Reversible Thermal Hysteresis in Heating‐Cooling Cycles of Magnetic Susceptibility: A Fine Particle Effect of Magnetite
Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated...
Saved in:
Published in | Geophysical research letters Vol. 50; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.03.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected.
Plain Language Summary
Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. A marked drop in κ‐T curves at ∼300–400°C is often considered to indicate the inversion of maghemite to hematite. Such a drop is often preceded by an increase in κ, creating a hump shape that is rarely noted in discussions. We report hump‐shaped κ‐T curves in magnetite‐bearing basalt. When heating up to ∼340°C and cooled subsequently, a large thermal hysteresis was observed. This hump shape and the thermal hysteresis behavior occur in a very similar way in repeated κ‐T cycles, ruling out changes in magnetic mineralogy. We hypothesize that the thermal hysteresis arises from configurations of coupled magnetic moments in clusters of fine particles, which is partly irreversible upon cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual particle moments. When heated to 700°C, grain boundaries may weld and internal stress effects are reduced, increasing the effective particle sizes and shifting the hump‐peak to a higher temperature. Our results indicate that fine particle behavior should be considered for all types of natural materials when a hump‐shaped κ‐T curve is observed rather than interpreting the drop in κ as maghemite inversion.
Key Points
We observed reversible thermal hysteresis behavior in hump‐shaped partial magnetic susceptibility cycles of magnetite‐bearing basalts
The thermal hysteresis may be caused by blocked states of coupled nanoparticle moments modulating thermal activation
Descending susceptibility in hump‐shaped curves is often due to single‐domain thermal relaxation rather than maghemite inversion |
---|---|
AbstractList | Thermomagnetic curves of magnetic susceptibility (
κ
) are key to characterizing magnetic properties. We report hump‐shaped
κ
‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and
κ
‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in
κ
‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped
κ
‐T behavior is detected.
Thermomagnetic curves of magnetic susceptibility (
κ
) are key to characterizing magnetic properties. A marked drop in
κ
‐T curves at ∼300–400°C is often considered to indicate the inversion of maghemite to hematite. Such a drop is often preceded by an increase in
κ
, creating a hump shape that is rarely noted in discussions. We report hump‐shaped
κ
‐T curves in magnetite‐bearing basalt. When heating up to ∼340°C and cooled subsequently, a large thermal hysteresis was observed. This hump shape and the thermal hysteresis behavior occur in a very similar way in repeated
κ
‐T cycles, ruling out changes in magnetic mineralogy. We hypothesize that the thermal hysteresis arises from configurations of coupled magnetic moments in clusters of fine particles, which is partly irreversible upon cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual particle moments. When heated to 700°C, grain boundaries may weld and internal stress effects are reduced, increasing the effective particle sizes and shifting the hump‐peak to a higher temperature. Our results indicate that fine particle behavior should be considered for all types of natural materials when a hump‐shaped
κ
‐T curve is observed rather than interpreting the drop in
κ
as maghemite inversion.
We observed reversible thermal hysteresis behavior in hump‐shaped partial magnetic susceptibility cycles of magnetite‐bearing basalts
The thermal hysteresis may be caused by blocked states of coupled nanoparticle moments modulating thermal activation
Descending susceptibility in hump‐shaped curves is often due to single‐domain thermal relaxation rather than maghemite inversion Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected. Plain Language Summary Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. A marked drop in κ‐T curves at ∼300–400°C is often considered to indicate the inversion of maghemite to hematite. Such a drop is often preceded by an increase in κ, creating a hump shape that is rarely noted in discussions. We report hump‐shaped κ‐T curves in magnetite‐bearing basalt. When heating up to ∼340°C and cooled subsequently, a large thermal hysteresis was observed. This hump shape and the thermal hysteresis behavior occur in a very similar way in repeated κ‐T cycles, ruling out changes in magnetic mineralogy. We hypothesize that the thermal hysteresis arises from configurations of coupled magnetic moments in clusters of fine particles, which is partly irreversible upon cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual particle moments. When heated to 700°C, grain boundaries may weld and internal stress effects are reduced, increasing the effective particle sizes and shifting the hump‐peak to a higher temperature. Our results indicate that fine particle behavior should be considered for all types of natural materials when a hump‐shaped κ‐T curve is observed rather than interpreting the drop in κ as maghemite inversion. Key Points We observed reversible thermal hysteresis behavior in hump‐shaped partial magnetic susceptibility cycles of magnetite‐bearing basalts The thermal hysteresis may be caused by blocked states of coupled nanoparticle moments modulating thermal activation Descending susceptibility in hump‐shaped curves is often due to single‐domain thermal relaxation rather than maghemite inversion Abstract Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected. Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing basalt during heating‐cooling cycles to ∼340°C, with a large thermal hysteresis and similar starting and ending values, even in multiple repeated cycles, ruling out changes in magnetic mineralogy. Based on FORC diagrams and published results of engineered materials, we propose that thermal hysteresis arises from configurations of magnetic moments in clusters of single‐domain particles due to dipolar coupling, with different collective behavior during heating and cooling. This effect modifies the hump‐shaped thermal relaxation behavior of the individual nanoparticles. FORC and κ‐T results indicate an increase in effective particle sizes after 700°C‐heating. Our results are a warning against premature interpretation of a decreasing trend in κ‐T curves by maghemite inversion. Instead, fine particle behavior should be considered when a hump‐shaped κ‐T behavior is detected. |
Author | Zhang, Qi Appel, Erwin |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0001-5486-0354 surname: Zhang fullname: Zhang, Qi organization: University of Tübingen – sequence: 2 givenname: Erwin orcidid: 0000-0002-0831-2936 surname: Appel fullname: Appel, Erwin email: erwin.appel@uni-tuebingen.de organization: University of Tübingen |
BookMark | eNp9kc1uEzEUhS1UJNLCjgewxJaA_-IZs6uiNqkUBCplbd1xroOj6TjYTtHseASekSfBIUGqkGDlY_ucz0e-5-RsiAMS8pKzN5wJ81YwIRerg5TiCZlwo9S0Zaw5IxPGTNWi0c_Iec5bxphkkk_IeIsPmHLoeqR3XzDdQ0-XYy6YMIdMw0CXCCUMm5_ff8xj7Kui89H1mGn09D1sBizB0U_77HBXQhf6UMZ39JJehwHpR0j1tqKvvEdXHkUKPidPPfQZX5zWC_L5-upuvpyuPixu5perKSgp26lZS9Yajh2XnjmOqjXdYY8tOqcUQoem4Q4bnIEGxTu17oRmzWytALg38oLcHLnrCFu7S-Ee0mgjBPv7IKaNPbW0TjotkckGuVSNqzjpoWsVeC65NryyXh1ZuxS_7jEXu437NNT6VjSG65YJLapLHF0uxZwTeutCqZ8Yh5Ig9JYze5iRfTyuGnr9V-hP1X_YT298Cz2O__Xaxe1Kz7Rs5S8bhqcK |
CitedBy_id | crossref_primary_10_3389_feart_2023_1272317 crossref_primary_10_1029_2024GL110717 crossref_primary_10_1016_j_quascirev_2023_108202 crossref_primary_10_1007_s11600_024_01297_4 crossref_primary_10_1029_2023JB028460 crossref_primary_10_1016_j_jappgeo_2023_105211 |
Cites_doi | 10.1111/j.1365-246X.2005.02564.x 10.1016/j.epsl.2005.07.010 10.1073/pnas.1719186115 10.1029/2006JB004567 10.1046/j.1365-246X.1998.1331468.x 10.1111/j.1365-246X.2009.04081.x 10.1007/s11430-010-4015-y 10.1029/2006JB004507 10.1038/337634a0 10.1029/GL011i003p00189 10.1016/S1464-1895(01)00135-1 10.1007/s11200-016-0819-3 10.1029/2021JB022693 10.1017/CBO9780511612794 10.1063/1.5030739 10.1098/rsta.1948.0007 10.1360/sb1999-44-S1-81 10.1023/A:1023278901491 10.1002/2014RG000462 10.3390/met7060215 10.1360/sb1999-44-S1-53 10.1029/2020JB020588 10.1016/j.jmmm.2005.10.061 10.1029/2008GC001987 10.1038/298542a0 10.1038/s41598-017-09897-5 10.1016/bs.ssp.2016.08.001 10.1029/2003JB002532 10.1063/1.4933381 10.1103/PhysRevB.93.054407 10.1029/2000GL008462 10.1063/1.3005988 10.1016/j.envpol.2015.08.041 10.1093/gji/ggaa394 10.1007/978-3-030-70443-8_17 10.1111/j.1365-246X.1996.tb06354.x 10.1093/gji/ggu247 10.1103/PhysRevB.99.174441 10.1063/1.2827478 10.1016/j.gloplacha.2013.08.003 10.1029/2021GL096147 10.1029/2019GC008761 |
ContentType | Journal Article |
Copyright | 2023. The Authors. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1029/2023GL102932 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Proquest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c3c63e037e1347c6a43fab84af131691 10_1029_2023GL102932 GRL65638 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42204082 – fundername: Deutsche Forschungsgemeinschaft funderid: AP 34/44‐1 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 3V. 7TG 7TN 7XB 8FD 8FE 8FG 8FK AFPKN F1W FR3 H8D H96 KL. KR7 L.G L6V L7M MBDVC P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-a4338-9d30891eb13f0c1e489b891ee8ecc44eabe971ce7e5a6a41b4db26075d4aa1f93 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:28:30 EDT 2025 Fri Jul 25 10:13:46 EDT 2025 Tue Jul 01 01:05:19 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Sun Jul 06 04:45:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4338-9d30891eb13f0c1e489b891ee8ecc44eabe971ce7e5a6a41b4db26075d4aa1f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5486-0354 0000-0002-0831-2936 |
OpenAccessLink | https://doaj.org/article/c3c63e037e1347c6a43fab84af131691 |
PQID | 2791680262 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c3c63e037e1347c6a43fab84af131691 proquest_journals_2791680262 crossref_citationtrail_10_1029_2023GL102932 crossref_primary_10_1029_2023GL102932 wiley_primary_10_1029_2023GL102932_GRL65638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 March 2023 |
PublicationDateYYYYMMDD | 2023-03-28 |
PublicationDate_xml | – month: 03 year: 2023 text: 28 March 2023 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 61 2017; 7 2021; 48 2007; 102 1948; 240 2010; 53 1989; 337 2000; 27 2019; 99 2021; 126 2021; 224 2018; 123 1949; 5 2005; 238 2008; 9 1997 2009; 177 1999; 44 2001; 26 2016; 93 2008; 104 2015; 207 2015; 107 2020; 125 2004; 109 1998; 133 2014; 199 1996; 124 2006; 111 1999b; 43 2005; 161 1984; 3 2021 1999a; 44 2018; 115 1982; 298 2013; 110 1980 2020; 21 2014; 52 1985; 56 2016; 67 2006; 300 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Appel E. (e_1_2_8_5_1) 1985; 56 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 Néel L. (e_1_2_8_26_1) 1949; 5 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Ramdohr P. (e_1_2_8_30_1) 1980 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 107 issue: 15 year: 2015 article-title: Superferromagnetism in dipolarly coupled 1 FePt nanodots with perpendicular magnetization publication-title: Applied Physics Letters – volume: 7 issue: 1 year: 2017 article-title: Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe O nanoparticles publication-title: Scientific Reports – volume: 300 start-page: 192 issue: 1 year: 2006 end-page: 197 article-title: Collective states of interacting ferromagnetic nanoparticles publication-title: Journal of Magnetism and Magnetic Materials – volume: 224 start-page: 69 issue: 1 year: 2021 end-page: 85 article-title: Humidity related magnetite alteration in an experimental setup publication-title: Geophysical Journal International – volume: 67 start-page: 1 year: 2016 end-page: 101 article-title: Chapter one ‐ collective effects in assemblies of magnetic nanoparticles publication-title: Solid State Physics – volume: 133 start-page: 201 issue: 1 year: 1998 end-page: 206 article-title: On the superparamagnetic‐stable single domain transition for magnetite, and frequency dependence of susceptibility publication-title: Geophysical Journal International – volume: 240 start-page: 599 year: 1948 end-page: 642 article-title: A Mechanism of magnetic hysteresis in heterogeneous alloys publication-title: Philosophical Transactions of the Royal Society of London ‐ Series A: Mathematical and Physical Sciences – volume: 110 start-page: 302 year: 2013 end-page: 320 article-title: VARIFORC: An optimized protocol for the calculation of non‐regular first‐order reversal curve (FORC) diagrams publication-title: Global and Planetary Change – volume: 337 start-page: 634 issue: 6208 year: 1989 end-page: 637 article-title: Three‐dimensional micromagnetic modelling of ferromagnetic domain structure publication-title: Nature – volume: 99 issue: 17 year: 2019 article-title: Thermal hysteresis of superparamagnetic Gd nanoparticle clusters publication-title: Physical Review, B – volume: 123 issue: 23 year: 2018 article-title: Dipolar effects on the magnetic phases of superparamagnetic clusters publication-title: Journal of Applied Physics – volume: 115 start-page: 1736 issue: 8 year: 2018 end-page: 1741 article-title: Identification and paleoclimatic significance of magnetite nanoparticles in soils publication-title: Proceedings of the National Academy of Sciences – volume: 93 issue: 5 year: 2016 article-title: Effects of the individual particle relaxation time on superspin glass dynamics publication-title: Physical Review B – start-page: 455 year: 2021 end-page: 604 – volume: 111 issue: B12 year: 2006 article-title: Theoretical aspects of dipolar interactions and their appearance in first‐order reversal curves of thermally activated single‐domain particles publication-title: Journal of Geophysical Research – volume: 124 start-page: 89 issue: 1 year: 1996 end-page: 104 article-title: Three‐dimensional micromagnetic calculations for magnetite using FFT publication-title: Geophysical Journal International – volume: 43 start-page: 357 issue: 4 year: 1999b end-page: 375 article-title: Low‐temperature oxidation of magnetite in loess‐paleosol sequences: A correction of rock magnetic parameters publication-title: Studia Geophysica et Geodaetica – start-page: 1207 year: 1980 – volume: 109 issue: B1 year: 2004 article-title: Mineral magnetic properties of loess/paleosol couplets of the Central Loess Plateau of China over the last 1.2 Myr publication-title: Journal of Geophysical Research – start-page: 573 year: 1997 – volume: 298 start-page: 542 issue: 5874 year: 1982 end-page: 544 article-title: Magnetostrictive control of coercive force in multidomain magnetite publication-title: Nature – volume: 56 start-page: 121 year: 1985 end-page: 132 article-title: Domain state of Ti‐rich titanomagnetites deduced from domain structure observations and susceptibility measurements publication-title: Journal of Geophysics – volume: 3 start-page: 189 year: 1984 end-page: 192 article-title: Model for the domain state of Ti‐rich titanomagnetites publication-title: Geophysical Research Letters – volume: 199 start-page: 707 issue: 2 year: 2014 end-page: 716 article-title: High‐temperature susceptibility of magnetite: A new pseudo‐single‐domain effect publication-title: Geophysical Journal International – volume: 207 start-page: 288 year: 2015 end-page: 298 article-title: Detecting the sensitivity of magnetic response on different pollution sources ‐ a case study from typical mining cities in northwestern China publication-title: Environmental Pollution – volume: 9 issue: 5 year: 2008 article-title: FORCinel: An improved algorithm for calculating first‐order reversal curve distributions using locally weighted regression smoothing publication-title: Geochemistry, Geophysics, Geosystems – volume: 48 issue: 24 year: 2021 article-title: Demagnetization energy and internal stress in magnetite from temperature dependent hysteresis measurements publication-title: Geophysical Research Letters – volume: 44 start-page: 53 issue: Supp. 1 year: 1999a end-page: 63 article-title: The incorporation of thermal methods in mineral magnetism of loess‐paleosol sequences: A brief overview publication-title: Chinese Science Bulletin – volume: 44 start-page: 81 issue: 1 year: 1999 end-page: 86 article-title: History of the temperature‐dependence of susceptibility and its implications: Preliminary results along an E‐W transect of the Chinese Loess Plateau publication-title: Chinese Science Bulletin – volume: 126 issue: 10 year: 2021 article-title: Is alteration of magnetite during rock weathering climate‐dependent? publication-title: Journal of Geophysical Research: Solid Earth – volume: 5 start-page: 99 year: 1949 end-page: 136 article-title: Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites publication-title: Annales Geophysicae – volume: 177 start-page: 395 issue: 2 year: 2009 end-page: 420 article-title: Magnetic susceptibility measurements as a function of temperature and frequency, 1. Inversion theory publication-title: Geophysical Journal International – volume: 102 issue: 12 year: 2007 article-title: Thermal hysteresis of interface biased ferromagnetic dots publication-title: Journal of Applied Physics – volume: 21 issue: 2 year: 2020 article-title: Separating geometry‐ from stress‐induced remanent magnetization in magnetite with ilmenite lamellae from the Stardalur basalts, Iceland publication-title: Geochemistry, Geophysics, Geosystems – volume: 125 issue: 10 year: 2020 article-title: Nano‐magnetite aggregates in red soil on low magnetic bedrock, their change during source‐sink transfer and implications for paleoclimate studies publication-title: Journal of Geophysical Research: Solid Earth – volume: 26 start-page: 873 issue: 11–12 year: 2001 end-page: 878 article-title: Variability of the temperature‐dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator publication-title: Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy – volume: 27 start-page: 3715 issue: 22 year: 2000 end-page: 3718 article-title: Paleoclimatic significance of the temperature‐dependent susceptibility Holocene loess along a NW‐SE transect in the Chinese Loess Plateau publication-title: Geophysical Research Letters – volume: 61 start-page: 162 issue: 1 year: 2017 end-page: 183 article-title: Effects of shock pressure and temperature on titanomagnetite from ICDP cores and target rocks of the El'gygytgyn impact structure, Russia publication-title: Studia Geophysica et Geodaetica – volume: 104 issue: 9 year: 2008 article-title: Size‐independent residual magnetic moments of colloidal Fe O ‐polystyrene nanospheres detected by ac susceptibility measurements publication-title: Journal of Applied Physics – volume: 53 start-page: 1071 issue: 7 year: 2010 end-page: 1078 article-title: Effects of the grain size distribution on the temperature‐dependent magnetic susceptibility of magnetite nanoparticles publication-title: Science China Earth Sciences – volume: 161 start-page: 102 issue: 1 year: 2005 end-page: 112 article-title: Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols publication-title: Geophysical Journal International – volume: 111 issue: B12 year: 2006 article-title: On determination of the Curie point from thermomagnetic curves publication-title: Journal of Geophysical Research – volume: 52 start-page: 557 issue: 4 year: 2014 end-page: 602 article-title: Understanding fine magnetic particle systems through use of first‐order reversal curve diagrams publication-title: Reviews of Geophysics – volume: 238 start-page: 110 issue: 1–2 year: 2005 end-page: 129 article-title: The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP‐2 basalts, Hawaii publication-title: Earth and Planetary Science Letters – volume: 7 issue: 6 year: 2017 article-title: Low field magnetic and thermal hysteresis in antiferromagnetic dysprosium publication-title: Metals – ident: e_1_2_8_24_1 doi: 10.1111/j.1365-246X.2005.02564.x – ident: e_1_2_8_36_1 doi: 10.1016/j.epsl.2005.07.010 – start-page: 1207 volume-title: The ore minerals and their intergrowths year: 1980 ident: e_1_2_8_30_1 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1719186115 – ident: e_1_2_8_15_1 doi: 10.1029/2006JB004567 – volume: 5 start-page: 99 year: 1949 ident: e_1_2_8_26_1 article-title: Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites publication-title: Annales Geophysicae – ident: e_1_2_8_41_1 doi: 10.1046/j.1365-246X.1998.1331468.x – ident: e_1_2_8_16_1 doi: 10.1111/j.1365-246X.2009.04081.x – ident: e_1_2_8_45_1 doi: 10.1007/s11430-010-4015-y – ident: e_1_2_8_29_1 doi: 10.1029/2006JB004507 – ident: e_1_2_8_40_1 doi: 10.1038/337634a0 – volume: 56 start-page: 121 year: 1985 ident: e_1_2_8_5_1 article-title: Domain state of Ti‐rich titanomagnetites deduced from domain structure observations and susceptibility measurements publication-title: Journal of Geophysics – ident: e_1_2_8_4_1 doi: 10.1029/GL011i003p00189 – ident: e_1_2_8_10_1 doi: 10.1016/S1464-1895(01)00135-1 – ident: e_1_2_8_22_1 doi: 10.1007/s11200-016-0819-3 – ident: e_1_2_8_42_1 doi: 10.1029/2021JB022693 – ident: e_1_2_8_14_1 doi: 10.1017/CBO9780511612794 – ident: e_1_2_8_27_1 doi: 10.1063/1.5030739 – ident: e_1_2_8_34_1 doi: 10.1098/rsta.1948.0007 – ident: e_1_2_8_46_1 doi: 10.1360/sb1999-44-S1-81 – ident: e_1_2_8_38_1 doi: 10.1023/A:1023278901491 – ident: e_1_2_8_31_1 doi: 10.1002/2014RG000462 – ident: e_1_2_8_25_1 doi: 10.3390/met7060215 – ident: e_1_2_8_37_1 doi: 10.1360/sb1999-44-S1-53 – ident: e_1_2_8_43_1 doi: 10.1029/2020JB020588 – ident: e_1_2_8_28_1 doi: 10.1016/j.jmmm.2005.10.061 – ident: e_1_2_8_20_1 doi: 10.1029/2008GC001987 – ident: e_1_2_8_21_1 doi: 10.1038/298542a0 – ident: e_1_2_8_23_1 doi: 10.1038/s41598-017-09897-5 – ident: e_1_2_8_32_1 doi: 10.1016/bs.ssp.2016.08.001 – ident: e_1_2_8_11_1 doi: 10.1029/2003JB002532 – ident: e_1_2_8_6_1 doi: 10.1063/1.4933381 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevB.93.054407 – ident: e_1_2_8_12_1 doi: 10.1029/2000GL008462 – ident: e_1_2_8_8_1 doi: 10.1063/1.3005988 – ident: e_1_2_8_39_1 doi: 10.1016/j.envpol.2015.08.041 – ident: e_1_2_8_44_1 doi: 10.1093/gji/ggaa394 – ident: e_1_2_8_18_1 doi: 10.1007/978-3-030-70443-8_17 – ident: e_1_2_8_19_1 doi: 10.1111/j.1365-246X.1996.tb06354.x – ident: e_1_2_8_13_1 doi: 10.1093/gji/ggu247 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevB.99.174441 – ident: e_1_2_8_9_1 doi: 10.1063/1.2827478 – ident: e_1_2_8_17_1 doi: 10.1016/j.gloplacha.2013.08.003 – ident: e_1_2_8_7_1 doi: 10.1029/2021GL096147 – ident: e_1_2_8_35_1 doi: 10.1029/2019GC008761 |
SSID | ssj0003031 |
Score | 2.4832134 |
Snippet | Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of magnetite‐bearing... Thermomagnetic curves of magnetic susceptibility ( κ ) are key to characterizing magnetic properties. We report hump‐shaped κ ‐T curves of magnetite‐bearing... Abstract Thermomagnetic curves of magnetic susceptibility (κ) are key to characterizing magnetic properties. We report hump‐shaped κ‐T curves of... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Basalt Clusters Configurations Cooling Cycles Dipole interactions Grain boundaries Haematite Heating Heating and cooling Hematite Hysteresis Magnetic moments Magnetic permeability Magnetic properties Magnetic susceptibility Magnetite Mineralogy Nanoparticles Particle size Residual stress Shape Thermal relaxation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLagExIXxE9RGMgHOKGIxHYSmwvaqrUV2qapMGm3yHZeqklVMpbu0Nv-hP2N_CW857qlO7CbE9lR4ud8_p79-T3GPoGQNrOQJ2mdo4Pi0zKxDcjEiDR3OIOoOiy4nZwW03P14yK_iAtufZRVbjAxAHXdeVoj_ypKJDIaPQbx_ep3QlmjaHc1ptB4zPYQgrUesL3Do9Oz2RaLEaDXOfOMSrQoiyh9T4Uhr19Ojqkoxb1JKcTuv0c4d2lrmHfGz9mzSBj5wdrCL9gjaF-yJ5OQkHeFpSDh9P0rtppBkFi4BXA0PgLugk8pTjM61Jc9v2z5lPhhO_9zezfqKFfPnI9WJIrjXcNP7Lyl84z8500flC5BNLv6xg_4GIkoP4tDjK_DHe80WcJrdj4--jWaJjGxQmKVJICrZapNhjAtm9RnoLRxdA0aDaoUWAemzDyUkNvCqsyp2qHfU-a1sjZrjHzDBm3XwlvGkX_UTeoMoNFVraRzBZg8b3JfpqoR5ZB92fRs5WPUcUp-sajC7rcw1a4dhuzztvbVOtrGf-odkpG2dShGdrjRXc-r2B-Vl76QkMoS6Lisxw-RjXVa2SaTFCJoyPY3Jq7ij9tX_4YZvnkw-4MvUk1mx8iIpX738MPes6fUjMRrQu-zwfL6Bj4gm1m6j3HI_gXynu_l priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BatwwEBUhJZBLaZuGbpsWHdpTMLEtybJ6S5fuLiUJIU0gNyPJoyWweEu8Oeytn9Bv7Jd0RlaWzaGF3iwzwraeNJqRZ94w9hFKYQsLKstbhQ6Kz3VmA4jMlLlyuIPINh64nV9Usxv57VbdpgM3yoUZ-CE2B260MqK-pgVuXZ_IBogjk-p-T8-oIVAFP6PsWgrpK-XlRhOjeh4q5hmZ1aWuUuA7djnZ7v1kS4rM_U_MzW2jNe46kxfseTIX-emA70u2A90rtjeN5XjXeBUDOH1_wNZXEAMs3AI4Qo_qdsFnxNKM7vRdz-86PiPrsJv__vlrvKRKPXM-XlNIHF8Gfm7nHWUz8u8PfYxziSGz68_8lE9woPhlmmB8IDve6rKC1-xm8vV6PMtSWYXMSkHqrRV5bQpU0iLkvgBZG0dtqBFOKcE6MLrwoEHZysrCydah16NVK60tghGHbLdbdvCGcbQ-2pA7Awi5bKVwrgKjVFBe5zKUesSOH0e28YlznEpfLJr477s0zTYOI_ZpI_1j4Nr4i9wXAmkjQwzZ8cbyft6k8Wi88JWAXGigZFmPHyKCdbW0oRBEEDRiR48QN2nZ9k2p0Vqu0S3FZxxH2P_5Is306gztYVG__S_pd2yf7lMkW1kfsd3V_QO8R9Nm5T7E-fsHNB3utw priority: 102 providerName: Wiley-Blackwell |
Title | Reversible Thermal Hysteresis in Heating‐Cooling Cycles of Magnetic Susceptibility: A Fine Particle Effect of Magnetite |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL102932 https://www.proquest.com/docview/2791680262 https://doaj.org/article/c3c63e037e1347c6a43fab84af131691 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgERKXFb-i7FL5AKdVhOOf2ObWrbat0O6qKhStuER2Mq5WqtIV7R564xF4Rp6EsZOuugfgwiVxIiexZpyZb5LPM4S8Ay5c7kBlrFYYoFRMZy6AyCxnyqMHkXX64HZxWUzm8tOVutor9RU5YW164FZwHypRFQKY0BAXPVaFkyI4b6QLuYiJXqL1RZ-3C6Y6G4yGua2VZ2VmuC46yjvjNkb7Ynwem4Lfc0YpZ_89oLkPV5O_GT0lhx1QpIN2gM_IA2iek8fjVIh3i61E3azWL8h2Bola4ZdAUeloaJd0EvMzYyB9vabXDZ1EXNgsfv34OVzFGj0LOtxGMhxdBXrhFk1cx0g_364TwyWRZbcf6YCOEIDSaSch2qY53rtkAy_JfHT2ZTjJuoIKGUotGrZaMGNzNM8isCoHaayPx2BQkVKC82B1XoEG5VDQuZe1x3hHq1o6lwcrXpGDZtXAa0IRd9SBeQuobFlL4X0BVqmgKs1k4LpHTnaSLasu23gserEs019vbst9PfTI-7veN22WjT_0O41KuusTc2OnEzhjyk4e5b9mTI8c71Rcdi_suuQacbLBgBSfcZLU_teBlOPZOSJhYd78jxEdkSfx5pHaxs0xOdh8v4W3iHU2vk8ecjnFrRmN--TR4Ov82xz3p2eX01k_Tfnfuzv7tA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIgQXxK_YUsAHekIRie38VUKoLOxu6W6FSiv1Fmxnsqq0StpmK5Qbj8CT8FA8CTNOsmwP9NZbEjmW7RmPv7E_zzD2BoTUgYbQ8_MQHRTrx54uQHqp8EODK4jK3Ybb7DCanKgvp-HpBvvd34UhWmVvE52hzitLe-TvRIxAJkGPQXw4v_AoaxSdrvYpNFq1OIDmB7ps9fv9TyjfHSFGn4-HE6_LKuBpJWl259JP0gBtlCx8G4BKUkPvkGBvlAJtII0DCzGEOtIqMCo3CPrjMFdaBwUFX0KTfwfrSsnZS0bjleXH5aDN0JcqLxFx1BHtfZHSHoMcT-lRimtLoMsUcA3eroNkt8qNHrIHHTzle60-PWIbUD5md8cu_W-DT44wausnrDkCR-gwC-CoamjeF3xCUaHRfT-r-VnJJ4RGy_mfn7-GFWUGmvNhQxQ8XhV8pucl3Z7k365qx6txFN1ml-_xEcJe_rVTaN4GV177ZQlP2cmtDPgztllWJTxnHNFOXvgmBVQxlStpTARpGBahjX1ViHjA3vYjm9kuxjml2lhk7qxdpNm6HAZsZ1X6vI3t8Z9yH0lIqzIUkdt9qC7nWTcemZU2kuDLGOhyrsWOyEKbROkikBSQaMC2exFnnZmos39KjS13Yr-xIdn4aIr4WyZbN1f2mt2bHM-m2XT_8OAFu09VEG1OJNtsc3l5BS8RRy3NK6e8nH2_7dnyF5P0LEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrUBcEL9ioYAP9ISiJrYTJ0gItdvubul2tVqo1FuwHWdVaZWUZiuUG4_A8_A4PAkzTrJsD_TWWxI5luMZz3zjfJ4h5J1lXAXKhp6fhRCgGF96KrfcS5gfavAgInMbbqfTaHwmPp-H51vkd3cWBmmVnU10hjorDe6R7zEJQCaGiIHt5S0tYnY4_HT53cMKUvintSun0ajIia1_QPhWfTw-BFnvMjY8-joYe22FAU8Jjis9436cBGCveO6bwIo40XhvY_gyIazSNpGBsdKGKlIi0CLTEADIMBNKBTkmYgLzvy0xKuqR7YOj6Wy-9gPgHJp6fYnwYiajlnbvswR3HPhogpec3XCIrm7ADbC7CZmdzxs-Ig9bsEr3G-16TLZs8YTcG7liwDVcOfqoqZ6Sem4dvUMvLQXFA2O_pGPMEQ3B_EVFLwo6RmxaLP78_DUosU7Qgg5qJOTRMqenalHgWUr65bpyLBtH2K0_0H06BBBMZ6160ybV8sYrK_uMnN3JlD8nvaIs7AtCAftkua8TCwonMsG1jmwShnlopC9yJvvkfTezqWkznmPhjWXq_ryzJN2UQ5_srltfNpk-_tPuAIW0boP5ud2D8mqRtvORGm4ibn0uLR7VNfAhPFc6FioPOKYn6pOdTsRpazSq9J-Kw8id2G8dSDqaTwCN8_jl7Z29JfdhpaST4-nJK_IAe0AOHYt3SG91dW1fA6ha6Tet9lLy7a4XzF-xQDHS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Thermal+Hysteresis+in+Heating%E2%80%90Cooling+Cycles+of+Magnetic+Susceptibility%3A+A+Fine+Particle+Effect+of+Magnetite&rft.jtitle=Geophysical+research+letters&rft.au=Zhang%2C+Qi&rft.au=Appel%2C+Erwin&rft.date=2023-03-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=6&rft_id=info:doi/10.1029%2F2023GL102932&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL102932 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |