Global distribution of groundwater‐vegetation spatial covariation

Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 44; no. 9; pp. 4134 - 4142
Main Authors Koirala, Sujan, Jung, Martin, Reichstein, Markus, Graaf, Inge E. M., Camps‐Valls, Gustau, Ichii, Kazuhito, Papale, Dario, Ráduly, Botond, Schwalm, Christopher R., Tramontana, Gianluca, Carvalhais, Nuno
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale. Key Points Local‐scale groundwater‐vegetation spatial covariations are prevalent globally Both positive and negative relationships are equally widespread There is a stronger association of the sign of relationship with vegetation than with climate and land surface characteristics
AbstractList Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale. Local‐scale groundwater‐vegetation spatial covariations are prevalent globally Both positive and negative relationships are equally widespread There is a stronger association of the sign of relationship with vegetation than with climate and land surface characteristics
Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale.
Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale. Key Points Local‐scale groundwater‐vegetation spatial covariations are prevalent globally Both positive and negative relationships are equally widespread There is a stronger association of the sign of relationship with vegetation than with climate and land surface characteristics
Author Koirala, Sujan
Jung, Martin
Ráduly, Botond
Tramontana, Gianluca
Carvalhais, Nuno
Ichii, Kazuhito
Schwalm, Christopher R.
Camps‐Valls, Gustau
Reichstein, Markus
Papale, Dario
Graaf, Inge E. M.
Author_xml – sequence: 1
  givenname: Sujan
  orcidid: 0000-0001-5681-1986
  surname: Koirala
  fullname: Koirala, Sujan
  email: skoirala@bgc‐jena.mpg.de
  organization: Max Planck Institute for Biogeochemistry
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-7588-1004
  surname: Jung
  fullname: Jung, Martin
  organization: Max Planck Institute for Biogeochemistry
– sequence: 3
  givenname: Markus
  surname: Reichstein
  fullname: Reichstein, Markus
  organization: Max Planck Institute for Biogeochemistry
– sequence: 4
  givenname: Inge E. M.
  surname: Graaf
  fullname: Graaf, Inge E. M.
  organization: Colorado School of Mines
– sequence: 5
  givenname: Gustau
  orcidid: 0000-0003-1683-2138
  surname: Camps‐Valls
  fullname: Camps‐Valls, Gustau
  organization: University of Valencia
– sequence: 6
  givenname: Kazuhito
  orcidid: 0000-0002-8696-8084
  surname: Ichii
  fullname: Ichii, Kazuhito
  organization: Chiba University
– sequence: 7
  givenname: Dario
  orcidid: 0000-0001-5170-8648
  surname: Papale
  fullname: Papale, Dario
  organization: Centro Euro‐Mediterraneo sui Cambiamenti Climatici
– sequence: 8
  givenname: Botond
  surname: Ráduly
  fullname: Ráduly, Botond
  organization: Sapientia Hungarian University of Transylvania
– sequence: 9
  givenname: Christopher R.
  orcidid: 0000-0002-5035-5681
  surname: Schwalm
  fullname: Schwalm, Christopher R.
  organization: Northern Arizona University
– sequence: 10
  givenname: Gianluca
  surname: Tramontana
  fullname: Tramontana, Gianluca
  organization: Università della Tuscia
– sequence: 11
  givenname: Nuno
  orcidid: 0000-0003-0465-1436
  surname: Carvalhais
  fullname: Carvalhais, Nuno
  organization: Universidade Nova de Lisboa
BookMark eNp9kMFKw0AQhhepYFu9-QAFr0Zndje7yVGKRiEgiJ6XTbIpW2K27iYtvfkIPqNPYmx7EEFPM8x8__zDPyGj1rWGkHOEKwSg1xRQZjlImiTxERljynmUAMgRGQOkQ0-lOCGTEJYAwIDhmMyzxhW6mVU2dN4WfWddO3P1bOFd31Yb3Rn_-f6xNgvT6d0urIY6CEq31t7uZqfkuNZNMGeHOiUvd7fP8_sof8we5jd5pDljIipjkVRU0woN50JWhjIwWgs0ZWoYFpgUopCalrqIC6hjlJwiViUwIXUNKZuSi_3dlXdvvQmdWrret4OlwhQop1IiGyi6p0rvQvCmVqXd_955bRuFoL7DUj_DGkSXv0Qrb1-13_6FHzw2tjHbf1mVPeVxnHDBvgC4p3vV
CitedBy_id crossref_primary_10_1088_1755_1315_1136_1_012016
crossref_primary_10_1016_j_jhydrol_2023_130242
crossref_primary_10_1016_j_advwatres_2024_104814
crossref_primary_10_1088_1748_9326_ace636
crossref_primary_10_1016_j_ejrh_2020_100684
crossref_primary_10_1029_2020WR027755
crossref_primary_10_1016_j_scitotenv_2023_162577
crossref_primary_10_3390_rs16244733
crossref_primary_10_1007_s00267_021_01526_2
crossref_primary_10_5194_hess_24_4625_2020
crossref_primary_10_1016_j_earscirev_2020_103466
crossref_primary_10_1029_2018JD028432
crossref_primary_10_5194_hess_25_6567_2021
crossref_primary_10_1016_j_scitotenv_2024_172926
crossref_primary_10_1016_j_scitotenv_2017_09_145
crossref_primary_10_1016_j_jhydrol_2021_126505
crossref_primary_10_1016_j_jhydrol_2024_131708
crossref_primary_10_1038_s41558_018_0386_4
crossref_primary_10_1016_j_jhydrol_2022_128336
crossref_primary_10_3390_rs14215532
crossref_primary_10_1021_acs_est_2c04803
crossref_primary_10_1016_j_jhydrol_2022_128094
crossref_primary_10_1029_2018WR023434
crossref_primary_10_1029_2019WR026010
crossref_primary_10_1111_gcb_15729
crossref_primary_10_3389_fdata_2019_00031
crossref_primary_10_1007_s10040_018_1813_3
crossref_primary_10_1177_2754124X231199565
crossref_primary_10_3390_app14125114
crossref_primary_10_1029_2018GL080535
crossref_primary_10_1080_02626667_2022_2069502
crossref_primary_10_5194_hess_23_1393_2019
crossref_primary_10_1007_s43832_024_00086_w
crossref_primary_10_3390_cli10010006
crossref_primary_10_1016_j_rse_2019_111259
crossref_primary_10_1016_j_chemosphere_2020_127534
crossref_primary_10_1016_j_jhydrol_2024_130747
crossref_primary_10_1016_j_agrformet_2020_108103
crossref_primary_10_1016_j_ejrh_2025_102324
crossref_primary_10_1088_1748_9326_ad8587
crossref_primary_10_1360_TB_2022_0046
crossref_primary_10_1016_j_agrformet_2023_109636
crossref_primary_10_1016_j_jhydrol_2020_125759
crossref_primary_10_1088_1748_9326_ac50d2
crossref_primary_10_3389_fdata_2022_967477
crossref_primary_10_1111_nph_15629
crossref_primary_10_1029_2021MS002730
crossref_primary_10_1038_s41561_023_01125_2
crossref_primary_10_1016_j_catena_2023_107754
crossref_primary_10_1088_1748_9326_ab724a
crossref_primary_10_3390_rs15194706
crossref_primary_10_5194_gmd_15_7099_2022
crossref_primary_10_1093_aob_mcab107
crossref_primary_10_5194_hess_29_1319_2025
crossref_primary_10_3390_rs10010004
crossref_primary_10_3390_w13081027
crossref_primary_10_1073_pnas_1800141115
crossref_primary_10_1038_s41586_019_1441_7
crossref_primary_10_1029_2019WR026192
crossref_primary_10_5194_hess_26_1579_2022
crossref_primary_10_1016_j_agrformet_2023_109725
crossref_primary_10_1029_2021AV000398
crossref_primary_10_1016_j_gsd_2023_100941
crossref_primary_10_1080_10106049_2021_1948108
crossref_primary_10_1016_j_scitotenv_2023_166388
crossref_primary_10_1038_s41561_019_0318_6
crossref_primary_10_1016_j_jhydrol_2020_125566
crossref_primary_10_1016_j_jhydrol_2022_127789
crossref_primary_10_3390_earth6010003
crossref_primary_10_1002_2017GL076294
Cites_doi 10.1029/2007WR006073
10.1126/science.1244693
10.5194/bg-13-4291-2016
10.1016/j.procs.2013.05.405
10.2307/3237186
10.5194/hess-19-4229-2015
10.5194/bg-11-7025-2014
10.1175/JCLI-D-12-00417.1
10.1029/2008EO100001
10.1002/2015WR017349
10.1016/j.rse.2015.07.015
10.1175/2008JHM1018.1
10.1029/2011RG000383
10.1016/j.gecco.2014.09.002
10.1002/2014JG002670
10.1127/0941-2948/2006/0130
10.1007/s00267-004-0194-7
10.1016/j.rse.2006.01.020
10.1029/2011GL050263
10.1126/science.1184984
10.1007/s10040-007-0239-0
10.1098/rstb.2012.0425
10.1111/j.1365-2486.2005.001002.x
10.1016/j.jtbi.2014.06.035
10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
10.1038/nature20780
10.1088/1748-9326/10/12/124024
10.1016/j.ejrh.2017.01.003
10.1029/2001GB001807
10.1029/2006JD007522
10.3390/geosciences6020017
10.1890/08-2047.1
10.1126/science.aaf7891
10.1111/gcb.12785
10.1111/gwat.12169
10.1038/nature12291
10.5194/hessd-11-5217-2014
10.1002/2016JG003640
10.1111/gcb.12187
10.1126/science.1229881
10.1029/2010JG001566
10.1111/1365-2745.12332
10.1016/S0378-3774(98)00078-X
10.1007/s004420050295
10.1029/2011JG001913
10.1002/hyp.10503
10.1029/2008WR007152
10.1175/BAMS-87-10-1381
10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
10.1016/j.rse.2007.02.016
10.1046/j.1365-2486.2000.00296.x
10.1002/2015WR017037
10.1111/j.1365-2486.2009.02041.x
10.1016/j.agrformet.2003.11.006
10.1023/A:1010933404324
10.1002/hyp.10391
10.1002/2013JD020398
10.1016/j.jhydrol.2005.07.051
10.1093/aobpla/plq003
ContentType Journal Article
Copyright 2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2017GL072885
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 4142
ExternalDocumentID 10_1002_2017GL072885
GRL55846
Genre article
GrantInformation_xml – fundername: NOVA
  funderid: UID/AMB/04085/2013
– fundername: European Commission
  funderid: 283201
– fundername: European Research Council (ERC)
  funderid: SEDAL‐647423
– fundername: National Aeronautics and Space Administration (NASA)
  funderid: NNX11AO08A; NNX10AG01A; NNX12AP74G; NNX12AK12G
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a4336-c568d2a2d1e4467de230eaa61ec9e31b18b6b7a2cab5b0f5174211dc0367af093
ISSN 0094-8276
IngestDate Fri Jul 25 10:26:59 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 01:40:40 EDT 2025
Wed Jan 22 16:22:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4336-c568d2a2d1e4467de230eaa61ec9e31b18b6b7a2cab5b0f5174211dc0367af093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5170-8648
0000-0001-5681-1986
0000-0002-7588-1004
0000-0003-1683-2138
0000-0002-5035-5681
0000-0003-0465-1436
0000-0002-8696-8084
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2017GL072885
PQID 1902427713
PQPubID 54723
PageCount 9
ParticipantIDs proquest_journals_1902427713
crossref_citationtrail_10_1002_2017GL072885
crossref_primary_10_1002_2017GL072885
wiley_primary_10_1002_2017GL072885_GRL55846
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 May 2017
PublicationDateYYYYMMDD 2017-05-16
PublicationDate_xml – month: 05
  year: 2017
  text: 16 May 2017
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2004; 123
2011; 116
2009; 45
2013; 26
2010; 16
2000; 6
2015; 103
2013; 368
1997; 112
2004; 5
2003; 17
2001; 45
2013; 19
2013; 18
2010; 20
2009; 10
2014; 2
2016; 353
2014; 360
2014; 11
2005; 35
2014; 119
2010; 329
2015; 19
2012
2011
2010
2015; 51
2015; 168
2015; 53
2015; 11
2008; 16
2015; 10
2006; 15
2013; 342
2008
1996
2006; 230
2012; 39
2016; 13
1999
2012; 50
2001; 82
2007; 112
2016; 6
2015; 29
2013; 339
2006; 87
1999; 39
2007; 110
2017; 10
2015; 21
2013; 499
2008; 89
2017
2015
2017; 541
2007; 43
2012; 117
2006; 101
2005; 11
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
FLUXCOM (e_1_2_6_21_1) 2017
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_40_1
e_1_2_6_61_1
Frankenberg C. (e_1_2_6_23_1) 2013; 19
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– volume: 123
  start-page: 13
  year: 2004
  end-page: 39
  article-title: How plant functional‐type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak‐grass savanna and an annual grassland
  publication-title: Agric. For. Meteorol.
– volume: 103
  start-page: 93
  issue: 1
  year: 2015
  end-page: 108
  article-title: Hydrological niches in terrestrial plant communities: A review
  publication-title: J. Ecol.
– volume: 6
  start-page: 247
  issue: 2
  year: 2000
  end-page: 254
  article-title: A new global 1‐km dataset of percentage tree cover derived from remote sensing
  publication-title: Global Change Biol.
– volume: 11
  start-page: 5217
  issue: 5
  year: 2015
  end-page: 5250
  article-title: A high resolution global scale groundwater model
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 10
  start-page: 12,4024
  issue: 12
  year: 2015
  end-page: 12,4024
  article-title: Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia
  publication-title: Environ. Res. Lett.
– year: 2017
  article-title: New data‐driven estimation of terrestrial CO fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 11
  start-page: 7025
  issue: 23
  year: 2014
  end-page: 7050
  article-title: Identifying environmental controls on vegetation greenness phenology through model‐data integration
  publication-title: Biogeosciences
– volume: 53
  start-page: 99
  issue: 1
  year: 2015
  end-page: 110
  article-title: Mapping potential groundwater‐dependent ecosystems for sustainable management
  publication-title: Groundwater
– volume: 89
  start-page: 93
  issue: 10
  year: 2008
  end-page: 94
  article-title: New global hydrography derived from spaceborne elevation data
  publication-title: Eos Trans. AGU
– volume: 112
  start-page: 156
  issue: 2
  year: 1997
  end-page: 164
  article-title: Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA
  publication-title: Oecologia
– volume: 368
  issue: 1619
  year: 2013
  article-title: Watershed responses to Amazon soya bean cropland expansion and intensification
  publication-title: Philos. Trans. R. Soc. London, Ser. B
– volume: 29
  start-page: 4457
  year: 2015
  end-page: 4469
  article-title: Modelling the effects of soil type and root distribution on shallow groundwater resources
  publication-title: Hydrol. Processes
– volume: 5
  start-page: 487
  issue: 3
  year: 2004
  end-page: 503
  article-title: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution
  publication-title: J. Hydrometeorol.
– volume: 21
  start-page: 1213
  issue: 3
  year: 2015
  end-page: 1225
  article-title: The combined effects of a long‐term experimental drought and an extreme drought on the use of plant‐water sources in a Mediterranean forest
  publication-title: Global Change Biol.
– volume: 51
  start-page: 5217
  year: 2015
  end-page: 5238
  article-title: Quantifying renewable groundwater stress with GRACE
  publication-title: Water Resour. Res.
– volume: 112
  year: 2007
  article-title: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data
  publication-title: J. Geophys. Res.
– volume: 329
  start-page: 834
  issue: 5993
  year: 2010
  end-page: 838
  article-title: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate
  publication-title: Science
– volume: 11
  start-page: 1424
  issue: 9
  year: 2005
  end-page: 1439
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm
  publication-title: Global Change Biol.
– year: 2008
– volume: 39
  start-page: 187
  issue: 2–3
  year: 1999
  end-page: 204
  article-title: Transpiration and groundwater uptake from farm forest plots of and in saline areas of southeast Queensland, Australia
  publication-title: Agric. Water Manage.
– volume: 50
  year: 2012
  article-title: Monitoring and modeling water‐vegetation interactions in groundwater‐dependent ecosystems
  publication-title: Rev. Geophys.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 116
  year: 2011
  article-title: Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
  publication-title: J. Geophys. Res.
– volume: 6
  issue: 2
  year: 2016
  article-title: A review of advances in the identification and characterization of groundwater dependent ecosystems using geospatial technologies
  publication-title: Geosciences
– volume: 117
  year: 2012
  article-title: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4
  publication-title: J. Geophys. Res.
– volume: 19
  start-page: 4229
  issue: 10
  year: 2015
  end-page: 4256
  article-title: Groundwater‐dependent ecosystems: Recent insights from satellite and field‐based studies
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 13
  start-page: 4291
  issue: 14
  year: 2016
  end-page: 4313
  article-title: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms
  publication-title: Biogeosciences
– volume: 19
  start-page: 2117
  issue: 7
  year: 2013
  end-page: 2132
  article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO trends
  publication-title: Global Change Biol.
– volume: 20
  start-page: 1583
  issue: 6
  year: 2010
  end-page: 1597
  article-title: On the differential advantages of evergreenness and deciduousness in Mediterranean oak woodlands: A flux perspective
  publication-title: Ecol. Appl.
– volume: 499
  start-page: 324
  issue: 7458
  year: 2013
  end-page: 327
  article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise
  publication-title: Nature
– volume: 342
  start-page: 850
  issue: 6160
  year: 2013
  end-page: 853
  article-title: High‐resolution global maps of 21st‐century forest cover change
  publication-title: Science
– volume: 16
  start-page: 187
  issue: 1
  year: 2010
  end-page: 208
  article-title: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation
  publication-title: Global Change Biol.
– year: 1996
– volume: 16
  start-page: 483
  issue: 3
  year: 2008
  end-page: 497
  article-title: Estimating groundwater evapotranspiration rates using diurnal water‐table fluctuations in a semi‐arid riparian zone
  publication-title: Hydrogeol. J.
– volume: 17
  issue: 1
  year: 2003
  article-title: Global distribution of C3 and C4 vegetation: Carbon cycle implications
  publication-title: Global Biogeochem. Cycles
– volume: 230
  start-page: 484
  year: 2006
  end-page: 500
  article-title: Groundwater‐supported evapotranspiration within glaciated watersheds under conditions of climate change
  publication-title: J. Hydrol.
– volume: 82
  start-page: 2415
  issue: 11
  year: 2001
  end-page: 2434
  article-title: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 168
  start-page: 360
  year: 2015
  end-page: 373
  article-title: Uncertainty analysis of gross primary production upscaling using random forests, remote sensing and eddy covariance data
  publication-title: Remote Sens. Environ.
– volume: 19
  year: 2013
  article-title: Remote sensing of terrestrial chlorophyll fluorescence from space
  publication-title: SPIE Newsroom
– volume: 119
  start-page: 75
  year: 2014
  end-page: 89
  article-title: Global‐scale land surface hydrologic modeling with the representation of water table dynamics
  publication-title: J. Geophys. Res. Atmos.
– volume: 10
  start-page: 464
  year: 2009
  end-page: 478
  article-title: Regional groundwater evapotranspiration in Illinois
  publication-title: J. Hydrometeorol.
– year: 2010
– volume: 119
  start-page: 2245
  year: 2014
  end-page: 2260
  article-title: GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia
  publication-title: J. Geophys. Res. Biogeosci.
– year: 2015
  article-title: Groundwater in the Earth's critical zone: Relevance to large‐scale patterns and processes
  publication-title: Water Resour. Res.
– volume: 101
  start-page: 534
  issue: 4
  year: 2006
  end-page: 553
  article-title: Exploiting synergies of global land cover products for carbon cycle modeling
  publication-title: Remote Sens. Environ.
– year: 2012
– volume: 339
  start-page: 940
  issue: 6122
  year: 2013
  end-page: 943
  article-title: Global patterns of groundwater table depth
  publication-title: Science
– start-page: 515
  year: 1999
  end-page: 524
  article-title: The relationship between vegetation dynamics and water table in tropical dune slacks
  publication-title: J. Veg. Sci.
– volume: 110
  start-page: 109
  issue: 1
  year: 2007
  end-page: 122
  article-title: Developing a continental‐scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 6801
  issue: 18
  year: 2013
  end-page: 6843
  article-title: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models
  publication-title: J. Clim.
– volume: 43
  year: 2007
  article-title: Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation
  publication-title: Water Resour. Res.
– volume: 87
  start-page: 1391
  issue: 10
  year: 2006
  end-page: 1397
  article-title: GSWP‐2: Multimodel analysis and implications for our perception of the land surface
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 541
  start-page: 516
  issue: 7638
  year: 2017
  end-page: 520
  article-title: Compensatory water effects link yearly global land CO sink changes to temperature
  publication-title: Nature
– volume: 29
  start-page: 310
  issue: 2
  year: 2015
  end-page: 320
  article-title: Hyper‐resolution global hydrological modelling: What is next?
  publication-title: Hydrol. Processes
– volume: 10
  start-page: 61
  year: 2017
  end-page: 81
  article-title: Continental mapping of groundwater dependent ecosystems: A methodological framework to integrate diverse data and expert opinion
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 2
  start-page: 148
  year: 2014
  end-page: 160
  article-title: Groundwater decline and tree change in floodplain landscapes: Identifying non‐linear threshold responses in canopy condition
  publication-title: Global Ecol. Conserv.
– volume: 353
  start-page: 377
  issue: 6297
  year: 2016
  end-page: 380
  article-title: Connections between groundwater flow and transpiration partitioning
  publication-title: Science
– volume: 360
  start-page: 102
  year: 2014
  end-page: 108
  article-title: Effect of water table fluctuations on phreatophytic root distribution
  publication-title: J. Theor. Biol.
– volume: 18
  start-page: 2337
  year: 2013
  end-page: 2346
  article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions
  publication-title: Proc. Comput. Sci.
– volume: 15
  start-page: 259
  issue: 3
  year: 2006
  end-page: 263
  article-title: World map of the Kӧppen‐Geiger climate classification updated
  publication-title: Meteorol. Z.
– year: 2017
– volume: 39
  year: 2012
  article-title: Tropical cyclones and the ecohydrology of Australia's recent continental‐scale drought
  publication-title: Geophys. Res. Lett.
– volume: 35
  start-page: 726
  issue: 6
  year: 2005
  end-page: 740
  article-title: Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation
  publication-title: Environ. Manage.
– volume: 45
  year: 2009
  article-title: On groundwater fluctuations, evapotranspiration, and understory removal in riparian corridors
  publication-title: Water Resour. Res.
– ident: e_1_2_6_56_1
  doi: 10.1029/2007WR006073
– ident: e_1_2_6_62_1
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1244693
– ident: e_1_2_6_60_1
  doi: 10.5194/bg-13-4291-2016
– ident: e_1_2_6_30_1
  doi: 10.1016/j.procs.2013.05.405
– ident: e_1_2_6_45_1
  doi: 10.2307/3237186
– ident: e_1_2_6_18_1
  doi: 10.5194/hess-19-4229-2015
– ident: e_1_2_6_22_1
  doi: 10.5194/bg-11-7025-2014
– ident: e_1_2_6_3_1
  doi: 10.1175/JCLI-D-12-00417.1
– ident: e_1_2_6_40_1
  doi: 10.1029/2008EO100001
– ident: e_1_2_6_55_1
  doi: 10.1002/2015WR017349
– ident: e_1_2_6_59_1
  doi: 10.1016/j.rse.2015.07.015
– ident: e_1_2_6_66_1
  doi: 10.1175/2008JHM1018.1
– ident: e_1_2_6_50_1
  doi: 10.1029/2011RG000383
– ident: e_1_2_6_34_1
  doi: 10.1016/j.gecco.2014.09.002
– ident: e_1_2_6_65_1
  doi: 10.1002/2014JG002670
– ident: e_1_2_6_37_1
  doi: 10.1127/0941-2948/2006/0130
– ident: e_1_2_6_46_1
  doi: 10.1007/s00267-004-0194-7
– ident: e_1_2_6_31_1
  doi: 10.1016/j.rse.2006.01.020
– ident: e_1_2_6_43_1
  doi: 10.1029/2011GL050263
– ident: e_1_2_6_44_1
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1184984
– ident: e_1_2_6_39_1
  doi: 10.1007/s10040-007-0239-0
– ident: e_1_2_6_47_1
  doi: 10.1098/rstb.2012.0425
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: e_1_2_6_61_1
  doi: 10.1016/j.jtbi.2014.06.035
– volume: 19
  year: 2013
  ident: e_1_2_6_23_1
  article-title: Remote sensing of terrestrial chlorophyll fluorescence from space
  publication-title: SPIE Newsroom
– ident: e_1_2_6_29_1
  doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
– ident: e_1_2_6_33_1
  doi: 10.1038/nature20780
– ident: e_1_2_6_2_1
  doi: 10.1088/1748-9326/10/12/124024
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ejrh.2017.01.003
– ident: e_1_2_6_58_1
  doi: 10.1029/2001GB001807
– ident: e_1_2_6_48_1
  doi: 10.1029/2006JD007522
– ident: e_1_2_6_52_1
  doi: 10.3390/geosciences6020017
– ident: e_1_2_6_6_1
  doi: 10.1890/08-2047.1
– ident: e_1_2_6_42_1
  doi: 10.1126/science.aaf7891
– ident: e_1_2_6_7_1
  doi: 10.1111/gcb.12785
– ident: e_1_2_6_24_1
  doi: 10.1111/gwat.12169
– ident: e_1_2_6_35_1
  doi: 10.1038/nature12291
– ident: e_1_2_6_14_1
  doi: 10.5194/hessd-11-5217-2014
– ident: e_1_2_6_28_1
  doi: 10.1002/2016JG003640
– ident: e_1_2_6_53_1
  doi: 10.1111/gcb.12187
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1229881
– volume-title: FLUXCOM Global Energy and Carbon Fluxes
  year: 2017
  ident: e_1_2_6_21_1
– ident: e_1_2_6_32_1
  doi: 10.1029/2010JG001566
– ident: e_1_2_6_57_1
  doi: 10.1111/1365-2745.12332
– ident: e_1_2_6_13_1
  doi: 10.1016/S0378-3774(98)00078-X
– ident: e_1_2_6_63_1
  doi: 10.1007/s004420050295
– ident: e_1_2_6_10_1
  doi: 10.1029/2011JG001913
– ident: e_1_2_6_25_1
  doi: 10.1002/hyp.10503
– ident: e_1_2_6_41_1
  doi: 10.1029/2008WR007152
– ident: e_1_2_6_16_1
  doi: 10.1175/BAMS-87-10-1381
– ident: e_1_2_6_4_1
  doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
– ident: e_1_2_6_27_1
– ident: e_1_2_6_64_1
  doi: 10.1016/j.rse.2007.02.016
– ident: e_1_2_6_15_1
  doi: 10.1046/j.1365-2486.2000.00296.x
– ident: e_1_2_6_19_1
  doi: 10.1002/2015WR017037
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2486.2009.02041.x
– ident: e_1_2_6_5_1
  doi: 10.1016/j.agrformet.2003.11.006
– ident: e_1_2_6_11_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_6_9_1
  doi: 10.1002/hyp.10391
– ident: e_1_2_6_36_1
  doi: 10.1002/2013JD020398
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jhydrol.2005.07.051
– ident: e_1_2_6_49_1
– ident: e_1_2_6_51_1
  doi: 10.1093/aobpla/plq003
SSID ssj0003031
Score 2.5008059
Snippet Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4134
SubjectTerms Area
Carbon cycle
Climate
Correlation
Data
Depth
Determinants
Distribution
Drawdown
Drying
ecohydrological patterns
ecosystem
Ecosystems
Forests
Groundwater
Groundwater table
High resolution
Humid climates
Hydrologic cycle
Hydrological cycle
Interactions
Moisture
plant productivity
Primary production
Productivity
Products
Resolution
spatial covariation
Spatial distribution
Surface properties
Vegetation
Water
Water table
Water use
Title Global distribution of groundwater‐vegetation spatial covariation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL072885
https://www.proquest.com/docview/1902427713
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhcUHmJ0hblAKcoEDuOkz2u-thtWSoEXVRxiWzH7kNVtupui-CA-An8xv6SjmMncbVQAZcoiqzZyPPtPOKZbxB6JSFp0BqsHxMJhQRFgh1kTEWC6TzRmGZU1VW--2w0oXuH6WGv98PvLpmLN_L7b_tK_ker8Az0arpk_0GzrVB4APegX7iChuH6Vzq2hP3mkKWdW2WCP9OpUZVfuTkHb2oZrtRRU1g4M0XUNS3IFSTKnWZciDpU0_NGeY4K6Dg8q7t-uoOf6YlpwLRlPacdwPac6bDkBO1hjjqRx7NmrKbpDrpsJe1WRyrcDt-HJcD1gnPtf4YA5RoGU9a5iMU6n4ViTlPFGOUkc9TX1uD2KTyL7eTbxiJbRkiHvL5nXsHjUs9VU2yZuRbcgKWVNa85HMcZye1UoNts26PBp-LD1k4x3t1_dw8tE0gzwE4uDz5PvkxaXw4O3s5cdG_uWidA_ltf-u2gpstU_HynDlgOVtBDl2kEAwubR6inqsfo_rCe5PwN7uraXzl7gjYtjAIfRsFUBx6Mrn_-6gAUOAAFHoCeosnO9sHmKHKzNSJOk4RFMmV5STgpsaLgK0sFqajinGEl-yrBAueCiYwTyUUqYm34zAnGpYSAJ-M67ifP0FI1rdRzFFBRJpnOUwlrKOiTawo7RXgstJa6zFdR2GxOIR3xvJl_clZYymxS-Fu5il63q88t4cof1q03-1y4v-SsgOgWQs4swwn8aL33d8oohh_HqYnAX9wtbA096CC_jpbmF5dqA2LRuXjpAHMDR-iHkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QiNGL8RlR1B7kZBrodrtbDh4IykOQgwFDvNTd7a4XAwYQws2f4D_xP_lLnG3Lw4MmHrg1zbTdTOfxzWb2G4QuJBQNWkP0o8IlUKBIiIOUKltQ7bvaIYyoqMu3Tetdctvzein0OT8LE_NDLDbcjGdE8do4uNmQLixZQyF1sVqryLDvz7sqm2o2hZptdNW4hh-cx7h606nU7WSsgM2J61JbetQPMceho6AWYqECFK44p46SJeU6wvEFFYxjyYUnitpQOUOVFEqI9YzriH0JYn7GAClwo0z5ofvYXQR_yAjxkL4SsX3MaNJrDysurK73ZxZcQttVgBxluOoO2k6gqVWObWkXpVR_D23UotG_M7iKmkXlaB9V4kEBVmhId5N5WdZAW-aESD-cAnodfr1_TNRz0spojUzbNjwgBxMozaN7B6i7Fq0donR_0FdHyCIidJn2PQkyxCkRrgloCvOi0Frq0M-iy7lyApkwlZuBGS9BzLGMg1VVZlF-If0aM3T8Ipeb6zlI_HQUABwCjMKgUoePRrr_8x1B7b7lGch2_C_pc7RZ79y1glaj3TxBW0bGNCA4NIfS4-GbOgVcMxZniS1Z6Gnd5vsNE8EC6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NSsNAEB6kRfEi_mL9zcGeJNhsNrvpwUNR26pFRKwUL3F_vUgrtlq8-Qg-iQ_lkzibpLUeFDz0FsIkWSa7M98s334DsKewaLAWox-TIcUCRWEcZMz4ktk4tAHl1KQs3wvWbNOzTtSZgY_RWZhMH2K84eZWRhqv3QJ_1PbgWzQUMxdvtCqcxPGIVHluXodYsvUPT4_x_5YJqZ9cHzX9vKuAL2gYMl9FLNZEEB0YLIW4NgjCjRAsMKpqwkAGsWSSC6KEjGTFOiVnLJK0wlDPhU3FlzDkFyNMhJUCFGs37dv2OPZjQsh69FWpHxPOcqo9jvhgcrw_k-A3sp3Ex2mCqy_CQo5MvVo2lZZgxnSXYbaRdv59xauUK6r6K3CU9QnwtNPczdtleT3ruQMiXT1E8Pr0-fb-Yu5zJqPXd6xtfED1XrAyT--tQnsqXluDQrfXNevgUalDbuNIoQ0NqlRYip4ioiKtVVbHJdgfOSdRuVC565fxkGQSyySZdGUJymPrx0yg4xe7rZGfk3yZ9hNEQwhROBbq-NHU93--I2lctSKH2Db-Zb0Lc5fH9aR1enG-CfPOxNEPArYFhcHTs9lGVDOQO_lU8uBu2rP3CzsXAgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+distribution+of+groundwater%E2%80%90vegetation+spatial+covariation&rft.jtitle=Geophysical+research+letters&rft.au=Koirala%2C+Sujan&rft.au=Jung%2C+Martin&rft.au=Reichstein%2C+Markus&rft.au=Inge+E+M+de+Graaf&rft.date=2017-05-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=9&rft.spage=4134&rft.epage=4142&rft_id=info:doi/10.1002%2F2017GL072885&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon