Global distribution of groundwater‐vegetation spatial covariation
Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we...
Saved in:
Published in | Geophysical research letters Vol. 44; no. 9; pp. 4134 - 4142 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale.
Key Points
Local‐scale groundwater‐vegetation spatial covariations are prevalent globally
Both positive and negative relationships are equally widespread
There is a stronger association of the sign of relationship with vegetation than with climate and land surface characteristics |
---|---|
AbstractList | Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale.
Local‐scale groundwater‐vegetation spatial covariations are prevalent globally
Both positive and negative relationships are equally widespread
There is a stronger association of the sign of relationship with vegetation than with climate and land surface characteristics Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale. Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater‐vegetation interactions are poorly understood at the global scale. Using several high‐resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture‐limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater table due to substantial ecosystem water use. Interestingly, these opposite groundwater‐vegetation interactions are primarily associated with differences in vegetation than with climate and surface characteristics. These findings put forth the first evidence, and a need for better representation, of extensive and non‐negligible groundwater‐vegetation interactions at the global scale. Key Points Local‐scale groundwater‐vegetation spatial covariations are prevalent globally Both positive and negative relationships are equally widespread There is a stronger association of the sign of relationship with vegetation than with climate and land surface characteristics |
Author | Koirala, Sujan Jung, Martin Ráduly, Botond Tramontana, Gianluca Carvalhais, Nuno Ichii, Kazuhito Schwalm, Christopher R. Camps‐Valls, Gustau Reichstein, Markus Papale, Dario Graaf, Inge E. M. |
Author_xml | – sequence: 1 givenname: Sujan orcidid: 0000-0001-5681-1986 surname: Koirala fullname: Koirala, Sujan email: skoirala@bgc‐jena.mpg.de organization: Max Planck Institute for Biogeochemistry – sequence: 2 givenname: Martin orcidid: 0000-0002-7588-1004 surname: Jung fullname: Jung, Martin organization: Max Planck Institute for Biogeochemistry – sequence: 3 givenname: Markus surname: Reichstein fullname: Reichstein, Markus organization: Max Planck Institute for Biogeochemistry – sequence: 4 givenname: Inge E. M. surname: Graaf fullname: Graaf, Inge E. M. organization: Colorado School of Mines – sequence: 5 givenname: Gustau orcidid: 0000-0003-1683-2138 surname: Camps‐Valls fullname: Camps‐Valls, Gustau organization: University of Valencia – sequence: 6 givenname: Kazuhito orcidid: 0000-0002-8696-8084 surname: Ichii fullname: Ichii, Kazuhito organization: Chiba University – sequence: 7 givenname: Dario orcidid: 0000-0001-5170-8648 surname: Papale fullname: Papale, Dario organization: Centro Euro‐Mediterraneo sui Cambiamenti Climatici – sequence: 8 givenname: Botond surname: Ráduly fullname: Ráduly, Botond organization: Sapientia Hungarian University of Transylvania – sequence: 9 givenname: Christopher R. orcidid: 0000-0002-5035-5681 surname: Schwalm fullname: Schwalm, Christopher R. organization: Northern Arizona University – sequence: 10 givenname: Gianluca surname: Tramontana fullname: Tramontana, Gianluca organization: Università della Tuscia – sequence: 11 givenname: Nuno orcidid: 0000-0003-0465-1436 surname: Carvalhais fullname: Carvalhais, Nuno organization: Universidade Nova de Lisboa |
BookMark | eNp9kMFKw0AQhhepYFu9-QAFr0Zndje7yVGKRiEgiJ6XTbIpW2K27iYtvfkIPqNPYmx7EEFPM8x8__zDPyGj1rWGkHOEKwSg1xRQZjlImiTxERljynmUAMgRGQOkQ0-lOCGTEJYAwIDhmMyzxhW6mVU2dN4WfWddO3P1bOFd31Yb3Rn_-f6xNgvT6d0urIY6CEq31t7uZqfkuNZNMGeHOiUvd7fP8_sof8we5jd5pDljIipjkVRU0woN50JWhjIwWgs0ZWoYFpgUopCalrqIC6hjlJwiViUwIXUNKZuSi_3dlXdvvQmdWrret4OlwhQop1IiGyi6p0rvQvCmVqXd_955bRuFoL7DUj_DGkSXv0Qrb1-13_6FHzw2tjHbf1mVPeVxnHDBvgC4p3vV |
CitedBy_id | crossref_primary_10_1088_1755_1315_1136_1_012016 crossref_primary_10_1016_j_jhydrol_2023_130242 crossref_primary_10_1016_j_advwatres_2024_104814 crossref_primary_10_1088_1748_9326_ace636 crossref_primary_10_1016_j_ejrh_2020_100684 crossref_primary_10_1029_2020WR027755 crossref_primary_10_1016_j_scitotenv_2023_162577 crossref_primary_10_3390_rs16244733 crossref_primary_10_1007_s00267_021_01526_2 crossref_primary_10_5194_hess_24_4625_2020 crossref_primary_10_1016_j_earscirev_2020_103466 crossref_primary_10_1029_2018JD028432 crossref_primary_10_5194_hess_25_6567_2021 crossref_primary_10_1016_j_scitotenv_2024_172926 crossref_primary_10_1016_j_scitotenv_2017_09_145 crossref_primary_10_1016_j_jhydrol_2021_126505 crossref_primary_10_1016_j_jhydrol_2024_131708 crossref_primary_10_1038_s41558_018_0386_4 crossref_primary_10_1016_j_jhydrol_2022_128336 crossref_primary_10_3390_rs14215532 crossref_primary_10_1021_acs_est_2c04803 crossref_primary_10_1016_j_jhydrol_2022_128094 crossref_primary_10_1029_2018WR023434 crossref_primary_10_1029_2019WR026010 crossref_primary_10_1111_gcb_15729 crossref_primary_10_3389_fdata_2019_00031 crossref_primary_10_1007_s10040_018_1813_3 crossref_primary_10_1177_2754124X231199565 crossref_primary_10_3390_app14125114 crossref_primary_10_1029_2018GL080535 crossref_primary_10_1080_02626667_2022_2069502 crossref_primary_10_5194_hess_23_1393_2019 crossref_primary_10_1007_s43832_024_00086_w crossref_primary_10_3390_cli10010006 crossref_primary_10_1016_j_rse_2019_111259 crossref_primary_10_1016_j_chemosphere_2020_127534 crossref_primary_10_1016_j_jhydrol_2024_130747 crossref_primary_10_1016_j_agrformet_2020_108103 crossref_primary_10_1016_j_ejrh_2025_102324 crossref_primary_10_1088_1748_9326_ad8587 crossref_primary_10_1360_TB_2022_0046 crossref_primary_10_1016_j_agrformet_2023_109636 crossref_primary_10_1016_j_jhydrol_2020_125759 crossref_primary_10_1088_1748_9326_ac50d2 crossref_primary_10_3389_fdata_2022_967477 crossref_primary_10_1111_nph_15629 crossref_primary_10_1029_2021MS002730 crossref_primary_10_1038_s41561_023_01125_2 crossref_primary_10_1016_j_catena_2023_107754 crossref_primary_10_1088_1748_9326_ab724a crossref_primary_10_3390_rs15194706 crossref_primary_10_5194_gmd_15_7099_2022 crossref_primary_10_1093_aob_mcab107 crossref_primary_10_5194_hess_29_1319_2025 crossref_primary_10_3390_rs10010004 crossref_primary_10_3390_w13081027 crossref_primary_10_1073_pnas_1800141115 crossref_primary_10_1038_s41586_019_1441_7 crossref_primary_10_1029_2019WR026192 crossref_primary_10_5194_hess_26_1579_2022 crossref_primary_10_1016_j_agrformet_2023_109725 crossref_primary_10_1029_2021AV000398 crossref_primary_10_1016_j_gsd_2023_100941 crossref_primary_10_1080_10106049_2021_1948108 crossref_primary_10_1016_j_scitotenv_2023_166388 crossref_primary_10_1038_s41561_019_0318_6 crossref_primary_10_1016_j_jhydrol_2020_125566 crossref_primary_10_1016_j_jhydrol_2022_127789 crossref_primary_10_3390_earth6010003 crossref_primary_10_1002_2017GL076294 |
Cites_doi | 10.1029/2007WR006073 10.1126/science.1244693 10.5194/bg-13-4291-2016 10.1016/j.procs.2013.05.405 10.2307/3237186 10.5194/hess-19-4229-2015 10.5194/bg-11-7025-2014 10.1175/JCLI-D-12-00417.1 10.1029/2008EO100001 10.1002/2015WR017349 10.1016/j.rse.2015.07.015 10.1175/2008JHM1018.1 10.1029/2011RG000383 10.1016/j.gecco.2014.09.002 10.1002/2014JG002670 10.1127/0941-2948/2006/0130 10.1007/s00267-004-0194-7 10.1016/j.rse.2006.01.020 10.1029/2011GL050263 10.1126/science.1184984 10.1007/s10040-007-0239-0 10.1098/rstb.2012.0425 10.1111/j.1365-2486.2005.001002.x 10.1016/j.jtbi.2014.06.035 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 10.1038/nature20780 10.1088/1748-9326/10/12/124024 10.1016/j.ejrh.2017.01.003 10.1029/2001GB001807 10.1029/2006JD007522 10.3390/geosciences6020017 10.1890/08-2047.1 10.1126/science.aaf7891 10.1111/gcb.12785 10.1111/gwat.12169 10.1038/nature12291 10.5194/hessd-11-5217-2014 10.1002/2016JG003640 10.1111/gcb.12187 10.1126/science.1229881 10.1029/2010JG001566 10.1111/1365-2745.12332 10.1016/S0378-3774(98)00078-X 10.1007/s004420050295 10.1029/2011JG001913 10.1002/hyp.10503 10.1029/2008WR007152 10.1175/BAMS-87-10-1381 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 10.1016/j.rse.2007.02.016 10.1046/j.1365-2486.2000.00296.x 10.1002/2015WR017037 10.1111/j.1365-2486.2009.02041.x 10.1016/j.agrformet.2003.11.006 10.1023/A:1010933404324 10.1002/hyp.10391 10.1002/2013JD020398 10.1016/j.jhydrol.2005.07.051 10.1093/aobpla/plq003 |
ContentType | Journal Article |
Copyright | 2017. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2017. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2017GL072885 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 4142 |
ExternalDocumentID | 10_1002_2017GL072885 GRL55846 |
Genre | article |
GrantInformation_xml | – fundername: NOVA funderid: UID/AMB/04085/2013 – fundername: European Commission funderid: 283201 – fundername: European Research Council (ERC) funderid: SEDAL‐647423 – fundername: National Aeronautics and Space Administration (NASA) funderid: NNX11AO08A; NNX10AG01A; NNX12AP74G; NNX12AK12G |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a4336-c568d2a2d1e4467de230eaa61ec9e31b18b6b7a2cab5b0f5174211dc0367af093 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 10:26:59 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 01:40:40 EDT 2025 Wed Jan 22 16:22:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4336-c568d2a2d1e4467de230eaa61ec9e31b18b6b7a2cab5b0f5174211dc0367af093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5170-8648 0000-0001-5681-1986 0000-0002-7588-1004 0000-0003-1683-2138 0000-0002-5035-5681 0000-0003-0465-1436 0000-0002-8696-8084 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2017GL072885 |
PQID | 1902427713 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1902427713 crossref_citationtrail_10_1002_2017GL072885 crossref_primary_10_1002_2017GL072885 wiley_primary_10_1002_2017GL072885_GRL55846 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 May 2017 |
PublicationDateYYYYMMDD | 2017-05-16 |
PublicationDate_xml | – month: 05 year: 2017 text: 16 May 2017 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2004; 123 2011; 116 2009; 45 2013; 26 2010; 16 2000; 6 2015; 103 2013; 368 1997; 112 2004; 5 2003; 17 2001; 45 2013; 19 2013; 18 2010; 20 2009; 10 2014; 2 2016; 353 2014; 360 2014; 11 2005; 35 2014; 119 2010; 329 2015; 19 2012 2011 2010 2015; 51 2015; 168 2015; 53 2015; 11 2008; 16 2015; 10 2006; 15 2013; 342 2008 1996 2006; 230 2012; 39 2016; 13 1999 2012; 50 2001; 82 2007; 112 2016; 6 2015; 29 2013; 339 2006; 87 1999; 39 2007; 110 2017; 10 2015; 21 2013; 499 2008; 89 2017 2015 2017; 541 2007; 43 2012; 117 2006; 101 2005; 11 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 FLUXCOM (e_1_2_6_21_1) 2017 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_40_1 e_1_2_6_61_1 Frankenberg C. (e_1_2_6_23_1) 2013; 19 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2011 – volume: 123 start-page: 13 year: 2004 end-page: 39 article-title: How plant functional‐type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak‐grass savanna and an annual grassland publication-title: Agric. For. Meteorol. – volume: 103 start-page: 93 issue: 1 year: 2015 end-page: 108 article-title: Hydrological niches in terrestrial plant communities: A review publication-title: J. Ecol. – volume: 6 start-page: 247 issue: 2 year: 2000 end-page: 254 article-title: A new global 1‐km dataset of percentage tree cover derived from remote sensing publication-title: Global Change Biol. – volume: 11 start-page: 5217 issue: 5 year: 2015 end-page: 5250 article-title: A high resolution global scale groundwater model publication-title: Hydrol. Earth Syst. Sci. – volume: 10 start-page: 12,4024 issue: 12 year: 2015 end-page: 12,4024 article-title: Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia publication-title: Environ. Res. Lett. – year: 2017 article-title: New data‐driven estimation of terrestrial CO fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression publication-title: J. Geophys. Res. Biogeosci. – volume: 11 start-page: 7025 issue: 23 year: 2014 end-page: 7050 article-title: Identifying environmental controls on vegetation greenness phenology through model‐data integration publication-title: Biogeosciences – volume: 53 start-page: 99 issue: 1 year: 2015 end-page: 110 article-title: Mapping potential groundwater‐dependent ecosystems for sustainable management publication-title: Groundwater – volume: 89 start-page: 93 issue: 10 year: 2008 end-page: 94 article-title: New global hydrography derived from spaceborne elevation data publication-title: Eos Trans. AGU – volume: 112 start-page: 156 issue: 2 year: 1997 end-page: 164 article-title: Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA publication-title: Oecologia – volume: 368 issue: 1619 year: 2013 article-title: Watershed responses to Amazon soya bean cropland expansion and intensification publication-title: Philos. Trans. R. Soc. London, Ser. B – volume: 29 start-page: 4457 year: 2015 end-page: 4469 article-title: Modelling the effects of soil type and root distribution on shallow groundwater resources publication-title: Hydrol. Processes – volume: 5 start-page: 487 issue: 3 year: 2004 end-page: 503 article-title: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution publication-title: J. Hydrometeorol. – volume: 21 start-page: 1213 issue: 3 year: 2015 end-page: 1225 article-title: The combined effects of a long‐term experimental drought and an extreme drought on the use of plant‐water sources in a Mediterranean forest publication-title: Global Change Biol. – volume: 51 start-page: 5217 year: 2015 end-page: 5238 article-title: Quantifying renewable groundwater stress with GRACE publication-title: Water Resour. Res. – volume: 112 year: 2007 article-title: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data publication-title: J. Geophys. Res. – volume: 329 start-page: 834 issue: 5993 year: 2010 end-page: 838 article-title: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate publication-title: Science – volume: 11 start-page: 1424 issue: 9 year: 2005 end-page: 1439 article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm publication-title: Global Change Biol. – year: 2008 – volume: 39 start-page: 187 issue: 2–3 year: 1999 end-page: 204 article-title: Transpiration and groundwater uptake from farm forest plots of and in saline areas of southeast Queensland, Australia publication-title: Agric. Water Manage. – volume: 50 year: 2012 article-title: Monitoring and modeling water‐vegetation interactions in groundwater‐dependent ecosystems publication-title: Rev. Geophys. – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach. Learn. – volume: 116 year: 2011 article-title: Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations publication-title: J. Geophys. Res. – volume: 6 issue: 2 year: 2016 article-title: A review of advances in the identification and characterization of groundwater dependent ecosystems using geospatial technologies publication-title: Geosciences – volume: 117 year: 2012 article-title: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4 publication-title: J. Geophys. Res. – volume: 19 start-page: 4229 issue: 10 year: 2015 end-page: 4256 article-title: Groundwater‐dependent ecosystems: Recent insights from satellite and field‐based studies publication-title: Hydrol. Earth Syst. Sci. – volume: 13 start-page: 4291 issue: 14 year: 2016 end-page: 4313 article-title: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms publication-title: Biogeosciences – volume: 19 start-page: 2117 issue: 7 year: 2013 end-page: 2132 article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO trends publication-title: Global Change Biol. – volume: 20 start-page: 1583 issue: 6 year: 2010 end-page: 1597 article-title: On the differential advantages of evergreenness and deciduousness in Mediterranean oak woodlands: A flux perspective publication-title: Ecol. Appl. – volume: 499 start-page: 324 issue: 7458 year: 2013 end-page: 327 article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise publication-title: Nature – volume: 342 start-page: 850 issue: 6160 year: 2013 end-page: 853 article-title: High‐resolution global maps of 21st‐century forest cover change publication-title: Science – volume: 16 start-page: 187 issue: 1 year: 2010 end-page: 208 article-title: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation publication-title: Global Change Biol. – year: 1996 – volume: 16 start-page: 483 issue: 3 year: 2008 end-page: 497 article-title: Estimating groundwater evapotranspiration rates using diurnal water‐table fluctuations in a semi‐arid riparian zone publication-title: Hydrogeol. J. – volume: 17 issue: 1 year: 2003 article-title: Global distribution of C3 and C4 vegetation: Carbon cycle implications publication-title: Global Biogeochem. Cycles – volume: 230 start-page: 484 year: 2006 end-page: 500 article-title: Groundwater‐supported evapotranspiration within glaciated watersheds under conditions of climate change publication-title: J. Hydrol. – volume: 82 start-page: 2415 issue: 11 year: 2001 end-page: 2434 article-title: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. – volume: 168 start-page: 360 year: 2015 end-page: 373 article-title: Uncertainty analysis of gross primary production upscaling using random forests, remote sensing and eddy covariance data publication-title: Remote Sens. Environ. – volume: 19 year: 2013 article-title: Remote sensing of terrestrial chlorophyll fluorescence from space publication-title: SPIE Newsroom – volume: 119 start-page: 75 year: 2014 end-page: 89 article-title: Global‐scale land surface hydrologic modeling with the representation of water table dynamics publication-title: J. Geophys. Res. Atmos. – volume: 10 start-page: 464 year: 2009 end-page: 478 article-title: Regional groundwater evapotranspiration in Illinois publication-title: J. Hydrometeorol. – year: 2010 – volume: 119 start-page: 2245 year: 2014 end-page: 2260 article-title: GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia publication-title: J. Geophys. Res. Biogeosci. – year: 2015 article-title: Groundwater in the Earth's critical zone: Relevance to large‐scale patterns and processes publication-title: Water Resour. Res. – volume: 101 start-page: 534 issue: 4 year: 2006 end-page: 553 article-title: Exploiting synergies of global land cover products for carbon cycle modeling publication-title: Remote Sens. Environ. – year: 2012 – volume: 339 start-page: 940 issue: 6122 year: 2013 end-page: 943 article-title: Global patterns of groundwater table depth publication-title: Science – start-page: 515 year: 1999 end-page: 524 article-title: The relationship between vegetation dynamics and water table in tropical dune slacks publication-title: J. Veg. Sci. – volume: 110 start-page: 109 issue: 1 year: 2007 end-page: 122 article-title: Developing a continental‐scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach publication-title: Remote Sens. Environ. – volume: 26 start-page: 6801 issue: 18 year: 2013 end-page: 6843 article-title: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models publication-title: J. Clim. – volume: 43 year: 2007 article-title: Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation publication-title: Water Resour. Res. – volume: 87 start-page: 1391 issue: 10 year: 2006 end-page: 1397 article-title: GSWP‐2: Multimodel analysis and implications for our perception of the land surface publication-title: Bull. Am. Meteorol. Soc. – volume: 541 start-page: 516 issue: 7638 year: 2017 end-page: 520 article-title: Compensatory water effects link yearly global land CO sink changes to temperature publication-title: Nature – volume: 29 start-page: 310 issue: 2 year: 2015 end-page: 320 article-title: Hyper‐resolution global hydrological modelling: What is next? publication-title: Hydrol. Processes – volume: 10 start-page: 61 year: 2017 end-page: 81 article-title: Continental mapping of groundwater dependent ecosystems: A methodological framework to integrate diverse data and expert opinion publication-title: J. Hydrol.: Reg. Stud. – volume: 2 start-page: 148 year: 2014 end-page: 160 article-title: Groundwater decline and tree change in floodplain landscapes: Identifying non‐linear threshold responses in canopy condition publication-title: Global Ecol. Conserv. – volume: 353 start-page: 377 issue: 6297 year: 2016 end-page: 380 article-title: Connections between groundwater flow and transpiration partitioning publication-title: Science – volume: 360 start-page: 102 year: 2014 end-page: 108 article-title: Effect of water table fluctuations on phreatophytic root distribution publication-title: J. Theor. Biol. – volume: 18 start-page: 2337 year: 2013 end-page: 2346 article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions publication-title: Proc. Comput. Sci. – volume: 15 start-page: 259 issue: 3 year: 2006 end-page: 263 article-title: World map of the Kӧppen‐Geiger climate classification updated publication-title: Meteorol. Z. – year: 2017 – volume: 39 year: 2012 article-title: Tropical cyclones and the ecohydrology of Australia's recent continental‐scale drought publication-title: Geophys. Res. Lett. – volume: 35 start-page: 726 issue: 6 year: 2005 end-page: 740 article-title: Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation publication-title: Environ. Manage. – volume: 45 year: 2009 article-title: On groundwater fluctuations, evapotranspiration, and understory removal in riparian corridors publication-title: Water Resour. Res. – ident: e_1_2_6_56_1 doi: 10.1029/2007WR006073 – ident: e_1_2_6_62_1 – ident: e_1_2_6_26_1 doi: 10.1126/science.1244693 – ident: e_1_2_6_60_1 doi: 10.5194/bg-13-4291-2016 – ident: e_1_2_6_30_1 doi: 10.1016/j.procs.2013.05.405 – ident: e_1_2_6_45_1 doi: 10.2307/3237186 – ident: e_1_2_6_18_1 doi: 10.5194/hess-19-4229-2015 – ident: e_1_2_6_22_1 doi: 10.5194/bg-11-7025-2014 – ident: e_1_2_6_3_1 doi: 10.1175/JCLI-D-12-00417.1 – ident: e_1_2_6_40_1 doi: 10.1029/2008EO100001 – ident: e_1_2_6_55_1 doi: 10.1002/2015WR017349 – ident: e_1_2_6_59_1 doi: 10.1016/j.rse.2015.07.015 – ident: e_1_2_6_66_1 doi: 10.1175/2008JHM1018.1 – ident: e_1_2_6_50_1 doi: 10.1029/2011RG000383 – ident: e_1_2_6_34_1 doi: 10.1016/j.gecco.2014.09.002 – ident: e_1_2_6_65_1 doi: 10.1002/2014JG002670 – ident: e_1_2_6_37_1 doi: 10.1127/0941-2948/2006/0130 – ident: e_1_2_6_46_1 doi: 10.1007/s00267-004-0194-7 – ident: e_1_2_6_31_1 doi: 10.1016/j.rse.2006.01.020 – ident: e_1_2_6_43_1 doi: 10.1029/2011GL050263 – ident: e_1_2_6_44_1 – ident: e_1_2_6_8_1 doi: 10.1126/science.1184984 – ident: e_1_2_6_39_1 doi: 10.1007/s10040-007-0239-0 – ident: e_1_2_6_47_1 doi: 10.1098/rstb.2012.0425 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-2486.2005.001002.x – ident: e_1_2_6_61_1 doi: 10.1016/j.jtbi.2014.06.035 – volume: 19 year: 2013 ident: e_1_2_6_23_1 article-title: Remote sensing of terrestrial chlorophyll fluorescence from space publication-title: SPIE Newsroom – ident: e_1_2_6_29_1 doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 – ident: e_1_2_6_33_1 doi: 10.1038/nature20780 – ident: e_1_2_6_2_1 doi: 10.1088/1748-9326/10/12/124024 – ident: e_1_2_6_17_1 doi: 10.1016/j.ejrh.2017.01.003 – ident: e_1_2_6_58_1 doi: 10.1029/2001GB001807 – ident: e_1_2_6_48_1 doi: 10.1029/2006JD007522 – ident: e_1_2_6_52_1 doi: 10.3390/geosciences6020017 – ident: e_1_2_6_6_1 doi: 10.1890/08-2047.1 – ident: e_1_2_6_42_1 doi: 10.1126/science.aaf7891 – ident: e_1_2_6_7_1 doi: 10.1111/gcb.12785 – ident: e_1_2_6_24_1 doi: 10.1111/gwat.12169 – ident: e_1_2_6_35_1 doi: 10.1038/nature12291 – ident: e_1_2_6_14_1 doi: 10.5194/hessd-11-5217-2014 – ident: e_1_2_6_28_1 doi: 10.1002/2016JG003640 – ident: e_1_2_6_53_1 doi: 10.1111/gcb.12187 – ident: e_1_2_6_20_1 doi: 10.1126/science.1229881 – volume-title: FLUXCOM Global Energy and Carbon Fluxes year: 2017 ident: e_1_2_6_21_1 – ident: e_1_2_6_32_1 doi: 10.1029/2010JG001566 – ident: e_1_2_6_57_1 doi: 10.1111/1365-2745.12332 – ident: e_1_2_6_13_1 doi: 10.1016/S0378-3774(98)00078-X – ident: e_1_2_6_63_1 doi: 10.1007/s004420050295 – ident: e_1_2_6_10_1 doi: 10.1029/2011JG001913 – ident: e_1_2_6_25_1 doi: 10.1002/hyp.10503 – ident: e_1_2_6_41_1 doi: 10.1029/2008WR007152 – ident: e_1_2_6_16_1 doi: 10.1175/BAMS-87-10-1381 – ident: e_1_2_6_4_1 doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 – ident: e_1_2_6_27_1 – ident: e_1_2_6_64_1 doi: 10.1016/j.rse.2007.02.016 – ident: e_1_2_6_15_1 doi: 10.1046/j.1365-2486.2000.00296.x – ident: e_1_2_6_19_1 doi: 10.1002/2015WR017037 – ident: e_1_2_6_38_1 doi: 10.1111/j.1365-2486.2009.02041.x – ident: e_1_2_6_5_1 doi: 10.1016/j.agrformet.2003.11.006 – ident: e_1_2_6_11_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_6_9_1 doi: 10.1002/hyp.10391 – ident: e_1_2_6_36_1 doi: 10.1002/2013JD020398 – ident: e_1_2_6_12_1 doi: 10.1016/j.jhydrol.2005.07.051 – ident: e_1_2_6_49_1 – ident: e_1_2_6_51_1 doi: 10.1093/aobpla/plq003 |
SSID | ssj0003031 |
Score | 2.5008059 |
Snippet | Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4134 |
SubjectTerms | Area Carbon cycle Climate Correlation Data Depth Determinants Distribution Drawdown Drying ecohydrological patterns ecosystem Ecosystems Forests Groundwater Groundwater table High resolution Humid climates Hydrologic cycle Hydrological cycle Interactions Moisture plant productivity Primary production Productivity Products Resolution spatial covariation Spatial distribution Surface properties Vegetation Water Water table Water use |
Title | Global distribution of groundwater‐vegetation spatial covariation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL072885 https://www.proquest.com/docview/1902427713 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhcUHmJ0hblAKcoEDuOkz2u-thtWSoEXVRxiWzH7kNVtupui-CA-An8xv6SjmMncbVQAZcoiqzZyPPtPOKZbxB6JSFp0BqsHxMJhQRFgh1kTEWC6TzRmGZU1VW--2w0oXuH6WGv98PvLpmLN_L7b_tK_ker8Az0arpk_0GzrVB4APegX7iChuH6Vzq2hP3mkKWdW2WCP9OpUZVfuTkHb2oZrtRRU1g4M0XUNS3IFSTKnWZciDpU0_NGeY4K6Dg8q7t-uoOf6YlpwLRlPacdwPac6bDkBO1hjjqRx7NmrKbpDrpsJe1WRyrcDt-HJcD1gnPtf4YA5RoGU9a5iMU6n4ViTlPFGOUkc9TX1uD2KTyL7eTbxiJbRkiHvL5nXsHjUs9VU2yZuRbcgKWVNa85HMcZye1UoNts26PBp-LD1k4x3t1_dw8tE0gzwE4uDz5PvkxaXw4O3s5cdG_uWidA_ltf-u2gpstU_HynDlgOVtBDl2kEAwubR6inqsfo_rCe5PwN7uraXzl7gjYtjAIfRsFUBx6Mrn_-6gAUOAAFHoCeosnO9sHmKHKzNSJOk4RFMmV5STgpsaLgK0sFqajinGEl-yrBAueCiYwTyUUqYm34zAnGpYSAJ-M67ifP0FI1rdRzFFBRJpnOUwlrKOiTawo7RXgstJa6zFdR2GxOIR3xvJl_clZYymxS-Fu5il63q88t4cof1q03-1y4v-SsgOgWQs4swwn8aL33d8oohh_HqYnAX9wtbA096CC_jpbmF5dqA2LRuXjpAHMDR-iHkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QiNGL8RlR1B7kZBrodrtbDh4IykOQgwFDvNTd7a4XAwYQws2f4D_xP_lLnG3Lw4MmHrg1zbTdTOfxzWb2G4QuJBQNWkP0o8IlUKBIiIOUKltQ7bvaIYyoqMu3Tetdctvzein0OT8LE_NDLDbcjGdE8do4uNmQLixZQyF1sVqryLDvz7sqm2o2hZptdNW4hh-cx7h606nU7WSsgM2J61JbetQPMceho6AWYqECFK44p46SJeU6wvEFFYxjyYUnitpQOUOVFEqI9YzriH0JYn7GAClwo0z5ofvYXQR_yAjxkL4SsX3MaNJrDysurK73ZxZcQttVgBxluOoO2k6gqVWObWkXpVR_D23UotG_M7iKmkXlaB9V4kEBVmhId5N5WdZAW-aESD-cAnodfr1_TNRz0spojUzbNjwgBxMozaN7B6i7Fq0donR_0FdHyCIidJn2PQkyxCkRrgloCvOi0Frq0M-iy7lyApkwlZuBGS9BzLGMg1VVZlF-If0aM3T8Ipeb6zlI_HQUABwCjMKgUoePRrr_8x1B7b7lGch2_C_pc7RZ79y1glaj3TxBW0bGNCA4NIfS4-GbOgVcMxZniS1Z6Gnd5vsNE8EC6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NSsNAEB6kRfEi_mL9zcGeJNhsNrvpwUNR26pFRKwUL3F_vUgrtlq8-Qg-iQ_lkzibpLUeFDz0FsIkWSa7M98s334DsKewaLAWox-TIcUCRWEcZMz4ktk4tAHl1KQs3wvWbNOzTtSZgY_RWZhMH2K84eZWRhqv3QJ_1PbgWzQUMxdvtCqcxPGIVHluXodYsvUPT4_x_5YJqZ9cHzX9vKuAL2gYMl9FLNZEEB0YLIW4NgjCjRAsMKpqwkAGsWSSC6KEjGTFOiVnLJK0wlDPhU3FlzDkFyNMhJUCFGs37dv2OPZjQsh69FWpHxPOcqo9jvhgcrw_k-A3sp3Ex2mCqy_CQo5MvVo2lZZgxnSXYbaRdv59xauUK6r6K3CU9QnwtNPczdtleT3ruQMiXT1E8Pr0-fb-Yu5zJqPXd6xtfED1XrAyT--tQnsqXluDQrfXNevgUalDbuNIoQ0NqlRYip4ioiKtVVbHJdgfOSdRuVC565fxkGQSyySZdGUJymPrx0yg4xe7rZGfk3yZ9hNEQwhROBbq-NHU93--I2lctSKH2Db-Zb0Lc5fH9aR1enG-CfPOxNEPArYFhcHTs9lGVDOQO_lU8uBu2rP3CzsXAgs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+distribution+of+groundwater%E2%80%90vegetation+spatial+covariation&rft.jtitle=Geophysical+research+letters&rft.au=Koirala%2C+Sujan&rft.au=Jung%2C+Martin&rft.au=Reichstein%2C+Markus&rft.au=Inge+E+M+de+Graaf&rft.date=2017-05-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=9&rft.spage=4134&rft.epage=4142&rft_id=info:doi/10.1002%2F2017GL072885&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |