The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure
We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of li...
Saved in:
Published in | Journal of Geophysical Research Vol. 116; no. B8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.08.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0148-0227 2169-9313 2156-2202 2169-9356 |
DOI | 10.1029/2011JB008264 |
Cover
Loading…
Abstract | We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate‐rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity‐strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate‐poor samples. This suggests that lithification of phyllosilicate‐rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate‐poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate‐rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation.
Key Points
Fault strength depends on lithification state, composition and fabric
Lithification of fault rock by itself cannot drive seismogenic slip
Increased fault zone thickness can result in low apparent friction |
---|---|
AbstractList | Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone thickness can result in low apparent friction We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ~50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate-rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity-strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate-poor samples. This suggests that lithification of phyllosilicate-rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate-poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate-rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation. We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate‐rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity‐strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate‐poor samples. This suggests that lithification of phyllosilicate‐rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate‐poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate‐rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation. Key Points Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone thickness can result in low apparent friction |
ArticleNumber | B08404 |
Author | Niemeijer, André R. Ikari, Matt J. Marone, Chris |
Author_xml | – sequence: 1 givenname: Matt J. surname: Ikari fullname: Ikari, Matt J. email: mikari@marum.de organization: Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA – sequence: 2 givenname: André R. surname: Niemeijer fullname: Niemeijer, André R. organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy – sequence: 3 givenname: Chris surname: Marone fullname: Marone, Chris organization: Department of Geosciences, Pennsylvania State University, Pennsylvania, University Park, USA |
BookMark | eNp9kFFPHCEUhUmjSbfqW38A6fNOCwwDzKOadtt1o0mzTZO-EJa9dNHZQYGxta_-cVnHNI2J5QVyOd-59543aK8PPSD0lpL3lLD2AyOUzk8IUUzwV2jCaCMqxgjbQxNCuaoIY_I1OkrpkpTDG8EJnaD75QZwDB3g4LAzQ5fxn-JbnqvoLTb9Gnc-b7zz1mQfepyyyUXcY1f-dxXTlVqE_mfeTLENfco-D9nfAl7Bxtz6EKePNmtwIW5Hk623MRRqsHmIcIj2nekSHD3dB-jbp4_L08_V4mL25fR4URle16pqLTXQSmmpbahUZi1Bsdq2IFrHnVs1UgpVUiDAhFPOSCeIFFQ2sOZGOVIfoHej73UMNwOkrC_DEMsCSSvFeYF5U0TTUbSbMEVw-jr6rYl3mhK9C1r_G3SRs2dy6_Pjkjka370E1SP0y3dw998Gej77ekKFEqpQ1Uj5lOH3X8rEKy1kLRv9_Xymz2ZqufgxP9eyfgDB56Hu |
CitedBy_id | crossref_primary_10_1029_2018GC007633 crossref_primary_10_1016_j_ijrmms_2024_105665 crossref_primary_10_1016_j_epsl_2020_116180 crossref_primary_10_1126_sciadv_aav7172 crossref_primary_10_1016_j_ijrmms_2025_106076 crossref_primary_10_1016_j_jsg_2015_05_012 crossref_primary_10_1007_s10950_015_9527_7 crossref_primary_10_1016_j_epsl_2014_10_021 crossref_primary_10_1180_claymin_2015_050_5_06 crossref_primary_10_1007_s00531_014_1115_5 crossref_primary_10_1029_2012JB009204 crossref_primary_10_1002_2016GC006500 crossref_primary_10_1007_s00603_023_03283_6 crossref_primary_10_1002_2016JB013828 crossref_primary_10_1016_j_tust_2024_105968 crossref_primary_10_1002_2016JB013143 crossref_primary_10_1016_j_jsg_2014_10_006 crossref_primary_10_1016_j_advwatres_2015_07_023 crossref_primary_10_1093_gji_ggz143 crossref_primary_10_1007_s40948_017_0051_9 crossref_primary_10_1016_j_jsg_2017_10_009 crossref_primary_10_1029_2022GC010369 crossref_primary_10_2138_am_2022_8561 crossref_primary_10_1016_j_sedgeo_2016_03_024 crossref_primary_10_1029_2020JB019862 crossref_primary_10_1016_j_jsg_2020_104156 crossref_primary_10_1016_j_epsl_2014_09_034 crossref_primary_10_1029_2018JB016174 crossref_primary_10_1002_2016GL071569 crossref_primary_10_3390_app15010401 crossref_primary_10_1016_j_tecto_2014_05_038 crossref_primary_10_1029_2021JB023779 crossref_primary_10_1016_j_tecto_2012_09_019 crossref_primary_10_1016_j_jsg_2012_06_015 crossref_primary_10_1029_2021GL096292 crossref_primary_10_1002_2015GC005857 crossref_primary_10_1016_j_epsl_2014_12_014 crossref_primary_10_1016_j_epsl_2020_116682 crossref_primary_10_1029_2011GL050756 crossref_primary_10_1002_2016GC006286 crossref_primary_10_1016_j_tecto_2018_05_003 crossref_primary_10_1002_2015JB012136 crossref_primary_10_1002_2017GL074307 crossref_primary_10_1186_s40645_022_00488_1 crossref_primary_10_1016_j_tecto_2014_05_005 crossref_primary_10_1002_2015JB012737 crossref_primary_10_1029_2011GC003872 crossref_primary_10_1016_j_epsl_2017_08_009 crossref_primary_10_1111_bor_12189 crossref_primary_10_1029_2024GL108655 crossref_primary_10_3389_feart_2022_931005 crossref_primary_10_1186_s40623_021_01419_y crossref_primary_10_1002_2017JB014876 crossref_primary_10_1186_s40623_016_0512_3 crossref_primary_10_1016_j_earscirev_2022_104019 crossref_primary_10_1016_j_jseaes_2016_10_002 crossref_primary_10_1130_G37028_1 crossref_primary_10_1016_j_conbuildmat_2017_12_091 crossref_primary_10_1016_j_tecto_2019_228275 crossref_primary_10_1038_s41598_019_46241_5 crossref_primary_10_1029_2019JB018429 |
Cites_doi | 10.1029/JB095iB10p15589 10.1016/j.jsg.2010.11.010 10.1007/BF00877209 10.1016/0191-8141(93)90158-7 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2 10.1029/92JB01866 10.1029/2008JB005763 10.1016/0040-1951(70)90059-4 10.1007/BF00875724 10.1007/BF01237876 10.1016/0040-1951(95)98214-H 10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2 10.1016/j.jsg.2005.10.008 10.1029/92GL02370 10.1130/G30868.1 10.1130/G31416.1 10.1016/0040-1951(87)90010-2 10.1038/ngeo940 10.1029/93JB03361 10.7312/dixo13866-013 10.1029/93JB00780 10.1029/2009GL041689 10.1016/0191-8141(89)90101-6 10.1029/98JB00162 10.1029/JB095iB12p19257 10.1029/2009JB000838 10.1029/2007TC002230 10.1029/1999GL008401 10.1111/j.1365-3121.1992.tb00585.x 10.1016/S0074-6142(08)62836-3 10.1016/0191-8141(95)00076-P 10.1130/G31091.1 10.1038/359687a0 10.1029/2007JB005277 10.1016/S0191-8141(99)00103-0 10.1029/JB084iB05p02161 10.1029/JB085iB11p06185 10.1016/0040-1951(81)90276-6 10.1016/0148-9062(74)90453-7 10.1029/JB086iB04p02902 10.1016/S0040-1951(98)00113-9 10.1038/nature08585 10.7312/dixo13866-012 10.1038/34157 10.1016/S0040-1951(00)00168-2 10.1016/0148-9062(76)90226-6 10.1029/2005JB004122 10.1029/2006JB004748 10.1016/j.tecto.2006.03.048 10.1016/S0074-6142(08)00007-7 10.1007/BF00875717 10.1029/2007JB005376 10.1029/2008JB006089 10.1016/S0074-6142(08)00006-5 10.1088/0370-1328/71/4/316 10.1029/JB095iB13p21613 10.1016/0040-1951(72)90068-6 10.1016/0191-8141(88)90020-X 10.1007/BF00874336 10.1029/2008JB006092 10.1029/94JB02622 10.1029/94JB02625 10.1007/BF00876528 10.1029/GL015i006p00621 10.1016/S0012-821X(03)00424-2 10.1016/0191-8141(90)90101-4 10.1146/annurev.ea.14.050186.001053 10.1146/annurev.earth.26.1.643 10.1016/j.jsg.2010.06.009 10.7312/dixo13866-010 10.1017/CBO9780511818516 10.1029/JB095iB05p07007 10.1130/G25645A.1 10.1016/S0040-1951(98)00121-8 10.1029/JB074i022p05343 10.1029/96JB00411 10.1029/2008JB006274 10.1016/S0074-6142(08)62814-4 10.1016/S0040-1951(97)00077-2 10.1007/BF00876327 10.1029/2006JB004634 10.1007/BF00876532 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 10.1016/S0074-6142(08)62815-6 10.1016/j.jsg.2010.02.003 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2 10.1029/1999JB900279 10.1029/2005TC001916 10.1130/G19601.1 10.1029/2009JB006383 |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. Copyright 2011 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: Copyright 2011 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION 3V. 7ST 7TG 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2011JB008264 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9356 |
EndPage | n/a |
ExternalDocumentID | 2430928521 10_1029_2011JB008264 JGRB16868 ark_67375_WNG_KG8TLZJN_7 |
Genre | article Feature |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K RJQFR SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-a4338-9c1ae977c1c5178ad7e823c9e69f4ffb577682010e26f8fa7f6076175ed4a8f03 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9313 |
IngestDate | Fri Jul 25 10:46:46 EDT 2025 Tue Jul 01 02:42:15 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Wed Jan 22 17:10:29 EST 2025 Wed Oct 30 09:53:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B8 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4338-9c1ae977c1c5178ad7e823c9e69f4ffb577682010e26f8fa7f6076175ed4a8f03 |
Notes | Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4. istex:4501EDEDE07387732F4B2F0B4B59F0968B7E9E88 ark:/67375/WNG-KG8TLZJN-7 ArticleID:2011JB008264 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 884468245 |
PQPubID | 54731 |
PageCount | 25 |
ParticipantIDs | proquest_journals_884468245 crossref_primary_10_1029_2011JB008264 crossref_citationtrail_10_1029_2011JB008264 wiley_primary_10_1029_2011JB008264_JGRB16868 istex_primary_ark_67375_WNG_KG8TLZJN_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2011 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: August 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Collettini, C., A. Niemeijer, C. Viti, and C. Marone (2009a), Fault zone fabric and fault weakness, Nature, 462, 907-910, doi:10.1038/nature08585. Niemeijer, A. R., C. Marone, and D. Elsworth (2010a), Fabric induced weakness of tectonic faults, Geophys. Res. Lett., 37, L03304, doi:10.1029/2009GL041689. Beeler, N. M., T. E. Tullis, M. L. Blanpied, and J. D. Weeks (1996), Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101, 8697-8715, doi:10.1029/96JB00411. Mandl, G., L. N. J. de Jong, and A. Maltha (1977), Shear zones in granular material, Rock Mech., 9, 95-144, doi:10.1007/BF01237876. Stesky, R. M. (1978), Rock friction-effect of confining pressure, temperature, and pore pressure, Pure Appl. Geophys., 116, 690-704, doi:10.1007/BF00876532. Marone, C. (1998a), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643-696, doi:10.1146/annurev.earth.26.1.643. Rutter, E. H., and R. H. Maddock (1992), On the mechanical properties of synthetic kaolinite/quartz fault gouge, Terra Nova, 4, 489-500, doi:10.1111/j.1365-3121.1992.tb00585.x. Tullis, T. E., and J. D. Weeks (1986), Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys., 124, 383-414, doi:10.1007/BF00877209. Tembe, S., D. A. Lockner, and T.-F. Wong (2010), Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite, J. Geophys. Res., 115, B03416, doi:10.1029/2009JB006383. Jaeger, J. C., N. G. W. Cook, and R. W. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell, Malden, Mass. Logan, J. M., and K. A. Rauenzahn (1987), Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric, Tectonophysics, 144, 87-108, doi:10.1016/0040-1951(87)90010-2. Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Press, New York. Gottschalk, R. R., A. K. Kronenberg, J. E. Russell, and J. Handin (1990), Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior, J. Geophys. Res., 95, 21,613-21,634, doi:10.1029/JB095iB13p21613. Hull, J. (1988), Thickness-displacement relationships for deformation zones, J. Struct. Geol., 10, 431-435, doi:10.1016/0191-8141(88)90020-X. Wenk, H.-R., W. Kanitpanyacharoen, and M. Voltolini (2010), Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist, J. Struct. Geol., 32, 478-489, doi:10.1016/j.jsg.2010.02.003. Chester, F. M., and J. S. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199-221, doi:10.1016/S0040-1951(98)00121-8. Marone, C. (1998b), The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle, Nature, 391, 69-72, doi:10.1038/34157. Sibson, R. H. (1986a), Earthquakes and rock deformation in crustal fault zones, Annu. Rev. Earth Planet. Sci., 14, 149-175, doi:10.1146/annurev.ea.14.050186.001053. Yund, R. A., M. L. Blanpied, T. E. Tullis, and J. D. Weeks (1990), Amorphous material in high strain experimental fault gouges, J. Geophys. Res., 95, 15,589-15,602, doi:10.1029/JB095iB10p15589. Means, W. D. (1995), Shear zones and rock history, Tectonophysics, 247, 157-160, doi:10.1016/0040-1951(95)98214-H. Blanpied, M. L., C. J. Marone, D. A. Lockner, J. D. Byerlee, and D. P. King (1998), Quantitative measure of the variation in fault rheology due to fluid-rock interactions, J. Geophys. Res., 103, 9691-9712, doi:10.1029/98JB00162. Savage, H. M., and C. Marone (2008), Potential for earthquake triggering from transient deformations, J. Geophys. Res., 113, B05302, doi:10.1029/2007JB005277. Attewell, P. B., and M. R. Sandford (1974), Intrinsic shear strength of a brittle, anisotropic rock-I. Experimental and mechanical implications, Int. J. Mech. Min. Sci. Geomech. Abstr., 11, 423-430, doi:10.1016/0148-9062(74)90453-7. Lachenbruch, A. H., and J. H. Sass (1980), Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 6185-6222, doi:10.1029/JB085iB11p06185. Schleicher, A. M., B. A. van der Pluijm, and L. N. Warr (2010), Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 38, 667-670, doi:10.1130/G31091.1. Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615-626. Niemeijer, A. R., and C. J. Spiers (2006), Velocity dependence of strength and healing behavior in simulated phyllosilicate-bearing fault gouge, Tectonophysics, 427, 231-253, doi:10.1016/j.tecto.2006.03.048. Evans, J. P. (1990), Thickness-displacement relationships for fault zones, J. Struct. Geol., 12, 1061-1065, doi:10.1016/0191-8141(90)90101-4. Schleicher, A. M., S. N. Tourscher, B. A. van der Pluijm, and L. N. Warr (2009), Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from the SAFOD drill hole, J. Geophys. Res., 114, B04202, doi:10.1029/2008JB006092. Shea, W. T., and A. K. Kronenberg (1993), Strength and anisotropy of foliated rocks with varied mica contents, J. Struct. Geol., 15, 1097-1121, doi:10.1016/0191-8141(93)90158-7. Vrolijk, P., and B. A. van der Pluijm (1999), Clay gouge, J. Struct. Geol., 21, 1039-1048, doi:10.1016/S0191-8141(99)00103-0. de Paolo, N., C. Collettini, D. R. Faulkner, and F. Trippetta (2008), Fault zone architecture and deformation processes within evaporitic rocks in the upper crust, Tectonics, 27, TC4017, doi:10.1029/2007TC002230. Mair, K., and C. Marone (1999), Friction of simulated fault gouge for a wide range of velocities and normal stresses, J. Geophys. Res., 104, 28,899-28,914, doi:10.1029/1999JB900279. Karner, S. L., C. Marone, and B. Evans (1997), Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions, Tectonophysics, 277, 41-55, doi:10.1016/S0040-1951(97)00077-2. Marone, C., C. B. Raleigh, and C. H. Scholz (1990), Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res., 95, 7007-7025, doi:10.1029/JB095iB05p07007. Shimamoto, T., and J. M. Logan (1981b), Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges, J. Geophys. Res., 86, 2902-2914, doi:10.1029/JB086iB04p02902. Niemeijer, A. R., C. Marone, and D. Elsworth (2008), Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments, J. Geophys. Res., 113, B04204, doi:10.1029/2007JB005376. Handin, J. (1969), On the Coulomb-Mohr failure criterion, J. Geophys. Res., 74, 5343-5348, doi:10.1029/JB074i022p05343. Rutter, E. H., R. H. Maddock, S. H. Hall, and S. H. White (1986), Comparative microstructures of naturally and experimentally produced clay-bearing fault gouges, Pure Appl. Geophys., 124, 3-30, doi:10.1007/BF00875717. Dieterich, J. H. (1979), Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161-2168, doi:10.1029/JB084iB05p02161. Niemeijer, A. R., C. Marone, and D. Elsworth (2010b), Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening, J. Geophys. Res., 115, B10207, doi:10.1029/2009JB000838. Biegel, R. L., C. G. Sammis, and J. H. Dieterich (1989), The frictional properties of a simulated gouge having a fractal particle size distribution, J. Struct. Geol., 11, 827-846, doi:10.1016/0191-8141(89)90101-6. Peng, Z., and J. Gomberg (2010), An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 3, 599-607, doi:10.1038/ngeo940. Reinen, L. A., and J. D. Weeks (1993), Determination of rock friction constitutive parameters using an iterative least-squares inversion method, J. Geophys. Res., 98, 15,937-15,950, doi:10.1029/93JB00780. Sleep, N. H., and M. L. Blanpied (1992), Creep, compaction and the weak rheology of major faults, Nature, 359, 687-692, doi:10.1038/359687a0. Scott, D. R., C. J. Marone, and C. G. Sammis (1994), The apparent friction of granular fault gouge in sheared layers, J. Geophys. Res., 99, 7231-7246, doi:10.1029/93JB03361. Ikari, M. J., D. M. Saffer, and C. Marone (2007), Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res., 112, B06423, doi:10.1029/2006JB004748. Muhuri, S. K., T. A. Dewers, T. E. Scott Jr., and Z. Reches (2003), Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881-884, doi:10.1130/G19601.1. Sibson, R. H. (1986b), Brecciation processes in fault zones: Inferences from earthquake rupturing, Pure Appl. Geophys., 124, 159-175, doi:10.1007/BF00875724. Wintsch, R. P., R. Christoffersen, and A. K. Kronenberg (1995), Fluid-rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021-13,032, doi:10.1029/94JB02622. Frost, E., J. Dolan, C. Sammis, B. Hacker, J. Cole, and L. Ratschbacher (2009), Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: Structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria, J. Geophys. Res., 114, B04406, doi:10.1029/2008JB005763. Morrow, C. A., D. E. Moore, and D. A. Lockner (2000), The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophys. Res. Lett., 27, 815-818, doi:10.1029/1999GL008401. Marone, C., and C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophys. Res. Lett., 15, 621-624, doi:10.1029/GL015i006p00621. Brace, W. F. (1972), Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics, 14, 189-200. Donath, F. A. (1961), Experimental study of shear failure in anisotropic rocks, Geol. Soc. Am. Bull., 72, 985-990, doi:10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2. Scholz, C. H. (1987), Wear and goug 1970; 9 1990; 95 1974; 11 1990; 12 2001; 186 1987; 144 1980; 85 1969; 74 1997; 277 1986; 37 1992; 19 1961; 72 1996; 101 2009; 114 1981; 86 1994; 143 1990 2009; 94 2000; 327 2006; 28 2010; 115 2008; 27 1992; 359 1995; 247 2008; 113 1972; 14 2010; 3 1996; 24 1981; 75 2007; 26 1992; 4 1998; 26 2010; 32 2010; 38 1996; 18 2010; 37 2000; 27 2003; 215 1988; 15 1986; 14 1988; 10 1981; 24 1997 2007 2011; 33 1999; 21 1958; 71 1992 2001; 29 2002 2011; 39 1978; 116 1999; 104 2003; 31 2006; 111 1987; 15 1998; 295 1993; 15 2007; 112 1998; 391 1989; 11 1976; 13 2006; 427 1986; 124 2005; 245 1993; 98 2009; 462 1992; 139 1994; 99 1998; 103 1995; 100 2008; 299 1977; 9 2009; 37 1979; 84 Marone (10.1029/2011JB008264:maro07) 2007 Marone (10.1029/2011JB008264:maro98a) 1998; 26 Holdsworth (10.1029/2011JB008264:hold11) 2011; 33 Means (10.1029/2011JB008264:mean95) 1995; 247 Mair (10.1029/2011JB008264:mair99) 1999; 104 Shimamoto (10.1029/2011JB008264:shim86) 1986; 37 Marone (10.1029/2011JB008264:maro09) 2009; 94 Schleicher (10.1029/2011JB008264:schl09) 2009; 114 Warr (10.1029/2011JB008264:warr01) 2001; 186 Niemeijer (10.1029/2011JB008264:niem10b) 2010; 115 Stesky (10.1029/2011JB008264:stes78) 1978; 116 Chester (10.1029/2011JB008264:ches98) 1998; 295 Menéndez (10.1029/2011JB008264:mene96) 1996; 18 Dieterich (10.1029/2011JB008264:diet79) 1979; 84 Chester (10.1029/2011JB008264:ches93) 1993; 98 Moore (10.1029/2011JB008264:moor07) 2007 Scruggs (10.1029/2011JB008264:scru98) 1998; 295 Tenthorey (10.1029/2011JB008264:tent06) 2006; 111 de Paolo (10.1029/2011JB008264:depa08) 2008; 27 Reinen (10.1029/2011JB008264:rein93) 1993; 98 Niemeijer (10.1029/2011JB008264:niem10a) 2010; 37 Shimamoto (10.1029/2011JB008264:shim81b) 1981; 86 Attewell (10.1029/2011JB008264:atte74) 1974; 11 Shimamoto (10.1029/2011JB008264:shim81a) 1981; 75 Savage (10.1029/2011JB008264:sava08) 2008; 113 Saffer (10.1029/2011JB008264:saff03) 2003; 215 Marone (10.1029/2011JB008264:maro98b) 1998; 391 Shea (10.1029/2011JB008264:shea93) 1993; 15 Wintsch (10.1029/2011JB008264:wint95) 1995; 100 Scholz (10.1029/2011JB008264:scho92) 1992 Caine (10.1029/2011JB008264:cain96) 1996; 24 Numelin (10.1029/2011JB008264:nume07) 2007; 26 Niemeijer (10.1029/2011JB008264:niem08) 2008; 113 Logan (10.1029/2011JB008264:loga87) 1987; 144 Smith (10.1029/2011JB008264:smit10) 2010; 115 Faulkner (10.1029/2011JB008264:faul08) 2008; 299 Evans (10.1029/2011JB008264:evan95) 1995; 100 Rutter (10.1029/2011JB008264:rutt92) 1992; 4 Karner (10.1029/2011JB008264:karn97) 1997; 277 Cocco (10.1029/2011JB008264:cocc09) 2009; 94 Handin (10.1029/2011JB008264:hand69) 1969; 74 Muhuri (10.1029/2011JB008264:muhu03) 2003; 31 Biegel (10.1029/2011JB008264:bieg89) 1989; 11 Niemeijer (10.1029/2011JB008264:niem05) 2005; 245 Hull (10.1029/2011JB008264:hull88) 1988; 10 Moore (10.1029/2011JB008264:moor01) 2001; 29 Byerlee (10.1029/2011JB008264:byer70) 1970; 9 Logan (10.1029/2011JB008264:loga92) 1992 Yund (10.1029/2011JB008264:yund90) 1990; 95 Marone (10.1029/2011JB008264:maro88) 1988; 15 Beeler (10.1029/2011JB008264:beel96) 1996; 101 Cook (10.1029/2011JB008264:cook81) 1981; 24 Lachenbruch (10.1029/2011JB008264:lach80) 1980; 85 Jaeger (10.1029/2011JB008264:jaeg07) 2007 Schleicher (10.1029/2011JB008264:schl10) 2010; 38 Scott (10.1029/2011JB008264:scot94) 1994; 99 Frost (10.1029/2011JB008264:fros09) 2009; 114 Sibson (10.1029/2011JB008264:sibs86b) 1986; 124 Byerlee (10.1029/2011JB008264:byer76) 1976; 13 Marone (10.1029/2011JB008264:maro90) 1990; 95 Peng (10.1029/2011JB008264:peng10) 2010; 3 Faulkner (10.1029/2011JB008264:faul10) 2010; 32 Beeler (10.1029/2011JB008264:beel07) 2007 Byerlee (10.1029/2011JB008264:byer92) 1992; 19 Gu (10.1029/2011JB008264:gu94) 1994; 143 Bos (10.1029/2011JB008264:bos00) 2000; 327 Hobbs (10.1029/2011JB008264:hobb90) 1990 Vrolijk (10.1029/2011JB008264:vrol99) 1999; 21 Kronenberg (10.1029/2011JB008264:kron90) 1990; 95 Byerlee (10.1029/2011JB008264:byer78) 1978; 116 Ikari (10.1029/2011JB008264:ikar07) 2007; 112 Marone (10.1029/2011JB008264:maro92) 1992; 139 Sibson (10.1029/2011JB008264:sibs86a) 1986; 14 Dieterich (10.1029/2011JB008264:diet81) 1981; 24 Donath (10.1029/2011JB008264:dona61) 1961; 72 Morrow (10.1029/2011JB008264:morr92) 1992 Wenk (10.1029/2011JB008264:wenk10) 2010; 32 Fagereng (10.1029/2011JB008264:fage10) 2010; 38 Rabinowicz (10.1029/2011JB008264:rabi58) 1958; 71 Morrow (10.1029/2011JB008264:morr00) 2000; 27 Tullis (10.1029/2011JB008264:tull86) 1986; 124 Sleep (10.1029/2011JB008264:slee92) 1992; 359 Rutter (10.1029/2011JB008264:rutt86) 1986; 124 Blanpied (10.1029/2011JB008264:blan98) 1998; 103 Evans (10.1029/2011JB008264:evan90) 1990; 12 Tembe (10.1029/2011JB008264:temb10) 2010; 115 Mandl (10.1029/2011JB008264:mand77) 1977; 9 Scholz (10.1029/2011JB008264:scho02) 2002 Collettini (10.1029/2011JB008264:coll09b) 2009; 37 Friedman (10.1029/2011JB008264:frie81) 1981; 24 Ikari (10.1029/2011JB008264:ikar11) 2011; 39 Jefferies (10.1029/2011JB008264:jeff06) 2006; 28 Brace (10.1029/2011JB008264:brac72) 1972; 14 Rutter (10.1029/2011JB008264:rutt01) 2001; 186 Gottschalk (10.1029/2011JB008264:gott90) 1990; 95 Hibbeler (10.1029/2011JB008264:hibb97) 1997 Niemeijer (10.1029/2011JB008264:niem06) 2006; 427 Collettini (10.1029/2011JB008264:coll09a) 2009; 462 Crawford (10.1029/2011JB008264:craw08) 2008; 113 Scholz (10.1029/2011JB008264:scho87) 1987; 15 Ikari (10.1029/2011JB008264:ikar09) 2009; 114 |
References_xml | – reference: Jefferies, S. P., R. E. Holdsworth, C. A. J. Wibberley, T. Shimamoto, C. J. Spiers, A. R. Niemeijer, and G. E. Lloyd (2006), The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan, J. Struct. Geol., 28, 220-235, doi:10.1016/j.jsg.2005.10.008. – reference: Rabinowicz, E. (1958), The intrinsic variables affecting the stick-slip process, Proc. Phys. Soc., 71, 668-675, doi:10.1088/0370-1328/71/4/316. – reference: Reinen, L. A., and J. D. Weeks (1993), Determination of rock friction constitutive parameters using an iterative least-squares inversion method, J. Geophys. Res., 98, 15,937-15,950, doi:10.1029/93JB00780. – reference: Rutter, E. H., and R. H. Maddock (1992), On the mechanical properties of synthetic kaolinite/quartz fault gouge, Terra Nova, 4, 489-500, doi:10.1111/j.1365-3121.1992.tb00585.x. – reference: Collettini, C., C. Viti, S. A. F. Smith, and R. E. Holdsworth (2009b), Development of interconnected talc networks and weakening of continental low-angle normal faults, Geology, 37, 567-570, doi:10.1130/G25645A.1. – reference: Brace, W. F. (1972), Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics, 14, 189-200. – reference: Morrow, C. A., D. E. Moore, and D. A. Lockner (2000), The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophys. Res. Lett., 27, 815-818, doi:10.1029/1999GL008401. – reference: Ikari, M. J., C. Marone, and D. M. Saffer (2011), On the relation between fault strength and frictional stability, Geology, 39, 83-86, doi:10.1130/G31416.1. – reference: Byerlee, J., and R. Summers (1976), A note on the effect of fault gouge thickness on fault stability, Int. J. Mech. Min. Sci. Geomech. Abstr., 13, 35-36, doi:10.1016/0148-9062(76)90226-6. – reference: Schleicher, A. M., S. N. Tourscher, B. A. van der Pluijm, and L. N. Warr (2009), Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from the SAFOD drill hole, J. Geophys. Res., 114, B04202, doi:10.1029/2008JB006092. – reference: Dieterich, J. H. (1979), Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161-2168, doi:10.1029/JB084iB05p02161. – reference: Shimamoto, T., and J. M. Logan (1981b), Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges, J. Geophys. Res., 86, 2902-2914, doi:10.1029/JB086iB04p02902. – reference: Muhuri, S. K., T. A. Dewers, T. E. Scott Jr., and Z. Reches (2003), Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881-884, doi:10.1130/G19601.1. – reference: Niemeijer, A. R., C. Marone, and D. Elsworth (2010b), Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening, J. Geophys. Res., 115, B10207, doi:10.1029/2009JB000838. – reference: Scruggs, V. J., and T. E. Tullis (1998), Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge, Tectonophysics, 295, 15-40, doi:10.1016/S0040-1951(98)00113-9. – reference: Sibson, R. H. (1986a), Earthquakes and rock deformation in crustal fault zones, Annu. Rev. Earth Planet. Sci., 14, 149-175, doi:10.1146/annurev.ea.14.050186.001053. – reference: Tembe, S., D. A. Lockner, and T.-F. Wong (2010), Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite, J. Geophys. Res., 115, B03416, doi:10.1029/2009JB006383. – reference: Hibbeler, R. C. (1997), Mechanics of Materials, 3rd ed., Prentice Hall, Upper Saddle River, N. J. – reference: Kronenberg, A. K., S. H. Kirby, and J. Pinkston (1990), Basal slip and mechanical anisotropy of biotite, J. Geophys. Res., 95, 19,257-19,278, doi:10.1029/JB095iB12p19257. – reference: Jaeger, J. C., N. G. W. Cook, and R. W. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell, Malden, Mass. – reference: Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615-626. – reference: Schleicher, A. M., B. A. van der Pluijm, and L. N. Warr (2010), Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 38, 667-670, doi:10.1130/G31091.1. – reference: Biegel, R. L., C. G. Sammis, and J. H. Dieterich (1989), The frictional properties of a simulated gouge having a fractal particle size distribution, J. Struct. Geol., 11, 827-846, doi:10.1016/0191-8141(89)90101-6. – reference: Holdsworth, R. E., E. W. E. van Diggelen, C. J. Spiers, J. H. P. de Bresser, R. J. Walker, and L. Bowen (2011), Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California, J. Struct. Geol., 33, 132-144, doi:10.1016/j.jsg.2010.11.010. – reference: Fagereng, Å., and R. H. Sibson (2010), Mélange rheology and seismic style, Geology, 38, 751-754, doi:10.1130/G30868.1. – reference: Handin, J. (1969), On the Coulomb-Mohr failure criterion, J. Geophys. Res., 74, 5343-5348, doi:10.1029/JB074i022p05343. – reference: Gu, Y., and T.-F. Wong (1994), Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size, Pure Appl. Geophys., 143, 387-423, doi:10.1007/BF00874336. – reference: de Paolo, N., C. Collettini, D. R. Faulkner, and F. Trippetta (2008), Fault zone architecture and deformation processes within evaporitic rocks in the upper crust, Tectonics, 27, TC4017, doi:10.1029/2007TC002230. – reference: Ikari, M. J., D. M. Saffer, and C. Marone (2009), Frictional and hydrologic properties of clay-rich fault gouge, J. Geophys. Res., 114, B05409, doi:10.1029/2008JB006089. – reference: Faulkner, D. R., C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, C. A. J. Wibberley, and M. O. Withjack (2010), A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557-1575, doi:10.1016/j.jsg.2010.06.009. – reference: Niemeijer, A. R., and C. J. Spiers (2006), Velocity dependence of strength and healing behavior in simulated phyllosilicate-bearing fault gouge, Tectonophysics, 427, 231-253, doi:10.1016/j.tecto.2006.03.048. – reference: Scott, D. R., C. J. Marone, and C. G. Sammis (1994), The apparent friction of granular fault gouge in sheared layers, J. Geophys. Res., 99, 7231-7246, doi:10.1029/93JB03361. – reference: Peng, Z., and J. Gomberg (2010), An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 3, 599-607, doi:10.1038/ngeo940. – reference: Niemeijer, A. R., C. Marone, and D. Elsworth (2008), Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments, J. Geophys. Res., 113, B04204, doi:10.1029/2007JB005376. – reference: Stesky, R. M. (1978), Rock friction-effect of confining pressure, temperature, and pore pressure, Pure Appl. Geophys., 116, 690-704, doi:10.1007/BF00876532. – reference: Evans, J. P., and F. M. Chester (1995), Fluid-rock interactions in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures, J. Geophys. Res., 100, 13,007-13,020, doi:10.1029/94JB02625. – reference: Yund, R. A., M. L. Blanpied, T. E. Tullis, and J. D. Weeks (1990), Amorphous material in high strain experimental fault gouges, J. Geophys. Res., 95, 15,589-15,602, doi:10.1029/JB095iB10p15589. – reference: Chester, F. M., and J. S. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199-221, doi:10.1016/S0040-1951(98)00121-8. – reference: Tenthorey, E., and S. F. Cox (2006), Cohesive strengthening of fault zones during the interseismic period: An experimental study, J. Geophys. Res., 111, B09202, doi:10.1029/2005JB004122. – reference: Donath, F. A. (1961), Experimental study of shear failure in anisotropic rocks, Geol. Soc. Am. Bull., 72, 985-990, doi:10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2. – reference: Crawford, B. R., D. R. Faulkner, and E. H. Rutter (2008), Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge, J. Geophys. Res., 113, B03207, doi:10.1029/2006JB004634. – reference: Niemeijer, A. R., C. Marone, and D. Elsworth (2010a), Fabric induced weakness of tectonic faults, Geophys. Res. Lett., 37, L03304, doi:10.1029/2009GL041689. – reference: Chester, F. M., J. P. Evans, and R. L. Biegel (1993), Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res., 98, 771-786, doi:10.1029/92JB01866. – reference: Byerlee, J. D. (1970), The mechanics of stick-slip, Tectonophysics, 9, 475-486, doi:10.1016/0040-1951(70)90059-4. – reference: Byerlee, J. D., and J. C. Savage (1992), Coulomb plasticity within the fault zone, Geophys. Res. Lett., 19, 2341-2344, doi:10.1029/92GL02370. – reference: Shimamoto, T., and J. M. Logan (1981a), Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone, Tectonophysics, 75, 243-255. – reference: Means, W. D. (1995), Shear zones and rock history, Tectonophysics, 247, 157-160, doi:10.1016/0040-1951(95)98214-H. – reference: Rutter, E. H., R. H. Maddock, S. H. Hall, and S. H. White (1986), Comparative microstructures of naturally and experimentally produced clay-bearing fault gouges, Pure Appl. Geophys., 124, 3-30, doi:10.1007/BF00875717. – reference: Moore, J. C., and D. M. Saffer (2001), Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 183-186, doi:10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2. – reference: Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Press, New York. – reference: Menéndez, B., W. Zhu, and T.-F. Wong (1996), Micromechanics of brittle faulting and cataclastic flow in Berea sandstone, J. Struct. Geol., 18, 1-16, doi:10.1016/0191-8141(95)00076-P. – reference: Lachenbruch, A. H., and J. H. Sass (1980), Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 6185-6222, doi:10.1029/JB085iB11p06185. – reference: Marone, C. (1998a), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643-696, doi:10.1146/annurev.earth.26.1.643. – reference: Hull, J. (1988), Thickness-displacement relationships for deformation zones, J. Struct. Geol., 10, 431-435, doi:10.1016/0191-8141(88)90020-X. – reference: Logan, J. M., and K. A. Rauenzahn (1987), Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric, Tectonophysics, 144, 87-108, doi:10.1016/0040-1951(87)90010-2. – reference: Bos, B., C. J. Peach, and C. J. Spiers (2000), Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution, Tectonophysics, 327, 173-194, doi:10.1016/S0040-1951(00)00168-2. – reference: Evans, J. P. (1990), Thickness-displacement relationships for fault zones, J. Struct. Geol., 12, 1061-1065, doi:10.1016/0191-8141(90)90101-4. – reference: Shea, W. T., and A. K. Kronenberg (1993), Strength and anisotropy of foliated rocks with varied mica contents, J. Struct. Geol., 15, 1097-1121, doi:10.1016/0191-8141(93)90158-7. – reference: Karner, S. L., C. Marone, and B. Evans (1997), Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions, Tectonophysics, 277, 41-55, doi:10.1016/S0040-1951(97)00077-2. – reference: Sibson, R. H. (1986b), Brecciation processes in fault zones: Inferences from earthquake rupturing, Pure Appl. Geophys., 124, 159-175, doi:10.1007/BF00875724. – reference: Beeler, N. M., T. E. Tullis, M. L. Blanpied, and J. D. Weeks (1996), Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101, 8697-8715, doi:10.1029/96JB00411. – reference: Collettini, C., A. Niemeijer, C. Viti, and C. Marone (2009a), Fault zone fabric and fault weakness, Nature, 462, 907-910, doi:10.1038/nature08585. – reference: Marone, C., C. B. Raleigh, and C. H. Scholz (1990), Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res., 95, 7007-7025, doi:10.1029/JB095iB05p07007. – reference: Saffer, D. M., and C. Marone (2003), Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts, Earth Planet. Sci. Lett., 215, 219-235, doi:10.1016/S0012-821X(03)00424-2. – reference: Wenk, H.-R., W. Kanitpanyacharoen, and M. Voltolini (2010), Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist, J. Struct. Geol., 32, 478-489, doi:10.1016/j.jsg.2010.02.003. – reference: Wintsch, R. P., R. Christoffersen, and A. K. Kronenberg (1995), Fluid-rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021-13,032, doi:10.1029/94JB02622. – reference: Caine, J. S., J. P. Evans, and C. B. Forster (1996), Fault zone architecture and permeability structure, Geology, 24, 1025-1028, doi:10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2. – reference: Blanpied, M. L., C. J. Marone, D. A. Lockner, J. D. Byerlee, and D. P. King (1998), Quantitative measure of the variation in fault rheology due to fluid-rock interactions, J. Geophys. Res., 103, 9691-9712, doi:10.1029/98JB00162. – reference: Ikari, M. J., D. M. Saffer, and C. Marone (2007), Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res., 112, B06423, doi:10.1029/2006JB004748. – reference: Attewell, P. B., and M. R. Sandford (1974), Intrinsic shear strength of a brittle, anisotropic rock-I. Experimental and mechanical implications, Int. J. Mech. Min. Sci. Geomech. Abstr., 11, 423-430, doi:10.1016/0148-9062(74)90453-7. – reference: Mair, K., and C. Marone (1999), Friction of simulated fault gouge for a wide range of velocities and normal stresses, J. Geophys. Res., 104, 28,899-28,914, doi:10.1029/1999JB900279. – reference: Scholz, C. H. (1987), Wear and gouge formation in brittle faulting, Geology, 15, 493-495, doi:10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2. – reference: Sleep, N. H., and M. L. Blanpied (1992), Creep, compaction and the weak rheology of major faults, Nature, 359, 687-692, doi:10.1038/359687a0. – reference: Frost, E., J. Dolan, C. Sammis, B. Hacker, J. Cole, and L. Ratschbacher (2009), Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: Structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria, J. Geophys. Res., 114, B04406, doi:10.1029/2008JB005763. – reference: Vrolijk, P., and B. A. van der Pluijm (1999), Clay gouge, J. Struct. Geol., 21, 1039-1048, doi:10.1016/S0191-8141(99)00103-0. – reference: Marone, C., B. E. Hobbs, and A. Ord (1992), Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear, Pure Appl. Geophys., 139, 195-214, doi:10.1007/BF00876327. – reference: Gottschalk, R. R., A. K. Kronenberg, J. E. Russell, and J. Handin (1990), Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior, J. Geophys. Res., 95, 21,613-21,634, doi:10.1029/JB095iB13p21613. – reference: Marone, C. (1998b), The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle, Nature, 391, 69-72, doi:10.1038/34157. – reference: Smith, S. A. F., and D. R. Faulkner (2010), Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy, J. Geophys. Res., 115, B02407, doi:10.1029/2008JB006274. – reference: Numelin, T., C. Marone, and E. Kirby (2007), Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California, Tectonics, 26, TC2004, doi:10.1029/2005TC001916. – reference: Mandl, G., L. N. J. de Jong, and A. Maltha (1977), Shear zones in granular material, Rock Mech., 9, 95-144, doi:10.1007/BF01237876. – reference: Marone, C., and C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophys. Res. Lett., 15, 621-624, doi:10.1029/GL015i006p00621. – reference: Savage, H. M., and C. Marone (2008), Potential for earthquake triggering from transient deformations, J. Geophys. Res., 113, B05302, doi:10.1029/2007JB005277. – reference: Tullis, T. E., and J. D. Weeks (1986), Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys., 124, 383-414, doi:10.1007/BF00877209. – volume: 114 year: 2009 article-title: Constraints on mineralization, fluid‐rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole publication-title: J. Geophys. Res. – volume: 37 year: 2010 article-title: Fabric induced weakness of tectonic faults publication-title: Geophys. Res. Lett. – volume: 115 year: 2010 article-title: Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite publication-title: J. Geophys. Res. – volume: 186 start-page: 1 year: 2001 end-page: 11 – volume: 85 start-page: 6185 year: 1980 end-page: 6222 article-title: Heat flow and energetics of the San Andreas fault zone publication-title: J. Geophys. Res. – volume: 95 start-page: 7007 year: 1990 end-page: 7025 article-title: Frictional behavior and constitutive modeling of simulated fault gouge publication-title: J. Geophys. Res. – volume: 124 start-page: 3 year: 1986 end-page: 30 article-title: Comparative microstructures of naturally and experimentally produced clay‐bearing fault gouges publication-title: Pure Appl. Geophys. – volume: 143 start-page: 387 year: 1994 end-page: 423 article-title: Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size publication-title: Pure Appl. Geophys. – volume: 462 start-page: 907 year: 2009 end-page: 910 article-title: Fault zone fabric and fault weakness publication-title: Nature – volume: 114 year: 2009 article-title: Progressive strain localization in a major strike‐slip fault exhumed from midseismogenic depths: Structural observations from the Salzach‐Ennstal‐Mariazell‐Puchberg fault system, Austria publication-title: J. Geophys. Res. – volume: 18 start-page: 1 year: 1996 end-page: 16 article-title: Micromechanics of brittle faulting and cataclastic flow in Berea sandstone publication-title: J. Struct. Geol. – volume: 113 year: 2008 article-title: Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz‐clay fault gouge publication-title: J. Geophys. Res. – volume: 29 start-page: 183 year: 2001 end-page: 186 article-title: Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low‐grade metamorphic processes and increasing effective stress publication-title: Geology – volume: 33 start-page: 132 year: 2011 end-page: 144 article-title: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California publication-title: J. Struct. Geol. – volume: 295 start-page: 199 year: 1998 end-page: 221 article-title: Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California publication-title: Tectonophysics – volume: 95 start-page: 21,613 year: 1990 end-page: 21,634 article-title: Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments publication-title: J. Geophys. Res. – volume: 39 start-page: 83 year: 2011 end-page: 86 article-title: On the relation between fault strength and frictional stability publication-title: Geology – volume: 427 start-page: 231 year: 2006 end-page: 253 article-title: Velocity dependence of strength and healing behavior in simulated phyllosilicate‐bearing fault gouge publication-title: Tectonophysics – volume: 104 start-page: 28,899 year: 1999 end-page: 28,914 article-title: Friction of simulated fault gouge for a wide range of velocities and normal stresses publication-title: J. Geophys. Res. – volume: 32 start-page: 478 year: 2010 end-page: 489 article-title: Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist publication-title: J. Struct. Geol. – volume: 71 start-page: 668 year: 1958 end-page: 675 article-title: The intrinsic variables affecting the stick‐slip process publication-title: Proc. Phys. Soc. – year: 2007 – volume: 86 start-page: 2902 year: 1981 end-page: 2914 article-title: Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges publication-title: J. Geophys. Res. – volume: 103 start-page: 9691 year: 1998 end-page: 9712 article-title: Quantitative measure of the variation in fault rheology due to fluid‐rock interactions publication-title: J. Geophys. Res. – volume: 99 start-page: 7231 year: 1994 end-page: 7246 article-title: The apparent friction of granular fault gouge in sheared layers publication-title: J. Geophys. Res. – volume: 12 start-page: 1061 year: 1990 end-page: 1065 article-title: Thickness‐displacement relationships for fault zones publication-title: J. Struct. Geol. – volume: 111 year: 2006 article-title: Cohesive strengthening of fault zones during the interseismic period: An experimental study publication-title: J. Geophys. Res. – volume: 295 start-page: 15 year: 1998 end-page: 40 article-title: Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge publication-title: Tectonophysics – volume: 98 start-page: 771 year: 1993 end-page: 786 article-title: Internal structure and weakening mechanisms of the San Andreas fault publication-title: J. Geophys. Res. – volume: 9 start-page: 95 year: 1977 end-page: 144 article-title: Shear zones in granular material publication-title: Rock Mech. – volume: 94 start-page: 135 year: 2009 end-page: 162 – volume: 9 start-page: 475 year: 1970 end-page: 486 article-title: The mechanics of stick‐slip publication-title: Tectonophysics – volume: 24 start-page: 11 year: 1981 end-page: 27 – volume: 27 year: 2008 article-title: Fault zone architecture and deformation processes within evaporitic rocks in the upper crust publication-title: Tectonics – volume: 115 year: 2010 article-title: Laboratory measurements of the frictional properties of the Zuccale low‐angle normal fault, Elba Island, Italy publication-title: J. Geophys. Res. – volume: 94 start-page: 163 year: 2009 end-page: 186 – volume: 31 start-page: 881 year: 2003 end-page: 884 article-title: Interseismic fault strengthening and earthquake‐slip instability: Friction or cohesion? publication-title: Geology – volume: 74 start-page: 5343 year: 1969 end-page: 5348 article-title: On the Coulomb‐Mohr failure criterion publication-title: J. Geophys. Res. – volume: 100 start-page: 13,007 year: 1995 end-page: 13,020 article-title: Fluid‐rock interactions in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures publication-title: J. Geophys. Res. – volume: 11 start-page: 827 year: 1989 end-page: 846 article-title: The frictional properties of a simulated gouge having a fractal particle size distribution publication-title: J. Struct. Geol. – year: 2002 – volume: 15 start-page: 1097 year: 1993 end-page: 1121 article-title: Strength and anisotropy of foliated rocks with varied mica contents publication-title: J. Struct. Geol. – volume: 124 start-page: 159 year: 1986 end-page: 175 article-title: Brecciation processes in fault zones: Inferences from earthquake rupturing publication-title: Pure Appl. Geophys. – volume: 277 start-page: 41 year: 1997 end-page: 55 article-title: Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions publication-title: Tectonophysics – volume: 15 start-page: 621 year: 1988 end-page: 624 article-title: The depth of seismic faulting and the upper transition from stable to unstable slip regimes publication-title: Geophys. Res. Lett. – volume: 100 start-page: 13,021 year: 1995 end-page: 13,032 article-title: Fluid‐rock reaction weakening of fault zones publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening publication-title: J. Geophys. Res. – start-page: 473 year: 1992 end-page: 503 – volume: 116 start-page: 615 year: 1978 end-page: 626 article-title: Friction of rocks publication-title: Pure Appl. Geophys. – start-page: 69 year: 1992 end-page: 88 – volume: 113 year: 2008 article-title: Potential for earthquake triggering from transient deformations publication-title: J. Geophys. Res. – volume: 11 start-page: 423 year: 1974 end-page: 430 article-title: Intrinsic shear strength of a brittle, anisotropic rock–I. Experimental and mechanical implications publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr. – volume: 10 start-page: 431 year: 1988 end-page: 435 article-title: Thickness‐displacement relationships for deformation zones publication-title: J. Struct. Geol. – volume: 4 start-page: 489 year: 1992 end-page: 500 article-title: On the mechanical properties of synthetic kaolinite/quartz fault gouge publication-title: Terra Nova – volume: 98 start-page: 15,937 year: 1993 end-page: 15,950 article-title: Determination of rock friction constitutive parameters using an iterative least‐squares inversion method publication-title: J. Geophys. Res. – volume: 245 start-page: 303 year: 2005 end-page: 327 – volume: 299 start-page: 139 year: 2008 end-page: 150 – volume: 26 year: 2007 article-title: Frictional properties of natural fault gouge from a low‐angle normal fault, Panamint Valley, California publication-title: Tectonics – volume: 186 start-page: 85 year: 2001 end-page: 101 – volume: 114 year: 2009 article-title: Frictional and hydrologic properties of clay‐rich fault gouge publication-title: J. Geophys. Res. – volume: 144 start-page: 87 year: 1987 end-page: 108 article-title: Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric publication-title: Tectonophysics – start-page: 33 year: 1992 end-page: 67 – volume: 24 start-page: 1025 year: 1996 end-page: 1028 article-title: Fault zone architecture and permeability structure publication-title: Geology – volume: 26 start-page: 643 year: 1998 end-page: 696 article-title: Laboratory‐derived friction laws and their application to seismic faulting publication-title: Annu. Rev. Earth Planet. Sci. – volume: 112 year: 2007 article-title: Effect of hydration state on the frictional properties of montmorillonite‐based fault gouge publication-title: J. Geophys. Res. – volume: 37 start-page: 49 year: 1986 end-page: 64 – volume: 95 start-page: 15,589 year: 1990 end-page: 15,602 article-title: Amorphous material in high strain experimental fault gouges publication-title: J. Geophys. Res. – volume: 72 start-page: 985 year: 1961 end-page: 990 article-title: Experimental study of shear failure in anisotropic rocks publication-title: Geol. Soc. Am. Bull. – volume: 27 start-page: 815 year: 2000 end-page: 818 article-title: The effect of mineral bond strength and adsorbed water on fault gouge frictional strength publication-title: Geophys. Res. Lett. – volume: 32 start-page: 1557 year: 2010 end-page: 1575 article-title: A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones publication-title: J. Struct. Geol. – volume: 24 start-page: 93 year: 1981 end-page: 102 – year: 1997 – start-page: 435 year: 1990 end-page: 445 – volume: 3 start-page: 599 year: 2010 end-page: 607 article-title: An integrated perspective of the continuum between earthquakes and slow‐slip phenomena publication-title: Nat. Geosci. – start-page: 370 year: 2007 end-page: 449 – volume: 37 start-page: 567 year: 2009 end-page: 570 article-title: Development of interconnected talc networks and weakening of continental low‐angle normal faults publication-title: Geology – volume: 101 start-page: 8697 year: 1996 end-page: 8715 article-title: Frictional behavior of large displacement experimental faults publication-title: J. Geophys. Res. – volume: 247 start-page: 157 year: 1995 end-page: 160 article-title: Shear zones and rock history publication-title: Tectonophysics – volume: 84 start-page: 2161 year: 1979 end-page: 2168 article-title: Modeling of rock friction: 1. Experimental results and constitutive equations publication-title: J. Geophys. Res. – volume: 21 start-page: 1039 year: 1999 end-page: 1048 publication-title: Clay gouge, J. Struct. Geol. – volume: 38 start-page: 751 year: 2010 end-page: 754 article-title: Mélange rheology and seismic style publication-title: Geology – volume: 28 start-page: 220 year: 2006 end-page: 235 article-title: The nature and importance of phyllonite development in crustal‐scale fault cores: An example from the Median Tectonic Line, Japan publication-title: J. Struct. Geol. – volume: 24 start-page: 102 year: 1981 end-page: 120 – volume: 13 start-page: 35 year: 1976 end-page: 36 article-title: A note on the effect of fault gouge thickness on fault stability publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr. – volume: 116 start-page: 690 year: 1978 end-page: 704 article-title: Rock friction‐effect of confining pressure, temperature, and pore pressure publication-title: Pure Appl. Geophys. – volume: 215 start-page: 219 year: 2003 end-page: 235 article-title: Comparison of smectite‐ and illite‐rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts publication-title: Earth Planet. Sci. Lett. – volume: 38 start-page: 667 year: 2010 end-page: 670 article-title: Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California publication-title: Geology – volume: 124 start-page: 383 year: 1986 end-page: 414 article-title: Constitutive behavior and stability of frictional sliding of granite publication-title: Pure Appl. Geophys. – volume: 327 start-page: 173 year: 2000 end-page: 194 article-title: Frictional‐viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution publication-title: Tectonophysics – volume: 15 start-page: 493 year: 1987 end-page: 495 article-title: Wear and gouge formation in brittle faulting publication-title: Geology – volume: 75 start-page: 243 year: 1981 end-page: 255 article-title: Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone publication-title: Tectonophysics – volume: 14 start-page: 149 year: 1986 end-page: 175 article-title: Earthquakes and rock deformation in crustal fault zones publication-title: Annu. Rev. Earth Planet. Sci. – volume: 95 start-page: 19,257 year: 1990 end-page: 19,278 article-title: Basal slip and mechanical anisotropy of biotite publication-title: J. Geophys. Res. – volume: 14 start-page: 189 year: 1972 end-page: 200 article-title: Laboratory studies of stick‐slip and their application to earthquakes publication-title: Tectonophysics – volume: 391 start-page: 69 year: 1998 end-page: 72 article-title: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle publication-title: Nature – volume: 359 start-page: 687 year: 1992 end-page: 692 article-title: Creep, compaction and the weak rheology of major faults publication-title: Nature – volume: 139 start-page: 195 year: 1992 end-page: 214 article-title: Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear publication-title: Pure Appl. Geophys. – volume: 19 start-page: 2341 year: 1992 end-page: 2344 article-title: Coulomb plasticity within the fault zone publication-title: Geophys. Res. Lett. – start-page: 346 year: 2007 end-page: 369 – volume: 95 start-page: 15589 year: 1990 ident: 10.1029/2011JB008264:yund90 article-title: Amorphous material in high strain experimental fault gouges publication-title: J. Geophys. Res. doi: 10.1029/JB095iB10p15589 – volume: 33 start-page: 132 year: 2011 ident: 10.1029/2011JB008264:hold11 article-title: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2010.11.010 – volume: 124 start-page: 383 year: 1986 ident: 10.1029/2011JB008264:tull86 article-title: Constitutive behavior and stability of frictional sliding of granite publication-title: Pure Appl. Geophys. doi: 10.1007/BF00877209 – volume: 15 start-page: 1097 year: 1993 ident: 10.1029/2011JB008264:shea93 article-title: Strength and anisotropy of foliated rocks with varied mica contents publication-title: J. Struct. Geol. doi: 10.1016/0191-8141(93)90158-7 – volume: 37 volume-title: Velocity-dependent frictional behavior of simulated halite shear zones: An analog for silicates year: 1986 ident: 10.1029/2011JB008264:shim86 – volume: 29 start-page: 183 year: 2001 ident: 10.1029/2011JB008264:moor01 article-title: Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress publication-title: Geology doi: 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2 – volume: 98 start-page: 771 year: 1993 ident: 10.1029/2011JB008264:ches93 article-title: Internal structure and weakening mechanisms of the San Andreas fault publication-title: J. Geophys. Res. doi: 10.1029/92JB01866 – volume: 114 start-page: B04406 year: 2009 ident: 10.1029/2011JB008264:fros09 article-title: Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: Structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria publication-title: J. Geophys. Res. doi: 10.1029/2008JB005763 – volume: 9 start-page: 475 year: 1970 ident: 10.1029/2011JB008264:byer70 article-title: The mechanics of stick-slip publication-title: Tectonophysics doi: 10.1016/0040-1951(70)90059-4 – volume: 124 start-page: 159 year: 1986 ident: 10.1029/2011JB008264:sibs86b article-title: Brecciation processes in fault zones: Inferences from earthquake rupturing publication-title: Pure Appl. Geophys. doi: 10.1007/BF00875724 – volume: 9 start-page: 95 year: 1977 ident: 10.1029/2011JB008264:mand77 article-title: Shear zones in granular material publication-title: Rock Mech. doi: 10.1007/BF01237876 – volume: 247 start-page: 157 year: 1995 ident: 10.1029/2011JB008264:mean95 article-title: Shear zones and rock history publication-title: Tectonophysics doi: 10.1016/0040-1951(95)98214-H – volume: 72 start-page: 985 year: 1961 ident: 10.1029/2011JB008264:dona61 article-title: Experimental study of shear failure in anisotropic rocks publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2 – volume: 28 start-page: 220 year: 2006 ident: 10.1029/2011JB008264:jeff06 article-title: The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2005.10.008 – volume: 19 start-page: 2341 year: 1992 ident: 10.1029/2011JB008264:byer92 article-title: Coulomb plasticity within the fault zone publication-title: Geophys. Res. Lett. doi: 10.1029/92GL02370 – volume: 38 start-page: 751 year: 2010 ident: 10.1029/2011JB008264:fage10 article-title: Mélange rheology and seismic style publication-title: Geology doi: 10.1130/G30868.1 – volume: 39 start-page: 83 year: 2011 ident: 10.1029/2011JB008264:ikar11 article-title: On the relation between fault strength and frictional stability publication-title: Geology doi: 10.1130/G31416.1 – volume: 144 start-page: 87 year: 1987 ident: 10.1029/2011JB008264:loga87 article-title: Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric publication-title: Tectonophysics doi: 10.1016/0040-1951(87)90010-2 – volume: 3 start-page: 599 year: 2010 ident: 10.1029/2011JB008264:peng10 article-title: An integrated perspective of the continuum between earthquakes and slow-slip phenomena publication-title: Nat. Geosci. doi: 10.1038/ngeo940 – volume: 99 start-page: 7231 year: 1994 ident: 10.1029/2011JB008264:scot94 article-title: The apparent friction of granular fault gouge in sheared layers publication-title: J. Geophys. Res. doi: 10.1029/93JB03361 – start-page: 370 volume-title: The Seismogenic Zone of Subduction Thrust Faults year: 2007 ident: 10.1029/2011JB008264:beel07 article-title: Laboratory-observed faulting in intrinsically and apparently weak materials doi: 10.7312/dixo13866-013 – volume: 24 volume-title: Constitutive properties of faults with simulated gouge year: 1981 ident: 10.1029/2011JB008264:diet81 – volume: 98 start-page: 15937 year: 1993 ident: 10.1029/2011JB008264:rein93 article-title: Determination of rock friction constitutive parameters using an iterative least-squares inversion method publication-title: J. Geophys. Res. doi: 10.1029/93JB00780 – volume: 37 start-page: L03304 year: 2010 ident: 10.1029/2011JB008264:niem10a article-title: Fabric induced weakness of tectonic faults publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL041689 – volume: 11 start-page: 827 year: 1989 ident: 10.1029/2011JB008264:bieg89 article-title: The frictional properties of a simulated gouge having a fractal particle size distribution publication-title: J. Struct. Geol. doi: 10.1016/0191-8141(89)90101-6 – volume: 103 start-page: 9691 year: 1998 ident: 10.1029/2011JB008264:blan98 article-title: Quantitative measure of the variation in fault rheology due to fluid-rock interactions publication-title: J. Geophys. Res. doi: 10.1029/98JB00162 – volume: 95 start-page: 19257 year: 1990 ident: 10.1029/2011JB008264:kron90 article-title: Basal slip and mechanical anisotropy of biotite publication-title: J. Geophys. Res. doi: 10.1029/JB095iB12p19257 – volume: 115 start-page: B10207 year: 2010 ident: 10.1029/2011JB008264:niem10b article-title: Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening publication-title: J. Geophys. Res. doi: 10.1029/2009JB000838 – volume-title: Fundamentals of Rock Mechanics year: 2007 ident: 10.1029/2011JB008264:jaeg07 – volume: 27 start-page: TC4017 year: 2008 ident: 10.1029/2011JB008264:depa08 article-title: Fault zone architecture and deformation processes within evaporitic rocks in the upper crust publication-title: Tectonics doi: 10.1029/2007TC002230 – volume: 27 start-page: 815 year: 2000 ident: 10.1029/2011JB008264:morr00 article-title: The effect of mineral bond strength and adsorbed water on fault gouge frictional strength publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL008401 – volume: 4 start-page: 489 year: 1992 ident: 10.1029/2011JB008264:rutt92 article-title: On the mechanical properties of synthetic kaolinite/quartz fault gouge publication-title: Terra Nova doi: 10.1111/j.1365-3121.1992.tb00585.x – start-page: 473 volume-title: Fault Mechanics and Transport Properties of Rocks year: 1992 ident: 10.1029/2011JB008264:scho92 article-title: Paradigms or small changes in earthquake mechanics doi: 10.1016/S0074-6142(08)62836-3 – volume: 18 start-page: 1 year: 1996 ident: 10.1029/2011JB008264:mene96 article-title: Micromechanics of brittle faulting and cataclastic flow in Berea sandstone publication-title: J. Struct. Geol. doi: 10.1016/0191-8141(95)00076-P – volume: 38 start-page: 667 year: 2010 ident: 10.1029/2011JB008264:schl10 article-title: Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California publication-title: Geology doi: 10.1130/G31091.1 – volume: 359 start-page: 687 year: 1992 ident: 10.1029/2011JB008264:slee92 article-title: Creep, compaction and the weak rheology of major faults publication-title: Nature doi: 10.1038/359687a0 – volume: 113 start-page: B05302 year: 2008 ident: 10.1029/2011JB008264:sava08 article-title: Potential for earthquake triggering from transient deformations publication-title: J. Geophys. Res. doi: 10.1029/2007JB005277 – volume: 21 start-page: 1039 year: 1999 ident: 10.1029/2011JB008264:vrol99 publication-title: Clay gouge, J. Struct. Geol. doi: 10.1016/S0191-8141(99)00103-0 – volume: 84 start-page: 2161 year: 1979 ident: 10.1029/2011JB008264:diet79 article-title: Modeling of rock friction: 1. Experimental results and constitutive equations publication-title: J. Geophys. Res. doi: 10.1029/JB084iB05p02161 – volume: 85 start-page: 6185 year: 1980 ident: 10.1029/2011JB008264:lach80 article-title: Heat flow and energetics of the San Andreas fault zone publication-title: J. Geophys. Res. doi: 10.1029/JB085iB11p06185 – volume: 75 start-page: 243 year: 1981 ident: 10.1029/2011JB008264:shim81a article-title: Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone publication-title: Tectonophysics doi: 10.1016/0040-1951(81)90276-6 – volume: 11 start-page: 423 year: 1974 ident: 10.1029/2011JB008264:atte74 article-title: Intrinsic shear strength of a brittle, anisotropic rock–I. Experimental and mechanical implications publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr. doi: 10.1016/0148-9062(74)90453-7 – volume: 299 start-page: 139 volume-title: The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties year: 2008 ident: 10.1029/2011JB008264:faul08 article-title: On the structure and mechanical properties of large strike-slip faults – volume: 86 start-page: 2902 year: 1981 ident: 10.1029/2011JB008264:shim81b article-title: Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges publication-title: J. Geophys. Res. doi: 10.1029/JB086iB04p02902 – volume: 295 start-page: 15 year: 1998 ident: 10.1029/2011JB008264:scru98 article-title: Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge publication-title: Tectonophysics doi: 10.1016/S0040-1951(98)00113-9 – volume: 462 start-page: 907 year: 2009 ident: 10.1029/2011JB008264:coll09a article-title: Fault zone fabric and fault weakness publication-title: Nature doi: 10.1038/nature08585 – start-page: 346 volume-title: The Seismogenic Zone of Subduction Thrust Faults year: 2007 ident: 10.1029/2011JB008264:maro07 article-title: Fault friction and the upper transition from seismic to aseismic faulting doi: 10.7312/dixo13866-012 – volume: 391 start-page: 69 year: 1998 ident: 10.1029/2011JB008264:maro98b article-title: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle publication-title: Nature doi: 10.1038/34157 – volume: 327 start-page: 173 year: 2000 ident: 10.1029/2011JB008264:bos00 article-title: Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution publication-title: Tectonophysics doi: 10.1016/S0040-1951(00)00168-2 – volume: 13 start-page: 35 year: 1976 ident: 10.1029/2011JB008264:byer76 article-title: A note on the effect of fault gouge thickness on fault stability publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr. doi: 10.1016/0148-9062(76)90226-6 – volume: 111 start-page: B09202 year: 2006 ident: 10.1029/2011JB008264:tent06 article-title: Cohesive strengthening of fault zones during the interseismic period: An experimental study publication-title: J. Geophys. Res. doi: 10.1029/2005JB004122 – volume: 112 start-page: B06423 year: 2007 ident: 10.1029/2011JB008264:ikar07 article-title: Effect of hydration state on the frictional properties of montmorillonite-based fault gouge publication-title: J. Geophys. Res. doi: 10.1029/2006JB004748 – volume: 427 start-page: 231 year: 2006 ident: 10.1029/2011JB008264:niem06 article-title: Velocity dependence of strength and healing behavior in simulated phyllosilicate-bearing fault gouge publication-title: Tectonophysics doi: 10.1016/j.tecto.2006.03.048 – volume: 94 start-page: 163 volume-title: Fault-Zone Properties and Earthquake Rupture Dynamics year: 2009 ident: 10.1029/2011JB008264:cocc09 article-title: Scaling of slip weakening distance with final slip during dynamic earthquake rupture doi: 10.1016/S0074-6142(08)00007-7 – volume: 124 start-page: 3 year: 1986 ident: 10.1029/2011JB008264:rutt86 article-title: Comparative microstructures of naturally and experimentally produced clay-bearing fault gouges publication-title: Pure Appl. Geophys. doi: 10.1007/BF00875717 – volume: 113 start-page: B04204 year: 2008 ident: 10.1029/2011JB008264:niem08 article-title: Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments publication-title: J. Geophys. Res. doi: 10.1029/2007JB005376 – volume: 245 start-page: 303 volume-title: High-Strain Zones: Structure and Physical Properties year: 2005 ident: 10.1029/2011JB008264:niem05 article-title: Influence of phyllosilicates on fault strength in the brittle-ductile transition: Insights from rock analogue experiments – volume: 114 start-page: B05409 year: 2009 ident: 10.1029/2011JB008264:ikar09 article-title: Frictional and hydrologic properties of clay-rich fault gouge publication-title: J. Geophys. Res. doi: 10.1029/2008JB006089 – volume: 186 start-page: 85 volume-title: The Nature and Tectonic Significance of Fault Zone Weakening year: 2001 ident: 10.1029/2011JB008264:warr01 article-title: Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand – volume: 94 start-page: 135 volume-title: Fault-Zone Properties and Earthquake Rupture Dynamics year: 2009 ident: 10.1029/2011JB008264:maro09 article-title: The critical slip distance for seismic and aseismic fault zones of finite width doi: 10.1016/S0074-6142(08)00006-5 – volume: 71 start-page: 668 year: 1958 ident: 10.1029/2011JB008264:rabi58 article-title: The intrinsic variables affecting the stick-slip process publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/71/4/316 – volume: 95 start-page: 21613 year: 1990 ident: 10.1029/2011JB008264:gott90 article-title: Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior publication-title: J. Geophys. Res. doi: 10.1029/JB095iB13p21613 – volume: 186 start-page: 1 volume-title: The Nature and Tectonic Significance of Fault Zone Weakening year: 2001 ident: 10.1029/2011JB008264:rutt01 article-title: The nature and tectonic significance of fault-zone weakening: An introduction – volume: 14 start-page: 189 year: 1972 ident: 10.1029/2011JB008264:brac72 article-title: Laboratory studies of stick-slip and their application to earthquakes publication-title: Tectonophysics doi: 10.1016/0040-1951(72)90068-6 – volume: 10 start-page: 431 year: 1988 ident: 10.1029/2011JB008264:hull88 article-title: Thickness-displacement relationships for deformation zones publication-title: J. Struct. Geol. doi: 10.1016/0191-8141(88)90020-X – volume: 143 start-page: 387 year: 1994 ident: 10.1029/2011JB008264:gu94 article-title: Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size publication-title: Pure Appl. Geophys. doi: 10.1007/BF00874336 – volume: 114 start-page: B04202 year: 2009 ident: 10.1029/2011JB008264:schl09 article-title: Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole publication-title: J. Geophys. Res. doi: 10.1029/2008JB006092 – volume: 100 start-page: 13021 year: 1995 ident: 10.1029/2011JB008264:wint95 article-title: Fluid-rock reaction weakening of fault zones publication-title: J. Geophys. Res. doi: 10.1029/94JB02622 – volume: 100 start-page: 13007 year: 1995 ident: 10.1029/2011JB008264:evan95 article-title: Fluid-rock interactions in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures publication-title: J. Geophys. Res. doi: 10.1029/94JB02625 – volume: 116 start-page: 615 year: 1978 ident: 10.1029/2011JB008264:byer78 article-title: Friction of rocks publication-title: Pure Appl. Geophys. doi: 10.1007/BF00876528 – volume: 15 start-page: 621 year: 1988 ident: 10.1029/2011JB008264:maro88 article-title: The depth of seismic faulting and the upper transition from stable to unstable slip regimes publication-title: Geophys. Res. Lett. doi: 10.1029/GL015i006p00621 – start-page: 435 volume-title: Rock Joints: Proceedings of the International Symposium on Rock Joints year: 1990 ident: 10.1029/2011JB008264:hobb90 article-title: Dynamic behaviour of rock joints – volume: 24 volume-title: Stiff testing machines, stick slip sliding, and the stability of rock deformation year: 1981 ident: 10.1029/2011JB008264:cook81 – volume: 215 start-page: 219 year: 2003 ident: 10.1029/2011JB008264:saff03 article-title: Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(03)00424-2 – volume: 24 volume-title: Calcite fabrics in experimental shear zones year: 1981 ident: 10.1029/2011JB008264:frie81 – volume: 12 start-page: 1061 year: 1990 ident: 10.1029/2011JB008264:evan90 article-title: Thickness-displacement relationships for fault zones publication-title: J. Struct. Geol. doi: 10.1016/0191-8141(90)90101-4 – volume: 14 start-page: 149 year: 1986 ident: 10.1029/2011JB008264:sibs86a article-title: Earthquakes and rock deformation in crustal fault zones publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.ea.14.050186.001053 – volume: 26 start-page: 643 year: 1998 ident: 10.1029/2011JB008264:maro98a article-title: Laboratory-derived friction laws and their application to seismic faulting publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.26.1.643 – volume: 32 start-page: 1557 year: 2010 ident: 10.1029/2011JB008264:faul10 article-title: A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2010.06.009 – volume-title: The Seismogenic Zone of Subduction Thrust Faults year: 2007 ident: 10.1029/2011JB008264:moor07 article-title: How accretionary prisms elucidate seismogenesis in subduction zones doi: 10.7312/dixo13866-010 – volume-title: The Mechanics of Earthquakes and Faulting year: 2002 ident: 10.1029/2011JB008264:scho02 doi: 10.1017/CBO9780511818516 – volume: 95 start-page: 7007 year: 1990 ident: 10.1029/2011JB008264:maro90 article-title: Frictional behavior and constitutive modeling of simulated fault gouge publication-title: J. Geophys. Res. doi: 10.1029/JB095iB05p07007 – volume: 37 start-page: 567 year: 2009 ident: 10.1029/2011JB008264:coll09b article-title: Development of interconnected talc networks and weakening of continental low-angle normal faults publication-title: Geology doi: 10.1130/G25645A.1 – volume: 295 start-page: 199 year: 1998 ident: 10.1029/2011JB008264:ches98 article-title: Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California publication-title: Tectonophysics doi: 10.1016/S0040-1951(98)00121-8 – volume: 74 start-page: 5343 year: 1969 ident: 10.1029/2011JB008264:hand69 article-title: On the Coulomb-Mohr failure criterion publication-title: J. Geophys. Res. doi: 10.1029/JB074i022p05343 – volume: 101 start-page: 8697 year: 1996 ident: 10.1029/2011JB008264:beel96 article-title: Frictional behavior of large displacement experimental faults publication-title: J. Geophys. Res. doi: 10.1029/96JB00411 – volume: 115 start-page: B02407 year: 2010 ident: 10.1029/2011JB008264:smit10 article-title: Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy publication-title: J. Geophys. Res. doi: 10.1029/2008JB006274 – start-page: 33 volume-title: Fault Mechanics and Transport Properties of Rocks year: 1992 ident: 10.1029/2011JB008264:loga92 article-title: Fabrics of experimental fault zones: Their development and relationship to mechanical behavior doi: 10.1016/S0074-6142(08)62814-4 – volume-title: Mechanics of Materials year: 1997 ident: 10.1029/2011JB008264:hibb97 – volume: 277 start-page: 41 year: 1997 ident: 10.1029/2011JB008264:karn97 article-title: Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions publication-title: Tectonophysics doi: 10.1016/S0040-1951(97)00077-2 – volume: 139 start-page: 195 year: 1992 ident: 10.1029/2011JB008264:maro92 article-title: Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear publication-title: Pure Appl. Geophys. doi: 10.1007/BF00876327 – volume: 113 start-page: B03207 year: 2008 ident: 10.1029/2011JB008264:craw08 article-title: Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge publication-title: J. Geophys. Res. doi: 10.1029/2006JB004634 – volume: 116 start-page: 690 year: 1978 ident: 10.1029/2011JB008264:stes78 article-title: Rock friction-effect of confining pressure, temperature, and pore pressure publication-title: Pure Appl. Geophys. doi: 10.1007/BF00876532 – volume: 24 start-page: 1025 year: 1996 ident: 10.1029/2011JB008264:cain96 article-title: Fault zone architecture and permeability structure publication-title: Geology doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 – start-page: 69 volume-title: Fault Mechanics and Transport Properties of Rocks year: 1992 ident: 10.1029/2011JB008264:morr92 article-title: Frictional strength and the effective pressure law of montmorillonite and illite clays doi: 10.1016/S0074-6142(08)62815-6 – volume: 32 start-page: 478 year: 2010 ident: 10.1029/2011JB008264:wenk10 article-title: Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2010.02.003 – volume: 15 start-page: 493 year: 1987 ident: 10.1029/2011JB008264:scho87 article-title: Wear and gouge formation in brittle faulting publication-title: Geology doi: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2 – volume: 104 start-page: 28899 year: 1999 ident: 10.1029/2011JB008264:mair99 article-title: Friction of simulated fault gouge for a wide range of velocities and normal stresses publication-title: J. Geophys. Res. doi: 10.1029/1999JB900279 – volume: 26 start-page: TC2004 year: 2007 ident: 10.1029/2011JB008264:nume07 article-title: Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California publication-title: Tectonics doi: 10.1029/2005TC001916 – volume: 31 start-page: 881 year: 2003 ident: 10.1029/2011JB008264:muhu03 article-title: Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? publication-title: Geology doi: 10.1130/G19601.1 – volume: 115 start-page: B03416 year: 2010 ident: 10.1029/2011JB008264:temb10 article-title: Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite publication-title: J. Geophys. Res. doi: 10.1029/2009JB006383 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816914 |
Score | 2.352793 |
Snippet | We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and... Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Continental dynamics Earthquakes fabric Fabrics fault Fault lines Friction Geology Geophysics Lithification Microstructure Plate tectonics Rheology Rocks Seismic activity Seismology stress orientation |
Title | The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure |
URI | https://api.istex.fr/ark:/67375/WNG-KG8TLZJN-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JB008264 https://www.proquest.com/docview/884468245 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXKrir1gvqpLhTkQ9tLNyJObGdyqljEBm3bVYVARb1YjmODVJql7CK1vfaP4_E6ERzKbQ6Wo_jZM-PxmxlC3nqzAsDxfNeZS3jGIYE6rxNmmTMaUnAWE5y_zOXRKZ-dibPIzVlGWmWnE4OibhYGY-R7fkYuIePi49WvBJtG4eNq7KCxQYZeA4MYkOHkcP71uA-yYFeJMtT3zryQlDnLI_k9zco9tH2zCRpBye-ZpSGu8O97PuddzzWYnulTshl9Rrq_BvkZeWTb5-RxFXry_vFSYHGa5Qvyz4NOkS9IF446fXO5on8XrfVi7dUd1W1Dvdd9geygAAgN6UTUC9gtaB0VpJg90p6vLsbULCKTwGtE2uXzj8M0je2zHulP5PSt69DeXNuX5HR6eHJwlMQuC4nmOWo7w7T1XqBhRrACdFNYyHJTWlk67lwtCn8jwTdzm0kHThdOYuyjELbhGlyavyKD1v_La0KFa2omnb_0aMYdM6DTxgosAlY3YLQZkQ_dIisTS5BjJ4xLFZ7Cs1LdhWRE3vWjr9alN_4z7n3Aqx-kr38gXa0Q6tu8Up8qOPn8fTZXxYhsd4CqeFKXqt9XIzIOGD_4LTWrjidMgoStByfbJk-64HPK3pCBx8DueO9lVe-SDZhWu3Gn3gLTsuyX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKIwQXxFOE8vCBciGrrr3eXe8BIQJt0iRdoSoVFRfj9dpUomxKkwrKld_Df2TG-1B7oLfe5mDNKpmnx9_MEPISwoqUAu274C4QXMhAFlERMMuc0TKUzmKD816ejA_E5DA-XCN_214YhFW2PtE76nJhsEa-BRxFIrmI3578CHBpFD6uths0aq2Y2vOfcGNbvtn9AOLd5Hxne_5-HDRLBQItIjRuw7SFpMcwE7NU6jK1kkcms0nmhHNFnEICjk_ElidOOp26BK_6aWxLoaULI-B7g_Qgy8jAiHrD7fzjflfUwS0WmZ8nzoEIsohFDdg-5NkWxtrJEINuIi6FwR5K9NelHPdipuxD3c5dcqfJUem7WqnukTVb3Sc3R34H8DlQHjVqlg_IH1AyivhEunDU6bPjFf29qCyQBbhXqquSQpZ_hGgkrwDUty9RIHA7UV2FpNitUn1dHQ2oWTTIBfDAtJ0fMPBsStt1WdLviCGs596endqH5OBaBPCIrFfwWx4TGruyYImDS5ZmwjEjdVjaGIeOFaU02vTJ6_ZPVqYZeY6bN46Vf3rnmbookj7Z7E6f1KM-_nPulZdXd0iffkN4XBqrT_lITUdyPvs8yVXaJxutQFXjGZaq0-M-GXgZX_ktNRntD1kiE_nkSmYvyK3xfG-mZrv5dIPcbgvfIXtK1kEe9hlkTqvieaOvlHy5bhP5B8PTJ-E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKIhAXxFOk5eED5UJWWXu9u94DQoQ2aZMSVVUrql6M12tTqWVTmlRQrvwq_h0z3ofaA731NgdrVsk8Pf5mhpA3EFakFGjfOXeB4EIGMo_ygFnmjJahdBYbnD_Pkq0DMTmMD1fI36YXBmGVjU_0jrqYG6yRD4CjSCQX8cDVqIjdjdGHsx8BLpDCh9Zmm0alIVN7-RNub4v32xsg6nXOR5v7n7aCesFAoEWEhm6YtpAAGWZilkpdpFbyyGQ2yZxwLo9TSMbxudjyxEmnU5fgtT-NbSG0dGEEfO-QbgpBUXZId7g5291rCzy40SLzs8U5EEEWsagG3oc8G2DcnQwxACfiWkjsonR_Xct3r2bNPuyNHpIHdb5KP1YK9ois2PIxuTv2-4AvgfIIUrN4Qv6AwlHEKtK5o05fnC7p73lpgczB1VJdFhQy_mNEJnlloL6ViQKBm4qqiiTFzpXy2_K4T828RjGAN6bNLIG-Z1PYtuOSfkc8YTUD9-LcPiUHtyKAZ6RTwm95TmjsipwlDi5cmgnHjNRhYWMcQJYX0mjTI--aP1mZevw5buE4Vf4Znmfqqkh6ZL09fVaN_fjPubdeXu0hfX6CULk0Vl9mYzUdy_2do8lMpT2y1ghU1V5ioVqd7pG-l_GN31KT8d6QJTKRqzcye03ugWmone3ZdI3cb2rgIXtBOiAO-xKSqGX-qlZXSr7etoX8A31ALA0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+fault+zone+fabric+and+lithification+state+on+frictional+strength%2C+constitutive+behavior%2C+and+deformation+microstructure&rft.jtitle=Journal+of+geophysical+research.+Solid+earth&rft.au=Ikari%2C+Matt+J&rft.au=Niemeijer%2C+Andr%C3%A9+R&rft.au=Marone%2C+Chris&rft.date=2011-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9313&rft.eissn=2169-9356&rft.volume=116&rft.issue=8&rft_id=info:doi/10.1029%2F2011JB008264&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2430928521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |