Paleogeographic Reconstruction of Precambrian Terranes Reworked by Phanerozoic Orogens: An Example Based on Detrital Zircon REE From Lhasa Terrane in Southern Tibet
Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands...
Saved in:
Published in | Geophysical research letters Vol. 50; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.03.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga).
Plain Language Summary
Constraining the paleogeographic positions and affinities of continental fragments plays a crucial role in validating the concept of the supercontinent cycle. However, tracking the evolving paleogeographic position of these fragments, especially for those of Precambrian age, has proven difficult. We explore the potential for solving this problem by using detrital zircon rare earth element (REE) abundances, which are controlled by the magma source depth, protolith type, oxygen fugacity, and magmatic water content of parental melts. We reveal correlations between detrital zircon REE abundances and crustal evolution in different tectonic settings based on global and regional detrital zircon databases. We subsequently demonstrate how detrital zircon REE abundances show that the Lhasa terrane in the southern Tibet is a fragment derived from Africa. Our study provides a new perspective on the paleogeographic reconstruction of continental fragments through Earth's history and thus has important implications for supercontinent research.
Key Points
Zircon rare earth element (REE) abundances reflect the composition of, and the conditions that generated, the parental melts
Trends in detrital zircon REE effectively preserve a crustal evolution history and provide a new approach for paleogeographic reconstruction
The Lhasa terrane in the southern Tibet had an African affinity in the Rodinia‐Gondwana supercontinent cycles |
---|---|
AbstractList | Abstract Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Constraining the paleogeographic positions and affinities of continental fragments plays a crucial role in validating the concept of the supercontinent cycle. However, tracking the evolving paleogeographic position of these fragments, especially for those of Precambrian age, has proven difficult. We explore the potential for solving this problem by using detrital zircon rare earth element (REE) abundances, which are controlled by the magma source depth, protolith type, oxygen fugacity, and magmatic water content of parental melts. We reveal correlations between detrital zircon REE abundances and crustal evolution in different tectonic settings based on global and regional detrital zircon databases. We subsequently demonstrate how detrital zircon REE abundances show that the Lhasa terrane in the southern Tibet is a fragment derived from Africa. Our study provides a new perspective on the paleogeographic reconstruction of continental fragments through Earth's history and thus has important implications for supercontinent research. Zircon rare earth element (REE) abundances reflect the composition of, and the conditions that generated, the parental melts Trends in detrital zircon REE effectively preserve a crustal evolution history and provide a new approach for paleogeographic reconstruction The Lhasa terrane in the southern Tibet had an African affinity in the Rodinia‐Gondwana supercontinent cycles Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Plain Language Summary Constraining the paleogeographic positions and affinities of continental fragments plays a crucial role in validating the concept of the supercontinent cycle. However, tracking the evolving paleogeographic position of these fragments, especially for those of Precambrian age, has proven difficult. We explore the potential for solving this problem by using detrital zircon rare earth element (REE) abundances, which are controlled by the magma source depth, protolith type, oxygen fugacity, and magmatic water content of parental melts. We reveal correlations between detrital zircon REE abundances and crustal evolution in different tectonic settings based on global and regional detrital zircon databases. We subsequently demonstrate how detrital zircon REE abundances show that the Lhasa terrane in the southern Tibet is a fragment derived from Africa. Our study provides a new perspective on the paleogeographic reconstruction of continental fragments through Earth's history and thus has important implications for supercontinent research. Key Points Zircon rare earth element (REE) abundances reflect the composition of, and the conditions that generated, the parental melts Trends in detrital zircon REE effectively preserve a crustal evolution history and provide a new approach for paleogeographic reconstruction The Lhasa terrane in the southern Tibet had an African affinity in the Rodinia‐Gondwana supercontinent cycles |
Author | Hu, Pei‐yuan Liu, Yi‐ming Cawood, Peter A. Zhai, Qing‐guo Weinberg, Roberto F. Zhao, Guo‐chun Tang, Yue |
Author_xml | – sequence: 1 givenname: Pei‐yuan orcidid: 0000-0002-3612-8765 surname: Hu fullname: Hu, Pei‐yuan email: azure_jlu@126.com organization: Chinese Academy of Geological Sciences – sequence: 2 givenname: Qing‐guo orcidid: 0000-0002-8399-8528 surname: Zhai fullname: Zhai, Qing‐guo organization: Chinese Academy of Geological Sciences – sequence: 3 givenname: Peter A. orcidid: 0000-0003-1200-3826 surname: Cawood fullname: Cawood, Peter A. organization: Monash University – sequence: 4 givenname: Roberto F. orcidid: 0000-0001-9420-8918 surname: Weinberg fullname: Weinberg, Roberto F. organization: Monash University – sequence: 5 givenname: Guo‐chun surname: Zhao fullname: Zhao, Guo‐chun organization: University of Hong Kong – sequence: 6 givenname: Yue orcidid: 0000-0003-4284-5493 surname: Tang fullname: Tang, Yue organization: Chinese Academy of Geological Sciences – sequence: 7 givenname: Yi‐ming surname: Liu fullname: Liu, Yi‐ming organization: Chinese Academy of Geological Sciences |
BookMark | eNp9kd1qGzEQhUVJoU7auz6AoLd1o5_9sXqXpo4bWIhx05veiFmtFMtdS-5oTeI8Tx60cp1AKSQg0DB8c85w5pgchRgsIe85-8SZUKeCCTlr9mWtXpERV0UxnjBWH5ERYyrXoq7ekOOUVowxySQfkYc59Dbe5IewWXpDF9bEkAbcmsHHQKOjc7QG1i16CPTaIkKwKWO3EX_ZjrY7Ol_mFsb7mMevMIuF9JmeBTq9g_Wmt_QLpAxmsa92QD9AT396zC50MZ3SC4xr2iwhwZM49YF-j9thaTEb-tYOb8lrB32y7x7_E_LjYnp9_m3cXM0uz8-aMRRSFmOlJtyKtq4KZRyvhFESJiBEW5QtMKu47IqcjHOtE11bs3aSI5Bdx2wNjnEpT8jlQbeLsNIb9GvAnY7g9d9GxBsNOHjTW82gM1CVdbUPljuuZJlTd8ZUCkCpOmt9OGhtMP7e2jToVdxiyOtryZRgmS-LTIkDZTCmhNZpkwPaJz8g-F5zpvfn1P9eNg99_G_oadVn8EePW9_b3Yusni2aqizrQv4BnNq1FA |
CitedBy_id | crossref_primary_10_1016_j_sedgeo_2024_106731 crossref_primary_10_1016_j_palaeo_2024_112601 crossref_primary_10_1016_j_lithos_2024_107554 crossref_primary_10_1360_SSTe_2022_0422 crossref_primary_10_1016_j_chemgeo_2024_122472 crossref_primary_10_1016_j_palaeo_2024_112394 crossref_primary_10_1016_j_lithos_2024_107661 crossref_primary_10_1016_j_precamres_2025_107751 crossref_primary_10_1007_s11430_022_1127_8 crossref_primary_10_1016_j_gsf_2024_101852 crossref_primary_10_1016_j_jseaes_2025_106499 crossref_primary_10_1029_2024GL113338 |
Cites_doi | 10.1007/s11430-010-4166-x 10.1016/j.epsl.2011.10.027 10.1016/j.precamres.2019.105496 10.1130/g39973.1 10.1016/j.earscirev.2020.103462 10.2138/am-2004-8-918 10.1126/science.abf1876 10.1111/j.1751-908x.2004.tb01041.x 10.1016/j.jseaes.2019.104055 10.1016/j.earscirev.2004.05.005 10.1016/j.earscirev.2016.07.014 10.1130/g47745.1 10.1016/j.precamres.2016.11.001 10.1016/j.gca.2010.01.023 10.1016/j.precamres.2021.106478 10.1016/j.gca.2006.06.1383 10.1130/g32788.1 10.1130/g35402.1 10.1016/j.precamres.2013.09.006 10.1016/j.jseaes.2013.08.015 10.1029/2021gl094236 10.1130/g45745.1 10.1016/j.gr.2021.01.014 10.1016/j.jog.2011.05.002 10.2113/econgeo.110.1.241 10.1360/n972016-00143 10.1016/j.lithos.2017.11.025 10.1039/b206707b 10.1029/2022rg000789 10.1016/B978-0-08-095975-7.00301-6 10.1016/j.chemgeo.2004.06.017 10.2113/0530027 10.1093/petrology/egw047 10.1130/g36996.1 10.1016/j.precamres.2013.10.006 10.1007/s00410-013-0854-9 10.1038/s41598-017-07849-7 10.1029/2020gl089202 10.1038/s41467-022-34826-0 10.1016/j.epsl.2020.116140 10.1016/j.epsl.2021.116764 10.1038/srep14289 10.1093/petrology/egs058 10.1002/2016jb013508 10.1111/j.1365-2117.2007.00330.x 10.1016/j.precamres.2018.01.012 10.1016/j.gr.2013.07.009 10.1016/j.lithos.2014.03.019 10.1016/j.gr.2015.07.013 10.1016/j.epsl.2011.09.056 10.1130/g050720.1 10.1146/annurev.earth.34.031405.125211 10.1016/j.gr.2017.04.001 10.1016/j.precamres.2018.08.022 10.1007/s00410-012-0812-y 10.1016/j.chemgeo.2006.05.003 10.1016/j.gca.2010.04.064 10.1016/j.precamres.2018.09.006 10.1016/j.precamres.2021.106520 10.1016/j.gr.2012.12.026 10.1016/j.earscirev.2018.10.003 10.1130/g45526.1 10.1016/j.gr.2019.02.005 10.1016/j.gr.2011.06.005 10.1016/j.precamres.2018.05.014 10.1130/g49591.1 10.1126/sciadv.abk0718 10.1130/g34520.1 10.1130/g31895.1 10.1016/j.gr.2016.06.010 10.1016/j.gsf.2015.06.001 10.1093/petrology/egp082 10.1016/j.gsf.2017.04.001 10.1016/j.precamres.2015.04.011 10.1016/j.chemgeo.2011.12.024 10.1016/j.precamres.2013.07.016 10.1016/j.gca.2012.12.028 10.1126/sciadv.aar4444 10.1038/ngeo2942 10.1016/j.precamres.2012.04.018 10.1130/g47988.1 10.1016/j.epsl.2021.117057 10.1016/j.earscirev.2018.02.019 10.1017/s0016756805001640 10.1130/g38000.1 10.1144/SP389.10 10.1016/j.precamres.2019.105360 10.1007/s00410-002-0364-7 10.1016/j.jafrearsci.2017.10.013 10.1130/b30258.1 10.1016/j.epsl.2019.116005 10.1016/j.precamres.2010.01.010 10.1130/b35859.1 10.1016/j.chemgeo.2007.11.005 10.1016/j.chemgeo.2016.06.014 10.1130/b30062.1 10.1016/j.precamres.2018.10.005 10.1111/bre.12650 10.1016/j.epsl.2016.05.049 10.1038/ngeo1127 10.1016/j.gr.2012.05.003 10.1016/s0037-0738(00)00044-0 10.1016/j.lithos.2018.09.036 10.2475/03.2019.01 10.31035/cg2021013 10.1016/j.gr.2018.11.002 10.1016/j.epsl.2022.117391 |
ContentType | Journal Article |
Copyright | 2023. The Authors. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1029/2023GL102979 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_0adca657600941f1935297fcc69aa997 10_1029_2023GL102979 GRL65574 |
Genre | article |
GeographicLocations | Tibet |
GeographicLocations_xml | – name: Tibet |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 41872240; 42072268 – fundername: Second Tibetan Plateau Scientific Expedition and Research funderid: 2019QZKK0703 – fundername: Australian Research funderid: FL160100168 – fundername: Chinese Geological Survey Project funderid: DD20221630 – fundername: The National Key Research and Development Project of China funderid: 2021YFC2901901 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION PHGZM PHGZT 3V. 7TG 7TN 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L6V L7M MBDVC P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-a4334-9981e2b7649cf162c93a8a22b45ba0e913d4979ffbf2db70b80313dd0e7af0133 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:22:49 EDT 2025 Fri Jul 25 10:22:53 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 01:05:18 EDT 2025 Wed Jan 22 16:23:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4334-9981e2b7649cf162c93a8a22b45ba0e913d4979ffbf2db70b80313dd0e7af0133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1200-3826 0000-0002-3612-8765 0000-0002-8399-8528 0000-0001-9420-8918 0000-0003-4284-5493 |
OpenAccessLink | https://doaj.org/article/0adca657600941f1935297fcc69aa997 |
PQID | 3092035254 |
PQPubID | 54723 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0adca657600941f1935297fcc69aa997 proquest_journals_3092035254 crossref_citationtrail_10_1029_2023GL102979 crossref_primary_10_1029_2023GL102979 wiley_primary_10_1029_2023GL102979_GRL65574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 March 2023 |
PublicationDateYYYYMMDD | 2023-03-16 |
PublicationDate_xml | – month: 03 year: 2023 text: 16 March 2023 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_1_36_1 e_1_2_9_2_2_1 e_1_2_9_1_13_1 e_1_2_9_1_32_1 e_1_2_9_2_47_1 e_1_2_9_2_43_1 e_1_2_9_2_24_1 e_1_2_9_2_17_1 e_1_2_9_1_62_1 e_1_2_9_1_29_1 e_1_2_9_1_25_1 e_1_2_9_1_48_1 e_1_2_9_2_51_1 e_1_2_9_1_21_1 e_1_2_9_1_44_1 e_1_2_9_1_40_1 e_1_2_9_2_36_1 e_1_2_9_2_32_1 e_1_2_9_2_55_1 e_1_2_9_1_8_1 e_1_2_9_2_29_1 e_1_2_9_1_54_1 e_1_2_9_1_18_1 e_1_2_9_1_58_1 e_1_2_9_2_6_1 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_2_40_1 e_1_2_9_2_3_1 Wu Y. (e_1_2_9_1_50_1) 2016; 90 e_1_2_9_2_21_1 e_1_2_9_2_48_1 e_1_2_9_1_5_1 e_1_2_9_2_25_1 e_1_2_9_2_44_1 e_1_2_9_2_18_1 e_1_2_9_1_28_1 e_1_2_9_1_47_1 e_1_2_9_2_52_1 e_1_2_9_1_24_1 e_1_2_9_1_43_1 BGMR (Bureau of Geology and Mineral Resources of Xizang Autonomous Region) (e_1_2_9_1_4_1) 1993 e_1_2_9_1_20_1 e_1_2_9_2_10_1 e_1_2_9_2_37_1 e_1_2_9_2_14_1 e_1_2_9_2_33_1 e_1_2_9_2_56_1 e_1_2_9_1_9_1 e_1_2_9_1_51_1 e_1_2_9_1_55_1 e_1_2_9_1_17_1 e_1_2_9_1_59_1 e_1_2_9_2_7_1 e_1_2_9_2_4_1 e_1_2_9_1_15_1 e_1_2_9_1_34_1 e_1_2_9_2_41_1 e_1_2_9_1_11_1 e_1_2_9_1_30_1 Dong X. (e_1_2_9_2_13_1) 2009; 25 Hou K. J. (e_1_2_9_2_20_1) 2009; 28 e_1_2_9_2_22_1 Ludwig K. J. (e_1_2_9_1_31_1) 2003 e_1_2_9_1_2_1 e_1_2_9_2_49_1 e_1_2_9_2_26_1 e_1_2_9_1_6_1 e_1_2_9_2_45_1 e_1_2_9_1_60_1 e_1_2_9_1_27_1 e_1_2_9_1_23_1 e_1_2_9_1_46_1 e_1_2_9_2_30_1 e_1_2_9_1_42_1 e_1_2_9_2_11_1 e_1_2_9_2_57_1 e_1_2_9_2_38_1 e_1_2_9_2_15_1 e_1_2_9_2_53_1 e_1_2_9_2_34_1 e_1_2_9_1_52_1 Hou K. J. (e_1_2_9_2_19_1) 2007; 23 e_1_2_9_1_56_1 e_1_2_9_2_8_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_2_5_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_2_23_1 e_1_2_9_2_46_1 e_1_2_9_1_3_1 e_1_2_9_2_27_1 e_1_2_9_2_42_1 e_1_2_9_2_39_1 e_1_2_9_1_61_1 e_1_2_9_1_49_1 e_1_2_9_2_50_1 e_1_2_9_1_26_1 e_1_2_9_1_45_1 e_1_2_9_1_22_1 e_1_2_9_1_41_1 e_1_2_9_2_12_1 e_1_2_9_2_35_1 e_1_2_9_2_16_1 e_1_2_9_2_31_1 e_1_2_9_2_54_1 e_1_2_9_1_7_1 e_1_2_9_2_28_1 e_1_2_9_1_53_1 e_1_2_9_1_19_1 e_1_2_9_1_57_1 e_1_2_9_2_9_1 e_1_2_9_1_38_1 |
References_xml | – ident: e_1_2_9_2_15_1 doi: 10.1007/s11430-010-4166-x – ident: e_1_2_9_2_37_1 doi: 10.1016/j.epsl.2011.10.027 – ident: e_1_2_9_2_16_1 doi: 10.1016/j.precamres.2019.105496 – ident: e_1_2_9_2_39_1 doi: 10.1130/g39973.1 – ident: e_1_2_9_1_61_1 doi: 10.1016/j.earscirev.2020.103462 – ident: e_1_2_9_1_37_1 doi: 10.2138/am-2004-8-918 – ident: e_1_2_9_1_43_1 doi: 10.1126/science.abf1876 – ident: e_1_2_9_2_51_1 doi: 10.1111/j.1751-908x.2004.tb01041.x – ident: e_1_2_9_2_26_1 doi: 10.1016/j.jseaes.2019.104055 – ident: e_1_2_9_2_49_1 doi: 10.1016/j.earscirev.2004.05.005 – ident: e_1_2_9_1_27_1 doi: 10.1016/j.earscirev.2016.07.014 – ident: e_1_2_9_1_42_1 doi: 10.1130/g47745.1 – ident: e_1_2_9_1_35_1 doi: 10.1016/j.precamres.2016.11.001 – ident: e_1_2_9_2_30_1 doi: 10.1016/j.gca.2010.01.023 – ident: e_1_2_9_1_18_1 doi: 10.1016/j.precamres.2021.106478 – ident: e_1_2_9_2_17_1 doi: 10.1016/j.gca.2006.06.1383 – ident: e_1_2_9_1_2_1 doi: 10.1130/g32788.1 – ident: e_1_2_9_1_9_1 doi: 10.1130/g35402.1 – ident: e_1_2_9_1_30_1 doi: 10.1016/j.precamres.2013.09.006 – ident: e_1_2_9_2_21_1 doi: 10.1016/j.jseaes.2013.08.015 – ident: e_1_2_9_2_50_1 doi: 10.1029/2021gl094236 – ident: e_1_2_9_1_49_1 doi: 10.1130/g45745.1 – ident: e_1_2_9_2_29_1 doi: 10.1016/j.gr.2021.01.014 – ident: e_1_2_9_2_14_1 doi: 10.1016/j.jog.2011.05.002 – ident: e_1_2_9_1_16_1 doi: 10.2113/econgeo.110.1.241 – ident: e_1_2_9_2_22_1 doi: 10.1360/n972016-00143 – ident: e_1_2_9_1_32_1 doi: 10.1130/g39973.1 – ident: e_1_2_9_2_54_1 doi: 10.1016/j.lithos.2017.11.025 – ident: e_1_2_9_2_12_1 doi: 10.1039/b206707b – ident: e_1_2_9_1_8_1 doi: 10.1029/2022rg000789 – ident: e_1_2_9_1_39_1 doi: 10.1016/B978-0-08-095975-7.00301-6 – ident: e_1_2_9_2_32_1 doi: 10.1016/j.chemgeo.2004.06.017 – ident: e_1_2_9_1_22_1 doi: 10.2113/0530027 – ident: e_1_2_9_2_43_1 doi: 10.1093/petrology/egw047 – ident: e_1_2_9_1_12_1 doi: 10.1130/g36996.1 – ident: e_1_2_9_2_38_1 doi: 10.1016/j.precamres.2013.10.006 – ident: e_1_2_9_1_36_1 doi: 10.1007/s00410-013-0854-9 – ident: e_1_2_9_1_23_1 doi: 10.1038/s41598-017-07849-7 – ident: e_1_2_9_1_24_1 doi: 10.1029/2020gl089202 – ident: e_1_2_9_1_56_1 doi: 10.1038/s41467-022-34826-0 – ident: e_1_2_9_1_60_1 doi: 10.1016/j.epsl.2020.116140 – start-page: 70 volume-title: ISOPLOT 3.0. Berkeley geochronol year: 2003 ident: e_1_2_9_1_31_1 – volume: 25 start-page: 1678 year: 2009 ident: e_1_2_9_2_13_1 article-title: Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau:Petrology and zircon U‐Pb geochronology publication-title: Acta Petrologica Sinica – ident: e_1_2_9_1_17_1 doi: 10.1016/j.epsl.2021.116764 – ident: e_1_2_9_1_57_1 doi: 10.1038/srep14289 – ident: e_1_2_9_1_46_1 doi: 10.1093/petrology/egs058 – ident: e_1_2_9_1_55_1 doi: 10.1002/2016jb013508 – ident: e_1_2_9_2_34_1 doi: 10.1111/j.1365-2117.2007.00330.x – volume-title: Regional geology of Xizang (Tibet) autonomous region year: 1993 ident: e_1_2_9_1_4_1 – ident: e_1_2_9_1_25_1 doi: 10.1016/j.precamres.2018.01.012 – ident: e_1_2_9_2_48_1 doi: 10.1016/j.gr.2013.07.009 – ident: e_1_2_9_1_47_1 doi: 10.1016/j.lithos.2014.03.019 – ident: e_1_2_9_1_19_1 doi: 10.1016/j.gr.2015.07.013 – ident: e_1_2_9_2_40_1 doi: 10.1016/j.epsl.2011.09.056 – ident: e_1_2_9_1_44_1 doi: 10.1130/g050720.1 – ident: e_1_2_9_1_21_1 doi: 10.1146/annurev.earth.34.031405.125211 – ident: e_1_2_9_1_33_1 doi: 10.1016/j.gr.2017.04.001 – ident: e_1_2_9_2_24_1 doi: 10.1016/j.precamres.2018.08.022 – ident: e_1_2_9_1_38_1 doi: 10.1007/s00410-012-0812-y – ident: e_1_2_9_2_52_1 doi: 10.1016/j.chemgeo.2006.05.003 – ident: e_1_2_9_1_7_1 doi: 10.1016/j.gca.2010.04.064 – ident: e_1_2_9_2_2_1 doi: 10.1016/j.precamres.2018.09.006 – ident: e_1_2_9_2_11_1 doi: 10.1016/j.precamres.2021.106520 – ident: e_1_2_9_1_34_1 doi: 10.1016/j.gr.2012.12.026 – ident: e_1_2_9_1_51_1 doi: 10.1016/j.earscirev.2018.10.003 – ident: e_1_2_9_1_20_1 doi: 10.1130/g45526.1 – ident: e_1_2_9_2_27_1 doi: 10.1016/j.gr.2019.02.005 – ident: e_1_2_9_2_3_1 doi: 10.1016/j.gr.2011.06.005 – ident: e_1_2_9_2_23_1 doi: 10.1016/j.precamres.2018.05.014 – ident: e_1_2_9_1_5_1 doi: 10.1130/g49591.1 – ident: e_1_2_9_1_52_1 doi: 10.1126/sciadv.abk0718 – ident: e_1_2_9_1_40_1 doi: 10.1130/g34520.1 – ident: e_1_2_9_1_58_1 doi: 10.1130/g31895.1 – ident: e_1_2_9_2_25_1 doi: 10.1016/j.precamres.2018.01.012 – ident: e_1_2_9_2_44_1 doi: 10.1016/j.gr.2016.06.010 – ident: e_1_2_9_2_36_1 doi: 10.1016/j.gsf.2015.06.001 – ident: e_1_2_9_2_46_1 doi: 10.1126/science.abf1876 – ident: e_1_2_9_2_35_1 doi: 10.1093/petrology/egp082 – volume: 23 start-page: 2595 year: 2007 ident: e_1_2_9_2_19_1 article-title: Laser ablation‐MC‐ICP‐MS technique for Hf isotope microanalysis of zircon and its geological applications publication-title: Acta Petrologica Sinica – ident: e_1_2_9_2_8_1 doi: 10.1016/j.gsf.2017.04.001 – ident: e_1_2_9_2_4_1 doi: 10.1016/j.precamres.2015.04.011 – ident: e_1_2_9_2_57_1 doi: 10.1016/j.chemgeo.2011.12.024 – ident: e_1_2_9_2_53_1 doi: 10.1016/j.precamres.2013.07.016 – ident: e_1_2_9_2_31_1 doi: 10.1016/j.gca.2012.12.028 – ident: e_1_2_9_1_41_1 doi: 10.1126/sciadv.aar4444 – ident: e_1_2_9_1_6_1 doi: 10.1038/ngeo2942 – ident: e_1_2_9_2_55_1 doi: 10.1016/j.precamres.2012.04.018 – ident: e_1_2_9_1_45_1 doi: 10.1130/g47988.1 – ident: e_1_2_9_1_10_1 doi: 10.1016/j.epsl.2021.117057 – volume: 28 start-page: 481 year: 2009 ident: e_1_2_9_2_20_1 article-title: In situ U‐Pb zircon dating using laser ablation‐multi ion couting‐ICP‐MS publication-title: Mineral Deposits – ident: e_1_2_9_1_48_1 doi: 10.1016/j.earscirev.2018.02.019 – ident: e_1_2_9_2_33_1 doi: 10.1017/s0016756805001640 – ident: e_1_2_9_2_6_1 doi: 10.1130/g38000.1 – volume: 90 start-page: 3081 year: 2016 ident: e_1_2_9_1_50_1 article-title: Geochemical features of the Nyainqentanglha Group in the western Lhasa terrane, western Tibet and their tectonic significance publication-title: Acta Geologica Sinica – ident: e_1_2_9_2_18_1 doi: 10.1144/SP389.10 – ident: e_1_2_9_2_10_1 doi: 10.1016/j.precamres.2019.105360 – ident: e_1_2_9_1_3_1 doi: 10.1007/s00410-002-0364-7 – ident: e_1_2_9_2_7_1 doi: 10.1016/j.jafrearsci.2017.10.013 – ident: e_1_2_9_1_15_1 doi: 10.1130/b30258.1 – ident: e_1_2_9_2_5_1 doi: 10.1016/j.epsl.2019.116005 – ident: e_1_2_9_2_47_1 doi: 10.1016/j.precamres.2010.01.010 – ident: e_1_2_9_2_28_1 doi: 10.1130/b35859.1 – ident: e_1_2_9_2_45_1 doi: 10.1016/j.chemgeo.2007.11.005 – ident: e_1_2_9_1_13_1 doi: 10.1016/j.chemgeo.2016.06.014 – ident: e_1_2_9_1_54_1 doi: 10.1130/b30062.1 – ident: e_1_2_9_2_56_1 doi: 10.1016/j.precamres.2018.10.005 – ident: e_1_2_9_1_62_1 doi: 10.1111/bre.12650 – ident: e_1_2_9_1_11_1 doi: 10.1016/j.epsl.2016.05.049 – ident: e_1_2_9_1_14_1 doi: 10.1038/ngeo1127 – ident: e_1_2_9_2_41_1 doi: 10.1016/j.gr.2012.05.003 – ident: e_1_2_9_2_9_1 doi: 10.1016/s0037-0738(00)00044-0 – ident: e_1_2_9_1_26_1 doi: 10.1016/j.lithos.2018.09.036 – ident: e_1_2_9_1_28_1 doi: 10.1016/j.gca.2012.12.028 – ident: e_1_2_9_1_29_1 doi: 10.2475/03.2019.01 – ident: e_1_2_9_1_53_1 doi: 10.31035/cg2021013 – ident: e_1_2_9_2_42_1 doi: 10.1016/j.gr.2018.11.002 – ident: e_1_2_9_1_59_1 doi: 10.1016/j.epsl.2022.117391 |
SSID | ssj0003031 |
Score | 2.4872582 |
Snippet | Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations... Abstract Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crustal thickness Crystallization Gondwana Hypotheses Igneous rocks Influence Lava Magma Mountains Paleozoic Phanerozoic Precambrian Rare earth elements Reconstruction Redox properties Trends Zircon |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFRKXiqcIFOQDnNCKXdtrr7mgBpJUKJQoaqWKy8rPJlLZbXd7oPwefihjx0nDgd4syx5b6_HM2J79PoTeevDiREmfCSdkxqzmmfaFy5jOrTZwlLM-3EN-O-ZHp-zrWXmWLtz6lFa5sYnRUNvWhDvyDzSXJGJ3sk-XV1lgjQqvq4lC4z7aAxNcVQO0NxofzxdbWwwGes2ZJ1lWEcFT6ntOZDj10-ksFEMa145Titj9_wScu2Fr9DuTR2g_BYz4cL3Cj9E91zxBD6aRkPcGSjGF0_RP0Z852Pr2fE1qvlwZHE6Wt_iwuPV4DuYt_qOlGnziOnBTrodmITfLWaxv8HwJVV37u4Xu3zsQ1vQf8WGDx79UQBHGI_B5FoOwL4GIC-J2_GPVwSh4MR7jSdf-xLOl6tVGOF41OHL0uQ4GXGl3_QydTsYnn4-yxMGQKUYpy-A0VjiiBWfS-IITI6mqFCGalVrlThbUMviA3mtPrBa5rgIYpLW5E8pDeEmfo0HTNu4FwpzpQgY4PSook9ZrCFa9ooKBKOZlNUTvN4tQmwRQHngyLur4UE5kvbtkQ_Ru2_pyDczxn3ajsJ7bNgFOO1a03XmddmedK2sUL8MjpWSFh6C2hL7eGC6VklIM0cFGG-q0x_v6ViNh5lFD7pxIPV3MeFkK9vJuYa_Qw9At5LkV_AANQE3cawh8rvWbpN1_AWDe_mQ priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkLKi-xUJAPcEIRie3Y695a2N0KLbCqWqniEvnZXQkSlPTQ9vf0h3bGyS7bA0jcEmvGsTLjmbE9_oaQdxG8ODM6ZioonQlvZWZjETJhc28dLOV8xH3Ir9_k0an4claeDRtueBemx4fYbLjhzEj2Gie4sd0ANoAYmVj3ezbHF6Xvkwd4uxZT-phYbCwxmOe-Yp4W2ZgpOSS-A8vHbe47Likh998JN7eD1uR1prvk8RAu0oNevk_IvVA_JQ9nqRzvFTylBE7XPSM3C7D0zXlf0ny5chTXlX_QYWkT6QKMW7qhZWp6ElpwUqEDMszMCp7aK7pYQlPbXDfA_r2Fzupunx7UdHJpEEOYHoLH8xQ6-4xluCBqpz9WLXyFHk8mdNo2v-h8aTqz7pyuapoq9IUWPriy4eI5OZ1OTj4dZUMFhswIzkUGa7EiMKuk0C4WkjnNzdgwZkVpTR50wb2AHxijjcxbldsxQkF6nwdlIgSX_AXZqZs6vCRUCltoBNPjigvto4VQNRquBHQloh6PyIe1ECo3wJNjlYyfVTomZ7raFtmIvN9Q_-5hOf5Cd4jy3NAgmHZqaNrzapibVW68M7LEI0otigghbQm80TmpjdFajcjeWhuqYYZ3Fc81S1iyAkaeNOSfA6lmx3NZlkq8-i_q1-QRtmPSWyH3yA5oTXgDUdCFfZtU_RYL5P1f priority: 102 providerName: Wiley-Blackwell |
Title | Paleogeographic Reconstruction of Precambrian Terranes Reworked by Phanerozoic Orogens: An Example Based on Detrital Zircon REE From Lhasa Terrane in Southern Tibet |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL102979 https://www.proquest.com/docview/3092035254 https://doaj.org/article/0adca657600941f1935297fcc69aa997 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagCIkL4lcslJUPcEIRie3YcW-7kN0KLSVadVHVS2THdnclSFDSQ8vz9EE7drLt9gBcuCSW5YxH9tgzE4-_QeidAy1OlHSRsEJGzGgeaZfYiOnY6ApcOeP8f8ivR_xwxb6cpCc7qb58TFgPD9wP3MdYmUrx1J8fSZY4sDdSIoWrKi6VkjLcIwedt3Wmhj0YNuY-V55kUUYEH0LeYyK9t0_nC1_04Vs7yihg9t8xNHfN1aBvZk_Q48FQxJOewafonq2foYfzkIj3EkohdLPqnqOrAvb45qxPZr7eVNh7lLe4sLhxuIBtLdzNUjU-ti2oJ9tBMx-TZQ3Wl7hYQ1Xb_G7g828tEKu7AzypcX6hPHownoKuMxiIffYJuMBex6ebFnrByzzHs7b5iRdr1aktcbypccjNZ1vocKPt-Qu0muXHnw6jIfdCpBilLAIvLLFEC85k5RJOKklVpgjRLNUqtjKhhsEAOqcdMVrEOvMgkMbEVigHZiV9ifbqpravEOZMJ9LD6FFBmTROg5HqFBUMSDEnsxH6sJ2EshqAyX1-jB9lOCAnstydshF6f9P6Vw_I8Yd2Uz-fN208jHaoAOEqB-Eq_yVcI7S_lYZyWNtdSWNJAoosA86DhPyVkXK-XPA0Fez1_-DoDXrkifsouITvoz0QJvsWzKJzPUb3CSvgmc3mY_Rg8n11uoL3ND8qluOwOq4BoEoKJg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWCvhATygicZx4jYRQS_dRui2raitVXIId292VIClJJVh-D2d-IzNOsl0O9NabFTnjSDOZhz3-PkJeOYjiTEkXCCtkwI1OA-0iG3AdGp1DKWcc7kMeHqXjE_7xNDndIH-6uzDYVtn5RO-oTZnjHvmbOJTMY3fy9-ffA2SNwtPVjkKjMYsDu_wBJVv9bn8P9LvN2HAw-zAOWlaBQPE45gHUF5FlWqRc5i5KWS5j1VeMaZ5oFVoZxYZLIZ3TjhktQt1HeENjQiuUg4QpBrk3yE2QJbHY6w9HK88P4aBh6JM86DORto32IZO4xxCPJjjEprG1EOiZAv5Jb9eTZB_lhvfI3TY9pTuNPd0nG7Z4QG6NPP3vEka-YTSvH5LfU4gs5VlDoT5f5BTr2Es0Wlo6OgVn6m-EqYLObAVB0dYwDTvBrKF6SadzeFSVv0p4_VMFwor6Ld0p6OCnQsxiugsR1lAQtoe0X1Al0M-LClahx4MBHVblNzqZq1p1wumioJ4R0Faw4ELbi0fk5Fp085hsFmVhnxCach1JBO-LRcylcRpSY6diwUEUd7LfI687JWR5C4eOrBxfM38sz2S2rrIe2V7NPm9gQP4zbxf1uZqD4N3-QVmdZa0vyEJlcpUmeCQqeeQghU7gXZfnqVRKStEjW501ZK1HqbNL-4cv9xZy5Ydko-NJmiSCP71a2Etyezw7nGST_aODZ-QOAnngBlOUbpFNMBn7HFKuC_3C2zklX677x_oLIX85Jg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLdGJxAXxF9RGOADO6FoiePENRJCK027sVKiapMmLpkd22slSEYyCcrn4VPw6Xh2kq4c2G03y7KfLb3n98d-fj-EXhuw4kRw4zHNuEeVjD1pAu1R6SuZQyinjL2H_DSLD07ox9PodAv96f7C2LTKTic6Ra3K3N6R74U-J652J90zbVpEOhq_v_juWQQp-9LawWk0InKkVz8gfKvfHY6A17uEjJPjDwdeizDgCRqG1INYI9BEspjy3AQxyXkoBoIQSSMpfM2DUFHOuDHSECWZLwe21KFSvmbCgPMUAt1baJvZqKiHtofJLJ2v7QAYhwavj1NvQFjcpt37hNsbh3AytU2bQrZhEB1uwD_O7qbL7Gze-D661zqreL-RrgdoSxcP0e2JAwNeQculj-b1I_Q7BTtTnjeA6otljm1Ue1WbFpcGp6Ba3f8wUeBjXYGJ1DUMs3lhWmG5wukCuqryVwnTP1dArKjf4v0CJz-FrWCMh2BvFQZiIwsCBjED_rKsYBU8TxI8rspveLoQteiI42WBHT6grmDBpdSXj9HJjXDnCeoVZaGfIhxTGXBbyi9kIeXKSHCUjQgZBVLU8EEfvemYkOVtcXSL0fE1c4_0hGebLOuj3fXoi6YoyH_GDS0_12NsKW_XUVbnWasZMl-oXMSRfSDlNDDgUEcw1-R5zIXgnPXRTicNWatf6uzqNMDOnYRcu5FsMp_GUcTos-uJvUJ34FBl08PZ0XN011Kw6XZBvIN6IDH6Bfhfl_JlK-gYnd302foLPeM-uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paleogeographic+Reconstruction+of+Precambrian+Terranes+Reworked+by+Phanerozoic+Orogens%3A+An+Example+Based+on+Detrital+Zircon+REE+From+Lhasa+Terrane+in+Southern+Tibet&rft.jtitle=Geophysical+research+letters&rft.au=Hu%2C+Pei%E2%80%90yuan&rft.au=Zhai%2C+Qing%E2%80%90guo&rft.au=Cawood%2C+Peter+A.&rft.au=Weinberg%2C+Roberto+F.&rft.date=2023-03-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=5&rft_id=info:doi/10.1029%2F2023GL102979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL102979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |