters
  publication-title: Journal of Applied Physics
– volume: 115
  start-page: 1736
  issue: 8
  year: 2018
  end-page: 1741
  article-title: Identification and paleoclimatic significance of magnetite nanoparticles in soils
  publication-title: Proceedings of the National Academy of Sciences
– volume: 93
  issue: 5
  year: 2016
  article-title: Effects of the individual particle relaxation time on superspin glass dynamics
  publication-title: Physical Review B
– start-page: 455
  year: 2021
  end-page: 604
– volume: 111
  issue: B12
  year: 2006
  article-title: Theoretical aspects of dipolar interactions and their appearance in first‐order reversal curves of thermally activated single‐domain particles
  publication-title: Journal of Geophysical Research
– volume: 124
  start-page: 89
  issue: 1
  year: 1996
  end-page: 104
  article-title: Three‐dimensional micromagnetic calculations for magnetite using FFT
  publication-title: Geophysical Journal International
– volume: 43
  start-page: 357
  issue: 4
  year: 1999b
  end-page: 375
  article-title: Low‐temperature oxidation of magnetite in loess‐paleosol sequences: A correction of rock magnetic parameters
  publication-title: Studia Geophysica et Geodaetica
– start-page: 1207
  year: 1980
– volume: 109
  issue: B1
  year: 2004
  article-title: Mineral magnetic properties of loess/paleosol couplets of the Central Loess Plateau of China over the last 1.2 Myr
  publication-title: Journal of Geophysical Research
– start-page: 573
  year: 1997
– volume: 298
  start-page: 542
  issue: 5874
  year: 1982
  end-page: 544
  article-title: Magnetostrictive control of coercive force in multidomain magnetite
  publication-title: Nature
– volume: 56
  start-page: 121
  year: 1985
  end-page: 132
  article-title: Domain state of Ti‐rich titanomagnetites deduced from domain structure observations and susceptibility measurements
  publication-title: Journal of Geophysics
– volume: 3
  start-page: 189
  year: 1984
  end-page: 192
  article-title: Model for the domain state of Ti‐rich titanomagnetites
  publication-title: Geophysical Research Letters
– volume: 199
  start-page: 707
  issue: 2
  year: 2014
  end-page: 716
  article-title: High‐temperature susceptibility of magnetite: A new pseudo‐single‐domain effect
  publication-title: Geophysical Journal International
– volume: 207
  start-page: 288
  year: 2015
  end-page: 298
  article-title: Detecting the sensitivity of magnetic response on different pollution sources ‐ a case study from typical mining cities in northwestern China
  publication-title: Environmental Pollution
– volume: 9
  issue: 5
  year: 2008
  article-title: FORCinel: An improved algorithm for calculating first‐order reversal curve distributions using locally weighted regression smoothing
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 48
  issue: 24
  year: 2021
  article-title: Demagnetization energy and internal stress in magnetite from temperature dependent hysteresis measurements
  publication-title: Geophysical Research Letters
– volume: 44
  start-page: 53
  issue: Supp. 1
  year: 1999a
  end-page: 63
  article-title: The incorporation of thermal methods in mineral magnetism of loess‐paleosol sequences: A brief overview
  publication-title: Chinese Science Bulletin
– volume: 44
  start-page: 81
  issue: 1
  year: 1999
  end-page: 86
  article-title: History of the temperature‐dependence of susceptibility and its implications: Preliminary results along an E‐W transect of the Chinese Loess Plateau
  publication-title: Chinese Science Bulletin
– volume: 126
  issue: 10
  year: 2021
  article-title: Is alteration of magnetite during rock weathering climate‐dependent?
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 5
  start-page: 99
  year: 1949
  end-page: 136
  article-title: Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites
  publication-title: Annales Geophysicae
– volume: 177
  start-page: 395
  issue: 2
  year: 2009
  end-page: 420
  article-title: Magnetic susceptibility measurements as a function of temperature and frequency, 1. Inversion theory
  publication-title: Geophysical Journal International
– volume: 102
  issue: 12
  year: 2007
  article-title: Thermal hysteresis of interface biased ferromagnetic dots
  publication-title: Journal of Applied Physics
– volume: 21
  issue: 2
  year: 2020
  article-title: Separating geometry‐ from stress‐induced remanent magnetization in magnetite with ilmenite lamellae from the Stardalur basalts, Iceland
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 125
  issue: 10
  year: 2020
  article-title: Nano‐magnetite aggregates in red soil on low magnetic bedrock, their change during source‐sink transfer and implications for paleoclimate studies
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 26
  start-page: 873
  issue: 11–12
  year: 2001
  end-page: 878
  article-title: Variability of the temperature‐dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator
  publication-title: Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy
– volume: 27
  start-page: 3715
  issue: 22
  year: 2000
  end-page: 3718
  article-title: Paleoclimatic significance of the temperature‐dependent susceptibility Holocene loess along a NW‐SE transect in the Chinese Loess Plateau
  publication-title: Geophysical Research Letters
– volume: 61
  start-page: 162
  issue: 1
  year: 2017
  end-page: 183
  article-title: Effects of shock pressure and temperature on titanomagnetite from ICDP cores and target rocks of the El'gygytgyn impact structure, Russia
  publication-title: Studia Geophysica et Geodaetica
– volume: 104
  issue: 9
  year: 2008
  article-title: Size‐independent residual magnetic moments of colloidal Fe O ‐polystyrene nanospheres detected by ac susceptibility measurements
  publication-title: Journal of Applied Physics
– volume: 53
  start-page: 1071
  issue: 7
  year: 2010
  end-page: 1078
  article-title: Effects of the grain size distribution on the temperature‐dependent magnetic susceptibility of magnetite nanoparticles
  publication-title: Science China Earth Sciences
– volume: 161
  start-page: 102
  issue: 1
  year: 2005
  end-page: 112
  article-title: Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols
  publication-title: Geophysical Journal International
– volume: 111
  issue: B12
  year: 2006
  article-title: On determination of the Curie point from thermomagnetic curves
  publication-title: Journal of Geophysical Research
– volume: 52
  start-page: 557
  issue: 4
  year: 2014
  end-page: 602
  article-title: Understanding fine magnetic particle systems through use of first‐order reversal curve diagrams
  publication-title: Reviews of Geophysics
– volume: 238
  start-page: 110
  issue: 1–2
  year: 2005
  end-page: 129
  article-title: The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP‐2 basalts, Hawaii
  publication-title: Earth and Planetary Science Letters
– volume: 7
  issue: 6
  year: 2017
  article-title: Low field magnetic and thermal hysteresis in antiferromagnetic dysprosium
  publication-title: Metals
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1365-246X.2005.02564.x
– ident: e_1_2_8_36_1
  doi: 10.1016/j.epsl.2005.07.010
– start-page: 1207
  volume-title: The ore minerals and their intergrowths
  year: 1980
  ident: e_1_2_8_30_1
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1719186115
– ident: e_1_2_8_15_1
  doi: 10.1029/2006JB004567
– volume: 5
  start-page: 99
  year: 1949
  ident: e_1_2_8_26_1
  article-title: Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites
  publication-title: Annales Geophysicae
– ident: e_1_2_8_41_1
  doi: 10.1046/j.1365-246X.1998.1331468.x
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1365-246X.2009.04081.x
– ident: e_1_2_8_45_1
  doi: 10.1007/s11430-010-4015-y
– ident: e_1_2_8_29_1
  doi: 10.1029/2006JB004507
– ident: e_1_2_8_40_1
  doi: 10.1038/337634a0
– volume: 56
  start-page: 121
  year: 1985
  ident: e_1_2_8_5_1
  article-title: Domain state of Ti‐rich titanomagnetites deduced from domain structure observations and susceptibility measurements
  publication-title: Journal of Geophysics
– ident: e_1_2_8_4_1
  doi: 10.1029/GL011i003p00189
– ident: e_1_2_8_10_1
  doi: 10.1016/S1464-1895(01)00135-1
– ident: e_1_2_8_22_1
  doi: 10.1007/s11200-016-0819-3
– ident: e_1_2_8_42_1
  doi: 10.1029/2021JB022693
– ident: e_1_2_8_14_1
  doi: 10.1017/CBO9780511612794
– ident: e_1_2_8_27_1
  doi: 10.1063/1.5030739
– ident: e_1_2_8_34_1
  doi: 10.1098/rsta.1948.0007
– ident: e_1_2_8_46_1
  doi: 10.1360/sb1999-44-S1-81
– ident: e_1_2_8_38_1
  doi: 10.1023/A:1023278901491
– ident: e_1_2_8_31_1
  doi: 10.1002/2014RG000462
– ident: e_1_2_8_25_1
  doi: 10.3390/met7060215
– ident: e_1_2_8_37_1
  doi: 10.1360/sb1999-44-S1-53
– ident: e_1_2_8_43_1
  doi: 10.1029/2020JB020588
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jmmm.2005.10.061
– ident: e_1_2_8_20_1
  doi: 10.1029/2008GC001987
– ident: e_1_2_8_21_1
  doi: 10.1038/298542a0
– ident: e_1_2_8_23_1
  doi: 10.1038/s41598-017-09897-5
– ident: e_1_2_8_32_1
  doi: 10.1016/bs.ssp.2016.08.001
– ident: e_1_2_8_11_1
  doi: 10.1029/2003JB002532
– ident: e_1_2_8_6_1
  doi: 10.1063/1.4933381
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevB.93.054407
– ident: e_1_2_8_12_1
  doi: 10.1029/2000GL008462
– ident: e_1_2_8_8_1
  doi: 10.1063/1.3005988
– ident: e_1_2_8_39_1
  doi: 10.1016/j.envpol.2015.08.041
– ident: e_1_2_8_44_1
  doi: 10.1093/gji/ggaa394
– ident: e_1_2_8_18_1
  doi: 10.1007/978-3-030-70443-8_17
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1365-246X.1996.tb06354.x
– ident: e_1_2_8_13_1
  doi: 10.1093/gji/ggu247
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevB.99.174441
– ident: e_1_2_8_9_1
  doi: 10.1063/1.2827478
– ident: e_1_2_8_17_1
  doi: 10.1016/j.gloplacha.2013.08.003
– ident: e_1_2_8_7_1
  doi: 10.1029/2021GL096147
– ident: e_1_2_8_35_1
  doi: 10.1029/2019GC008761
SSID ssj0003031
Score 2.4832134
Snippet Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing...
Thermomagnetic curves of magnetic susceptibility ( κ ) are key to characterizing magnetic properties. We report hump‐shaped κ ‐T curves of magnetite‐bearing...
Abstract Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Basalt
Clusters
Configurations
Cooling
Cycles
Dipole interactions
Grain boundaries
Haematite
Heating
Heating and cooling
Hematite
Hysteresis
Magnetic moments
Magnetic permeability
Magnetic properties
Magnetic susceptibility
Magnetite
Mineralogy
Nanoparticles
Particle size
Residual stress
Shape
Thermal relaxation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLagExIXxE9RGMgHOKGIxHYSmwvaqrUV2qapMGm3yHZeqklVMpbu0Nv-hP2N_CW857qlO7CbE9lR4ud8_p79-T3GPoGQNrOQJ2mdo4Pi0zKxDcjEiDR3OIOoOiy4nZwW03P14yK_iAtufZRVbjAxAHXdeVoj_ypKJDIaPQbx_ep3QlmjaHc1ptB4zPYQgrUesL3Do9Oz2RaLEaDXOfOMSrQoiyh9T4Uhr19Ojqkoxb1JKcTuv0c4d2lrmHfGz9mzSBj5wdrCL9gjaF-yJ5OQkHeFpSDh9P0rtppBkFi4BXA0PgLugk8pTjM61Jc9v2z5lPhhO_9zezfqKFfPnI9WJIrjXcNP7Lyl84z8500flC5BNLv6xg_4GIkoP4tDjK_DHe80WcJrdj4--jWaJjGxQmKVJICrZapNhjAtm9RnoLRxdA0aDaoUWAemzDyUkNvCqsyp2qHfU-a1sjZrjHzDBm3XwlvGkX_UTeoMoNFVraRzBZg8b3JfpqoR5ZB92fRs5WPUcUp-sajC7rcw1a4dhuzztvbVOtrGf-odkpG2dShGdrjRXc-r2B-Vl76QkMoS6Lisxw-RjXVa2SaTFCJoyPY3Jq7ij9tX_4YZvnkw-4MvUk1mx8iIpX738MPes6fUjMRrQu-zwfL6Bj4gm1m6j3HI_gXynu_l
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BatwwEBUhJZBLaZuGbpsWHdpTMLEtybJ6S5fuLiUJIU0gNyPJoyWweEu8Oeytn9Bv7Jd0RlaWzaGF3iwzwraeNJqRZ94w9hFKYQsLKstbhQ6Kz3VmA4jMlLlyuIPINh64nV9Usxv57VbdpgM3yoUZ-CE2B260MqK-pgVuXZ_IBogjk-p-T8-oIVAFP6PsWgrpK-XlRhOjeh4q5hmZ1aWuUuA7djnZ7v1kS4rM_U_MzW2jNe46kxfseTIX-emA70u2A90rtjeN5XjXeBUDOH1_wNZXEAMs3AI4Qo_qdsFnxNKM7vRdz-86PiPrsJv__vlrvKRKPXM-XlNIHF8Gfm7nHWUz8u8PfYxziSGz68_8lE9woPhlmmB8IDve6rKC1-xm8vV6PMtSWYXMSkHqrRV5bQpU0iLkvgBZG0dtqBFOKcE6MLrwoEHZysrCydah16NVK60tghGHbLdbdvCGcbQ-2pA7Awi5bKVwrgKjVFBe5zKUesSOH0e28YlznEpfLJr477s0zTYOI_ZpI_1j4Nr4i9wXAmkjQwzZ8cbyft6k8Wi88JWAXGigZFmPHyKCdbW0oRBEEDRiR48QN2nZ9k2p0Vqu0S3FZxxH2P_5Is306gztYVG__S_pd2yf7lMkW1kfsd3V_QO8R9Nm5T7E-fsHNB3utw
  priority: 102
  providerName: Wiley-Blackwell
Title Reversible Thermal Hysteresis in Heating‐Cooling Cycles of Magnetic Susceptibility: A Fine Particle Effect of Magnetite
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL102932
https://www.proquest.com/docview/2791680262
https://doaj.org/article/c3c63e037e1347c6a43fab84af131691
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgERKXFb-i7FL5AKdVhOOf2ObWrbat0O6qKhStuER2Mq5WqtIV7R564xF4Rp6EsZOuugfgwiVxIiexZpyZb5LPM4S8Ay5c7kBlrFYYoFRMZy6AyCxnyqMHkXX64HZxWUzm8tOVutor9RU5YW164FZwHypRFQKY0BAXPVaFkyI4b6QLuYiJXqL1RZ-3C6Y6G4yGua2VZ2VmuC46yjvjNkb7Ynwem4Lfc0YpZ_89oLkPV5O_GT0lhx1QpIN2gM_IA2iek8fjVIh3i61E3azWL8h2Bola4ZdAUeloaJd0EvMzYyB9vabXDZ1EXNgsfv34OVzFGj0LOtxGMhxdBXrhFk1cx0g_364TwyWRZbcf6YCOEIDSaSch2qY53rtkAy_JfHT2ZTjJuoIKGUotGrZaMGNzNM8isCoHaayPx2BQkVKC82B1XoEG5VDQuZe1x3hHq1o6lwcrXpGDZtXAa0IRd9SBeQuobFlL4X0BVqmgKs1k4LpHTnaSLasu23gserEs019vbst9PfTI-7veN22WjT_0O41KuusTc2OnEzhjyk4e5b9mTI8c71Rcdi_suuQacbLBgBSfcZLU_teBlOPZOSJhYd78jxEdkSfx5pHaxs0xOdh8v4W3iHU2vk8ecjnFrRmN--TR4Ov82xz3p2eX01k_Tfnfuzv7tA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIgQXxK_YUsAHekIRie38VUKoLOxu6W6FSiv1Fmxnsqq0StpmK5Qbj8CT8FA8CTNOsmwP9NZbEjmW7RmPv7E_zzD2BoTUgYbQ8_MQHRTrx54uQHqp8EODK4jK3Ybb7DCanKgvp-HpBvvd34UhWmVvE52hzitLe-TvRIxAJkGPQXw4v_AoaxSdrvYpNFq1OIDmB7ps9fv9TyjfHSFGn4-HE6_LKuBpJWl259JP0gBtlCx8G4BKUkPvkGBvlAJtII0DCzGEOtIqMCo3CPrjMFdaBwUFX0KTfwfrSsnZS0bjleXH5aDN0JcqLxFx1BHtfZHSHoMcT-lRimtLoMsUcA3eroNkt8qNHrIHHTzle60-PWIbUD5md8cu_W-DT44wausnrDkCR-gwC-CoamjeF3xCUaHRfT-r-VnJJ4RGy_mfn7-GFWUGmvNhQxQ8XhV8pucl3Z7k365qx6txFN1ml-_xEcJe_rVTaN4GV177ZQlP2cmtDPgztllWJTxnHNFOXvgmBVQxlStpTARpGBahjX1ViHjA3vYjm9kuxjml2lhk7qxdpNm6HAZsZ1X6vI3t8Z9yH0lIqzIUkdt9qC7nWTcemZU2kuDLGOhyrsWOyEKbROkikBSQaMC2exFnnZmos39KjS13Yr-xIdn4aIr4WyZbN1f2mt2bHM-m2XT_8OAFu09VEG1OJNtsc3l5BS8RRy3NK6e8nH2_7dnyF5P0LEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrUBcEL9ioYAP9ISiJrYTJ0gItdvubul2tVqo1FuwHWdVaZWUZiuUG4_A8_A4PAkzTrJsD_TWWxI5luMZz3zjfJ4h5J1lXAXKhp6fhRCgGF96KrfcS5gfavAgInMbbqfTaHwmPp-H51vkd3cWBmmVnU10hjorDe6R7zEJQCaGiIHt5S0tYnY4_HT53cMKUvintSun0ajIia1_QPhWfTw-BFnvMjY8-joYe22FAU8Jjis9436cBGCveO6bwIo40XhvY_gyIazSNpGBsdKGKlIi0CLTEADIMBNKBTkmYgLzvy0xKuqR7YOj6Wy-9gPgHJp6fYnwYiajlnbvswR3HPhogpec3XCIrm7ADbC7CZmdzxs-Ig9bsEr3G-16TLZs8YTcG7liwDVcOfqoqZ6Sem4dvUMvLQXFA2O_pGPMEQ3B_EVFLwo6RmxaLP78_DUosU7Qgg5qJOTRMqenalHgWUr65bpyLBtH2K0_0H06BBBMZ6160ybV8sYrK_uMnN3JlD8nvaIs7AtCAftkua8TCwonMsG1jmwShnlopC9yJvvkfTezqWkznmPhjWXq_ryzJN2UQ5_srltfNpk-_tPuAIW0boP5ud2D8mqRtvORGm4ibn0uLR7VNfAhPFc6FioPOKYn6pOdTsRpazSq9J-Kw8id2G8dSDqaTwCN8_jl7Z29JfdhpaST4-nJK_IAe0AOHYt3SG91dW1fA6ha6Tet9lLy7a4XzF-xQDHS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Thermal+Hysteresis+in+Heating%E2%80%90Cooling+Cycles+of+Magnetic+Susceptibility%3A+A+Fine+Particle+Effect+of+Magnetite&rft.jtitle=Geophysical+research+letters&rft.au=Zhang%2C+Qi&rft.au=Appel%2C+Erwin&rft.date=2023-03-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=6&rft_id=info:doi/10.1029%2F2023GL102932&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL102932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon