Paleogeographic Reconstruction of Precambrian Terranes Reworked by Phanerozoic Orogens: An Example Based on Detrital Zircon REE From Lhasa Terrane in Southern Tibet

Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 50; no. 5
Main Authors Hu, Pei‐yuan, Zhai, Qing‐guo, Cawood, Peter A., Weinberg, Roberto F., Zhao, Guo‐chun, Tang, Yue, Liu, Yi‐ming
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.03.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Plain Language Summary Constraining the paleogeographic positions and affinities of continental fragments plays a crucial role in validating the concept of the supercontinent cycle. However, tracking the evolving paleogeographic position of these fragments, especially for those of Precambrian age, has proven difficult. We explore the potential for solving this problem by using detrital zircon rare earth element (REE) abundances, which are controlled by the magma source depth, protolith type, oxygen fugacity, and magmatic water content of parental melts. We reveal correlations between detrital zircon REE abundances and crustal evolution in different tectonic settings based on global and regional detrital zircon databases. We subsequently demonstrate how detrital zircon REE abundances show that the Lhasa terrane in the southern Tibet is a fragment derived from Africa. Our study provides a new perspective on the paleogeographic reconstruction of continental fragments through Earth's history and thus has important implications for supercontinent research. Key Points Zircon rare earth element (REE) abundances reflect the composition of, and the conditions that generated, the parental melts Trends in detrital zircon REE effectively preserve a crustal evolution history and provide a new approach for paleogeographic reconstruction The Lhasa terrane in the southern Tibet had an African affinity in the Rodinia‐Gondwana supercontinent cycles
AbstractList Abstract Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga).
Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Constraining the paleogeographic positions and affinities of continental fragments plays a crucial role in validating the concept of the supercontinent cycle. However, tracking the evolving paleogeographic position of these fragments, especially for those of Precambrian age, has proven difficult. We explore the potential for solving this problem by using detrital zircon rare earth element (REE) abundances, which are controlled by the magma source depth, protolith type, oxygen fugacity, and magmatic water content of parental melts. We reveal correlations between detrital zircon REE abundances and crustal evolution in different tectonic settings based on global and regional detrital zircon databases. We subsequently demonstrate how detrital zircon REE abundances show that the Lhasa terrane in the southern Tibet is a fragment derived from Africa. Our study provides a new perspective on the paleogeographic reconstruction of continental fragments through Earth's history and thus has important implications for supercontinent research. Zircon rare earth element (REE) abundances reflect the composition of, and the conditions that generated, the parental melts Trends in detrital zircon REE effectively preserve a crustal evolution history and provide a new approach for paleogeographic reconstruction The Lhasa terrane in the southern Tibet had an African affinity in the Rodinia‐Gondwana supercontinent cycles
Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga).
Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga). Plain Language Summary Constraining the paleogeographic positions and affinities of continental fragments plays a crucial role in validating the concept of the supercontinent cycle. However, tracking the evolving paleogeographic position of these fragments, especially for those of Precambrian age, has proven difficult. We explore the potential for solving this problem by using detrital zircon rare earth element (REE) abundances, which are controlled by the magma source depth, protolith type, oxygen fugacity, and magmatic water content of parental melts. We reveal correlations between detrital zircon REE abundances and crustal evolution in different tectonic settings based on global and regional detrital zircon databases. We subsequently demonstrate how detrital zircon REE abundances show that the Lhasa terrane in the southern Tibet is a fragment derived from Africa. Our study provides a new perspective on the paleogeographic reconstruction of continental fragments through Earth's history and thus has important implications for supercontinent research. Key Points Zircon rare earth element (REE) abundances reflect the composition of, and the conditions that generated, the parental melts Trends in detrital zircon REE effectively preserve a crustal evolution history and provide a new approach for paleogeographic reconstruction The Lhasa terrane in the southern Tibet had an African affinity in the Rodinia‐Gondwana supercontinent cycles
Author Hu, Pei‐yuan
Liu, Yi‐ming
Cawood, Peter A.
Zhai, Qing‐guo
Weinberg, Roberto F.
Zhao, Guo‐chun
Tang, Yue
Author_xml – sequence: 1
  givenname: Pei‐yuan
  orcidid: 0000-0002-3612-8765
  surname: Hu
  fullname: Hu, Pei‐yuan
  email: azure_jlu@126.com
  organization: Chinese Academy of Geological Sciences
– sequence: 2
  givenname: Qing‐guo
  orcidid: 0000-0002-8399-8528
  surname: Zhai
  fullname: Zhai, Qing‐guo
  organization: Chinese Academy of Geological Sciences
– sequence: 3
  givenname: Peter A.
  orcidid: 0000-0003-1200-3826
  surname: Cawood
  fullname: Cawood, Peter A.
  organization: Monash University
– sequence: 4
  givenname: Roberto F.
  orcidid: 0000-0001-9420-8918
  surname: Weinberg
  fullname: Weinberg, Roberto F.
  organization: Monash University
– sequence: 5
  givenname: Guo‐chun
  surname: Zhao
  fullname: Zhao, Guo‐chun
  organization: University of Hong Kong
– sequence: 6
  givenname: Yue
  orcidid: 0000-0003-4284-5493
  surname: Tang
  fullname: Tang, Yue
  organization: Chinese Academy of Geological Sciences
– sequence: 7
  givenname: Yi‐ming
  surname: Liu
  fullname: Liu, Yi‐ming
  organization: Chinese Academy of Geological Sciences
BookMark eNp9kd1qGzEQhUVJoU7auz6AoLd1o5_9sXqXpo4bWIhx05veiFmtFMtdS-5oTeI8Tx60cp1AKSQg0DB8c85w5pgchRgsIe85-8SZUKeCCTlr9mWtXpERV0UxnjBWH5ERYyrXoq7ekOOUVowxySQfkYc59Dbe5IewWXpDF9bEkAbcmsHHQKOjc7QG1i16CPTaIkKwKWO3EX_ZjrY7Ol_mFsb7mMevMIuF9JmeBTq9g_Wmt_QLpAxmsa92QD9AT396zC50MZ3SC4xr2iwhwZM49YF-j9thaTEb-tYOb8lrB32y7x7_E_LjYnp9_m3cXM0uz8-aMRRSFmOlJtyKtq4KZRyvhFESJiBEW5QtMKu47IqcjHOtE11bs3aSI5Bdx2wNjnEpT8jlQbeLsNIb9GvAnY7g9d9GxBsNOHjTW82gM1CVdbUPljuuZJlTd8ZUCkCpOmt9OGhtMP7e2jToVdxiyOtryZRgmS-LTIkDZTCmhNZpkwPaJz8g-F5zpvfn1P9eNg99_G_oadVn8EePW9_b3Yusni2aqizrQv4BnNq1FA
CitedBy_id crossref_primary_10_1016_j_sedgeo_2024_106731
crossref_primary_10_1016_j_palaeo_2024_112601
crossref_primary_10_1016_j_lithos_2024_107554
crossref_primary_10_1360_SSTe_2022_0422
crossref_primary_10_1016_j_chemgeo_2024_122472
crossref_primary_10_1016_j_palaeo_2024_112394
crossref_primary_10_1016_j_lithos_2024_107661
crossref_primary_10_1016_j_precamres_2025_107751
crossref_primary_10_1007_s11430_022_1127_8
crossref_primary_10_1016_j_gsf_2024_101852
crossref_primary_10_1016_j_jseaes_2025_106499
crossref_primary_10_1029_2024GL113338
Cites_doi 10.1007/s11430-010-4166-x
10.1016/j.epsl.2011.10.027
10.1016/j.precamres.2019.105496
10.1130/g39973.1
10.1016/j.earscirev.2020.103462
10.2138/am-2004-8-918
10.1126/science.abf1876
10.1111/j.1751-908x.2004.tb01041.x
10.1016/j.jseaes.2019.104055
10.1016/j.earscirev.2004.05.005
10.1016/j.earscirev.2016.07.014
10.1130/g47745.1
10.1016/j.precamres.2016.11.001
10.1016/j.gca.2010.01.023
10.1016/j.precamres.2021.106478
10.1016/j.gca.2006.06.1383
10.1130/g32788.1
10.1130/g35402.1
10.1016/j.precamres.2013.09.006
10.1016/j.jseaes.2013.08.015
10.1029/2021gl094236
10.1130/g45745.1
10.1016/j.gr.2021.01.014
10.1016/j.jog.2011.05.002
10.2113/econgeo.110.1.241
10.1360/n972016-00143
10.1016/j.lithos.2017.11.025
10.1039/b206707b
10.1029/2022rg000789
10.1016/B978-0-08-095975-7.00301-6
10.1016/j.chemgeo.2004.06.017
10.2113/0530027
10.1093/petrology/egw047
10.1130/g36996.1
10.1016/j.precamres.2013.10.006
10.1007/s00410-013-0854-9
10.1038/s41598-017-07849-7
10.1029/2020gl089202
10.1038/s41467-022-34826-0
10.1016/j.epsl.2020.116140
10.1016/j.epsl.2021.116764
10.1038/srep14289
10.1093/petrology/egs058
10.1002/2016jb013508
10.1111/j.1365-2117.2007.00330.x
10.1016/j.precamres.2018.01.012
10.1016/j.gr.2013.07.009
10.1016/j.lithos.2014.03.019
10.1016/j.gr.2015.07.013
10.1016/j.epsl.2011.09.056
10.1130/g050720.1
10.1146/annurev.earth.34.031405.125211
10.1016/j.gr.2017.04.001
10.1016/j.precamres.2018.08.022
10.1007/s00410-012-0812-y
10.1016/j.chemgeo.2006.05.003
10.1016/j.gca.2010.04.064
10.1016/j.precamres.2018.09.006
10.1016/j.precamres.2021.106520
10.1016/j.gr.2012.12.026
10.1016/j.earscirev.2018.10.003
10.1130/g45526.1
10.1016/j.gr.2019.02.005
10.1016/j.gr.2011.06.005
10.1016/j.precamres.2018.05.014
10.1130/g49591.1
10.1126/sciadv.abk0718
10.1130/g34520.1
10.1130/g31895.1
10.1016/j.gr.2016.06.010
10.1016/j.gsf.2015.06.001
10.1093/petrology/egp082
10.1016/j.gsf.2017.04.001
10.1016/j.precamres.2015.04.011
10.1016/j.chemgeo.2011.12.024
10.1016/j.precamres.2013.07.016
10.1016/j.gca.2012.12.028
10.1126/sciadv.aar4444
10.1038/ngeo2942
10.1016/j.precamres.2012.04.018
10.1130/g47988.1
10.1016/j.epsl.2021.117057
10.1016/j.earscirev.2018.02.019
10.1017/s0016756805001640
10.1130/g38000.1
10.1144/SP389.10
10.1016/j.precamres.2019.105360
10.1007/s00410-002-0364-7
10.1016/j.jafrearsci.2017.10.013
10.1130/b30258.1
10.1016/j.epsl.2019.116005
10.1016/j.precamres.2010.01.010
10.1130/b35859.1
10.1016/j.chemgeo.2007.11.005
10.1016/j.chemgeo.2016.06.014
10.1130/b30062.1
10.1016/j.precamres.2018.10.005
10.1111/bre.12650
10.1016/j.epsl.2016.05.049
10.1038/ngeo1127
10.1016/j.gr.2012.05.003
10.1016/s0037-0738(00)00044-0
10.1016/j.lithos.2018.09.036
10.2475/03.2019.01
10.31035/cg2021013
10.1016/j.gr.2018.11.002
10.1016/j.epsl.2022.117391
ContentType Journal Article
Copyright 2023. The Authors.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1029/2023GL102979
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0adca657600941f1935297fcc69aa997
10_1029_2023GL102979
GRL65574
Genre article
GeographicLocations Tibet
GeographicLocations_xml – name: Tibet
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41872240; 42072268
– fundername: Second Tibetan Plateau Scientific Expedition and Research
  funderid: 2019QZKK0703
– fundername: Australian Research
  funderid: FL160100168
– fundername: Chinese Geological Survey Project
  funderid: DD20221630
– fundername: The National Key Research and Development Project of China
  funderid: 2021YFC2901901
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
PHGZM
PHGZT
3V.
7TG
7TN
7XB
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L6V
L7M
MBDVC
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-a4334-9981e2b7649cf162c93a8a22b45ba0e913d4979ffbf2db70b80313dd0e7af0133
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:22:49 EDT 2025
Fri Jul 25 10:22:53 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 01 01:05:18 EDT 2025
Wed Jan 22 16:23:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4334-9981e2b7649cf162c93a8a22b45ba0e913d4979ffbf2db70b80313dd0e7af0133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1200-3826
0000-0002-3612-8765
0000-0002-8399-8528
0000-0001-9420-8918
0000-0003-4284-5493
OpenAccessLink https://doaj.org/article/0adca657600941f1935297fcc69aa997
PQID 3092035254
PQPubID 54723
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0adca657600941f1935297fcc69aa997
proquest_journals_3092035254
crossref_citationtrail_10_1029_2023GL102979
crossref_primary_10_1029_2023GL102979
wiley_primary_10_1029_2023GL102979_GRL65574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 March 2023
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 03
  year: 2023
  text: 16 March 2023
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_1_36_1
e_1_2_9_2_2_1
e_1_2_9_1_13_1
e_1_2_9_1_32_1
e_1_2_9_2_47_1
e_1_2_9_2_43_1
e_1_2_9_2_24_1
e_1_2_9_2_17_1
e_1_2_9_1_62_1
e_1_2_9_1_29_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_2_51_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_40_1
e_1_2_9_2_36_1
e_1_2_9_2_32_1
e_1_2_9_2_55_1
e_1_2_9_1_8_1
e_1_2_9_2_29_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_58_1
e_1_2_9_2_6_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_2_40_1
e_1_2_9_2_3_1
Wu Y. (e_1_2_9_1_50_1) 2016; 90
e_1_2_9_2_21_1
e_1_2_9_2_48_1
e_1_2_9_1_5_1
e_1_2_9_2_25_1
e_1_2_9_2_44_1
e_1_2_9_2_18_1
e_1_2_9_1_28_1
e_1_2_9_1_47_1
e_1_2_9_2_52_1
e_1_2_9_1_24_1
e_1_2_9_1_43_1
BGMR (Bureau of Geology and Mineral Resources of Xizang Autonomous Region) (e_1_2_9_1_4_1) 1993
e_1_2_9_1_20_1
e_1_2_9_2_10_1
e_1_2_9_2_37_1
e_1_2_9_2_14_1
e_1_2_9_2_33_1
e_1_2_9_2_56_1
e_1_2_9_1_9_1
e_1_2_9_1_51_1
e_1_2_9_1_55_1
e_1_2_9_1_17_1
e_1_2_9_1_59_1
e_1_2_9_2_7_1
e_1_2_9_2_4_1
e_1_2_9_1_15_1
e_1_2_9_1_34_1
e_1_2_9_2_41_1
e_1_2_9_1_11_1
e_1_2_9_1_30_1
Dong X. (e_1_2_9_2_13_1) 2009; 25
Hou K. J. (e_1_2_9_2_20_1) 2009; 28
e_1_2_9_2_22_1
Ludwig K. J. (e_1_2_9_1_31_1) 2003
e_1_2_9_1_2_1
e_1_2_9_2_49_1
e_1_2_9_2_26_1
e_1_2_9_1_6_1
e_1_2_9_2_45_1
e_1_2_9_1_60_1
e_1_2_9_1_27_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_2_30_1
e_1_2_9_1_42_1
e_1_2_9_2_11_1
e_1_2_9_2_57_1
e_1_2_9_2_38_1
e_1_2_9_2_15_1
e_1_2_9_2_53_1
e_1_2_9_2_34_1
e_1_2_9_1_52_1
Hou K. J. (e_1_2_9_2_19_1) 2007; 23
e_1_2_9_1_56_1
e_1_2_9_2_8_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_2_5_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_2_23_1
e_1_2_9_2_46_1
e_1_2_9_1_3_1
e_1_2_9_2_27_1
e_1_2_9_2_42_1
e_1_2_9_2_39_1
e_1_2_9_1_61_1
e_1_2_9_1_49_1
e_1_2_9_2_50_1
e_1_2_9_1_26_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_41_1
e_1_2_9_2_12_1
e_1_2_9_2_35_1
e_1_2_9_2_16_1
e_1_2_9_2_31_1
e_1_2_9_2_54_1
e_1_2_9_1_7_1
e_1_2_9_2_28_1
e_1_2_9_1_53_1
e_1_2_9_1_19_1
e_1_2_9_1_57_1
e_1_2_9_2_9_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_2_15_1
  doi: 10.1007/s11430-010-4166-x
– ident: e_1_2_9_2_37_1
  doi: 10.1016/j.epsl.2011.10.027
– ident: e_1_2_9_2_16_1
  doi: 10.1016/j.precamres.2019.105496
– ident: e_1_2_9_2_39_1
  doi: 10.1130/g39973.1
– ident: e_1_2_9_1_61_1
  doi: 10.1016/j.earscirev.2020.103462
– ident: e_1_2_9_1_37_1
  doi: 10.2138/am-2004-8-918
– ident: e_1_2_9_1_43_1
  doi: 10.1126/science.abf1876
– ident: e_1_2_9_2_51_1
  doi: 10.1111/j.1751-908x.2004.tb01041.x
– ident: e_1_2_9_2_26_1
  doi: 10.1016/j.jseaes.2019.104055
– ident: e_1_2_9_2_49_1
  doi: 10.1016/j.earscirev.2004.05.005
– ident: e_1_2_9_1_27_1
  doi: 10.1016/j.earscirev.2016.07.014
– ident: e_1_2_9_1_42_1
  doi: 10.1130/g47745.1
– ident: e_1_2_9_1_35_1
  doi: 10.1016/j.precamres.2016.11.001
– ident: e_1_2_9_2_30_1
  doi: 10.1016/j.gca.2010.01.023
– ident: e_1_2_9_1_18_1
  doi: 10.1016/j.precamres.2021.106478
– ident: e_1_2_9_2_17_1
  doi: 10.1016/j.gca.2006.06.1383
– ident: e_1_2_9_1_2_1
  doi: 10.1130/g32788.1
– ident: e_1_2_9_1_9_1
  doi: 10.1130/g35402.1
– ident: e_1_2_9_1_30_1
  doi: 10.1016/j.precamres.2013.09.006
– ident: e_1_2_9_2_21_1
  doi: 10.1016/j.jseaes.2013.08.015
– ident: e_1_2_9_2_50_1
  doi: 10.1029/2021gl094236
– ident: e_1_2_9_1_49_1
  doi: 10.1130/g45745.1
– ident: e_1_2_9_2_29_1
  doi: 10.1016/j.gr.2021.01.014
– ident: e_1_2_9_2_14_1
  doi: 10.1016/j.jog.2011.05.002
– ident: e_1_2_9_1_16_1
  doi: 10.2113/econgeo.110.1.241
– ident: e_1_2_9_2_22_1
  doi: 10.1360/n972016-00143
– ident: e_1_2_9_1_32_1
  doi: 10.1130/g39973.1
– ident: e_1_2_9_2_54_1
  doi: 10.1016/j.lithos.2017.11.025
– ident: e_1_2_9_2_12_1
  doi: 10.1039/b206707b
– ident: e_1_2_9_1_8_1
  doi: 10.1029/2022rg000789
– ident: e_1_2_9_1_39_1
  doi: 10.1016/B978-0-08-095975-7.00301-6
– ident: e_1_2_9_2_32_1
  doi: 10.1016/j.chemgeo.2004.06.017
– ident: e_1_2_9_1_22_1
  doi: 10.2113/0530027
– ident: e_1_2_9_2_43_1
  doi: 10.1093/petrology/egw047
– ident: e_1_2_9_1_12_1
  doi: 10.1130/g36996.1
– ident: e_1_2_9_2_38_1
  doi: 10.1016/j.precamres.2013.10.006
– ident: e_1_2_9_1_36_1
  doi: 10.1007/s00410-013-0854-9
– ident: e_1_2_9_1_23_1
  doi: 10.1038/s41598-017-07849-7
– ident: e_1_2_9_1_24_1
  doi: 10.1029/2020gl089202
– ident: e_1_2_9_1_56_1
  doi: 10.1038/s41467-022-34826-0
– ident: e_1_2_9_1_60_1
  doi: 10.1016/j.epsl.2020.116140
– start-page: 70
  volume-title: ISOPLOT 3.0. Berkeley geochronol
  year: 2003
  ident: e_1_2_9_1_31_1
– volume: 25
  start-page: 1678
  year: 2009
  ident: e_1_2_9_2_13_1
  article-title: Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau:Petrology and zircon U‐Pb geochronology
  publication-title: Acta Petrologica Sinica
– ident: e_1_2_9_1_17_1
  doi: 10.1016/j.epsl.2021.116764
– ident: e_1_2_9_1_57_1
  doi: 10.1038/srep14289
– ident: e_1_2_9_1_46_1
  doi: 10.1093/petrology/egs058
– ident: e_1_2_9_1_55_1
  doi: 10.1002/2016jb013508
– ident: e_1_2_9_2_34_1
  doi: 10.1111/j.1365-2117.2007.00330.x
– volume-title: Regional geology of Xizang (Tibet) autonomous region
  year: 1993
  ident: e_1_2_9_1_4_1
– ident: e_1_2_9_1_25_1
  doi: 10.1016/j.precamres.2018.01.012
– ident: e_1_2_9_2_48_1
  doi: 10.1016/j.gr.2013.07.009
– ident: e_1_2_9_1_47_1
  doi: 10.1016/j.lithos.2014.03.019
– ident: e_1_2_9_1_19_1
  doi: 10.1016/j.gr.2015.07.013
– ident: e_1_2_9_2_40_1
  doi: 10.1016/j.epsl.2011.09.056
– ident: e_1_2_9_1_44_1
  doi: 10.1130/g050720.1
– ident: e_1_2_9_1_21_1
  doi: 10.1146/annurev.earth.34.031405.125211
– ident: e_1_2_9_1_33_1
  doi: 10.1016/j.gr.2017.04.001
– ident: e_1_2_9_2_24_1
  doi: 10.1016/j.precamres.2018.08.022
– ident: e_1_2_9_1_38_1
  doi: 10.1007/s00410-012-0812-y
– ident: e_1_2_9_2_52_1
  doi: 10.1016/j.chemgeo.2006.05.003
– ident: e_1_2_9_1_7_1
  doi: 10.1016/j.gca.2010.04.064
– ident: e_1_2_9_2_2_1
  doi: 10.1016/j.precamres.2018.09.006
– ident: e_1_2_9_2_11_1
  doi: 10.1016/j.precamres.2021.106520
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.gr.2012.12.026
– ident: e_1_2_9_1_51_1
  doi: 10.1016/j.earscirev.2018.10.003
– ident: e_1_2_9_1_20_1
  doi: 10.1130/g45526.1
– ident: e_1_2_9_2_27_1
  doi: 10.1016/j.gr.2019.02.005
– ident: e_1_2_9_2_3_1
  doi: 10.1016/j.gr.2011.06.005
– ident: e_1_2_9_2_23_1
  doi: 10.1016/j.precamres.2018.05.014
– ident: e_1_2_9_1_5_1
  doi: 10.1130/g49591.1
– ident: e_1_2_9_1_52_1
  doi: 10.1126/sciadv.abk0718
– ident: e_1_2_9_1_40_1
  doi: 10.1130/g34520.1
– ident: e_1_2_9_1_58_1
  doi: 10.1130/g31895.1
– ident: e_1_2_9_2_25_1
  doi: 10.1016/j.precamres.2018.01.012
– ident: e_1_2_9_2_44_1
  doi: 10.1016/j.gr.2016.06.010
– ident: e_1_2_9_2_36_1
  doi: 10.1016/j.gsf.2015.06.001
– ident: e_1_2_9_2_46_1
  doi: 10.1126/science.abf1876
– ident: e_1_2_9_2_35_1
  doi: 10.1093/petrology/egp082
– volume: 23
  start-page: 2595
  year: 2007
  ident: e_1_2_9_2_19_1
  article-title: Laser ablation‐MC‐ICP‐MS technique for Hf isotope microanalysis of zircon and its geological applications
  publication-title: Acta Petrologica Sinica
– ident: e_1_2_9_2_8_1
  doi: 10.1016/j.gsf.2017.04.001
– ident: e_1_2_9_2_4_1
  doi: 10.1016/j.precamres.2015.04.011
– ident: e_1_2_9_2_57_1
  doi: 10.1016/j.chemgeo.2011.12.024
– ident: e_1_2_9_2_53_1
  doi: 10.1016/j.precamres.2013.07.016
– ident: e_1_2_9_2_31_1
  doi: 10.1016/j.gca.2012.12.028
– ident: e_1_2_9_1_41_1
  doi: 10.1126/sciadv.aar4444
– ident: e_1_2_9_1_6_1
  doi: 10.1038/ngeo2942
– ident: e_1_2_9_2_55_1
  doi: 10.1016/j.precamres.2012.04.018
– ident: e_1_2_9_1_45_1
  doi: 10.1130/g47988.1
– ident: e_1_2_9_1_10_1
  doi: 10.1016/j.epsl.2021.117057
– volume: 28
  start-page: 481
  year: 2009
  ident: e_1_2_9_2_20_1
  article-title: In situ U‐Pb zircon dating using laser ablation‐multi ion couting‐ICP‐MS
  publication-title: Mineral Deposits
– ident: e_1_2_9_1_48_1
  doi: 10.1016/j.earscirev.2018.02.019
– ident: e_1_2_9_2_33_1
  doi: 10.1017/s0016756805001640
– ident: e_1_2_9_2_6_1
  doi: 10.1130/g38000.1
– volume: 90
  start-page: 3081
  year: 2016
  ident: e_1_2_9_1_50_1
  article-title: Geochemical features of the Nyainqentanglha Group in the western Lhasa terrane, western Tibet and their tectonic significance
  publication-title: Acta Geologica Sinica
– ident: e_1_2_9_2_18_1
  doi: 10.1144/SP389.10
– ident: e_1_2_9_2_10_1
  doi: 10.1016/j.precamres.2019.105360
– ident: e_1_2_9_1_3_1
  doi: 10.1007/s00410-002-0364-7
– ident: e_1_2_9_2_7_1
  doi: 10.1016/j.jafrearsci.2017.10.013
– ident: e_1_2_9_1_15_1
  doi: 10.1130/b30258.1
– ident: e_1_2_9_2_5_1
  doi: 10.1016/j.epsl.2019.116005
– ident: e_1_2_9_2_47_1
  doi: 10.1016/j.precamres.2010.01.010
– ident: e_1_2_9_2_28_1
  doi: 10.1130/b35859.1
– ident: e_1_2_9_2_45_1
  doi: 10.1016/j.chemgeo.2007.11.005
– ident: e_1_2_9_1_13_1
  doi: 10.1016/j.chemgeo.2016.06.014
– ident: e_1_2_9_1_54_1
  doi: 10.1130/b30062.1
– ident: e_1_2_9_2_56_1
  doi: 10.1016/j.precamres.2018.10.005
– ident: e_1_2_9_1_62_1
  doi: 10.1111/bre.12650
– ident: e_1_2_9_1_11_1
  doi: 10.1016/j.epsl.2016.05.049
– ident: e_1_2_9_1_14_1
  doi: 10.1038/ngeo1127
– ident: e_1_2_9_2_41_1
  doi: 10.1016/j.gr.2012.05.003
– ident: e_1_2_9_2_9_1
  doi: 10.1016/s0037-0738(00)00044-0
– ident: e_1_2_9_1_26_1
  doi: 10.1016/j.lithos.2018.09.036
– ident: e_1_2_9_1_28_1
  doi: 10.1016/j.gca.2012.12.028
– ident: e_1_2_9_1_29_1
  doi: 10.2475/03.2019.01
– ident: e_1_2_9_1_53_1
  doi: 10.31035/cg2021013
– ident: e_1_2_9_2_42_1
  doi: 10.1016/j.gr.2018.11.002
– ident: e_1_2_9_1_59_1
  doi: 10.1016/j.epsl.2022.117391
SSID ssj0003031
Score 2.4872582
Snippet Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations...
Abstract Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crustal thickness
Crystallization
Gondwana
Hypotheses
Igneous rocks
Influence
Lava
Magma
Mountains
Paleozoic
Phanerozoic
Precambrian
Rare earth elements
Reconstruction
Redox properties
Trends
Zircon
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFRKXiqcIFOQDnNCKXdtrr7mgBpJUKJQoaqWKy8rPJlLZbXd7oPwefihjx0nDgd4syx5b6_HM2J79PoTeevDiREmfCSdkxqzmmfaFy5jOrTZwlLM-3EN-O-ZHp-zrWXmWLtz6lFa5sYnRUNvWhDvyDzSXJGJ3sk-XV1lgjQqvq4lC4z7aAxNcVQO0NxofzxdbWwwGes2ZJ1lWEcFT6ntOZDj10-ksFEMa145Titj9_wScu2Fr9DuTR2g_BYz4cL3Cj9E91zxBD6aRkPcGSjGF0_RP0Z852Pr2fE1qvlwZHE6Wt_iwuPV4DuYt_qOlGnziOnBTrodmITfLWaxv8HwJVV37u4Xu3zsQ1vQf8WGDx79UQBHGI_B5FoOwL4GIC-J2_GPVwSh4MR7jSdf-xLOl6tVGOF41OHL0uQ4GXGl3_QydTsYnn4-yxMGQKUYpy-A0VjiiBWfS-IITI6mqFCGalVrlThbUMviA3mtPrBa5rgIYpLW5E8pDeEmfo0HTNu4FwpzpQgY4PSook9ZrCFa9ooKBKOZlNUTvN4tQmwRQHngyLur4UE5kvbtkQ_Ru2_pyDczxn3ajsJ7bNgFOO1a03XmddmedK2sUL8MjpWSFh6C2hL7eGC6VklIM0cFGG-q0x_v6ViNh5lFD7pxIPV3MeFkK9vJuYa_Qw9At5LkV_AANQE3cawh8rvWbpN1_AWDe_mQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkLKi-xUJAPcEIRie3Y695a2N0KLbCqWqniEvnZXQkSlPTQ9vf0h3bGyS7bA0jcEmvGsTLjmbE9_oaQdxG8ODM6ZioonQlvZWZjETJhc28dLOV8xH3Ir9_k0an4claeDRtueBemx4fYbLjhzEj2Gie4sd0ANoAYmVj3ezbHF6Xvkwd4uxZT-phYbCwxmOe-Yp4W2ZgpOSS-A8vHbe47Likh998JN7eD1uR1prvk8RAu0oNevk_IvVA_JQ9nqRzvFTylBE7XPSM3C7D0zXlf0ny5chTXlX_QYWkT6QKMW7qhZWp6ElpwUqEDMszMCp7aK7pYQlPbXDfA_r2Fzupunx7UdHJpEEOYHoLH8xQ6-4xluCBqpz9WLXyFHk8mdNo2v-h8aTqz7pyuapoq9IUWPriy4eI5OZ1OTj4dZUMFhswIzkUGa7EiMKuk0C4WkjnNzdgwZkVpTR50wb2AHxijjcxbldsxQkF6nwdlIgSX_AXZqZs6vCRUCltoBNPjigvto4VQNRquBHQloh6PyIe1ECo3wJNjlYyfVTomZ7raFtmIvN9Q_-5hOf5Cd4jy3NAgmHZqaNrzapibVW68M7LEI0otigghbQm80TmpjdFajcjeWhuqYYZ3Fc81S1iyAkaeNOSfA6lmx3NZlkq8-i_q1-QRtmPSWyH3yA5oTXgDUdCFfZtU_RYL5P1f
  priority: 102
  providerName: Wiley-Blackwell
Title Paleogeographic Reconstruction of Precambrian Terranes Reworked by Phanerozoic Orogens: An Example Based on Detrital Zircon REE From Lhasa Terrane in Southern Tibet
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL102979
https://www.proquest.com/docview/3092035254
https://doaj.org/article/0adca657600941f1935297fcc69aa997
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagCIkL4lcslJUPcEIRie3YcW-7kN0KLSVadVHVS2THdnclSFDSQ8vz9EE7drLt9gBcuCSW5YxH9tgzE4-_QeidAy1OlHSRsEJGzGgeaZfYiOnY6ApcOeP8f8ivR_xwxb6cpCc7qb58TFgPD9wP3MdYmUrx1J8fSZY4sDdSIoWrKi6VkjLcIwedt3Wmhj0YNuY-V55kUUYEH0LeYyK9t0_nC1_04Vs7yihg9t8xNHfN1aBvZk_Q48FQxJOewafonq2foYfzkIj3EkohdLPqnqOrAvb45qxPZr7eVNh7lLe4sLhxuIBtLdzNUjU-ti2oJ9tBMx-TZQ3Wl7hYQ1Xb_G7g828tEKu7AzypcX6hPHownoKuMxiIffYJuMBex6ebFnrByzzHs7b5iRdr1aktcbypccjNZ1vocKPt-Qu0muXHnw6jIfdCpBilLAIvLLFEC85k5RJOKklVpgjRLNUqtjKhhsEAOqcdMVrEOvMgkMbEVigHZiV9ifbqpravEOZMJ9LD6FFBmTROg5HqFBUMSDEnsxH6sJ2EshqAyX1-jB9lOCAnstydshF6f9P6Vw_I8Yd2Uz-fN208jHaoAOEqB-Eq_yVcI7S_lYZyWNtdSWNJAoosA86DhPyVkXK-XPA0Fez1_-DoDXrkifsouITvoz0QJvsWzKJzPUb3CSvgmc3mY_Rg8n11uoL3ND8qluOwOq4BoEoKJg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWCvhATygicZx4jYRQS_dRui2raitVXIId292VIClJJVh-D2d-IzNOsl0O9NabFTnjSDOZhz3-PkJeOYjiTEkXCCtkwI1OA-0iG3AdGp1DKWcc7kMeHqXjE_7xNDndIH-6uzDYVtn5RO-oTZnjHvmbOJTMY3fy9-ffA2SNwtPVjkKjMYsDu_wBJVv9bn8P9LvN2HAw-zAOWlaBQPE45gHUF5FlWqRc5i5KWS5j1VeMaZ5oFVoZxYZLIZ3TjhktQt1HeENjQiuUg4QpBrk3yE2QJbHY6w9HK88P4aBh6JM86DORto32IZO4xxCPJjjEprG1EOiZAv5Jb9eTZB_lhvfI3TY9pTuNPd0nG7Z4QG6NPP3vEka-YTSvH5LfU4gs5VlDoT5f5BTr2Es0Wlo6OgVn6m-EqYLObAVB0dYwDTvBrKF6SadzeFSVv0p4_VMFwor6Ld0p6OCnQsxiugsR1lAQtoe0X1Al0M-LClahx4MBHVblNzqZq1p1wumioJ4R0Faw4ELbi0fk5Fp085hsFmVhnxCach1JBO-LRcylcRpSY6diwUEUd7LfI687JWR5C4eOrBxfM38sz2S2rrIe2V7NPm9gQP4zbxf1uZqD4N3-QVmdZa0vyEJlcpUmeCQqeeQghU7gXZfnqVRKStEjW501ZK1HqbNL-4cv9xZy5Ydko-NJmiSCP71a2Etyezw7nGST_aODZ-QOAnngBlOUbpFNMBn7HFKuC_3C2zklX677x_oLIX85Jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLdGJxAXxF9RGOADO6FoiePENRJCK027sVKiapMmLpkd22slSEYyCcrn4VPw6Xh2kq4c2G03y7KfLb3n98d-fj-EXhuw4kRw4zHNuEeVjD1pAu1R6SuZQyinjL2H_DSLD07ox9PodAv96f7C2LTKTic6Ra3K3N6R74U-J652J90zbVpEOhq_v_juWQQp-9LawWk0InKkVz8gfKvfHY6A17uEjJPjDwdeizDgCRqG1INYI9BEspjy3AQxyXkoBoIQSSMpfM2DUFHOuDHSECWZLwe21KFSvmbCgPMUAt1baJvZqKiHtofJLJ2v7QAYhwavj1NvQFjcpt37hNsbh3AytU2bQrZhEB1uwD_O7qbL7Gze-D661zqreL-RrgdoSxcP0e2JAwNeQculj-b1I_Q7BTtTnjeA6otljm1Ue1WbFpcGp6Ba3f8wUeBjXYGJ1DUMs3lhWmG5wukCuqryVwnTP1dArKjf4v0CJz-FrWCMh2BvFQZiIwsCBjED_rKsYBU8TxI8rspveLoQteiI42WBHT6grmDBpdSXj9HJjXDnCeoVZaGfIhxTGXBbyi9kIeXKSHCUjQgZBVLU8EEfvemYkOVtcXSL0fE1c4_0hGebLOuj3fXoi6YoyH_GDS0_12NsKW_XUVbnWasZMl-oXMSRfSDlNDDgUEcw1-R5zIXgnPXRTicNWatf6uzqNMDOnYRcu5FsMp_GUcTos-uJvUJ34FBl08PZ0XN011Kw6XZBvIN6IDH6Bfhfl_JlK-gYnd302foLPeM-uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paleogeographic+Reconstruction+of+Precambrian+Terranes+Reworked+by+Phanerozoic+Orogens%3A+An+Example+Based+on+Detrital+Zircon+REE+From+Lhasa+Terrane+in+Southern+Tibet&rft.jtitle=Geophysical+research+letters&rft.au=Hu%2C+Pei%E2%80%90yuan&rft.au=Zhai%2C+Qing%E2%80%90guo&rft.au=Cawood%2C+Peter+A.&rft.au=Weinberg%2C+Roberto+F.&rft.date=2023-03-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=5&rft_id=info:doi/10.1029%2F2023GL102979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL102979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon