The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure

We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of li...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Vol. 116; no. B8
Main Authors Ikari, Matt J., Niemeijer, André R., Marone, Chris
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.08.2011
Subjects
Online AccessGet full text
ISSN0148-0227
2169-9313
2156-2202
2169-9356
DOI10.1029/2011JB008264

Cover

Loading…
Abstract We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate‐rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity‐strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate‐poor samples. This suggests that lithification of phyllosilicate‐rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate‐poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate‐rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation. Key Points Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone thickness can result in low apparent friction
AbstractList Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone thickness can result in low apparent friction We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ~50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate-rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity-strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate-poor samples. This suggests that lithification of phyllosilicate-rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate-poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate-rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation.
We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate‐rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity‐strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate‐poor samples. This suggests that lithification of phyllosilicate‐rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate‐poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate‐rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation. Key Points Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone thickness can result in low apparent friction
ArticleNumber B08404
Author Niemeijer, André R.
Ikari, Matt J.
Marone, Chris
Author_xml – sequence: 1
  givenname: Matt J.
  surname: Ikari
  fullname: Ikari, Matt J.
  email: mikari@marum.de
  organization: Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
– sequence: 2
  givenname: André R.
  surname: Niemeijer
  fullname: Niemeijer, André R.
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
– sequence: 3
  givenname: Chris
  surname: Marone
  fullname: Marone, Chris
  organization: Department of Geosciences, Pennsylvania State University, Pennsylvania, University Park, USA
BookMark eNp9kFFPHCEUhUmjSbfqW38A6fNOCwwDzKOadtt1o0mzTZO-EJa9dNHZQYGxta_-cVnHNI2J5QVyOd-59543aK8PPSD0lpL3lLD2AyOUzk8IUUzwV2jCaCMqxgjbQxNCuaoIY_I1OkrpkpTDG8EJnaD75QZwDB3g4LAzQ5fxn-JbnqvoLTb9Gnc-b7zz1mQfepyyyUXcY1f-dxXTlVqE_mfeTLENfco-D9nfAl7Bxtz6EKePNmtwIW5Hk623MRRqsHmIcIj2nekSHD3dB-jbp4_L08_V4mL25fR4URle16pqLTXQSmmpbahUZi1Bsdq2IFrHnVs1UgpVUiDAhFPOSCeIFFQ2sOZGOVIfoHej73UMNwOkrC_DEMsCSSvFeYF5U0TTUbSbMEVw-jr6rYl3mhK9C1r_G3SRs2dy6_Pjkjka370E1SP0y3dw998Gej77ekKFEqpQ1Uj5lOH3X8rEKy1kLRv9_Xymz2ZqufgxP9eyfgDB56Hu
CitedBy_id crossref_primary_10_1029_2018GC007633
crossref_primary_10_1016_j_ijrmms_2024_105665
crossref_primary_10_1016_j_epsl_2020_116180
crossref_primary_10_1126_sciadv_aav7172
crossref_primary_10_1016_j_ijrmms_2025_106076
crossref_primary_10_1016_j_jsg_2015_05_012
crossref_primary_10_1007_s10950_015_9527_7
crossref_primary_10_1016_j_epsl_2014_10_021
crossref_primary_10_1180_claymin_2015_050_5_06
crossref_primary_10_1007_s00531_014_1115_5
crossref_primary_10_1029_2012JB009204
crossref_primary_10_1002_2016GC006500
crossref_primary_10_1007_s00603_023_03283_6
crossref_primary_10_1002_2016JB013828
crossref_primary_10_1016_j_tust_2024_105968
crossref_primary_10_1002_2016JB013143
crossref_primary_10_1016_j_jsg_2014_10_006
crossref_primary_10_1016_j_advwatres_2015_07_023
crossref_primary_10_1093_gji_ggz143
crossref_primary_10_1007_s40948_017_0051_9
crossref_primary_10_1016_j_jsg_2017_10_009
crossref_primary_10_1029_2022GC010369
crossref_primary_10_2138_am_2022_8561
crossref_primary_10_1016_j_sedgeo_2016_03_024
crossref_primary_10_1029_2020JB019862
crossref_primary_10_1016_j_jsg_2020_104156
crossref_primary_10_1016_j_epsl_2014_09_034
crossref_primary_10_1029_2018JB016174
crossref_primary_10_1002_2016GL071569
crossref_primary_10_3390_app15010401
crossref_primary_10_1016_j_tecto_2014_05_038
crossref_primary_10_1029_2021JB023779
crossref_primary_10_1016_j_tecto_2012_09_019
crossref_primary_10_1016_j_jsg_2012_06_015
crossref_primary_10_1029_2021GL096292
crossref_primary_10_1002_2015GC005857
crossref_primary_10_1016_j_epsl_2014_12_014
crossref_primary_10_1016_j_epsl_2020_116682
crossref_primary_10_1029_2011GL050756
crossref_primary_10_1002_2016GC006286
crossref_primary_10_1016_j_tecto_2018_05_003
crossref_primary_10_1002_2015JB012136
crossref_primary_10_1002_2017GL074307
crossref_primary_10_1186_s40645_022_00488_1
crossref_primary_10_1016_j_tecto_2014_05_005
crossref_primary_10_1002_2015JB012737
crossref_primary_10_1029_2011GC003872
crossref_primary_10_1016_j_epsl_2017_08_009
crossref_primary_10_1111_bor_12189
crossref_primary_10_1029_2024GL108655
crossref_primary_10_3389_feart_2022_931005
crossref_primary_10_1186_s40623_021_01419_y
crossref_primary_10_1002_2017JB014876
crossref_primary_10_1186_s40623_016_0512_3
crossref_primary_10_1016_j_earscirev_2022_104019
crossref_primary_10_1016_j_jseaes_2016_10_002
crossref_primary_10_1130_G37028_1
crossref_primary_10_1016_j_conbuildmat_2017_12_091
crossref_primary_10_1016_j_tecto_2019_228275
crossref_primary_10_1038_s41598_019_46241_5
crossref_primary_10_1029_2019JB018429
Cites_doi 10.1029/JB095iB10p15589
10.1016/j.jsg.2010.11.010
10.1007/BF00877209
10.1016/0191-8141(93)90158-7
10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2
10.1029/92JB01866
10.1029/2008JB005763
10.1016/0040-1951(70)90059-4
10.1007/BF00875724
10.1007/BF01237876
10.1016/0040-1951(95)98214-H
10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2
10.1016/j.jsg.2005.10.008
10.1029/92GL02370
10.1130/G30868.1
10.1130/G31416.1
10.1016/0040-1951(87)90010-2
10.1038/ngeo940
10.1029/93JB03361
10.7312/dixo13866-013
10.1029/93JB00780
10.1029/2009GL041689
10.1016/0191-8141(89)90101-6
10.1029/98JB00162
10.1029/JB095iB12p19257
10.1029/2009JB000838
10.1029/2007TC002230
10.1029/1999GL008401
10.1111/j.1365-3121.1992.tb00585.x
10.1016/S0074-6142(08)62836-3
10.1016/0191-8141(95)00076-P
10.1130/G31091.1
10.1038/359687a0
10.1029/2007JB005277
10.1016/S0191-8141(99)00103-0
10.1029/JB084iB05p02161
10.1029/JB085iB11p06185
10.1016/0040-1951(81)90276-6
10.1016/0148-9062(74)90453-7
10.1029/JB086iB04p02902
10.1016/S0040-1951(98)00113-9
10.1038/nature08585
10.7312/dixo13866-012
10.1038/34157
10.1016/S0040-1951(00)00168-2
10.1016/0148-9062(76)90226-6
10.1029/2005JB004122
10.1029/2006JB004748
10.1016/j.tecto.2006.03.048
10.1016/S0074-6142(08)00007-7
10.1007/BF00875717
10.1029/2007JB005376
10.1029/2008JB006089
10.1016/S0074-6142(08)00006-5
10.1088/0370-1328/71/4/316
10.1029/JB095iB13p21613
10.1016/0040-1951(72)90068-6
10.1016/0191-8141(88)90020-X
10.1007/BF00874336
10.1029/2008JB006092
10.1029/94JB02622
10.1029/94JB02625
10.1007/BF00876528
10.1029/GL015i006p00621
10.1016/S0012-821X(03)00424-2
10.1016/0191-8141(90)90101-4
10.1146/annurev.ea.14.050186.001053
10.1146/annurev.earth.26.1.643
10.1016/j.jsg.2010.06.009
10.7312/dixo13866-010
10.1017/CBO9780511818516
10.1029/JB095iB05p07007
10.1130/G25645A.1
10.1016/S0040-1951(98)00121-8
10.1029/JB074i022p05343
10.1029/96JB00411
10.1029/2008JB006274
10.1016/S0074-6142(08)62814-4
10.1016/S0040-1951(97)00077-2
10.1007/BF00876327
10.1029/2006JB004634
10.1007/BF00876532
10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
10.1016/S0074-6142(08)62815-6
10.1016/j.jsg.2010.02.003
10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2
10.1029/1999JB900279
10.1029/2005TC001916
10.1130/G19601.1
10.1029/2009JB006383
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by American Geophysical Union
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
3V.
7ST
7TG
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2011JB008264
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9356
EndPage n/a
ExternalDocumentID 2430928521
10_1029_2011JB008264
JGRB16868
ark_67375_WNG_KG8TLZJN_7
Genre article
Feature
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
05W
0R~
33P
3V.
52M
702
7ST
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
RJQFR
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-a4338-9c1ae977c1c5178ad7e823c9e69f4ffb577682010e26f8fa7f6076175ed4a8f03
IEDL.DBID BENPR
ISSN 0148-0227
2169-9313
IngestDate Fri Jul 25 10:46:46 EDT 2025
Tue Jul 01 02:42:15 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Wed Jan 22 17:10:29 EST 2025
Wed Oct 30 09:53:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue B8
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4338-9c1ae977c1c5178ad7e823c9e69f4ffb577682010e26f8fa7f6076175ed4a8f03
Notes Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.
istex:4501EDEDE07387732F4B2F0B4B59F0968B7E9E88
ark:/67375/WNG-KG8TLZJN-7
ArticleID:2011JB008264
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 884468245
PQPubID 54731
PageCount 25
ParticipantIDs proquest_journals_884468245
crossref_primary_10_1029_2011JB008264
crossref_citationtrail_10_1029_2011JB008264
wiley_primary_10_1029_2011JB008264_JGRB16868
istex_primary_ark_67375_WNG_KG8TLZJN_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Collettini, C., A. Niemeijer, C. Viti, and C. Marone (2009a), Fault zone fabric and fault weakness, Nature, 462, 907-910, doi:10.1038/nature08585.
Niemeijer, A. R., C. Marone, and D. Elsworth (2010a), Fabric induced weakness of tectonic faults, Geophys. Res. Lett., 37, L03304, doi:10.1029/2009GL041689.
Beeler, N. M., T. E. Tullis, M. L. Blanpied, and J. D. Weeks (1996), Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101, 8697-8715, doi:10.1029/96JB00411.
Mandl, G., L. N. J. de Jong, and A. Maltha (1977), Shear zones in granular material, Rock Mech., 9, 95-144, doi:10.1007/BF01237876.
Stesky, R. M. (1978), Rock friction-effect of confining pressure, temperature, and pore pressure, Pure Appl. Geophys., 116, 690-704, doi:10.1007/BF00876532.
Marone, C. (1998a), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643-696, doi:10.1146/annurev.earth.26.1.643.
Rutter, E. H., and R. H. Maddock (1992), On the mechanical properties of synthetic kaolinite/quartz fault gouge, Terra Nova, 4, 489-500, doi:10.1111/j.1365-3121.1992.tb00585.x.
Tullis, T. E., and J. D. Weeks (1986), Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys., 124, 383-414, doi:10.1007/BF00877209.
Tembe, S., D. A. Lockner, and T.-F. Wong (2010), Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite, J. Geophys. Res., 115, B03416, doi:10.1029/2009JB006383.
Jaeger, J. C., N. G. W. Cook, and R. W. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell, Malden, Mass.
Logan, J. M., and K. A. Rauenzahn (1987), Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric, Tectonophysics, 144, 87-108, doi:10.1016/0040-1951(87)90010-2.
Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Press, New York.
Gottschalk, R. R., A. K. Kronenberg, J. E. Russell, and J. Handin (1990), Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior, J. Geophys. Res., 95, 21,613-21,634, doi:10.1029/JB095iB13p21613.
Hull, J. (1988), Thickness-displacement relationships for deformation zones, J. Struct. Geol., 10, 431-435, doi:10.1016/0191-8141(88)90020-X.
Wenk, H.-R., W. Kanitpanyacharoen, and M. Voltolini (2010), Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist, J. Struct. Geol., 32, 478-489, doi:10.1016/j.jsg.2010.02.003.
Chester, F. M., and J. S. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199-221, doi:10.1016/S0040-1951(98)00121-8.
Marone, C. (1998b), The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle, Nature, 391, 69-72, doi:10.1038/34157.
Sibson, R. H. (1986a), Earthquakes and rock deformation in crustal fault zones, Annu. Rev. Earth Planet. Sci., 14, 149-175, doi:10.1146/annurev.ea.14.050186.001053.
Yund, R. A., M. L. Blanpied, T. E. Tullis, and J. D. Weeks (1990), Amorphous material in high strain experimental fault gouges, J. Geophys. Res., 95, 15,589-15,602, doi:10.1029/JB095iB10p15589.
Means, W. D. (1995), Shear zones and rock history, Tectonophysics, 247, 157-160, doi:10.1016/0040-1951(95)98214-H.
Blanpied, M. L., C. J. Marone, D. A. Lockner, J. D. Byerlee, and D. P. King (1998), Quantitative measure of the variation in fault rheology due to fluid-rock interactions, J. Geophys. Res., 103, 9691-9712, doi:10.1029/98JB00162.
Savage, H. M., and C. Marone (2008), Potential for earthquake triggering from transient deformations, J. Geophys. Res., 113, B05302, doi:10.1029/2007JB005277.
Attewell, P. B., and M. R. Sandford (1974), Intrinsic shear strength of a brittle, anisotropic rock-I. Experimental and mechanical implications, Int. J. Mech. Min. Sci. Geomech. Abstr., 11, 423-430, doi:10.1016/0148-9062(74)90453-7.
Lachenbruch, A. H., and J. H. Sass (1980), Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 6185-6222, doi:10.1029/JB085iB11p06185.
Schleicher, A. M., B. A. van der Pluijm, and L. N. Warr (2010), Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 38, 667-670, doi:10.1130/G31091.1.
Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615-626.
Niemeijer, A. R., and C. J. Spiers (2006), Velocity dependence of strength and healing behavior in simulated phyllosilicate-bearing fault gouge, Tectonophysics, 427, 231-253, doi:10.1016/j.tecto.2006.03.048.
Evans, J. P. (1990), Thickness-displacement relationships for fault zones, J. Struct. Geol., 12, 1061-1065, doi:10.1016/0191-8141(90)90101-4.
Schleicher, A. M., S. N. Tourscher, B. A. van der Pluijm, and L. N. Warr (2009), Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from the SAFOD drill hole, J. Geophys. Res., 114, B04202, doi:10.1029/2008JB006092.
Shea, W. T., and A. K. Kronenberg (1993), Strength and anisotropy of foliated rocks with varied mica contents, J. Struct. Geol., 15, 1097-1121, doi:10.1016/0191-8141(93)90158-7.
Vrolijk, P., and B. A. van der Pluijm (1999), Clay gouge, J. Struct. Geol., 21, 1039-1048, doi:10.1016/S0191-8141(99)00103-0.
de Paolo, N., C. Collettini, D. R. Faulkner, and F. Trippetta (2008), Fault zone architecture and deformation processes within evaporitic rocks in the upper crust, Tectonics, 27, TC4017, doi:10.1029/2007TC002230.
Mair, K., and C. Marone (1999), Friction of simulated fault gouge for a wide range of velocities and normal stresses, J. Geophys. Res., 104, 28,899-28,914, doi:10.1029/1999JB900279.
Karner, S. L., C. Marone, and B. Evans (1997), Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions, Tectonophysics, 277, 41-55, doi:10.1016/S0040-1951(97)00077-2.
Marone, C., C. B. Raleigh, and C. H. Scholz (1990), Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res., 95, 7007-7025, doi:10.1029/JB095iB05p07007.
Shimamoto, T., and J. M. Logan (1981b), Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges, J. Geophys. Res., 86, 2902-2914, doi:10.1029/JB086iB04p02902.
Niemeijer, A. R., C. Marone, and D. Elsworth (2008), Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments, J. Geophys. Res., 113, B04204, doi:10.1029/2007JB005376.
Handin, J. (1969), On the Coulomb-Mohr failure criterion, J. Geophys. Res., 74, 5343-5348, doi:10.1029/JB074i022p05343.
Rutter, E. H., R. H. Maddock, S. H. Hall, and S. H. White (1986), Comparative microstructures of naturally and experimentally produced clay-bearing fault gouges, Pure Appl. Geophys., 124, 3-30, doi:10.1007/BF00875717.
Dieterich, J. H. (1979), Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161-2168, doi:10.1029/JB084iB05p02161.
Niemeijer, A. R., C. Marone, and D. Elsworth (2010b), Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening, J. Geophys. Res., 115, B10207, doi:10.1029/2009JB000838.
Biegel, R. L., C. G. Sammis, and J. H. Dieterich (1989), The frictional properties of a simulated gouge having a fractal particle size distribution, J. Struct. Geol., 11, 827-846, doi:10.1016/0191-8141(89)90101-6.
Peng, Z., and J. Gomberg (2010), An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 3, 599-607, doi:10.1038/ngeo940.
Reinen, L. A., and J. D. Weeks (1993), Determination of rock friction constitutive parameters using an iterative least-squares inversion method, J. Geophys. Res., 98, 15,937-15,950, doi:10.1029/93JB00780.
Sleep, N. H., and M. L. Blanpied (1992), Creep, compaction and the weak rheology of major faults, Nature, 359, 687-692, doi:10.1038/359687a0.
Scott, D. R., C. J. Marone, and C. G. Sammis (1994), The apparent friction of granular fault gouge in sheared layers, J. Geophys. Res., 99, 7231-7246, doi:10.1029/93JB03361.
Ikari, M. J., D. M. Saffer, and C. Marone (2007), Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res., 112, B06423, doi:10.1029/2006JB004748.
Muhuri, S. K., T. A. Dewers, T. E. Scott Jr., and Z. Reches (2003), Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881-884, doi:10.1130/G19601.1.
Sibson, R. H. (1986b), Brecciation processes in fault zones: Inferences from earthquake rupturing, Pure Appl. Geophys., 124, 159-175, doi:10.1007/BF00875724.
Wintsch, R. P., R. Christoffersen, and A. K. Kronenberg (1995), Fluid-rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021-13,032, doi:10.1029/94JB02622.
Frost, E., J. Dolan, C. Sammis, B. Hacker, J. Cole, and L. Ratschbacher (2009), Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: Structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria, J. Geophys. Res., 114, B04406, doi:10.1029/2008JB005763.
Morrow, C. A., D. E. Moore, and D. A. Lockner (2000), The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophys. Res. Lett., 27, 815-818, doi:10.1029/1999GL008401.
Marone, C., and C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophys. Res. Lett., 15, 621-624, doi:10.1029/GL015i006p00621.
Brace, W. F. (1972), Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics, 14, 189-200.
Donath, F. A. (1961), Experimental study of shear failure in anisotropic rocks, Geol. Soc. Am. Bull., 72, 985-990, doi:10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2.
Scholz, C. H. (1987), Wear and goug
1970; 9
1990; 95
1974; 11
1990; 12
2001; 186
1987; 144
1980; 85
1969; 74
1997; 277
1986; 37
1992; 19
1961; 72
1996; 101
2009; 114
1981; 86
1994; 143
1990
2009; 94
2000; 327
2006; 28
2010; 115
2008; 27
1992; 359
1995; 247
2008; 113
1972; 14
2010; 3
1996; 24
1981; 75
2007; 26
1992; 4
1998; 26
2010; 32
2010; 38
1996; 18
2010; 37
2000; 27
2003; 215
1988; 15
1986; 14
1988; 10
1981; 24
1997
2007
2011; 33
1999; 21
1958; 71
1992
2001; 29
2002
2011; 39
1978; 116
1999; 104
2003; 31
2006; 111
1987; 15
1998; 295
1993; 15
2007; 112
1998; 391
1989; 11
1976; 13
2006; 427
1986; 124
2005; 245
1993; 98
2009; 462
1992; 139
1994; 99
1998; 103
1995; 100
2008; 299
1977; 9
2009; 37
1979; 84
Marone (10.1029/2011JB008264:maro07) 2007
Marone (10.1029/2011JB008264:maro98a) 1998; 26
Holdsworth (10.1029/2011JB008264:hold11) 2011; 33
Means (10.1029/2011JB008264:mean95) 1995; 247
Mair (10.1029/2011JB008264:mair99) 1999; 104
Shimamoto (10.1029/2011JB008264:shim86) 1986; 37
Marone (10.1029/2011JB008264:maro09) 2009; 94
Schleicher (10.1029/2011JB008264:schl09) 2009; 114
Warr (10.1029/2011JB008264:warr01) 2001; 186
Niemeijer (10.1029/2011JB008264:niem10b) 2010; 115
Stesky (10.1029/2011JB008264:stes78) 1978; 116
Chester (10.1029/2011JB008264:ches98) 1998; 295
Menéndez (10.1029/2011JB008264:mene96) 1996; 18
Dieterich (10.1029/2011JB008264:diet79) 1979; 84
Chester (10.1029/2011JB008264:ches93) 1993; 98
Moore (10.1029/2011JB008264:moor07) 2007
Scruggs (10.1029/2011JB008264:scru98) 1998; 295
Tenthorey (10.1029/2011JB008264:tent06) 2006; 111
de Paolo (10.1029/2011JB008264:depa08) 2008; 27
Reinen (10.1029/2011JB008264:rein93) 1993; 98
Niemeijer (10.1029/2011JB008264:niem10a) 2010; 37
Shimamoto (10.1029/2011JB008264:shim81b) 1981; 86
Attewell (10.1029/2011JB008264:atte74) 1974; 11
Shimamoto (10.1029/2011JB008264:shim81a) 1981; 75
Savage (10.1029/2011JB008264:sava08) 2008; 113
Saffer (10.1029/2011JB008264:saff03) 2003; 215
Marone (10.1029/2011JB008264:maro98b) 1998; 391
Shea (10.1029/2011JB008264:shea93) 1993; 15
Wintsch (10.1029/2011JB008264:wint95) 1995; 100
Scholz (10.1029/2011JB008264:scho92) 1992
Caine (10.1029/2011JB008264:cain96) 1996; 24
Numelin (10.1029/2011JB008264:nume07) 2007; 26
Niemeijer (10.1029/2011JB008264:niem08) 2008; 113
Logan (10.1029/2011JB008264:loga87) 1987; 144
Smith (10.1029/2011JB008264:smit10) 2010; 115
Faulkner (10.1029/2011JB008264:faul08) 2008; 299
Evans (10.1029/2011JB008264:evan95) 1995; 100
Rutter (10.1029/2011JB008264:rutt92) 1992; 4
Karner (10.1029/2011JB008264:karn97) 1997; 277
Cocco (10.1029/2011JB008264:cocc09) 2009; 94
Handin (10.1029/2011JB008264:hand69) 1969; 74
Muhuri (10.1029/2011JB008264:muhu03) 2003; 31
Biegel (10.1029/2011JB008264:bieg89) 1989; 11
Niemeijer (10.1029/2011JB008264:niem05) 2005; 245
Hull (10.1029/2011JB008264:hull88) 1988; 10
Moore (10.1029/2011JB008264:moor01) 2001; 29
Byerlee (10.1029/2011JB008264:byer70) 1970; 9
Logan (10.1029/2011JB008264:loga92) 1992
Yund (10.1029/2011JB008264:yund90) 1990; 95
Marone (10.1029/2011JB008264:maro88) 1988; 15
Beeler (10.1029/2011JB008264:beel96) 1996; 101
Cook (10.1029/2011JB008264:cook81) 1981; 24
Lachenbruch (10.1029/2011JB008264:lach80) 1980; 85
Jaeger (10.1029/2011JB008264:jaeg07) 2007
Schleicher (10.1029/2011JB008264:schl10) 2010; 38
Scott (10.1029/2011JB008264:scot94) 1994; 99
Frost (10.1029/2011JB008264:fros09) 2009; 114
Sibson (10.1029/2011JB008264:sibs86b) 1986; 124
Byerlee (10.1029/2011JB008264:byer76) 1976; 13
Marone (10.1029/2011JB008264:maro90) 1990; 95
Peng (10.1029/2011JB008264:peng10) 2010; 3
Faulkner (10.1029/2011JB008264:faul10) 2010; 32
Beeler (10.1029/2011JB008264:beel07) 2007
Byerlee (10.1029/2011JB008264:byer92) 1992; 19
Gu (10.1029/2011JB008264:gu94) 1994; 143
Bos (10.1029/2011JB008264:bos00) 2000; 327
Hobbs (10.1029/2011JB008264:hobb90) 1990
Vrolijk (10.1029/2011JB008264:vrol99) 1999; 21
Kronenberg (10.1029/2011JB008264:kron90) 1990; 95
Byerlee (10.1029/2011JB008264:byer78) 1978; 116
Ikari (10.1029/2011JB008264:ikar07) 2007; 112
Marone (10.1029/2011JB008264:maro92) 1992; 139
Sibson (10.1029/2011JB008264:sibs86a) 1986; 14
Dieterich (10.1029/2011JB008264:diet81) 1981; 24
Donath (10.1029/2011JB008264:dona61) 1961; 72
Morrow (10.1029/2011JB008264:morr92) 1992
Wenk (10.1029/2011JB008264:wenk10) 2010; 32
Fagereng (10.1029/2011JB008264:fage10) 2010; 38
Rabinowicz (10.1029/2011JB008264:rabi58) 1958; 71
Morrow (10.1029/2011JB008264:morr00) 2000; 27
Tullis (10.1029/2011JB008264:tull86) 1986; 124
Sleep (10.1029/2011JB008264:slee92) 1992; 359
Rutter (10.1029/2011JB008264:rutt86) 1986; 124
Blanpied (10.1029/2011JB008264:blan98) 1998; 103
Evans (10.1029/2011JB008264:evan90) 1990; 12
Tembe (10.1029/2011JB008264:temb10) 2010; 115
Mandl (10.1029/2011JB008264:mand77) 1977; 9
Scholz (10.1029/2011JB008264:scho02) 2002
Collettini (10.1029/2011JB008264:coll09b) 2009; 37
Friedman (10.1029/2011JB008264:frie81) 1981; 24
Ikari (10.1029/2011JB008264:ikar11) 2011; 39
Jefferies (10.1029/2011JB008264:jeff06) 2006; 28
Brace (10.1029/2011JB008264:brac72) 1972; 14
Rutter (10.1029/2011JB008264:rutt01) 2001; 186
Gottschalk (10.1029/2011JB008264:gott90) 1990; 95
Hibbeler (10.1029/2011JB008264:hibb97) 1997
Niemeijer (10.1029/2011JB008264:niem06) 2006; 427
Collettini (10.1029/2011JB008264:coll09a) 2009; 462
Crawford (10.1029/2011JB008264:craw08) 2008; 113
Scholz (10.1029/2011JB008264:scho87) 1987; 15
Ikari (10.1029/2011JB008264:ikar09) 2009; 114
References_xml – reference: Jefferies, S. P., R. E. Holdsworth, C. A. J. Wibberley, T. Shimamoto, C. J. Spiers, A. R. Niemeijer, and G. E. Lloyd (2006), The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan, J. Struct. Geol., 28, 220-235, doi:10.1016/j.jsg.2005.10.008.
– reference: Rabinowicz, E. (1958), The intrinsic variables affecting the stick-slip process, Proc. Phys. Soc., 71, 668-675, doi:10.1088/0370-1328/71/4/316.
– reference: Reinen, L. A., and J. D. Weeks (1993), Determination of rock friction constitutive parameters using an iterative least-squares inversion method, J. Geophys. Res., 98, 15,937-15,950, doi:10.1029/93JB00780.
– reference: Rutter, E. H., and R. H. Maddock (1992), On the mechanical properties of synthetic kaolinite/quartz fault gouge, Terra Nova, 4, 489-500, doi:10.1111/j.1365-3121.1992.tb00585.x.
– reference: Collettini, C., C. Viti, S. A. F. Smith, and R. E. Holdsworth (2009b), Development of interconnected talc networks and weakening of continental low-angle normal faults, Geology, 37, 567-570, doi:10.1130/G25645A.1.
– reference: Brace, W. F. (1972), Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics, 14, 189-200.
– reference: Morrow, C. A., D. E. Moore, and D. A. Lockner (2000), The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophys. Res. Lett., 27, 815-818, doi:10.1029/1999GL008401.
– reference: Ikari, M. J., C. Marone, and D. M. Saffer (2011), On the relation between fault strength and frictional stability, Geology, 39, 83-86, doi:10.1130/G31416.1.
– reference: Byerlee, J., and R. Summers (1976), A note on the effect of fault gouge thickness on fault stability, Int. J. Mech. Min. Sci. Geomech. Abstr., 13, 35-36, doi:10.1016/0148-9062(76)90226-6.
– reference: Schleicher, A. M., S. N. Tourscher, B. A. van der Pluijm, and L. N. Warr (2009), Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from the SAFOD drill hole, J. Geophys. Res., 114, B04202, doi:10.1029/2008JB006092.
– reference: Dieterich, J. H. (1979), Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161-2168, doi:10.1029/JB084iB05p02161.
– reference: Shimamoto, T., and J. M. Logan (1981b), Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges, J. Geophys. Res., 86, 2902-2914, doi:10.1029/JB086iB04p02902.
– reference: Muhuri, S. K., T. A. Dewers, T. E. Scott Jr., and Z. Reches (2003), Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881-884, doi:10.1130/G19601.1.
– reference: Niemeijer, A. R., C. Marone, and D. Elsworth (2010b), Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening, J. Geophys. Res., 115, B10207, doi:10.1029/2009JB000838.
– reference: Scruggs, V. J., and T. E. Tullis (1998), Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge, Tectonophysics, 295, 15-40, doi:10.1016/S0040-1951(98)00113-9.
– reference: Sibson, R. H. (1986a), Earthquakes and rock deformation in crustal fault zones, Annu. Rev. Earth Planet. Sci., 14, 149-175, doi:10.1146/annurev.ea.14.050186.001053.
– reference: Tembe, S., D. A. Lockner, and T.-F. Wong (2010), Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite, J. Geophys. Res., 115, B03416, doi:10.1029/2009JB006383.
– reference: Hibbeler, R. C. (1997), Mechanics of Materials, 3rd ed., Prentice Hall, Upper Saddle River, N. J.
– reference: Kronenberg, A. K., S. H. Kirby, and J. Pinkston (1990), Basal slip and mechanical anisotropy of biotite, J. Geophys. Res., 95, 19,257-19,278, doi:10.1029/JB095iB12p19257.
– reference: Jaeger, J. C., N. G. W. Cook, and R. W. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell, Malden, Mass.
– reference: Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615-626.
– reference: Schleicher, A. M., B. A. van der Pluijm, and L. N. Warr (2010), Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 38, 667-670, doi:10.1130/G31091.1.
– reference: Biegel, R. L., C. G. Sammis, and J. H. Dieterich (1989), The frictional properties of a simulated gouge having a fractal particle size distribution, J. Struct. Geol., 11, 827-846, doi:10.1016/0191-8141(89)90101-6.
– reference: Holdsworth, R. E., E. W. E. van Diggelen, C. J. Spiers, J. H. P. de Bresser, R. J. Walker, and L. Bowen (2011), Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California, J. Struct. Geol., 33, 132-144, doi:10.1016/j.jsg.2010.11.010.
– reference: Fagereng, Å., and R. H. Sibson (2010), Mélange rheology and seismic style, Geology, 38, 751-754, doi:10.1130/G30868.1.
– reference: Handin, J. (1969), On the Coulomb-Mohr failure criterion, J. Geophys. Res., 74, 5343-5348, doi:10.1029/JB074i022p05343.
– reference: Gu, Y., and T.-F. Wong (1994), Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size, Pure Appl. Geophys., 143, 387-423, doi:10.1007/BF00874336.
– reference: de Paolo, N., C. Collettini, D. R. Faulkner, and F. Trippetta (2008), Fault zone architecture and deformation processes within evaporitic rocks in the upper crust, Tectonics, 27, TC4017, doi:10.1029/2007TC002230.
– reference: Ikari, M. J., D. M. Saffer, and C. Marone (2009), Frictional and hydrologic properties of clay-rich fault gouge, J. Geophys. Res., 114, B05409, doi:10.1029/2008JB006089.
– reference: Faulkner, D. R., C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, C. A. J. Wibberley, and M. O. Withjack (2010), A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557-1575, doi:10.1016/j.jsg.2010.06.009.
– reference: Niemeijer, A. R., and C. J. Spiers (2006), Velocity dependence of strength and healing behavior in simulated phyllosilicate-bearing fault gouge, Tectonophysics, 427, 231-253, doi:10.1016/j.tecto.2006.03.048.
– reference: Scott, D. R., C. J. Marone, and C. G. Sammis (1994), The apparent friction of granular fault gouge in sheared layers, J. Geophys. Res., 99, 7231-7246, doi:10.1029/93JB03361.
– reference: Peng, Z., and J. Gomberg (2010), An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 3, 599-607, doi:10.1038/ngeo940.
– reference: Niemeijer, A. R., C. Marone, and D. Elsworth (2008), Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments, J. Geophys. Res., 113, B04204, doi:10.1029/2007JB005376.
– reference: Stesky, R. M. (1978), Rock friction-effect of confining pressure, temperature, and pore pressure, Pure Appl. Geophys., 116, 690-704, doi:10.1007/BF00876532.
– reference: Evans, J. P., and F. M. Chester (1995), Fluid-rock interactions in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures, J. Geophys. Res., 100, 13,007-13,020, doi:10.1029/94JB02625.
– reference: Yund, R. A., M. L. Blanpied, T. E. Tullis, and J. D. Weeks (1990), Amorphous material in high strain experimental fault gouges, J. Geophys. Res., 95, 15,589-15,602, doi:10.1029/JB095iB10p15589.
– reference: Chester, F. M., and J. S. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199-221, doi:10.1016/S0040-1951(98)00121-8.
– reference: Tenthorey, E., and S. F. Cox (2006), Cohesive strengthening of fault zones during the interseismic period: An experimental study, J. Geophys. Res., 111, B09202, doi:10.1029/2005JB004122.
– reference: Donath, F. A. (1961), Experimental study of shear failure in anisotropic rocks, Geol. Soc. Am. Bull., 72, 985-990, doi:10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2.
– reference: Crawford, B. R., D. R. Faulkner, and E. H. Rutter (2008), Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge, J. Geophys. Res., 113, B03207, doi:10.1029/2006JB004634.
– reference: Niemeijer, A. R., C. Marone, and D. Elsworth (2010a), Fabric induced weakness of tectonic faults, Geophys. Res. Lett., 37, L03304, doi:10.1029/2009GL041689.
– reference: Chester, F. M., J. P. Evans, and R. L. Biegel (1993), Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res., 98, 771-786, doi:10.1029/92JB01866.
– reference: Byerlee, J. D. (1970), The mechanics of stick-slip, Tectonophysics, 9, 475-486, doi:10.1016/0040-1951(70)90059-4.
– reference: Byerlee, J. D., and J. C. Savage (1992), Coulomb plasticity within the fault zone, Geophys. Res. Lett., 19, 2341-2344, doi:10.1029/92GL02370.
– reference: Shimamoto, T., and J. M. Logan (1981a), Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone, Tectonophysics, 75, 243-255.
– reference: Means, W. D. (1995), Shear zones and rock history, Tectonophysics, 247, 157-160, doi:10.1016/0040-1951(95)98214-H.
– reference: Rutter, E. H., R. H. Maddock, S. H. Hall, and S. H. White (1986), Comparative microstructures of naturally and experimentally produced clay-bearing fault gouges, Pure Appl. Geophys., 124, 3-30, doi:10.1007/BF00875717.
– reference: Moore, J. C., and D. M. Saffer (2001), Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 183-186, doi:10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2.
– reference: Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Press, New York.
– reference: Menéndez, B., W. Zhu, and T.-F. Wong (1996), Micromechanics of brittle faulting and cataclastic flow in Berea sandstone, J. Struct. Geol., 18, 1-16, doi:10.1016/0191-8141(95)00076-P.
– reference: Lachenbruch, A. H., and J. H. Sass (1980), Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 6185-6222, doi:10.1029/JB085iB11p06185.
– reference: Marone, C. (1998a), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643-696, doi:10.1146/annurev.earth.26.1.643.
– reference: Hull, J. (1988), Thickness-displacement relationships for deformation zones, J. Struct. Geol., 10, 431-435, doi:10.1016/0191-8141(88)90020-X.
– reference: Logan, J. M., and K. A. Rauenzahn (1987), Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric, Tectonophysics, 144, 87-108, doi:10.1016/0040-1951(87)90010-2.
– reference: Bos, B., C. J. Peach, and C. J. Spiers (2000), Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution, Tectonophysics, 327, 173-194, doi:10.1016/S0040-1951(00)00168-2.
– reference: Evans, J. P. (1990), Thickness-displacement relationships for fault zones, J. Struct. Geol., 12, 1061-1065, doi:10.1016/0191-8141(90)90101-4.
– reference: Shea, W. T., and A. K. Kronenberg (1993), Strength and anisotropy of foliated rocks with varied mica contents, J. Struct. Geol., 15, 1097-1121, doi:10.1016/0191-8141(93)90158-7.
– reference: Karner, S. L., C. Marone, and B. Evans (1997), Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions, Tectonophysics, 277, 41-55, doi:10.1016/S0040-1951(97)00077-2.
– reference: Sibson, R. H. (1986b), Brecciation processes in fault zones: Inferences from earthquake rupturing, Pure Appl. Geophys., 124, 159-175, doi:10.1007/BF00875724.
– reference: Beeler, N. M., T. E. Tullis, M. L. Blanpied, and J. D. Weeks (1996), Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101, 8697-8715, doi:10.1029/96JB00411.
– reference: Collettini, C., A. Niemeijer, C. Viti, and C. Marone (2009a), Fault zone fabric and fault weakness, Nature, 462, 907-910, doi:10.1038/nature08585.
– reference: Marone, C., C. B. Raleigh, and C. H. Scholz (1990), Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res., 95, 7007-7025, doi:10.1029/JB095iB05p07007.
– reference: Saffer, D. M., and C. Marone (2003), Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts, Earth Planet. Sci. Lett., 215, 219-235, doi:10.1016/S0012-821X(03)00424-2.
– reference: Wenk, H.-R., W. Kanitpanyacharoen, and M. Voltolini (2010), Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist, J. Struct. Geol., 32, 478-489, doi:10.1016/j.jsg.2010.02.003.
– reference: Wintsch, R. P., R. Christoffersen, and A. K. Kronenberg (1995), Fluid-rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021-13,032, doi:10.1029/94JB02622.
– reference: Caine, J. S., J. P. Evans, and C. B. Forster (1996), Fault zone architecture and permeability structure, Geology, 24, 1025-1028, doi:10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2.
– reference: Blanpied, M. L., C. J. Marone, D. A. Lockner, J. D. Byerlee, and D. P. King (1998), Quantitative measure of the variation in fault rheology due to fluid-rock interactions, J. Geophys. Res., 103, 9691-9712, doi:10.1029/98JB00162.
– reference: Ikari, M. J., D. M. Saffer, and C. Marone (2007), Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res., 112, B06423, doi:10.1029/2006JB004748.
– reference: Attewell, P. B., and M. R. Sandford (1974), Intrinsic shear strength of a brittle, anisotropic rock-I. Experimental and mechanical implications, Int. J. Mech. Min. Sci. Geomech. Abstr., 11, 423-430, doi:10.1016/0148-9062(74)90453-7.
– reference: Mair, K., and C. Marone (1999), Friction of simulated fault gouge for a wide range of velocities and normal stresses, J. Geophys. Res., 104, 28,899-28,914, doi:10.1029/1999JB900279.
– reference: Scholz, C. H. (1987), Wear and gouge formation in brittle faulting, Geology, 15, 493-495, doi:10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2.
– reference: Sleep, N. H., and M. L. Blanpied (1992), Creep, compaction and the weak rheology of major faults, Nature, 359, 687-692, doi:10.1038/359687a0.
– reference: Frost, E., J. Dolan, C. Sammis, B. Hacker, J. Cole, and L. Ratschbacher (2009), Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: Structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria, J. Geophys. Res., 114, B04406, doi:10.1029/2008JB005763.
– reference: Vrolijk, P., and B. A. van der Pluijm (1999), Clay gouge, J. Struct. Geol., 21, 1039-1048, doi:10.1016/S0191-8141(99)00103-0.
– reference: Marone, C., B. E. Hobbs, and A. Ord (1992), Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear, Pure Appl. Geophys., 139, 195-214, doi:10.1007/BF00876327.
– reference: Gottschalk, R. R., A. K. Kronenberg, J. E. Russell, and J. Handin (1990), Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior, J. Geophys. Res., 95, 21,613-21,634, doi:10.1029/JB095iB13p21613.
– reference: Marone, C. (1998b), The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle, Nature, 391, 69-72, doi:10.1038/34157.
– reference: Smith, S. A. F., and D. R. Faulkner (2010), Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy, J. Geophys. Res., 115, B02407, doi:10.1029/2008JB006274.
– reference: Numelin, T., C. Marone, and E. Kirby (2007), Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California, Tectonics, 26, TC2004, doi:10.1029/2005TC001916.
– reference: Mandl, G., L. N. J. de Jong, and A. Maltha (1977), Shear zones in granular material, Rock Mech., 9, 95-144, doi:10.1007/BF01237876.
– reference: Marone, C., and C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophys. Res. Lett., 15, 621-624, doi:10.1029/GL015i006p00621.
– reference: Savage, H. M., and C. Marone (2008), Potential for earthquake triggering from transient deformations, J. Geophys. Res., 113, B05302, doi:10.1029/2007JB005277.
– reference: Tullis, T. E., and J. D. Weeks (1986), Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys., 124, 383-414, doi:10.1007/BF00877209.
– volume: 114
  year: 2009
  article-title: Constraints on mineralization, fluid‐rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole
  publication-title: J. Geophys. Res.
– volume: 37
  year: 2010
  article-title: Fabric induced weakness of tectonic faults
  publication-title: Geophys. Res. Lett.
– volume: 115
  year: 2010
  article-title: Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite
  publication-title: J. Geophys. Res.
– volume: 186
  start-page: 1
  year: 2001
  end-page: 11
– volume: 85
  start-page: 6185
  year: 1980
  end-page: 6222
  article-title: Heat flow and energetics of the San Andreas fault zone
  publication-title: J. Geophys. Res.
– volume: 95
  start-page: 7007
  year: 1990
  end-page: 7025
  article-title: Frictional behavior and constitutive modeling of simulated fault gouge
  publication-title: J. Geophys. Res.
– volume: 124
  start-page: 3
  year: 1986
  end-page: 30
  article-title: Comparative microstructures of naturally and experimentally produced clay‐bearing fault gouges
  publication-title: Pure Appl. Geophys.
– volume: 143
  start-page: 387
  year: 1994
  end-page: 423
  article-title: Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size
  publication-title: Pure Appl. Geophys.
– volume: 462
  start-page: 907
  year: 2009
  end-page: 910
  article-title: Fault zone fabric and fault weakness
  publication-title: Nature
– volume: 114
  year: 2009
  article-title: Progressive strain localization in a major strike‐slip fault exhumed from midseismogenic depths: Structural observations from the Salzach‐Ennstal‐Mariazell‐Puchberg fault system, Austria
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 1
  year: 1996
  end-page: 16
  article-title: Micromechanics of brittle faulting and cataclastic flow in Berea sandstone
  publication-title: J. Struct. Geol.
– volume: 113
  year: 2008
  article-title: Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz‐clay fault gouge
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 183
  year: 2001
  end-page: 186
  article-title: Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low‐grade metamorphic processes and increasing effective stress
  publication-title: Geology
– volume: 33
  start-page: 132
  year: 2011
  end-page: 144
  article-title: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California
  publication-title: J. Struct. Geol.
– volume: 295
  start-page: 199
  year: 1998
  end-page: 221
  article-title: Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California
  publication-title: Tectonophysics
– volume: 95
  start-page: 21,613
  year: 1990
  end-page: 21,634
  article-title: Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments
  publication-title: J. Geophys. Res.
– volume: 39
  start-page: 83
  year: 2011
  end-page: 86
  article-title: On the relation between fault strength and frictional stability
  publication-title: Geology
– volume: 427
  start-page: 231
  year: 2006
  end-page: 253
  article-title: Velocity dependence of strength and healing behavior in simulated phyllosilicate‐bearing fault gouge
  publication-title: Tectonophysics
– volume: 104
  start-page: 28,899
  year: 1999
  end-page: 28,914
  article-title: Friction of simulated fault gouge for a wide range of velocities and normal stresses
  publication-title: J. Geophys. Res.
– volume: 32
  start-page: 478
  year: 2010
  end-page: 489
  article-title: Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist
  publication-title: J. Struct. Geol.
– volume: 71
  start-page: 668
  year: 1958
  end-page: 675
  article-title: The intrinsic variables affecting the stick‐slip process
  publication-title: Proc. Phys. Soc.
– year: 2007
– volume: 86
  start-page: 2902
  year: 1981
  end-page: 2914
  article-title: Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 9691
  year: 1998
  end-page: 9712
  article-title: Quantitative measure of the variation in fault rheology due to fluid‐rock interactions
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 7231
  year: 1994
  end-page: 7246
  article-title: The apparent friction of granular fault gouge in sheared layers
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 1061
  year: 1990
  end-page: 1065
  article-title: Thickness‐displacement relationships for fault zones
  publication-title: J. Struct. Geol.
– volume: 111
  year: 2006
  article-title: Cohesive strengthening of fault zones during the interseismic period: An experimental study
  publication-title: J. Geophys. Res.
– volume: 295
  start-page: 15
  year: 1998
  end-page: 40
  article-title: Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge
  publication-title: Tectonophysics
– volume: 98
  start-page: 771
  year: 1993
  end-page: 786
  article-title: Internal structure and weakening mechanisms of the San Andreas fault
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: 95
  year: 1977
  end-page: 144
  article-title: Shear zones in granular material
  publication-title: Rock Mech.
– volume: 94
  start-page: 135
  year: 2009
  end-page: 162
– volume: 9
  start-page: 475
  year: 1970
  end-page: 486
  article-title: The mechanics of stick‐slip
  publication-title: Tectonophysics
– volume: 24
  start-page: 11
  year: 1981
  end-page: 27
– volume: 27
  year: 2008
  article-title: Fault zone architecture and deformation processes within evaporitic rocks in the upper crust
  publication-title: Tectonics
– volume: 115
  year: 2010
  article-title: Laboratory measurements of the frictional properties of the Zuccale low‐angle normal fault, Elba Island, Italy
  publication-title: J. Geophys. Res.
– volume: 94
  start-page: 163
  year: 2009
  end-page: 186
– volume: 31
  start-page: 881
  year: 2003
  end-page: 884
  article-title: Interseismic fault strengthening and earthquake‐slip instability: Friction or cohesion?
  publication-title: Geology
– volume: 74
  start-page: 5343
  year: 1969
  end-page: 5348
  article-title: On the Coulomb‐Mohr failure criterion
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 13,007
  year: 1995
  end-page: 13,020
  article-title: Fluid‐rock interactions in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 827
  year: 1989
  end-page: 846
  article-title: The frictional properties of a simulated gouge having a fractal particle size distribution
  publication-title: J. Struct. Geol.
– year: 2002
– volume: 15
  start-page: 1097
  year: 1993
  end-page: 1121
  article-title: Strength and anisotropy of foliated rocks with varied mica contents
  publication-title: J. Struct. Geol.
– volume: 124
  start-page: 159
  year: 1986
  end-page: 175
  article-title: Brecciation processes in fault zones: Inferences from earthquake rupturing
  publication-title: Pure Appl. Geophys.
– volume: 277
  start-page: 41
  year: 1997
  end-page: 55
  article-title: Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions
  publication-title: Tectonophysics
– volume: 15
  start-page: 621
  year: 1988
  end-page: 624
  article-title: The depth of seismic faulting and the upper transition from stable to unstable slip regimes
  publication-title: Geophys. Res. Lett.
– volume: 100
  start-page: 13,021
  year: 1995
  end-page: 13,032
  article-title: Fluid‐rock reaction weakening of fault zones
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening
  publication-title: J. Geophys. Res.
– start-page: 473
  year: 1992
  end-page: 503
– volume: 116
  start-page: 615
  year: 1978
  end-page: 626
  article-title: Friction of rocks
  publication-title: Pure Appl. Geophys.
– start-page: 69
  year: 1992
  end-page: 88
– volume: 113
  year: 2008
  article-title: Potential for earthquake triggering from transient deformations
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 423
  year: 1974
  end-page: 430
  article-title: Intrinsic shear strength of a brittle, anisotropic rock–I. Experimental and mechanical implications
  publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr.
– volume: 10
  start-page: 431
  year: 1988
  end-page: 435
  article-title: Thickness‐displacement relationships for deformation zones
  publication-title: J. Struct. Geol.
– volume: 4
  start-page: 489
  year: 1992
  end-page: 500
  article-title: On the mechanical properties of synthetic kaolinite/quartz fault gouge
  publication-title: Terra Nova
– volume: 98
  start-page: 15,937
  year: 1993
  end-page: 15,950
  article-title: Determination of rock friction constitutive parameters using an iterative least‐squares inversion method
  publication-title: J. Geophys. Res.
– volume: 245
  start-page: 303
  year: 2005
  end-page: 327
– volume: 299
  start-page: 139
  year: 2008
  end-page: 150
– volume: 26
  year: 2007
  article-title: Frictional properties of natural fault gouge from a low‐angle normal fault, Panamint Valley, California
  publication-title: Tectonics
– volume: 186
  start-page: 85
  year: 2001
  end-page: 101
– volume: 114
  year: 2009
  article-title: Frictional and hydrologic properties of clay‐rich fault gouge
  publication-title: J. Geophys. Res.
– volume: 144
  start-page: 87
  year: 1987
  end-page: 108
  article-title: Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric
  publication-title: Tectonophysics
– start-page: 33
  year: 1992
  end-page: 67
– volume: 24
  start-page: 1025
  year: 1996
  end-page: 1028
  article-title: Fault zone architecture and permeability structure
  publication-title: Geology
– volume: 26
  start-page: 643
  year: 1998
  end-page: 696
  article-title: Laboratory‐derived friction laws and their application to seismic faulting
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 112
  year: 2007
  article-title: Effect of hydration state on the frictional properties of montmorillonite‐based fault gouge
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 49
  year: 1986
  end-page: 64
– volume: 95
  start-page: 15,589
  year: 1990
  end-page: 15,602
  article-title: Amorphous material in high strain experimental fault gouges
  publication-title: J. Geophys. Res.
– volume: 72
  start-page: 985
  year: 1961
  end-page: 990
  article-title: Experimental study of shear failure in anisotropic rocks
  publication-title: Geol. Soc. Am. Bull.
– volume: 27
  start-page: 815
  year: 2000
  end-page: 818
  article-title: The effect of mineral bond strength and adsorbed water on fault gouge frictional strength
  publication-title: Geophys. Res. Lett.
– volume: 32
  start-page: 1557
  year: 2010
  end-page: 1575
  article-title: A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones
  publication-title: J. Struct. Geol.
– volume: 24
  start-page: 93
  year: 1981
  end-page: 102
– year: 1997
– start-page: 435
  year: 1990
  end-page: 445
– volume: 3
  start-page: 599
  year: 2010
  end-page: 607
  article-title: An integrated perspective of the continuum between earthquakes and slow‐slip phenomena
  publication-title: Nat. Geosci.
– start-page: 370
  year: 2007
  end-page: 449
– volume: 37
  start-page: 567
  year: 2009
  end-page: 570
  article-title: Development of interconnected talc networks and weakening of continental low‐angle normal faults
  publication-title: Geology
– volume: 101
  start-page: 8697
  year: 1996
  end-page: 8715
  article-title: Frictional behavior of large displacement experimental faults
  publication-title: J. Geophys. Res.
– volume: 247
  start-page: 157
  year: 1995
  end-page: 160
  article-title: Shear zones and rock history
  publication-title: Tectonophysics
– volume: 84
  start-page: 2161
  year: 1979
  end-page: 2168
  article-title: Modeling of rock friction: 1. Experimental results and constitutive equations
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 1039
  year: 1999
  end-page: 1048
  publication-title: Clay gouge, J. Struct. Geol.
– volume: 38
  start-page: 751
  year: 2010
  end-page: 754
  article-title: Mélange rheology and seismic style
  publication-title: Geology
– volume: 28
  start-page: 220
  year: 2006
  end-page: 235
  article-title: The nature and importance of phyllonite development in crustal‐scale fault cores: An example from the Median Tectonic Line, Japan
  publication-title: J. Struct. Geol.
– volume: 24
  start-page: 102
  year: 1981
  end-page: 120
– volume: 13
  start-page: 35
  year: 1976
  end-page: 36
  article-title: A note on the effect of fault gouge thickness on fault stability
  publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr.
– volume: 116
  start-page: 690
  year: 1978
  end-page: 704
  article-title: Rock friction‐effect of confining pressure, temperature, and pore pressure
  publication-title: Pure Appl. Geophys.
– volume: 215
  start-page: 219
  year: 2003
  end-page: 235
  article-title: Comparison of smectite‐ and illite‐rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts
  publication-title: Earth Planet. Sci. Lett.
– volume: 38
  start-page: 667
  year: 2010
  end-page: 670
  article-title: Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California
  publication-title: Geology
– volume: 124
  start-page: 383
  year: 1986
  end-page: 414
  article-title: Constitutive behavior and stability of frictional sliding of granite
  publication-title: Pure Appl. Geophys.
– volume: 327
  start-page: 173
  year: 2000
  end-page: 194
  article-title: Frictional‐viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution
  publication-title: Tectonophysics
– volume: 15
  start-page: 493
  year: 1987
  end-page: 495
  article-title: Wear and gouge formation in brittle faulting
  publication-title: Geology
– volume: 75
  start-page: 243
  year: 1981
  end-page: 255
  article-title: Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone
  publication-title: Tectonophysics
– volume: 14
  start-page: 149
  year: 1986
  end-page: 175
  article-title: Earthquakes and rock deformation in crustal fault zones
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 95
  start-page: 19,257
  year: 1990
  end-page: 19,278
  article-title: Basal slip and mechanical anisotropy of biotite
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 189
  year: 1972
  end-page: 200
  article-title: Laboratory studies of stick‐slip and their application to earthquakes
  publication-title: Tectonophysics
– volume: 391
  start-page: 69
  year: 1998
  end-page: 72
  article-title: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle
  publication-title: Nature
– volume: 359
  start-page: 687
  year: 1992
  end-page: 692
  article-title: Creep, compaction and the weak rheology of major faults
  publication-title: Nature
– volume: 139
  start-page: 195
  year: 1992
  end-page: 214
  article-title: Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear
  publication-title: Pure Appl. Geophys.
– volume: 19
  start-page: 2341
  year: 1992
  end-page: 2344
  article-title: Coulomb plasticity within the fault zone
  publication-title: Geophys. Res. Lett.
– start-page: 346
  year: 2007
  end-page: 369
– volume: 95
  start-page: 15589
  year: 1990
  ident: 10.1029/2011JB008264:yund90
  article-title: Amorphous material in high strain experimental fault gouges
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB10p15589
– volume: 33
  start-page: 132
  year: 2011
  ident: 10.1029/2011JB008264:hold11
  article-title: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2010.11.010
– volume: 124
  start-page: 383
  year: 1986
  ident: 10.1029/2011JB008264:tull86
  article-title: Constitutive behavior and stability of frictional sliding of granite
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00877209
– volume: 15
  start-page: 1097
  year: 1993
  ident: 10.1029/2011JB008264:shea93
  article-title: Strength and anisotropy of foliated rocks with varied mica contents
  publication-title: J. Struct. Geol.
  doi: 10.1016/0191-8141(93)90158-7
– volume: 37
  volume-title: Velocity-dependent frictional behavior of simulated halite shear zones: An analog for silicates
  year: 1986
  ident: 10.1029/2011JB008264:shim86
– volume: 29
  start-page: 183
  year: 2001
  ident: 10.1029/2011JB008264:moor01
  article-title: Updip limit of the seismogenic zone beneath the accrectionary prism of Southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress
  publication-title: Geology
  doi: 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2
– volume: 98
  start-page: 771
  year: 1993
  ident: 10.1029/2011JB008264:ches93
  article-title: Internal structure and weakening mechanisms of the San Andreas fault
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JB01866
– volume: 114
  start-page: B04406
  year: 2009
  ident: 10.1029/2011JB008264:fros09
  article-title: Progressive strain localization in a major strike-slip fault exhumed from midseismogenic depths: Structural observations from the Salzach-Ennstal-Mariazell-Puchberg fault system, Austria
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JB005763
– volume: 9
  start-page: 475
  year: 1970
  ident: 10.1029/2011JB008264:byer70
  article-title: The mechanics of stick-slip
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(70)90059-4
– volume: 124
  start-page: 159
  year: 1986
  ident: 10.1029/2011JB008264:sibs86b
  article-title: Brecciation processes in fault zones: Inferences from earthquake rupturing
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00875724
– volume: 9
  start-page: 95
  year: 1977
  ident: 10.1029/2011JB008264:mand77
  article-title: Shear zones in granular material
  publication-title: Rock Mech.
  doi: 10.1007/BF01237876
– volume: 247
  start-page: 157
  year: 1995
  ident: 10.1029/2011JB008264:mean95
  article-title: Shear zones and rock history
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(95)98214-H
– volume: 72
  start-page: 985
  year: 1961
  ident: 10.1029/2011JB008264:dona61
  article-title: Experimental study of shear failure in anisotropic rocks
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2
– volume: 28
  start-page: 220
  year: 2006
  ident: 10.1029/2011JB008264:jeff06
  article-title: The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2005.10.008
– volume: 19
  start-page: 2341
  year: 1992
  ident: 10.1029/2011JB008264:byer92
  article-title: Coulomb plasticity within the fault zone
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/92GL02370
– volume: 38
  start-page: 751
  year: 2010
  ident: 10.1029/2011JB008264:fage10
  article-title: Mélange rheology and seismic style
  publication-title: Geology
  doi: 10.1130/G30868.1
– volume: 39
  start-page: 83
  year: 2011
  ident: 10.1029/2011JB008264:ikar11
  article-title: On the relation between fault strength and frictional stability
  publication-title: Geology
  doi: 10.1130/G31416.1
– volume: 144
  start-page: 87
  year: 1987
  ident: 10.1029/2011JB008264:loga87
  article-title: Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(87)90010-2
– volume: 3
  start-page: 599
  year: 2010
  ident: 10.1029/2011JB008264:peng10
  article-title: An integrated perspective of the continuum between earthquakes and slow-slip phenomena
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo940
– volume: 99
  start-page: 7231
  year: 1994
  ident: 10.1029/2011JB008264:scot94
  article-title: The apparent friction of granular fault gouge in sheared layers
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JB03361
– start-page: 370
  volume-title: The Seismogenic Zone of Subduction Thrust Faults
  year: 2007
  ident: 10.1029/2011JB008264:beel07
  article-title: Laboratory-observed faulting in intrinsically and apparently weak materials
  doi: 10.7312/dixo13866-013
– volume: 24
  volume-title: Constitutive properties of faults with simulated gouge
  year: 1981
  ident: 10.1029/2011JB008264:diet81
– volume: 98
  start-page: 15937
  year: 1993
  ident: 10.1029/2011JB008264:rein93
  article-title: Determination of rock friction constitutive parameters using an iterative least-squares inversion method
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JB00780
– volume: 37
  start-page: L03304
  year: 2010
  ident: 10.1029/2011JB008264:niem10a
  article-title: Fabric induced weakness of tectonic faults
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL041689
– volume: 11
  start-page: 827
  year: 1989
  ident: 10.1029/2011JB008264:bieg89
  article-title: The frictional properties of a simulated gouge having a fractal particle size distribution
  publication-title: J. Struct. Geol.
  doi: 10.1016/0191-8141(89)90101-6
– volume: 103
  start-page: 9691
  year: 1998
  ident: 10.1029/2011JB008264:blan98
  article-title: Quantitative measure of the variation in fault rheology due to fluid-rock interactions
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JB00162
– volume: 95
  start-page: 19257
  year: 1990
  ident: 10.1029/2011JB008264:kron90
  article-title: Basal slip and mechanical anisotropy of biotite
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB12p19257
– volume: 115
  start-page: B10207
  year: 2010
  ident: 10.1029/2011JB008264:niem10b
  article-title: Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical thinning and chemical strengthening
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JB000838
– volume-title: Fundamentals of Rock Mechanics
  year: 2007
  ident: 10.1029/2011JB008264:jaeg07
– volume: 27
  start-page: TC4017
  year: 2008
  ident: 10.1029/2011JB008264:depa08
  article-title: Fault zone architecture and deformation processes within evaporitic rocks in the upper crust
  publication-title: Tectonics
  doi: 10.1029/2007TC002230
– volume: 27
  start-page: 815
  year: 2000
  ident: 10.1029/2011JB008264:morr00
  article-title: The effect of mineral bond strength and adsorbed water on fault gouge frictional strength
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL008401
– volume: 4
  start-page: 489
  year: 1992
  ident: 10.1029/2011JB008264:rutt92
  article-title: On the mechanical properties of synthetic kaolinite/quartz fault gouge
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.1992.tb00585.x
– start-page: 473
  volume-title: Fault Mechanics and Transport Properties of Rocks
  year: 1992
  ident: 10.1029/2011JB008264:scho92
  article-title: Paradigms or small changes in earthquake mechanics
  doi: 10.1016/S0074-6142(08)62836-3
– volume: 18
  start-page: 1
  year: 1996
  ident: 10.1029/2011JB008264:mene96
  article-title: Micromechanics of brittle faulting and cataclastic flow in Berea sandstone
  publication-title: J. Struct. Geol.
  doi: 10.1016/0191-8141(95)00076-P
– volume: 38
  start-page: 667
  year: 2010
  ident: 10.1029/2011JB008264:schl10
  article-title: Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California
  publication-title: Geology
  doi: 10.1130/G31091.1
– volume: 359
  start-page: 687
  year: 1992
  ident: 10.1029/2011JB008264:slee92
  article-title: Creep, compaction and the weak rheology of major faults
  publication-title: Nature
  doi: 10.1038/359687a0
– volume: 113
  start-page: B05302
  year: 2008
  ident: 10.1029/2011JB008264:sava08
  article-title: Potential for earthquake triggering from transient deformations
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JB005277
– volume: 21
  start-page: 1039
  year: 1999
  ident: 10.1029/2011JB008264:vrol99
  publication-title: Clay gouge, J. Struct. Geol.
  doi: 10.1016/S0191-8141(99)00103-0
– volume: 84
  start-page: 2161
  year: 1979
  ident: 10.1029/2011JB008264:diet79
  article-title: Modeling of rock friction: 1. Experimental results and constitutive equations
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB084iB05p02161
– volume: 85
  start-page: 6185
  year: 1980
  ident: 10.1029/2011JB008264:lach80
  article-title: Heat flow and energetics of the San Andreas fault zone
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB085iB11p06185
– volume: 75
  start-page: 243
  year: 1981
  ident: 10.1029/2011JB008264:shim81a
  article-title: Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(81)90276-6
– volume: 11
  start-page: 423
  year: 1974
  ident: 10.1029/2011JB008264:atte74
  article-title: Intrinsic shear strength of a brittle, anisotropic rock–I. Experimental and mechanical implications
  publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr.
  doi: 10.1016/0148-9062(74)90453-7
– volume: 299
  start-page: 139
  volume-title: The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties
  year: 2008
  ident: 10.1029/2011JB008264:faul08
  article-title: On the structure and mechanical properties of large strike-slip faults
– volume: 86
  start-page: 2902
  year: 1981
  ident: 10.1029/2011JB008264:shim81b
  article-title: Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB086iB04p02902
– volume: 295
  start-page: 15
  year: 1998
  ident: 10.1029/2011JB008264:scru98
  article-title: Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(98)00113-9
– volume: 462
  start-page: 907
  year: 2009
  ident: 10.1029/2011JB008264:coll09a
  article-title: Fault zone fabric and fault weakness
  publication-title: Nature
  doi: 10.1038/nature08585
– start-page: 346
  volume-title: The Seismogenic Zone of Subduction Thrust Faults
  year: 2007
  ident: 10.1029/2011JB008264:maro07
  article-title: Fault friction and the upper transition from seismic to aseismic faulting
  doi: 10.7312/dixo13866-012
– volume: 391
  start-page: 69
  year: 1998
  ident: 10.1029/2011JB008264:maro98b
  article-title: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle
  publication-title: Nature
  doi: 10.1038/34157
– volume: 327
  start-page: 173
  year: 2000
  ident: 10.1029/2011JB008264:bos00
  article-title: Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(00)00168-2
– volume: 13
  start-page: 35
  year: 1976
  ident: 10.1029/2011JB008264:byer76
  article-title: A note on the effect of fault gouge thickness on fault stability
  publication-title: Int. J. Mech. Min. Sci. Geomech. Abstr.
  doi: 10.1016/0148-9062(76)90226-6
– volume: 111
  start-page: B09202
  year: 2006
  ident: 10.1029/2011JB008264:tent06
  article-title: Cohesive strengthening of fault zones during the interseismic period: An experimental study
  publication-title: J. Geophys. Res.
  doi: 10.1029/2005JB004122
– volume: 112
  start-page: B06423
  year: 2007
  ident: 10.1029/2011JB008264:ikar07
  article-title: Effect of hydration state on the frictional properties of montmorillonite-based fault gouge
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JB004748
– volume: 427
  start-page: 231
  year: 2006
  ident: 10.1029/2011JB008264:niem06
  article-title: Velocity dependence of strength and healing behavior in simulated phyllosilicate-bearing fault gouge
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2006.03.048
– volume: 94
  start-page: 163
  volume-title: Fault-Zone Properties and Earthquake Rupture Dynamics
  year: 2009
  ident: 10.1029/2011JB008264:cocc09
  article-title: Scaling of slip weakening distance with final slip during dynamic earthquake rupture
  doi: 10.1016/S0074-6142(08)00007-7
– volume: 124
  start-page: 3
  year: 1986
  ident: 10.1029/2011JB008264:rutt86
  article-title: Comparative microstructures of naturally and experimentally produced clay-bearing fault gouges
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00875717
– volume: 113
  start-page: B04204
  year: 2008
  ident: 10.1029/2011JB008264:niem08
  article-title: Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JB005376
– volume: 245
  start-page: 303
  volume-title: High-Strain Zones: Structure and Physical Properties
  year: 2005
  ident: 10.1029/2011JB008264:niem05
  article-title: Influence of phyllosilicates on fault strength in the brittle-ductile transition: Insights from rock analogue experiments
– volume: 114
  start-page: B05409
  year: 2009
  ident: 10.1029/2011JB008264:ikar09
  article-title: Frictional and hydrologic properties of clay-rich fault gouge
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JB006089
– volume: 186
  start-page: 85
  volume-title: The Nature and Tectonic Significance of Fault Zone Weakening
  year: 2001
  ident: 10.1029/2011JB008264:warr01
  article-title: Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand
– volume: 94
  start-page: 135
  volume-title: Fault-Zone Properties and Earthquake Rupture Dynamics
  year: 2009
  ident: 10.1029/2011JB008264:maro09
  article-title: The critical slip distance for seismic and aseismic fault zones of finite width
  doi: 10.1016/S0074-6142(08)00006-5
– volume: 71
  start-page: 668
  year: 1958
  ident: 10.1029/2011JB008264:rabi58
  article-title: The intrinsic variables affecting the stick-slip process
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/71/4/316
– volume: 95
  start-page: 21613
  year: 1990
  ident: 10.1029/2011JB008264:gott90
  article-title: Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB13p21613
– volume: 186
  start-page: 1
  volume-title: The Nature and Tectonic Significance of Fault Zone Weakening
  year: 2001
  ident: 10.1029/2011JB008264:rutt01
  article-title: The nature and tectonic significance of fault-zone weakening: An introduction
– volume: 14
  start-page: 189
  year: 1972
  ident: 10.1029/2011JB008264:brac72
  article-title: Laboratory studies of stick-slip and their application to earthquakes
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(72)90068-6
– volume: 10
  start-page: 431
  year: 1988
  ident: 10.1029/2011JB008264:hull88
  article-title: Thickness-displacement relationships for deformation zones
  publication-title: J. Struct. Geol.
  doi: 10.1016/0191-8141(88)90020-X
– volume: 143
  start-page: 387
  year: 1994
  ident: 10.1029/2011JB008264:gu94
  article-title: Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00874336
– volume: 114
  start-page: B04202
  year: 2009
  ident: 10.1029/2011JB008264:schl09
  article-title: Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JB006092
– volume: 100
  start-page: 13021
  year: 1995
  ident: 10.1029/2011JB008264:wint95
  article-title: Fluid-rock reaction weakening of fault zones
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB02622
– volume: 100
  start-page: 13007
  year: 1995
  ident: 10.1029/2011JB008264:evan95
  article-title: Fluid-rock interactions in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB02625
– volume: 116
  start-page: 615
  year: 1978
  ident: 10.1029/2011JB008264:byer78
  article-title: Friction of rocks
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00876528
– volume: 15
  start-page: 621
  year: 1988
  ident: 10.1029/2011JB008264:maro88
  article-title: The depth of seismic faulting and the upper transition from stable to unstable slip regimes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL015i006p00621
– start-page: 435
  volume-title: Rock Joints: Proceedings of the International Symposium on Rock Joints
  year: 1990
  ident: 10.1029/2011JB008264:hobb90
  article-title: Dynamic behaviour of rock joints
– volume: 24
  volume-title: Stiff testing machines, stick slip sliding, and the stability of rock deformation
  year: 1981
  ident: 10.1029/2011JB008264:cook81
– volume: 215
  start-page: 219
  year: 2003
  ident: 10.1029/2011JB008264:saff03
  article-title: Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(03)00424-2
– volume: 24
  volume-title: Calcite fabrics in experimental shear zones
  year: 1981
  ident: 10.1029/2011JB008264:frie81
– volume: 12
  start-page: 1061
  year: 1990
  ident: 10.1029/2011JB008264:evan90
  article-title: Thickness-displacement relationships for fault zones
  publication-title: J. Struct. Geol.
  doi: 10.1016/0191-8141(90)90101-4
– volume: 14
  start-page: 149
  year: 1986
  ident: 10.1029/2011JB008264:sibs86a
  article-title: Earthquakes and rock deformation in crustal fault zones
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.ea.14.050186.001053
– volume: 26
  start-page: 643
  year: 1998
  ident: 10.1029/2011JB008264:maro98a
  article-title: Laboratory-derived friction laws and their application to seismic faulting
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.26.1.643
– volume: 32
  start-page: 1557
  year: 2010
  ident: 10.1029/2011JB008264:faul10
  article-title: A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2010.06.009
– volume-title: The Seismogenic Zone of Subduction Thrust Faults
  year: 2007
  ident: 10.1029/2011JB008264:moor07
  article-title: How accretionary prisms elucidate seismogenesis in subduction zones
  doi: 10.7312/dixo13866-010
– volume-title: The Mechanics of Earthquakes and Faulting
  year: 2002
  ident: 10.1029/2011JB008264:scho02
  doi: 10.1017/CBO9780511818516
– volume: 95
  start-page: 7007
  year: 1990
  ident: 10.1029/2011JB008264:maro90
  article-title: Frictional behavior and constitutive modeling of simulated fault gouge
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB05p07007
– volume: 37
  start-page: 567
  year: 2009
  ident: 10.1029/2011JB008264:coll09b
  article-title: Development of interconnected talc networks and weakening of continental low-angle normal faults
  publication-title: Geology
  doi: 10.1130/G25645A.1
– volume: 295
  start-page: 199
  year: 1998
  ident: 10.1029/2011JB008264:ches98
  article-title: Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(98)00121-8
– volume: 74
  start-page: 5343
  year: 1969
  ident: 10.1029/2011JB008264:hand69
  article-title: On the Coulomb-Mohr failure criterion
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB074i022p05343
– volume: 101
  start-page: 8697
  year: 1996
  ident: 10.1029/2011JB008264:beel96
  article-title: Frictional behavior of large displacement experimental faults
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JB00411
– volume: 115
  start-page: B02407
  year: 2010
  ident: 10.1029/2011JB008264:smit10
  article-title: Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JB006274
– start-page: 33
  volume-title: Fault Mechanics and Transport Properties of Rocks
  year: 1992
  ident: 10.1029/2011JB008264:loga92
  article-title: Fabrics of experimental fault zones: Their development and relationship to mechanical behavior
  doi: 10.1016/S0074-6142(08)62814-4
– volume-title: Mechanics of Materials
  year: 1997
  ident: 10.1029/2011JB008264:hibb97
– volume: 277
  start-page: 41
  year: 1997
  ident: 10.1029/2011JB008264:karn97
  article-title: Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(97)00077-2
– volume: 139
  start-page: 195
  year: 1992
  ident: 10.1029/2011JB008264:maro92
  article-title: Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00876327
– volume: 113
  start-page: B03207
  year: 2008
  ident: 10.1029/2011JB008264:craw08
  article-title: Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JB004634
– volume: 116
  start-page: 690
  year: 1978
  ident: 10.1029/2011JB008264:stes78
  article-title: Rock friction-effect of confining pressure, temperature, and pore pressure
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00876532
– volume: 24
  start-page: 1025
  year: 1996
  ident: 10.1029/2011JB008264:cain96
  article-title: Fault zone architecture and permeability structure
  publication-title: Geology
  doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
– start-page: 69
  volume-title: Fault Mechanics and Transport Properties of Rocks
  year: 1992
  ident: 10.1029/2011JB008264:morr92
  article-title: Frictional strength and the effective pressure law of montmorillonite and illite clays
  doi: 10.1016/S0074-6142(08)62815-6
– volume: 32
  start-page: 478
  year: 2010
  ident: 10.1029/2011JB008264:wenk10
  article-title: Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2010.02.003
– volume: 15
  start-page: 493
  year: 1987
  ident: 10.1029/2011JB008264:scho87
  article-title: Wear and gouge formation in brittle faulting
  publication-title: Geology
  doi: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2
– volume: 104
  start-page: 28899
  year: 1999
  ident: 10.1029/2011JB008264:mair99
  article-title: Friction of simulated fault gouge for a wide range of velocities and normal stresses
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JB900279
– volume: 26
  start-page: TC2004
  year: 2007
  ident: 10.1029/2011JB008264:nume07
  article-title: Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California
  publication-title: Tectonics
  doi: 10.1029/2005TC001916
– volume: 31
  start-page: 881
  year: 2003
  ident: 10.1029/2011JB008264:muhu03
  article-title: Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion?
  publication-title: Geology
  doi: 10.1130/G19601.1
– volume: 115
  start-page: B03416
  year: 2010
  ident: 10.1029/2011JB008264:temb10
  article-title: Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JB006383
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816914
Score 2.352793
Snippet We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and...
Fault strength depends on lithification state, composition and fabric Lithification of fault rock by itself cannot drive seismogenic slip Increased fault zone...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Continental dynamics
Earthquakes
fabric
Fabrics
fault
Fault lines
Friction
Geology
Geophysics
Lithification
Microstructure
Plate tectonics
Rheology
Rocks
Seismic activity
Seismology
stress orientation
Title The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure
URI https://api.istex.fr/ark:/67375/WNG-KG8TLZJN-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JB008264
https://www.proquest.com/docview/884468245
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXKrir1gvqpLhTkQ9tLNyJObGdyqljEBm3bVYVARb1YjmODVJql7CK1vfaP4_E6ERzKbQ6Wo_jZM-PxmxlC3nqzAsDxfNeZS3jGIYE6rxNmmTMaUnAWE5y_zOXRKZ-dibPIzVlGWmWnE4OibhYGY-R7fkYuIePi49WvBJtG4eNq7KCxQYZeA4MYkOHkcP71uA-yYFeJMtT3zryQlDnLI_k9zco9tH2zCRpBye-ZpSGu8O97PuddzzWYnulTshl9Rrq_BvkZeWTb5-RxFXry_vFSYHGa5Qvyz4NOkS9IF446fXO5on8XrfVi7dUd1W1Dvdd9geygAAgN6UTUC9gtaB0VpJg90p6vLsbULCKTwGtE2uXzj8M0je2zHulP5PSt69DeXNuX5HR6eHJwlMQuC4nmOWo7w7T1XqBhRrACdFNYyHJTWlk67lwtCn8jwTdzm0kHThdOYuyjELbhGlyavyKD1v_La0KFa2omnb_0aMYdM6DTxgosAlY3YLQZkQ_dIisTS5BjJ4xLFZ7Cs1LdhWRE3vWjr9alN_4z7n3Aqx-kr38gXa0Q6tu8Up8qOPn8fTZXxYhsd4CqeFKXqt9XIzIOGD_4LTWrjidMgoStByfbJk-64HPK3pCBx8DueO9lVe-SDZhWu3Gn3gLTsuyX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKIwQXxFOE8vCBciGrrr3eXe8BIQJt0iRdoSoVFRfj9dpUomxKkwrKld_Df2TG-1B7oLfe5mDNKpmnx9_MEPISwoqUAu274C4QXMhAFlERMMuc0TKUzmKD816ejA_E5DA-XCN_214YhFW2PtE76nJhsEa-BRxFIrmI3578CHBpFD6uths0aq2Y2vOfcGNbvtn9AOLd5Hxne_5-HDRLBQItIjRuw7SFpMcwE7NU6jK1kkcms0nmhHNFnEICjk_ElidOOp26BK_6aWxLoaULI-B7g_Qgy8jAiHrD7fzjflfUwS0WmZ8nzoEIsohFDdg-5NkWxtrJEINuIi6FwR5K9NelHPdipuxD3c5dcqfJUem7WqnukTVb3Sc3R34H8DlQHjVqlg_IH1AyivhEunDU6bPjFf29qCyQBbhXqquSQpZ_hGgkrwDUty9RIHA7UV2FpNitUn1dHQ2oWTTIBfDAtJ0fMPBsStt1WdLviCGs596endqH5OBaBPCIrFfwWx4TGruyYImDS5ZmwjEjdVjaGIeOFaU02vTJ6_ZPVqYZeY6bN46Vf3rnmbookj7Z7E6f1KM-_nPulZdXd0iffkN4XBqrT_lITUdyPvs8yVXaJxutQFXjGZaq0-M-GXgZX_ktNRntD1kiE_nkSmYvyK3xfG-mZrv5dIPcbgvfIXtK1kEe9hlkTqvieaOvlHy5bhP5B8PTJ-E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKIhAXxFOk5eED5UJWWXu9u94DQoQ2aZMSVVUrql6M12tTqWVTmlRQrvwq_h0z3ofaA731NgdrVsk8Pf5mhpA3EFakFGjfOXeB4EIGMo_ygFnmjJahdBYbnD_Pkq0DMTmMD1fI36YXBmGVjU_0jrqYG6yRD4CjSCQX8cDVqIjdjdGHsx8BLpDCh9Zmm0alIVN7-RNub4v32xsg6nXOR5v7n7aCesFAoEWEhm6YtpAAGWZilkpdpFbyyGQ2yZxwLo9TSMbxudjyxEmnU5fgtT-NbSG0dGEEfO-QbgpBUXZId7g5291rCzy40SLzs8U5EEEWsagG3oc8G2DcnQwxACfiWkjsonR_Xct3r2bNPuyNHpIHdb5KP1YK9ois2PIxuTv2-4AvgfIIUrN4Qv6AwlHEKtK5o05fnC7p73lpgczB1VJdFhQy_mNEJnlloL6ViQKBm4qqiiTFzpXy2_K4T828RjGAN6bNLIG-Z1PYtuOSfkc8YTUD9-LcPiUHtyKAZ6RTwm95TmjsipwlDi5cmgnHjNRhYWMcQJYX0mjTI--aP1mZevw5buE4Vf4Znmfqqkh6ZL09fVaN_fjPubdeXu0hfX6CULk0Vl9mYzUdy_2do8lMpT2y1ghU1V5ioVqd7pG-l_GN31KT8d6QJTKRqzcye03ugWmone3ZdI3cb2rgIXtBOiAO-xKSqGX-qlZXSr7etoX8A31ALA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+fault+zone+fabric+and+lithification+state+on+frictional+strength%2C+constitutive+behavior%2C+and+deformation+microstructure&rft.jtitle=Journal+of+geophysical+research.+Solid+earth&rft.au=Ikari%2C+Matt+J&rft.au=Niemeijer%2C+Andr%C3%A9+R&rft.au=Marone%2C+Chris&rft.date=2011-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9313&rft.eissn=2169-9356&rft.volume=116&rft.issue=8&rft_id=info:doi/10.1029%2F2011JB008264&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2430928521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon