Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation
We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation‐accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stre...
Saved in:
Published in | Journal of Geophysical Research Vol. 116; no. B8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.08.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0148-0227 2169-9313 2156-2202 2169-9356 |
DOI | 10.1029/2011JB008220 |
Cover
Loading…
Abstract | We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation‐accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stress exponent and the activation energy. Grain boundary maps, created with electron backscatter diffraction data, were used to quantify grain size distributions for each sample. Inversion of the resulting data produced the following flow law for GBS: GBS = 104.8 ± 0.8 (σ2.9 ± 0.3/d0.7 ± 0.1) exp[(−445 ± 20 kJ mol−1)/RT], with σ, d, and GBS in units of MPa, μm, and s−1, respectively. Although relatively weak, crystallographic‐preferred orientations (CPOs) have [010] maxima parallel to the compression direction along with [100] and [001] girdles perpendicular to the compression direction. CPOs and subgrain boundary misorientation axes suggest that the (010)[100] slip system contributes significantly to deformation. We propose that these experimental results are best modeled by a deformation mechanism in which strain is accomplished primarily through grain boundary sliding accommodated by the motion of dislocations. Extrapolation of our flow laws to mantle conditions suggests that GBS is likely to be the dominant deformation mechanism in both lithospheric shear zones and asthenospheric flow, and therefore strong upper mantle seismic anisotropy can not be attributed solely to the dominance of dislocation creep.
Key Points
We determined a flow law for the grain boundary sliding (GBS) regime
Extrapolations of our flow law imply that GBS is dominant in the upper mantle
Observed crystallographic fabrics agree with patterns of seismic anisotropy |
---|---|
AbstractList | We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed crystallographic fabrics agree with patterns of seismic anisotropy We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation-accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stress exponent and the activation energy. Grain boundary maps, created with electron backscatter diffraction data, were used to quantify grain size distributions for each sample. Inversion of the resulting data produced the following flow law for GBS: $\dot{\varepsilon}$GBS = 104.8 ± 0.8 (2.9 ± 0.3/d0.7 ± 0.1) exp[(445 ± 20 kJ mol1)/RT], with , d, and $\dot{\varepsilon}$GBS in units of MPa, m, and s1, respectively. Although relatively weak, crystallographic-preferred orientations (CPOs) have [010] maxima parallel to the compression direction along with [100] and [001] girdles perpendicular to the compression direction. CPOs and subgrain boundary misorientation axes suggest that the (010)[100] slip system contributes significantly to deformation. We propose that these experimental results are best modeled by a deformation mechanism in which strain is accomplished primarily through grain boundary sliding accommodated by the motion of dislocations. Extrapolation of our flow laws to mantle conditions suggests that GBS is likely to be the dominant deformation mechanism in both lithospheric shear zones and asthenospheric flow, and therefore strong upper mantle seismic anisotropy can not be attributed solely to the dominance of dislocation creep. We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation‐accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stress exponent and the activation energy. Grain boundary maps, created with electron backscatter diffraction data, were used to quantify grain size distributions for each sample. Inversion of the resulting data produced the following flow law for GBS: GBS = 104.8 ± 0.8 (σ2.9 ± 0.3/d0.7 ± 0.1) exp[(−445 ± 20 kJ mol−1)/RT], with σ, d, and GBS in units of MPa, μm, and s−1, respectively. Although relatively weak, crystallographic‐preferred orientations (CPOs) have [010] maxima parallel to the compression direction along with [100] and [001] girdles perpendicular to the compression direction. CPOs and subgrain boundary misorientation axes suggest that the (010)[100] slip system contributes significantly to deformation. We propose that these experimental results are best modeled by a deformation mechanism in which strain is accomplished primarily through grain boundary sliding accommodated by the motion of dislocations. Extrapolation of our flow laws to mantle conditions suggests that GBS is likely to be the dominant deformation mechanism in both lithospheric shear zones and asthenospheric flow, and therefore strong upper mantle seismic anisotropy can not be attributed solely to the dominance of dislocation creep. Key Points We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed crystallographic fabrics agree with patterns of seismic anisotropy |
ArticleNumber | B08201 |
Author | Kohlstedt, D. L. Hansen, L. N. Zimmerman, M. E. |
Author_xml | – sequence: 1 givenname: L. N. surname: Hansen fullname: Hansen, L. N. email: hanse983@umn.edu organization: Department of Earth Science, University of Minnesota-Twin Cities, Minnesota, Minneapolis, USA – sequence: 2 givenname: M. E. surname: Zimmerman fullname: Zimmerman, M. E. organization: Department of Earth Science, University of Minnesota-Twin Cities, Minnesota, Minneapolis, USA – sequence: 3 givenname: D. L. surname: Kohlstedt fullname: Kohlstedt, D. L. organization: Department of Earth Science, University of Minnesota-Twin Cities, Minnesota, Minneapolis, USA |
BookMark | eNp9kE9vEzEQxS2USoS0Nz6AxZkt_r-73EhElpaqoALiaE12vcHBtRd70zTfvkaLKoREfRlr9N7MvN8LNPPBG4ReUnJOCavfMELp5ZKQijHyDM0ZlarIXzZDc0JFVRDGyufoLKUdyU9IJQidI9dEsB5vwt53EI84OdtZv8W59wU8XkF0IeHg7J315i1eu3DADg54gAi3ZjQxYfAdbuMxjeBc2EYYfti2GKLpTYymwyFa40cYbfCn6KQHl8zZn7pA39bvv64-FFefmovVu6sCBOesqJXgpK9LmsPwigtJZa84lZsSaqNyJiE56QRUQpHaABDa9pLXRvQgVEtbvkCvprlDDL_2Jo16F_bR55W6qqjIIPKEBXo9idoYUsrn6iHa28xAU6J_E9V_E81y9o-8tVOqMRN0_zPxyXSwzhyfXKAvm5slVZVk2VVMLptGc__ogvhTq5KXUn-_bvRN2SxX64-f9Zo_ALs1l1Y |
CitedBy_id | crossref_primary_10_1016_j_jsg_2014_12_006 crossref_primary_10_1002_ggge_20184 crossref_primary_10_1029_2020JB019415 crossref_primary_10_1029_2020JB019416 crossref_primary_10_1016_j_pepi_2013_11_012 crossref_primary_10_1016_j_lithos_2015_11_012 crossref_primary_10_1016_j_pepi_2013_11_011 crossref_primary_10_1073_pnas_1915140117 crossref_primary_10_1007_s00269_017_0935_9 crossref_primary_10_1016_j_epsl_2019_115713 crossref_primary_10_1017_jfm_2023_1003 crossref_primary_10_1016_j_pepi_2020_106639 crossref_primary_10_1016_j_jsg_2016_04_011 crossref_primary_10_1002_2015JB012513 crossref_primary_10_1016_j_jsg_2019_04_015 crossref_primary_10_1016_j_epsl_2016_09_029 crossref_primary_10_1144_M49_5 crossref_primary_10_1016_j_earscirev_2020_103185 crossref_primary_10_5194_se_13_583_2022 crossref_primary_10_1016_j_tecto_2012_09_001 crossref_primary_10_1073_pnas_1608269113 crossref_primary_10_1029_2020JB019375 crossref_primary_10_1029_2023AV000972 crossref_primary_10_3390_min11121351 crossref_primary_10_1007_s00410_017_1375_8 crossref_primary_10_1016_j_tecto_2017_04_017 crossref_primary_10_1002_2017JB014333 crossref_primary_10_1098_rsta_2017_0417 crossref_primary_10_1016_j_ultramic_2016_06_002 crossref_primary_10_5194_tc_14_2429_2020 crossref_primary_10_1016_j_tecto_2024_230333 crossref_primary_10_1029_2018JB015836 crossref_primary_10_1002_2015JB012096 crossref_primary_10_1016_j_tecto_2017_08_038 crossref_primary_10_1016_j_epsl_2016_06_054 crossref_primary_10_1016_j_epsl_2018_10_049 crossref_primary_10_1016_j_epsl_2021_117360 crossref_primary_10_1016_j_tecto_2017_10_008 crossref_primary_10_1002_2016GC006361 crossref_primary_10_1016_j_jsg_2016_09_002 crossref_primary_10_1073_pnas_2219076120 crossref_primary_10_3390_min10040345 crossref_primary_10_3390_min11060600 crossref_primary_10_1016_j_tecto_2023_229722 crossref_primary_10_1016_j_epsl_2012_09_030 crossref_primary_10_1144_M56_2020_19 crossref_primary_10_1038_s41467_021_23633_8 crossref_primary_10_1038_s41561_022_00964_9 crossref_primary_10_1002_adem_202300470 crossref_primary_10_1016_j_pepi_2012_05_001 crossref_primary_10_1016_j_lithos_2017_05_002 crossref_primary_10_2139_ssrn_4150594 crossref_primary_10_2138_am_2019_6629 crossref_primary_10_5194_se_8_751_2017 crossref_primary_10_1016_j_tecto_2015_12_003 crossref_primary_10_5194_se_12_2369_2021 crossref_primary_10_1016_j_epsl_2016_06_025 crossref_primary_10_1016_j_tecto_2012_10_037 crossref_primary_10_1029_2018JB016912 crossref_primary_10_1002_2017JB014847 crossref_primary_10_1002_2013JB010473 crossref_primary_10_1002_2015GC006102 crossref_primary_10_1002_2014JB011782 crossref_primary_10_1016_j_jsg_2019_103874 crossref_primary_10_1016_j_epsl_2015_02_013 crossref_primary_10_3390_min11050493 crossref_primary_10_1016_j_jsg_2023_104861 crossref_primary_10_1016_j_crte_2018_10_001 crossref_primary_10_1016_j_epsl_2014_03_052 crossref_primary_10_1029_2022GC010542 crossref_primary_10_1029_2019JB018071 crossref_primary_10_1029_2023GC011212 crossref_primary_10_1016_j_gete_2023_100465 crossref_primary_10_1016_j_epsl_2017_05_016 crossref_primary_10_1029_2018JB015818 crossref_primary_10_1016_j_jsg_2019_103891 crossref_primary_10_1029_2020JB020273 crossref_primary_10_1016_j_tecto_2014_04_018 crossref_primary_10_1029_2018JB016903 crossref_primary_10_1016_j_pepi_2016_08_004 crossref_primary_10_1016_j_epsl_2019_04_019 crossref_primary_10_1016_j_tecto_2014_12_008 crossref_primary_10_1186_s40645_020_00388_2 crossref_primary_10_1002_2014GC005692 crossref_primary_10_1029_2019GC008289 crossref_primary_10_1002_2015JB012628 crossref_primary_10_1016_j_tecto_2013_11_029 crossref_primary_10_3390_min11101036 crossref_primary_10_1016_j_epsl_2013_11_009 crossref_primary_10_1016_j_epsl_2024_118767 crossref_primary_10_1029_2020JB020323 crossref_primary_10_1002_2013JB010619 crossref_primary_10_1130_G48532_1 crossref_primary_10_1016_j_jsg_2021_104446 crossref_primary_10_1029_2018GC007834 crossref_primary_10_1016_j_jsg_2017_11_008 crossref_primary_10_1029_2018JB016736 crossref_primary_10_1002_jgrb_50284 crossref_primary_10_5575_geosoc_2017_0006 crossref_primary_10_1016_j_msea_2025_148175 crossref_primary_10_22226_2410_3535_2022_1_5_14 crossref_primary_10_5194_ejm_33_249_2021 crossref_primary_10_1016_j_epsl_2016_04_008 crossref_primary_10_1029_2019JB017968 crossref_primary_10_1029_2019GC008399 crossref_primary_10_1016_j_epsl_2013_11_037 crossref_primary_10_1002_2014JB011845 crossref_primary_10_1029_2023GC011096 crossref_primary_10_1002_2016JB013425 crossref_primary_10_1126_sciadv_1701338 crossref_primary_10_1029_2021JB021824 crossref_primary_10_1038_s41467_021_26996_0 crossref_primary_10_1002_2015GL065837 crossref_primary_10_1016_j_jog_2017_05_002 crossref_primary_10_1029_2020JB021302 crossref_primary_10_1007_s00410_023_02071_3 crossref_primary_10_1016_j_epsl_2018_03_027 crossref_primary_10_1029_2022AV000751 crossref_primary_10_1029_2024JB029812 crossref_primary_10_1029_2018JB016728 crossref_primary_10_5194_se_8_1211_2017 crossref_primary_10_1126_sciadv_1500360 crossref_primary_10_1016_j_jsg_2019_103871 crossref_primary_10_1016_j_tecto_2021_229087 crossref_primary_10_1029_2020JB019629 crossref_primary_10_2138_am_2019_6892 crossref_primary_10_1016_j_pepi_2012_04_006 crossref_primary_10_1016_j_lithos_2020_105572 crossref_primary_10_1029_2023JB027699 crossref_primary_10_1016_j_matchar_2020_110759 crossref_primary_10_1002_2017GC007309 crossref_primary_10_1016_j_pepi_2017_07_011 crossref_primary_10_1016_j_tecto_2018_07_026 crossref_primary_10_1029_2022JB024683 crossref_primary_10_1073_pnas_2203448120 crossref_primary_10_1016_j_jsg_2022_104708 crossref_primary_10_1016_j_jsg_2014_08_001 crossref_primary_10_1016_j_epsl_2012_04_016 crossref_primary_10_2138_gselements_19_3_151 crossref_primary_10_1007_s00410_018_1468_z crossref_primary_10_1029_2018TC005447 crossref_primary_10_1016_j_pepi_2018_12_004 crossref_primary_10_1016_j_matchemphys_2022_127215 crossref_primary_10_1016_j_epsl_2018_10_017 crossref_primary_10_1093_gji_ggac428 crossref_primary_10_1029_2018JB016558 crossref_primary_10_1016_j_pepi_2018_03_002 crossref_primary_10_1002_2014JB011584 crossref_primary_10_1029_2017JB015133 crossref_primary_10_1002_2015JB012134 crossref_primary_10_1029_2022JB025723 crossref_primary_10_1038_nature11671 crossref_primary_10_1016_j_pepi_2014_12_002 crossref_primary_10_1029_2022JB025724 crossref_primary_10_1016_j_jsg_2018_06_006 crossref_primary_10_1016_j_jsg_2018_06_005 crossref_primary_10_1016_j_epsl_2016_09_002 crossref_primary_10_1029_2012JB009305 crossref_primary_10_5194_ejm_33_39_2021 crossref_primary_10_2138_am_2019_6666 crossref_primary_10_1016_j_epsl_2013_06_017 crossref_primary_10_1029_2018GC007842 crossref_primary_10_1029_2020JB019888 crossref_primary_10_2138_am_2018_6174 crossref_primary_10_1029_2020JB020196 crossref_primary_10_1073_pnas_1218335110 crossref_primary_10_1029_2019JB019242 crossref_primary_10_1029_2018JB015853 crossref_primary_10_1093_petrology_egv053 crossref_primary_10_1029_2018JB015613 crossref_primary_10_1016_j_jsg_2013_07_012 crossref_primary_10_1029_2022JB024069 crossref_primary_10_1029_2020GL090056 crossref_primary_10_1002_2015JB012302 crossref_primary_10_1016_j_lithos_2016_07_038 crossref_primary_10_1016_j_tecto_2024_230508 crossref_primary_10_1029_2019GL083529 crossref_primary_10_1016_j_epsl_2020_116349 crossref_primary_10_5575_geosoc_2017_0019 crossref_primary_10_1016_j_jsg_2022_104658 crossref_primary_10_1029_2020JB020626 crossref_primary_10_1080_14786435_2016_1177232 crossref_primary_10_1186_s40623_021_01543_9 |
Cites_doi | 10.1016/0025-5416(71)90085-1 10.1007/BF02664244 10.1093/petrology/egp059 10.1144/GSL.SP.2005.243.01.11 10.1017/CBO9780511525230 10.1016/0012-821X(86)90008-7 10.1029/90JB01723 10.1007/s10853-009-3780-5 10.1080/14786437008220939 10.1029/2002GL015480 10.1016/j.jsg.2004.01.008 10.1029/2000JB900179 10.1029/JB082i036p05737 10.1029/2000JB900180 10.1016/S1359-6454(98)00128-1 10.1111/j.1365-246X.1985.tb05105.x 10.1017/CBO9780511564451 10.1029/GL007i009p00649 10.1029/2002GC000308 10.1007/BF02656607 10.1007/s12583-010-0113-1 10.1029/2010JB007748 10.1029/JB091iB08p08151 10.1126/science.290.5496.1564 10.1007/BF00309372 10.1016/0001-6160(78)90116-5 10.1111/j.1365-246X.1989.tb04446.x 10.1016/j.epsl.2008.03.063 10.1080/01418618508245271 10.1007/s11661-001-0106-x 10.1016/0956-7151(94)90322-0 10.1016/0001-6160(73)90057-6 10.1126/science.203.4377.261 10.1080/01418618008243892 10.1002/zamm.19280080302 10.1029/94JB02128 10.1016/S0191-8141(01)00087-6 10.1016/j.tecto.2007.09.002 10.1029/2000JB900336 10.1016/j.epsl.2006.06.006 10.1111/j.1365-2818.2006.01698.x 10.1016/0012-821X(96)00154-9 10.1007/s10853-006-6476-0 10.1016/S0191-8141(98)00010-8 10.1029/JB079i005p00706 10.1029/95JB01292 10.1016/j.epsl.2005.02.008 10.1016/S0040-1951(98)00141-3 10.1016/j.epsl.2009.03.014 10.1046/j.1365-246X.2003.02085.x 10.1029/2000GL011443 10.1016/0040-1951(89)90221-7 10.1007/978-3-642-81456-3 10.1016/j.tecto.2006.05.025 10.1029/JB079i014p02045 10.1016/S0012-821X(99)00046-1 10.1016/S0040-1951(99)00229-2 10.1029/JB089iB09p07861 10.1016/S0191-8141(01)00030-X 10.1111/j.1365-2818.2007.01814.x 10.1016/j.tecto.2005.08.023 10.1080/01418610008216501 10.1144/GSL.SP.2005.245.01.14 10.1016/S1359-6454(99)00445-0 10.1093/petrology/egg089 10.1029/2006JB004819 |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. Copyright 2011 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: Copyright 2011 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION 3V. 7ST 7TG 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2011JB008220 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9356 |
EndPage | n/a |
ExternalDocumentID | 2419010301 10_1029_2011JB008220 JGRB16852 ark_67375_WNG_R7GBCFKP_F |
Genre | article Feature |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K RJQFR SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-a4332-96430f9710083834515f6315b7a9e62204530d4a84609eaa01cf539e4fa46c1c3 |
IEDL.DBID | 8FG |
ISSN | 0148-0227 2169-9313 |
IngestDate | Fri Jul 25 10:34:17 EDT 2025 Tue Jul 01 02:42:14 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Wed Jan 22 17:10:29 EST 2025 Wed Oct 30 09:58:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B8 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4332-96430f9710083834515f6315b7a9e62204530d4a84609eaa01cf539e4fa46c1c3 |
Notes | Tab-delimited Table 1.Tab-delimited Table A1.Tab-delimited Table A2. ark:/67375/WNG-R7GBCFKP-F ArticleID:2011JB008220 istex:CD19A40C72162BD6687A8AF131DB747B2297B2B2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 881422745 |
PQPubID | 54731 |
PageCount | 16 |
ParticipantIDs | proquest_journals_881422745 crossref_primary_10_1029_2011JB008220 crossref_citationtrail_10_1029_2011JB008220 wiley_primary_10_1029_2011JB008220_JGRB16852 istex_primary_ark_67375_WNG_R7GBCFKP_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2011 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: August 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Duong, K., and F. Mohamed (2001), Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy, Metall. Mater. Trans. A, 32(1), 103-113, doi:10.1007/s11661-001-0106-x. Barrett, C., J. Lytton, and O. Sherby (1967), Effect of grain size and annealing treatment on steady-state creep of copper, Trans. Metall. Soc. AIME, 239(2), 170-180. Kruse, R., H. Stünitz, and K. Kunze (2001), Dynamic recrystallization processes in plagioclase porphyroclasts, J. Struct. Geol., 23(11), 1781-1802, doi:10.1016/S0191-8141(01)00030-X. Ashby, M., and R. Verrall (1973), Diffusion-accommodated flow and superplasticity, Acta Metall., 21(2), 149-163, doi:10.1016/0001-6160(73)90057-6. Bystricky, M., F. Heidelbach, and S. Mackwell (2006), Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates, Tectonophysics, 427(1-4), 115-132, doi:10.1016/j.tecto.2006.05.025. Warren, J. M., G. Hirth, and P. B. Kelemen (2008), Evolution of olivine lattice preferred orientation during simple shear in the mantle, Earth Planet. Sci. Lett., 272, 501-512, doi:10.1016/j.epsl.2008.03.063. Cooper, R., and D. Kohlstedt (1984), Sintering of olivine and olivine-basalt aggregates, Phys. Chem. Miner., 11(1), 5-16, doi:10.1007/BF00309372. Ross, J. V., H. G. Ave'Lallemant, and N. L. Carter (1979), Activation volume for creep in the upper mantle, Science, 203(4377), 261-263, doi:10.1126/science.203.4377.261. Shei, S., and T. Langdon (1978), The mechanical properties of a superplastic quasi-single phase copper alloy, Acta Metall., 26(4), 639-646, doi:10.1016/0001-6160(78)90116-5. Keefner, J. W., S. J. Mackwell, D. L. Kohlstedt, and F. Heidelbach (2011), Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle, J. Geophys. Res., 116, B05201, doi:10.1029/2010JB007748. Hirth, G., and D. Kohlstedt (1995b), Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981-2001, doi:10.1029/94JB02128. Tommasi, A., B. Tikoff, and A. Vauchez (1999), Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth Planet. Sci. Lett., 168(1-2), 173-186, doi:10.1016/S0012-821X(99)00046-1. Raj, R., and M. F. Ashby (1971), On grain boundary sliding and diffusional creep, Metall. Mater. Trans. B, 2(4), 1113-1127, doi:10.1007/BF02664244. Nishimura, C. E., and D. W. Forsyth (1989), The anisotropic structure of the upper mantle in the Pacific, Geophys. J. Int., 96, 203-229, doi:10.1111/j.1365-246X.1989.tb04446.x. Prior, D. J., J. Wheeler, L. Peruzzo, R. Spiess, and C. Storey (2002), Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies, J. Struct. Geol., 24(6-7), 999-1011, doi:10.1016/S0191-8141(01)00087-6. Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144(1-2), 93-108, doi:10.1016/0012-821X(96)00154-9. Karato, S. (1989), Grain growth kinetics in olivine aggregates, Tectonophysics, 168(4), 255-273, doi:10.1016/0040-1951(89)90221-7. Karato, S., M. Paterson, and J. Fitzgerald (1986), Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151-8176, doi:10.1029/JB091iB08p08151. Skemer, P., I. Katayama, Z. Jiang, and S. Karato (2005), The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation, Tectonophysics, 411(1-4), 157-167, doi:10.1016/j.tecto.2005.08.023. Wang, Z., Y. Zhao, and D. L. Kohlstedt (2010), Dislocation creep accommodated by grain boundary sliding in dunite, J. Earth Sci., 21(5), 541-554, doi:10.1007/s12583-010-0113-1. Karato, S., M. Toriumi, and T. Fujii (1980), Dynamic recrystallization of olivine single crystals during high-temperature creep, Geophys. Res. Lett., 7(9), 649-652, doi:10.1029/GL007i009p00649. Mei, S., and D. L. Kohlstedt (2000a), Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res., 105, 21,457-21,469, doi:10.1029/2000JB900179. Dohmen, R., S. Chakraborty, and H. Becker (2002), Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle, Geophys. Res. Lett., 29(21), 2030, doi:10.1029/2002GL015480. Nettles, M., and A. M. Dziewoński (2008), Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America, J. Geophys. Res., 113, B02303, doi:10.1029/2006JB004819. Précigout, J., F. Gueydan, D. Gapais, C. Garrido, and A. Essaifi (2007), Strain localisation in the subcontinental mantle-A ductile alternative to the brittle mantle, Tectonophysics, 445(3-4), 318-336, doi:10.1016/j.tecto.2007.09.002. Chopra, P., and M. Paterson (1984), The role of water in the deformation of dunite, J. Geophys. Res., 89, 7861-7876, doi:10.1029/JB089iB09p07861. Shearer, P., and J. Orcutt (1985), Anisotropy in the oceanic lithosphere-Theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific, Geophys. J. Int., 80, 493-526, doi:10.1111/j.1365-246X.1985.tb05105.x. Behn, M. D., G. Hirth, and J. R. Elsenbeck (2009), Implications of grain size evolution on the seismic structure of the oceanic upper mantle, Earth Planet. Sci. Lett., 282(1-4), 178-189, doi:10.1016/j.epsl.2009.03.014. Mingard, K. P., B. Roebuck, E. G. Bennett, M. Thomas, B. P. Wynne, and E. J. Palmiere (2007), Grain size measurement by EBSD in complex hot deformed metal alloy microstructures, J. Microsc., 227(3), 298-308, doi:10.1111/j.1365-2818.2007.01814.x. Bae, D., and A. Ghosh (2000), Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition, Acta Mater., 48(6), 1207-1224, doi:10.1016/S1359-6454(99)00445-0. Kohlstedt, D. L., and C. Goetze (1974), Low-stress high-temperature creep in olivine single crystals, J. Geophys. Res., 79, 2045-2051, doi:10.1029/JB079i014p02045. Durham, W. B., and C. Goetze (1977), Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., 82, 5737-5753, doi:10.1029/JB082i036p05737. Langdon, T. G. (1970), Grain boundary sliding as a deformation mechanism during creep, Philos. Mag., 22(178), 689-700, doi:10.1080/14786437008220939. Nitsan, U. (1974), Stability field of olivine with respect to oxidation and reduction, J. Geophys. Res., 79(5), 706-711, doi:10.1029/JB079i005p00706. Poirier, J.-P. (1985), Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511564451. Langdon, T. G. (1994), Unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater., 42, 2437-2443, doi:10.1016/0956-7151(94)90322-0. Bystricky, M., K. Kunze, L. Burlini, and J. P. Burg (2000), High shear strain of olivine aggregates; rheological and seismic consequences, Science, 290(5496), 1564-1567, doi:10.1126/science.290.5496.1564. Bai, Q., S. Mackwell, and D. Kohlstedt (1991), High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples, J. Geophys. Res., 96, 2441-2463, doi:10.1029/90JB01723. Goldsby, D., and D. Kohlstedt (2001), Superplastic deformation of ice: Experimental observations, J. Geophys. Res., 106, 11,017-11,030, doi:10.1029/2000JB900336. Langdon, T. G. (2009), Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci., 44(22), 5998-6010, doi:10.1007/s10853-009-3780-5. Mei, S., and D. Kohlstedt (2000b), Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime, J. Geophys. Res., 105, 21,471-21,481, doi:10.1029/2000JB900180. Nieh, T., J. Wadsworth, and O. Sherby (1997), Superplasticity in Metals and Ceramics, Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511525230. Hirth, G., and D. Kohlstedt (1995a), Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime, J. Geophys. Res., 100, 15,441-15,449, doi:10.1029/95JB01292. Ricoult, D. L., and D. L. Kohlstedt (1985), Creep of Fe2SiO4 and CO2SiO4 single crystals in controlled thermodynamic environments, Philos. Mag. A, 51(1), 79-93, doi:10.1080/01418618508245271. Duong, K., and F. Mohamed (1998), Effect of impurity content on boundary sliding behavior in the superplastic Zn-22% Al alloy, Acta Mater., 46(13), 4571-4586, doi:10.1016/S1359-6454(98)00128-1. Valcke, S. L. A., G. M. Pennock, M. R. Drury, and J. H. P. De Bresser (2006), Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite, J. Microsc., 224(3), 264-276, doi:10.1111/j.1365-2818.2006.01698.x. Faul, U. H., and I. Jackson (2005), The seismological signature of temperature and grain size variations in the upper mantle, Earth Planet. Sci. Lett., 234(1-2), 119-134, doi:10.1016/j.epsl.2005.02.008. Underwood, E. (1970), Quantitative Stereology, Addison-Wesley, Reading, Mass. Bruhn, D., D. L. Kohlstedt, and K. H. Lee (2005), The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates, Geol. Soc. Spec. Publ., 245(1), 291-302, doi:10.1144/GSL.SP.2005.245.01.14. Ismail, W. B., and D. Mainprice (1998), An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots, Tectonophysics, 296(1-2), 145-157, doi:10.1016/S0040-1951(98)00141-3. Langdon, T. G. (2006), Grain boundary sliding revisited: Developments in sliding over four decades, J. Mater. Sci., 41(3), 597-609, doi:10.1007/s10853-006-6476-0. Gifkins, R. (1970), Optical Microscopy of Metals, Elsevier, New York. Gifkins, R. (1976), Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Trans. A, 7(8), 1225-1232, doi:10 2011; 116 2009; 44 1990; 56 2007; 227 2000; 48 1980; 41 2002; 51 1991; 96 1986; 78 2005; 411 2004; 26 1996; 144 1999; 168 1970 2003; 155 2000; 290 2001; 106 1967; 239 1998; 46 1971; 8 2010; 21 1984; 11 1970; 22 2003; 4 1985 2009; 282 1985; 51 1982 1978; 26 2008; 113 1980 1971; 2 2006; 248 2003; 83 2008; 272 2007; 445 1986; 91 1974; 79 1979; 203 2000; 27 2003; 138 2005; 234 2000; 316 1984; 89 2004; 45 1985; 80 1997 2006 1982; 765 1928; 8 2001; 23 1998; 20 1976; 7 1977; 82 1998; 296 1994; 42 1989; 96 2006; 41 2006; 427 2002; 29 1973; 21 2005; 243 1989; 168 2005; 245 2000; 105 2002; 24 1980; 7 2000; 80 1995; 100 2010; 51 2006; 224 2001; 32 Gifkins (10.1029/2011JB008220:gifk70) 1970 Nieh (10.1029/2011JB008220:nieh97) 1997 Bae (10.1029/2011JB008220:bae00) 2000; 48 Keefner (10.1029/2011JB008220:keef11) 2011; 116 Kohlstedt (10.1029/2011JB008220:kohl74) 1974; 79 Eberhardt (10.1029/2011JB008220:eber80) 1980; 41 Dohmen (10.1029/2011JB008220:dohm02) 2002; 29 Karato (10.1029/2011JB008220:kara89) 1989; 168 Duong (10.1029/2011JB008220:duon98) 1998; 46 Langdon (10.1029/2011JB008220:lang70) 1970; 22 Shei (10.1029/2011JB008220:shei78) 1978; 26 Langdon (10.1029/2011JB008220:lang82) 1982; 765 Nitsan (10.1029/2011JB008220:nits74) 1974; 79 Hirth (10.1029/2011JB008220:hirt96) 1996; 144 Nettles (10.1029/2011JB008220:nett08) 2008; 113 Kellerman Slotemaker (10.1029/2011JB008220:kell06) 2006 Mei (10.1029/2011JB008220:mei00b) 2000; 105 Mingard (10.1029/2011JB008220:ming07) 2007; 227 Prior (10.1029/2011JB008220:prio02) 2002; 24 Bai (10.1029/2011JB008220:bai91) 1991; 96 Karato (10.1029/2011JB008220:kara80) 1980; 7 Skemer (10.1029/2011JB008220:skem05) 2005; 411 Wang (10.1029/2011JB008220:wang10) 2010; 21 von Mises (10.1029/2011JB008220:vonm28) 1928; 8 Shearer (10.1029/2011JB008220:shea85) 1985; 80 Cooper (10.1029/2011JB008220:coop84) 1984; 11 Paterson (10.1029/2011JB008220:pate90) 1990; 56 Behn (10.1029/2011JB008220:behn09) 2009; 282 Warren (10.1029/2011JB008220:warr08) 2008; 272 Toy (10.1029/2011JB008220:toy10) 2010; 51 Langdon (10.1029/2011JB008220:lang94) 1994; 42 Chopra (10.1029/2011JB008220:chop84) 1984; 89 Ricoult (10.1029/2011JB008220:rico85) 1985; 51 Mukherjee (10.1029/2011JB008220:mukh71) 1971; 8 Padmanabhan (10.1029/2011JB008220:padm80) 1980 Hall (10.1029/2011JB008220:hall03) 2003; 4 Karato (10.1029/2011JB008220:kara03) 2003; 83 Barrett (10.1029/2011JB008220:barr67) 1967; 239 Zimmerman (10.1029/2011JB008220:zimm04) 2004; 45 Faul (10.1029/2011JB008220:faul05) 2005; 234 Langdon (10.1029/2011JB008220:lang06) 2006; 41 Ismail (10.1029/2011JB008220:isma98) 1998; 296 Karato (10.1029/2011JB008220:kara86) 1986; 91 Warren (10.1029/2011JB008220:warr06) 2006; 248 Ross (10.1029/2011JB008220:ross79) 1979; 203 Ashby (10.1029/2011JB008220:ashb73) 1973; 21 Heilbronner (10.1029/2011JB008220:heil98) 1998; 20 Durham (10.1029/2011JB008220:durh77) 1977; 82 Précigout (10.1029/2011JB008220:prec07) 2007; 445 Gribb (10.1029/2011JB008220:grib00) 2000; 27 Langdon (10.1029/2011JB008220:lang09) 2009; 44 Becker (10.1029/2011JB008220:beck03) 2003; 155 Hirth (10.1029/2011JB008220:hirt03) 2003; 138 Raj (10.1029/2011JB008220:raj71) 1971; 2 Nishimura (10.1029/2011JB008220:nish89) 1989; 96 Gifkins (10.1029/2011JB008220:gifk76) 1976; 7 Hirth (10.1029/2011JB008220:hirt02) 2002; 51 Valcke (10.1029/2011JB008220:valc06) 2006; 224 Goldsby (10.1029/2011JB008220:gold01) 2001; 106 Zhang (10.1029/2011JB008220:zhan00) 2000; 316 Mei (10.1029/2011JB008220:mei00a) 2000; 105 Poirier (10.1029/2011JB008220:poir85) 1985 Bystricky (10.1029/2011JB008220:byst00) 2000; 290 Hirth (10.1029/2011JB008220:hirt95b) 1995; 100 Duong (10.1029/2011JB008220:duon01) 2001; 32 Bruhn (10.1029/2011JB008220:bruh05) 2005; 245 Drury (10.1029/2011JB008220:drur05) 2005; 243 Tommasi (10.1029/2011JB008220:tomm99) 1999; 168 Hirth (10.1029/2011JB008220:hirt95a) 1995; 100 Underwood (10.1029/2011JB008220:unde70) 1970 Kruse (10.1029/2011JB008220:krus01) 2001; 23 Duong (10.1029/2011JB008220:duon00) 2000; 80 Ter Heege (10.1029/2011JB008220:terh04) 2004; 26 Craig (10.1029/2011JB008220:crai86) 1986; 78 Frost (10.1029/2011JB008220:fros82) 1982 Bystricky (10.1029/2011JB008220:byst06) 2006; 427 |
References_xml | – reference: Bruhn, D., D. L. Kohlstedt, and K. H. Lee (2005), The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates, Geol. Soc. Spec. Publ., 245(1), 291-302, doi:10.1144/GSL.SP.2005.245.01.14. – reference: Heilbronner, R., and D. Bruhn (1998), The influence of three-dimensional grain size distributions on the rheology of polyphase rocks, J. Struct. Geol., 20(6), 695-705, doi:10.1016/S0191-8141(98)00010-8. – reference: Poirier, J.-P. (1985), Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511564451. – reference: Précigout, J., F. Gueydan, D. Gapais, C. Garrido, and A. Essaifi (2007), Strain localisation in the subcontinental mantle-A ductile alternative to the brittle mantle, Tectonophysics, 445(3-4), 318-336, doi:10.1016/j.tecto.2007.09.002. – reference: Karato, S., M. Toriumi, and T. Fujii (1980), Dynamic recrystallization of olivine single crystals during high-temperature creep, Geophys. Res. Lett., 7(9), 649-652, doi:10.1029/GL007i009p00649. – reference: Keefner, J. W., S. J. Mackwell, D. L. Kohlstedt, and F. Heidelbach (2011), Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle, J. Geophys. Res., 116, B05201, doi:10.1029/2010JB007748. – reference: Barrett, C., J. Lytton, and O. Sherby (1967), Effect of grain size and annealing treatment on steady-state creep of copper, Trans. Metall. Soc. AIME, 239(2), 170-180. – reference: Kruse, R., H. Stünitz, and K. Kunze (2001), Dynamic recrystallization processes in plagioclase porphyroclasts, J. Struct. Geol., 23(11), 1781-1802, doi:10.1016/S0191-8141(01)00030-X. – reference: Mei, S., and D. Kohlstedt (2000b), Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime, J. Geophys. Res., 105, 21,471-21,481, doi:10.1029/2000JB900180. – reference: Langdon, T. G. (2009), Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci., 44(22), 5998-6010, doi:10.1007/s10853-009-3780-5. – reference: Zimmerman, M. E., and D. L. Kohlstedt (2004), Rheological properties of partially molten lherzolite, J. Petrol., 45(2), 275-298, doi:10.1093/petrology/egg089. – reference: Karato, S. (1989), Grain growth kinetics in olivine aggregates, Tectonophysics, 168(4), 255-273, doi:10.1016/0040-1951(89)90221-7. – reference: Prior, D. J., J. Wheeler, L. Peruzzo, R. Spiess, and C. Storey (2002), Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies, J. Struct. Geol., 24(6-7), 999-1011, doi:10.1016/S0191-8141(01)00087-6. – reference: Raj, R., and M. F. Ashby (1971), On grain boundary sliding and diffusional creep, Metall. Mater. Trans. B, 2(4), 1113-1127, doi:10.1007/BF02664244. – reference: Toy, V. G., J. Newman, W. Lamb, and B. Tikoff (2010), The role of pyroxenites in formation of shear instabilities in the mantle: Evidence from an ultramafic ultramylonite, Twin Sisters Massif, Washington, J. Petrol., 51(1-2), 55-80, doi:10.1093/petrology/egp059. – reference: Bae, D., and A. Ghosh (2000), Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition, Acta Mater., 48(6), 1207-1224, doi:10.1016/S1359-6454(99)00445-0. – reference: Skemer, P., I. Katayama, Z. Jiang, and S. Karato (2005), The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation, Tectonophysics, 411(1-4), 157-167, doi:10.1016/j.tecto.2005.08.023. – reference: Warren, J. M., and G. Hirth (2006), Grain size sensitive deformation mechanisms in naturally deformed peridotites, Earth Planet. Sci. Lett., 248(1-2), 438-450, doi:10.1016/j.epsl.2006.06.006. – reference: Mingard, K. P., B. Roebuck, E. G. Bennett, M. Thomas, B. P. Wynne, and E. J. Palmiere (2007), Grain size measurement by EBSD in complex hot deformed metal alloy microstructures, J. Microsc., 227(3), 298-308, doi:10.1111/j.1365-2818.2007.01814.x. – reference: Duong, K., and F. Mohamed (2000), Effect of Cd on the boundary sliding behaviour in superplastic Pb-62 wt Sn alloy, Philos. Mag. A, 80(11), 2721-2735, doi:10.1080/01418610008216501. – reference: Hirth, G., and D. Kohlstedt (1995b), Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981-2001, doi:10.1029/94JB02128. – reference: Kohlstedt, D. L., and C. Goetze (1974), Low-stress high-temperature creep in olivine single crystals, J. Geophys. Res., 79, 2045-2051, doi:10.1029/JB079i014p02045. – reference: Langdon, T. G. (2006), Grain boundary sliding revisited: Developments in sliding over four decades, J. Mater. Sci., 41(3), 597-609, doi:10.1007/s10853-006-6476-0. – reference: Tommasi, A., B. Tikoff, and A. Vauchez (1999), Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth Planet. Sci. Lett., 168(1-2), 173-186, doi:10.1016/S0012-821X(99)00046-1. – reference: Cooper, R., and D. Kohlstedt (1984), Sintering of olivine and olivine-basalt aggregates, Phys. Chem. Miner., 11(1), 5-16, doi:10.1007/BF00309372. – reference: Gifkins, R. (1976), Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Trans. A, 7(8), 1225-1232, doi:10.1007/BF02656607. – reference: Nettles, M., and A. M. Dziewoński (2008), Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America, J. Geophys. Res., 113, B02303, doi:10.1029/2006JB004819. – reference: von Mises, R. (1928), Mechanik der plastischen Formänderung von Kristallen, Z. Angew. Math. Mech., 8, 161-185, doi:10.1002/zamm.19280080302. – reference: Bai, Q., S. Mackwell, and D. Kohlstedt (1991), High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples, J. Geophys. Res., 96, 2441-2463, doi:10.1029/90JB01723. – reference: Shearer, P., and J. Orcutt (1985), Anisotropy in the oceanic lithosphere-Theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific, Geophys. J. Int., 80, 493-526, doi:10.1111/j.1365-246X.1985.tb05105.x. – reference: Ter Heege, J., J. De Bresser, and C. Spiers (2004), Composite flow laws for crystalline materials with log-normally distributed grain size: Theory and application to olivine, J. Struct. Geol., 26(9), 1693-1705, doi:10.1016/j.jsg.2004.01.008. – reference: Ashby, M., and R. Verrall (1973), Diffusion-accommodated flow and superplasticity, Acta Metall., 21(2), 149-163, doi:10.1016/0001-6160(73)90057-6. – reference: Dohmen, R., S. Chakraborty, and H. Becker (2002), Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle, Geophys. Res. Lett., 29(21), 2030, doi:10.1029/2002GL015480. – reference: Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144(1-2), 93-108, doi:10.1016/0012-821X(96)00154-9. – reference: Behn, M. D., G. Hirth, and J. R. Elsenbeck (2009), Implications of grain size evolution on the seismic structure of the oceanic upper mantle, Earth Planet. Sci. Lett., 282(1-4), 178-189, doi:10.1016/j.epsl.2009.03.014. – reference: Hall, C. E., and E. M. Parmentier (2003), Influence of grain size evolution on convective instability, Geochem. Geophys. Geosyst., 4(3), 1029, doi:10.1029/2002GC000308. – reference: Shei, S., and T. Langdon (1978), The mechanical properties of a superplastic quasi-single phase copper alloy, Acta Metall., 26(4), 639-646, doi:10.1016/0001-6160(78)90116-5. – reference: Hirth, G., and D. Kohlstedt (1995a), Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime, J. Geophys. Res., 100, 15,441-15,449, doi:10.1029/95JB01292. – reference: Nitsan, U. (1974), Stability field of olivine with respect to oxidation and reduction, J. Geophys. Res., 79(5), 706-711, doi:10.1029/JB079i005p00706. – reference: Ismail, W. B., and D. Mainprice (1998), An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots, Tectonophysics, 296(1-2), 145-157, doi:10.1016/S0040-1951(98)00141-3. – reference: Valcke, S. L. A., G. M. Pennock, M. R. Drury, and J. H. P. De Bresser (2006), Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite, J. Microsc., 224(3), 264-276, doi:10.1111/j.1365-2818.2006.01698.x. – reference: Bystricky, M., K. Kunze, L. Burlini, and J. P. Burg (2000), High shear strain of olivine aggregates; rheological and seismic consequences, Science, 290(5496), 1564-1567, doi:10.1126/science.290.5496.1564. – reference: Bystricky, M., F. Heidelbach, and S. Mackwell (2006), Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates, Tectonophysics, 427(1-4), 115-132, doi:10.1016/j.tecto.2006.05.025. – reference: Mei, S., and D. L. Kohlstedt (2000a), Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res., 105, 21,457-21,469, doi:10.1029/2000JB900179. – reference: Mukherjee, A. K. (1971), The rate controlling mechanism in superplasticity, Mater. Sci. Eng., 8, 83-89, doi:10.1016/0025-5416(71)90085-1. – reference: Wang, Z., Y. Zhao, and D. L. Kohlstedt (2010), Dislocation creep accommodated by grain boundary sliding in dunite, J. Earth Sci., 21(5), 541-554, doi:10.1007/s12583-010-0113-1. – reference: Padmanabhan, K., and G. Davies (1980), Superplasticity, Springer, New York. – reference: Karato, S., and H. Jung (2003), Effects of pressure on high-temperature dislocation creep in olivine, Philos. Mag. A, 83(3), doi:10.1080/0141861021000025829. – reference: Craig, C. H., and D. McKenzie (1986), The existence of a thin low-viscosity layer beneath the lithosphere, Earth Planet. Sci. Lett., 78, 420-426, doi:10.1016/0012-821X(86)90008-7. – reference: Becker, T. W., J. B. Kellogg, G. Ekstrom, and R. J. O'Connell (2003), Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models, Geophys. J. Int., 155(2), 696-714, doi:10.1046/j.1365-246X.2003.02085.x. – reference: Chopra, P., and M. Paterson (1984), The role of water in the deformation of dunite, J. Geophys. Res., 89, 7861-7876, doi:10.1029/JB089iB09p07861. – reference: Warren, J. M., G. Hirth, and P. B. Kelemen (2008), Evolution of olivine lattice preferred orientation during simple shear in the mantle, Earth Planet. Sci. Lett., 272, 501-512, doi:10.1016/j.epsl.2008.03.063. – reference: Langdon, T. G. (1970), Grain boundary sliding as a deformation mechanism during creep, Philos. Mag., 22(178), 689-700, doi:10.1080/14786437008220939. – reference: Nishimura, C. E., and D. W. Forsyth (1989), The anisotropic structure of the upper mantle in the Pacific, Geophys. J. Int., 96, 203-229, doi:10.1111/j.1365-246X.1989.tb04446.x. – reference: Karato, S., M. Paterson, and J. Fitzgerald (1986), Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151-8176, doi:10.1029/JB091iB08p08151. – reference: Underwood, E. (1970), Quantitative Stereology, Addison-Wesley, Reading, Mass. – reference: Nieh, T., J. Wadsworth, and O. Sherby (1997), Superplasticity in Metals and Ceramics, Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511525230. – reference: Faul, U. H., and I. Jackson (2005), The seismological signature of temperature and grain size variations in the upper mantle, Earth Planet. Sci. Lett., 234(1-2), 119-134, doi:10.1016/j.epsl.2005.02.008. – reference: Ricoult, D. L., and D. L. Kohlstedt (1985), Creep of Fe2SiO4 and CO2SiO4 single crystals in controlled thermodynamic environments, Philos. Mag. A, 51(1), 79-93, doi:10.1080/01418618508245271. – reference: Duong, K., and F. Mohamed (1998), Effect of impurity content on boundary sliding behavior in the superplastic Zn-22% Al alloy, Acta Mater., 46(13), 4571-4586, doi:10.1016/S1359-6454(98)00128-1. – reference: Gribb, T., and R. F. Cooper (2000), The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine, Geophys. Res. Lett., 27(15), 2341-2344, doi:10.1029/2000GL011443. – reference: Frost, H., and M. Ashby (1982), Deformation Mechanism Maps, Pergamon, New York. – reference: Gifkins, R. (1970), Optical Microscopy of Metals, Elsevier, New York. – reference: Zhang, S., S. Karato, J. Fitzgerald, U. H. Faul, and Y. Zhou (2000), Simple shear deformation of olivine aggregates, Tectonophysics, 316(1-2), 133-152, doi:10.1016/S0040-1951(99)00229-2. – reference: Durham, W. B., and C. Goetze (1977), Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., 82, 5737-5753, doi:10.1029/JB082i036p05737. – reference: Ross, J. V., H. G. Ave'Lallemant, and N. L. Carter (1979), Activation volume for creep in the upper mantle, Science, 203(4377), 261-263, doi:10.1126/science.203.4377.261. – reference: Drury, M. (2005), Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere, Geol. Soc. Spec. Publ., 243(1), 143-158, doi:10.1144/GSL.SP.2005.243.01.11. – reference: Duong, K., and F. Mohamed (2001), Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy, Metall. Mater. Trans. A, 32(1), 103-113, doi:10.1007/s11661-001-0106-x. – reference: Langdon, T. G. (1994), Unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater., 42, 2437-2443, doi:10.1016/0956-7151(94)90322-0. – reference: Goldsby, D., and D. Kohlstedt (2001), Superplastic deformation of ice: Experimental observations, J. Geophys. Res., 106, 11,017-11,030, doi:10.1029/2000JB900336. – reference: Eberhardt, A., and B. Baudelet (1980), Interphase boundary sliding at high temperature in two-phase (α/β)-brass bicrystals, Philos. Mag. A, 41(6), 843-869, doi:10.1080/01418618008243892. – volume: 29 issue: 21 year: 2002 article-title: Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle publication-title: Geophys. Res. Lett. – year: 1985 – volume: 445 start-page: 318 issue: 3–4 year: 2007 end-page: 336 article-title: Strain localisation in the subcontinental mantle—A ductile alternative to the brittle mantle publication-title: Tectonophysics – volume: 51 start-page: 55 issue: 1–2 year: 2010 end-page: 80 article-title: The role of pyroxenites in formation of shear instabilities in the mantle: Evidence from an ultramafic ultramylonite, Twin Sisters Massif, Washington publication-title: J. Petrol. – volume: 96 start-page: 2441 year: 1991 end-page: 2463 article-title: High‐temperature creep of olivine single crystals: 1. Mechanical results for buffered samples publication-title: J. Geophys. Res. – volume: 20 start-page: 695 issue: 6 year: 1998 end-page: 705 article-title: The influence of three‐dimensional grain size distributions on the rheology of polyphase rocks publication-title: J. Struct. Geol. – volume: 7 start-page: 1225 issue: 8 year: 1976 end-page: 1232 article-title: Grain‐boundary sliding and its accommodation during creep and superplasticity publication-title: Metall. Trans. A – volume: 21 start-page: 149 issue: 2 year: 1973 end-page: 163 article-title: Diffusion‐accommodated flow and superplasticity publication-title: Acta Metall. – volume: 23 start-page: 1781 issue: 11 year: 2001 end-page: 1802 article-title: Dynamic recrystallization processes in plagioclase porphyroclasts publication-title: J. Struct. Geol. – volume: 290 start-page: 1564 issue: 5496 year: 2000 end-page: 1567 article-title: High shear strain of olivine aggregates; rheological and seismic consequences publication-title: Science – volume: 27 start-page: 2341 issue: 15 year: 2000 end-page: 2344 article-title: The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine publication-title: Geophys. Res. Lett. – volume: 2 start-page: 1113 issue: 4 year: 1971 end-page: 1127 article-title: On grain boundary sliding and diffusional creep publication-title: Metall. Mater. Trans. B – volume: 296 start-page: 145 issue: 1–2 year: 1998 end-page: 157 article-title: An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots publication-title: Tectonophysics – volume: 83 issue: 3 year: 2003 article-title: Effects of pressure on high‐temperature dislocation creep in olivine publication-title: Philos. Mag. A – volume: 96 start-page: 203 year: 1989 end-page: 229 article-title: The anisotropic structure of the upper mantle in the Pacific publication-title: Geophys. J. Int. – volume: 105 start-page: 21,471 year: 2000 end-page: 21,481 article-title: Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime publication-title: J. Geophys. Res. – volume: 239 start-page: 170 issue: 2 year: 1967 end-page: 180 article-title: Effect of grain size and annealing treatment on steady‐state creep of copper publication-title: Trans. Metall. Soc. AIME – volume: 42 start-page: 2437 year: 1994 end-page: 2443 article-title: Unified approach to grain boundary sliding in creep and superplasticity publication-title: Acta Metall. Mater. – volume: 8 start-page: 83 year: 1971 end-page: 89 article-title: The rate controlling mechanism in superplasticity publication-title: Mater. Sci. Eng. – volume: 100 start-page: 1981 year: 1995 end-page: 2001 article-title: Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime publication-title: J. Geophys. Res. – year: 1982 – volume: 116 year: 2011 article-title: Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle publication-title: J. Geophys. Res. – volume: 48 start-page: 1207 issue: 6 year: 2000 end-page: 1224 article-title: Grain size and temperature dependence of superplastic deformation in an Al‐Mg alloy under isostructural condition publication-title: Acta Mater. – volume: 78 start-page: 420 year: 1986 end-page: 426 article-title: The existence of a thin low‐viscosity layer beneath the lithosphere publication-title: Earth Planet. Sci. Lett. – volume: 316 start-page: 133 issue: 1–2 year: 2000 end-page: 152 article-title: Simple shear deformation of olivine aggregates publication-title: Tectonophysics – volume: 282 start-page: 178 issue: 1–4 year: 2009 end-page: 189 article-title: Implications of grain size evolution on the seismic structure of the oceanic upper mantle publication-title: Earth Planet. Sci. Lett. – volume: 224 start-page: 264 issue: 3 year: 2006 end-page: 276 article-title: Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite publication-title: J. Microsc. – volume: 427 start-page: 115 issue: 1–4 year: 2006 end-page: 132 article-title: Large‐strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine‐magnesiowüstite aggregates publication-title: Tectonophysics – volume: 11 start-page: 5 issue: 1 year: 1984 end-page: 16 article-title: Sintering of olivine and olivine‐basalt aggregates publication-title: Phys. Chem. Miner. – volume: 144 start-page: 93 issue: 1–2 year: 1996 end-page: 108 article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere publication-title: Earth Planet. Sci. Lett. – volume: 155 start-page: 696 issue: 2 year: 2003 end-page: 714 article-title: Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle‐circulation models publication-title: Geophys. J. Int. – volume: 168 start-page: 255 issue: 4 year: 1989 end-page: 273 article-title: Grain growth kinetics in olivine aggregates publication-title: Tectonophysics – volume: 56 start-page: 187 year: 1990 end-page: 194 – year: 1997 – volume: 272 start-page: 501 year: 2008 end-page: 512 article-title: Evolution of olivine lattice preferred orientation during simple shear in the mantle publication-title: Earth Planet. Sci. Lett. – volume: 245 start-page: 291 issue: 1 year: 2005 end-page: 302 article-title: The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates publication-title: Geol. Soc. Spec. Publ. – volume: 22 start-page: 689 issue: 178 year: 1970 end-page: 700 article-title: Grain boundary sliding as a deformation mechanism during creep publication-title: Philos. Mag. – volume: 26 start-page: 639 issue: 4 year: 1978 end-page: 646 article-title: The mechanical properties of a superplastic quasi‐single phase copper alloy publication-title: Acta Metall. – volume: 80 start-page: 2721 issue: 11 year: 2000 end-page: 2735 article-title: Effect of Cd on the boundary sliding behaviour in superplastic Pb‐62 wt Sn alloy publication-title: Philos. Mag. A – volume: 24 start-page: 999 issue: 6–7 year: 2002 end-page: 1011 article-title: Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies publication-title: J. Struct. Geol. – volume: 89 start-page: 7861 year: 1984 end-page: 7876 article-title: The role of water in the deformation of dunite publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America publication-title: J. Geophys. Res. – volume: 80 start-page: 493 year: 1985 end-page: 526 article-title: Anisotropy in the oceanic lithosphere—Theory and observations from the Ngendei seismic refraction experiment in the south‐west Pacific publication-title: Geophys. J. Int. – volume: 243 start-page: 143 issue: 1 year: 2005 end-page: 158 article-title: Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere publication-title: Geol. Soc. Spec. Publ. – volume: 26 start-page: 1693 issue: 9 year: 2004 end-page: 1705 article-title: Composite flow laws for crystalline materials with log‐normally distributed grain size: Theory and application to olivine publication-title: J. Struct. Geol. – volume: 227 start-page: 298 issue: 3 year: 2007 end-page: 308 article-title: Grain size measurement by EBSD in complex hot deformed metal alloy microstructures publication-title: J. Microsc. – volume: 4 issue: 3 year: 2003 article-title: Influence of grain size evolution on convective instability publication-title: Geochem. Geophys. Geosyst. – volume: 91 start-page: 8151 year: 1986 end-page: 8176 article-title: Rheology of synthetic olivine aggregates: Influence of grain size and water publication-title: J. Geophys. Res. – volume: 234 start-page: 119 issue: 1–2 year: 2005 end-page: 134 article-title: The seismological signature of temperature and grain size variations in the upper mantle publication-title: Earth Planet. Sci. Lett. – volume: 105 start-page: 21,457 year: 2000 end-page: 21,469 article-title: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime publication-title: J. Geophys. Res. – volume: 7 start-page: 649 issue: 9 year: 1980 end-page: 652 article-title: Dynamic recrystallization of olivine single crystals during high‐temperature creep publication-title: Geophys. Res. Lett. – volume: 248 start-page: 438 issue: 1–2 year: 2006 end-page: 450 article-title: Grain size sensitive deformation mechanisms in naturally deformed peridotites publication-title: Earth Planet. Sci. Lett. – volume: 44 start-page: 5998 issue: 22 year: 2009 end-page: 6010 article-title: Seventy‐five years of superplasticity: Historic developments and new opportunities publication-title: J. Mater. Sci. – volume: 168 start-page: 173 issue: 1–2 year: 1999 end-page: 186 article-title: Upper mantle tectonics: Three‐dimensional deformation, olivine crystallographic fabrics and seismic properties publication-title: Earth Planet. Sci. Lett. – volume: 106 start-page: 11,017 year: 2001 end-page: 11,030 article-title: Superplastic deformation of ice: Experimental observations publication-title: J. Geophys. Res. – volume: 51 start-page: 79 issue: 1 year: 1985 end-page: 93 article-title: Creep of Fe SiO and CO SiO single crystals in controlled thermodynamic environments publication-title: Philos. Mag. A – volume: 51 start-page: 97 year: 2002 end-page: 120 – volume: 79 start-page: 706 issue: 5 year: 1974 end-page: 711 article-title: Stability field of olivine with respect to oxidation and reduction publication-title: J. Geophys. Res. – volume: 21 start-page: 541 issue: 5 year: 2010 end-page: 554 article-title: Dislocation creep accommodated by grain boundary sliding in dunite publication-title: J. Earth Sci. – volume: 411 start-page: 157 issue: 1–4 year: 2005 end-page: 167 article-title: The misorientation index: Development of a new method for calculating the strength of lattice‐preferred orientation publication-title: Tectonophysics – volume: 8 start-page: 161 year: 1928 end-page: 185 article-title: Mechanik der plastischen Formänderung von Kristallen publication-title: Z. Angew. Math. Mech. – volume: 32 start-page: 103 issue: 1 year: 2001 end-page: 113 article-title: Effect of impurity type on boundary sliding behavior in the superplastic Zn‐22 pct Al alloy publication-title: Metall. Mater. Trans. A – volume: 41 start-page: 597 issue: 3 year: 2006 end-page: 609 article-title: Grain boundary sliding revisited: Developments in sliding over four decades publication-title: J. Mater. Sci. – year: 1980 – volume: 41 start-page: 843 issue: 6 year: 1980 end-page: 869 article-title: Interphase boundary sliding at high temperature in two‐phase ( / )‐brass bicrystals publication-title: Philos. Mag. A – volume: 100 start-page: 15,441 year: 1995 end-page: 15,449 article-title: Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime publication-title: J. Geophys. Res. – year: 2006 – volume: 138 start-page: 83 year: 2003 end-page: 105 – volume: 45 start-page: 275 issue: 2 year: 2004 end-page: 298 article-title: Rheological properties of partially molten lherzolite publication-title: J. Petrol. – volume: 765 start-page: 435 year: 1982 end-page: 451 – volume: 46 start-page: 4571 issue: 13 year: 1998 end-page: 4586 article-title: Effect of impurity content on boundary sliding behavior in the superplastic Zn–22% Al alloy publication-title: Acta Mater. – year: 1970 – volume: 79 start-page: 2045 year: 1974 end-page: 2051 article-title: Low‐stress high‐temperature creep in olivine single crystals publication-title: J. Geophys. Res. – volume: 203 start-page: 261 issue: 4377 year: 1979 end-page: 263 article-title: Activation volume for creep in the upper mantle publication-title: Science – volume: 82 start-page: 5737 year: 1977 end-page: 5753 article-title: Plastic flow of oriented single crystals of olivine: 1. Mechanical data publication-title: J. Geophys. Res. – volume: 8 start-page: 83 year: 1971 ident: 10.1029/2011JB008220:mukh71 article-title: The rate controlling mechanism in superplasticity publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(71)90085-1 – volume: 2 start-page: 1113 issue: 4 year: 1971 ident: 10.1029/2011JB008220:raj71 article-title: On grain boundary sliding and diffusional creep publication-title: Metall. Mater. Trans. B doi: 10.1007/BF02664244 – volume: 51 volume-title: Laboratory constraints on the rheology of the upper mantle year: 2002 ident: 10.1029/2011JB008220:hirt02 – volume: 51 start-page: 55 issue: 1–2 year: 2010 ident: 10.1029/2011JB008220:toy10 article-title: The role of pyroxenites in formation of shear instabilities in the mantle: Evidence from an ultramafic ultramylonite, Twin Sisters Massif, Washington publication-title: J. Petrol. doi: 10.1093/petrology/egp059 – volume: 243 start-page: 143 issue: 1 year: 2005 ident: 10.1029/2011JB008220:drur05 article-title: Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere publication-title: Geol. Soc. Spec. Publ. doi: 10.1144/GSL.SP.2005.243.01.11 – volume-title: Superplasticity in Metals and Ceramics year: 1997 ident: 10.1029/2011JB008220:nieh97 doi: 10.1017/CBO9780511525230 – volume-title: Quantitative Stereology year: 1970 ident: 10.1029/2011JB008220:unde70 – volume: 78 start-page: 420 year: 1986 ident: 10.1029/2011JB008220:crai86 article-title: The existence of a thin low-viscosity layer beneath the lithosphere publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(86)90008-7 – volume-title: Deformation Mechanism Maps year: 1982 ident: 10.1029/2011JB008220:fros82 – volume: 96 start-page: 2441 year: 1991 ident: 10.1029/2011JB008220:bai91 article-title: High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples publication-title: J. Geophys. Res. doi: 10.1029/90JB01723 – volume: 44 start-page: 5998 issue: 22 year: 2009 ident: 10.1029/2011JB008220:lang09 article-title: Seventy-five years of superplasticity: Historic developments and new opportunities publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3780-5 – volume: 22 start-page: 689 issue: 178 year: 1970 ident: 10.1029/2011JB008220:lang70 article-title: Grain boundary sliding as a deformation mechanism during creep publication-title: Philos. Mag. doi: 10.1080/14786437008220939 – volume: 29 start-page: 2030 issue: 21 year: 2002 ident: 10.1029/2011JB008220:dohm02 article-title: Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL015480 – volume: 26 start-page: 1693 issue: 9 year: 2004 ident: 10.1029/2011JB008220:terh04 article-title: Composite flow laws for crystalline materials with log-normally distributed grain size: Theory and application to olivine publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2004.01.008 – volume: 105 start-page: 21457 year: 2000 ident: 10.1029/2011JB008220:mei00a article-title: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime publication-title: J. Geophys. Res. doi: 10.1029/2000JB900179 – volume: 82 start-page: 5737 year: 1977 ident: 10.1029/2011JB008220:durh77 article-title: Plastic flow of oriented single crystals of olivine: 1. Mechanical data publication-title: J. Geophys. Res. doi: 10.1029/JB082i036p05737 – volume: 105 start-page: 21471 year: 2000 ident: 10.1029/2011JB008220:mei00b article-title: Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime publication-title: J. Geophys. Res. doi: 10.1029/2000JB900180 – volume: 46 start-page: 4571 issue: 13 year: 1998 ident: 10.1029/2011JB008220:duon98 article-title: Effect of impurity content on boundary sliding behavior in the superplastic Zn–22% Al alloy publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00128-1 – volume: 83 issue: 3 year: 2003 ident: 10.1029/2011JB008220:kara03 article-title: Effects of pressure on high-temperature dislocation creep in olivine publication-title: Philos. Mag. A – volume: 80 start-page: 493 year: 1985 ident: 10.1029/2011JB008220:shea85 article-title: Anisotropy in the oceanic lithosphere—Theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1985.tb05105.x – volume: 138 volume-title: Rheology of the mantle wedge year: 2003 ident: 10.1029/2011JB008220:hirt03 – volume-title: Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals year: 1985 ident: 10.1029/2011JB008220:poir85 doi: 10.1017/CBO9780511564451 – volume: 7 start-page: 649 issue: 9 year: 1980 ident: 10.1029/2011JB008220:kara80 article-title: Dynamic recrystallization of olivine single crystals during high-temperature creep publication-title: Geophys. Res. Lett. doi: 10.1029/GL007i009p00649 – volume: 4 start-page: 1029 issue: 3 year: 2003 ident: 10.1029/2011JB008220:hall03 article-title: Influence of grain size evolution on convective instability publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2002GC000308 – volume-title: Optical Microscopy of Metals year: 1970 ident: 10.1029/2011JB008220:gifk70 – volume: 7 start-page: 1225 issue: 8 year: 1976 ident: 10.1029/2011JB008220:gifk76 article-title: Grain-boundary sliding and its accommodation during creep and superplasticity publication-title: Metall. Trans. A doi: 10.1007/BF02656607 – volume: 765 volume-title: An evaluation of deformation models for grain boundary sliding year: 1982 ident: 10.1029/2011JB008220:lang82 – volume: 21 start-page: 541 issue: 5 year: 2010 ident: 10.1029/2011JB008220:wang10 article-title: Dislocation creep accommodated by grain boundary sliding in dunite publication-title: J. Earth Sci. doi: 10.1007/s12583-010-0113-1 – volume: 116 start-page: B05201 year: 2011 ident: 10.1029/2011JB008220:keef11 article-title: Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle publication-title: J. Geophys. Res. doi: 10.1029/2010JB007748 – volume: 91 start-page: 8151 year: 1986 ident: 10.1029/2011JB008220:kara86 article-title: Rheology of synthetic olivine aggregates: Influence of grain size and water publication-title: J. Geophys. Res. doi: 10.1029/JB091iB08p08151 – volume: 290 start-page: 1564 issue: 5496 year: 2000 ident: 10.1029/2011JB008220:byst00 article-title: High shear strain of olivine aggregates; rheological and seismic consequences publication-title: Science doi: 10.1126/science.290.5496.1564 – volume: 11 start-page: 5 issue: 1 year: 1984 ident: 10.1029/2011JB008220:coop84 article-title: Sintering of olivine and olivine-basalt aggregates publication-title: Phys. Chem. Miner. doi: 10.1007/BF00309372 – year: 2006 ident: 10.1029/2011JB008220:kell06 article-title: Dynamic recrystallization and grain growth in olivine rocks – volume: 26 start-page: 639 issue: 4 year: 1978 ident: 10.1029/2011JB008220:shei78 article-title: The mechanical properties of a superplastic quasi-single phase copper alloy publication-title: Acta Metall. doi: 10.1016/0001-6160(78)90116-5 – volume: 96 start-page: 203 year: 1989 ident: 10.1029/2011JB008220:nish89 article-title: The anisotropic structure of the upper mantle in the Pacific publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1989.tb04446.x – volume: 272 start-page: 501 year: 2008 ident: 10.1029/2011JB008220:warr08 article-title: Evolution of olivine lattice preferred orientation during simple shear in the mantle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2008.03.063 – volume: 51 start-page: 79 issue: 1 year: 1985 ident: 10.1029/2011JB008220:rico85 article-title: Creep of Fe2SiO4 and CO2SiO4 single crystals in controlled thermodynamic environments publication-title: Philos. Mag. A doi: 10.1080/01418618508245271 – volume: 32 start-page: 103 issue: 1 year: 2001 ident: 10.1029/2011JB008220:duon01 article-title: Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-001-0106-x – volume: 42 start-page: 2437 year: 1994 ident: 10.1029/2011JB008220:lang94 article-title: Unified approach to grain boundary sliding in creep and superplasticity publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90322-0 – volume: 21 start-page: 149 issue: 2 year: 1973 ident: 10.1029/2011JB008220:ashb73 article-title: Diffusion-accommodated flow and superplasticity publication-title: Acta Metall. doi: 10.1016/0001-6160(73)90057-6 – volume: 203 start-page: 261 issue: 4377 year: 1979 ident: 10.1029/2011JB008220:ross79 article-title: Activation volume for creep in the upper mantle publication-title: Science doi: 10.1126/science.203.4377.261 – volume: 41 start-page: 843 issue: 6 year: 1980 ident: 10.1029/2011JB008220:eber80 article-title: Interphase boundary sliding at high temperature in two-phase (α/β)-brass bicrystals publication-title: Philos. Mag. A doi: 10.1080/01418618008243892 – volume: 56 volume-title: Rock deformation experimentation, year: 1990 ident: 10.1029/2011JB008220:pate90 – volume: 8 start-page: 161 year: 1928 ident: 10.1029/2011JB008220:vonm28 article-title: Mechanik der plastischen Formänderung von Kristallen publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19280080302 – volume: 100 start-page: 1981 year: 1995 ident: 10.1029/2011JB008220:hirt95b article-title: Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime publication-title: J. Geophys. Res. doi: 10.1029/94JB02128 – volume: 24 start-page: 999 issue: 6–7 year: 2002 ident: 10.1029/2011JB008220:prio02 article-title: Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies publication-title: J. Struct. Geol. doi: 10.1016/S0191-8141(01)00087-6 – volume: 445 start-page: 318 issue: 3–4 year: 2007 ident: 10.1029/2011JB008220:prec07 article-title: Strain localisation in the subcontinental mantle—A ductile alternative to the brittle mantle publication-title: Tectonophysics doi: 10.1016/j.tecto.2007.09.002 – volume: 106 start-page: 11017 year: 2001 ident: 10.1029/2011JB008220:gold01 article-title: Superplastic deformation of ice: Experimental observations publication-title: J. Geophys. Res. doi: 10.1029/2000JB900336 – volume: 248 start-page: 438 issue: 1–2 year: 2006 ident: 10.1029/2011JB008220:warr06 article-title: Grain size sensitive deformation mechanisms in naturally deformed peridotites publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.06.006 – volume: 224 start-page: 264 issue: 3 year: 2006 ident: 10.1029/2011JB008220:valc06 article-title: Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01698.x – volume: 144 start-page: 93 issue: 1–2 year: 1996 ident: 10.1029/2011JB008220:hirt96 article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(96)00154-9 – volume: 41 start-page: 597 issue: 3 year: 2006 ident: 10.1029/2011JB008220:lang06 article-title: Grain boundary sliding revisited: Developments in sliding over four decades publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-6476-0 – volume: 20 start-page: 695 issue: 6 year: 1998 ident: 10.1029/2011JB008220:heil98 article-title: The influence of three-dimensional grain size distributions on the rheology of polyphase rocks publication-title: J. Struct. Geol. doi: 10.1016/S0191-8141(98)00010-8 – volume: 79 start-page: 706 issue: 5 year: 1974 ident: 10.1029/2011JB008220:nits74 article-title: Stability field of olivine with respect to oxidation and reduction publication-title: J. Geophys. Res. doi: 10.1029/JB079i005p00706 – volume: 100 start-page: 15441 year: 1995 ident: 10.1029/2011JB008220:hirt95a article-title: Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime publication-title: J. Geophys. Res. doi: 10.1029/95JB01292 – volume: 234 start-page: 119 issue: 1–2 year: 2005 ident: 10.1029/2011JB008220:faul05 article-title: The seismological signature of temperature and grain size variations in the upper mantle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.02.008 – volume: 296 start-page: 145 issue: 1–2 year: 1998 ident: 10.1029/2011JB008220:isma98 article-title: An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots publication-title: Tectonophysics doi: 10.1016/S0040-1951(98)00141-3 – volume: 239 start-page: 170 issue: 2 year: 1967 ident: 10.1029/2011JB008220:barr67 article-title: Effect of grain size and annealing treatment on steady-state creep of copper publication-title: Trans. Metall. Soc. AIME – volume: 282 start-page: 178 issue: 1–4 year: 2009 ident: 10.1029/2011JB008220:behn09 article-title: Implications of grain size evolution on the seismic structure of the oceanic upper mantle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2009.03.014 – volume: 155 start-page: 696 issue: 2 year: 2003 ident: 10.1029/2011JB008220:beck03 article-title: Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2003.02085.x – volume: 27 start-page: 2341 issue: 15 year: 2000 ident: 10.1029/2011JB008220:grib00 article-title: The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL011443 – volume: 168 start-page: 255 issue: 4 year: 1989 ident: 10.1029/2011JB008220:kara89 article-title: Grain growth kinetics in olivine aggregates publication-title: Tectonophysics doi: 10.1016/0040-1951(89)90221-7 – volume-title: Superplasticity year: 1980 ident: 10.1029/2011JB008220:padm80 doi: 10.1007/978-3-642-81456-3 – volume: 427 start-page: 115 issue: 1–4 year: 2006 ident: 10.1029/2011JB008220:byst06 article-title: Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates publication-title: Tectonophysics doi: 10.1016/j.tecto.2006.05.025 – volume: 79 start-page: 2045 year: 1974 ident: 10.1029/2011JB008220:kohl74 article-title: Low-stress high-temperature creep in olivine single crystals publication-title: J. Geophys. Res. doi: 10.1029/JB079i014p02045 – volume: 168 start-page: 173 issue: 1–2 year: 1999 ident: 10.1029/2011JB008220:tomm99 article-title: Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(99)00046-1 – volume: 316 start-page: 133 issue: 1–2 year: 2000 ident: 10.1029/2011JB008220:zhan00 article-title: Simple shear deformation of olivine aggregates publication-title: Tectonophysics doi: 10.1016/S0040-1951(99)00229-2 – volume: 89 start-page: 7861 year: 1984 ident: 10.1029/2011JB008220:chop84 article-title: The role of water in the deformation of dunite publication-title: J. Geophys. Res. doi: 10.1029/JB089iB09p07861 – volume: 23 start-page: 1781 issue: 11 year: 2001 ident: 10.1029/2011JB008220:krus01 article-title: Dynamic recrystallization processes in plagioclase porphyroclasts publication-title: J. Struct. Geol. doi: 10.1016/S0191-8141(01)00030-X – volume: 227 start-page: 298 issue: 3 year: 2007 ident: 10.1029/2011JB008220:ming07 article-title: Grain size measurement by EBSD in complex hot deformed metal alloy microstructures publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2007.01814.x – volume: 411 start-page: 157 issue: 1–4 year: 2005 ident: 10.1029/2011JB008220:skem05 article-title: The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation publication-title: Tectonophysics doi: 10.1016/j.tecto.2005.08.023 – volume: 80 start-page: 2721 issue: 11 year: 2000 ident: 10.1029/2011JB008220:duon00 article-title: Effect of Cd on the boundary sliding behaviour in superplastic Pb-62 wt Sn alloy publication-title: Philos. Mag. A doi: 10.1080/01418610008216501 – volume: 245 start-page: 291 issue: 1 year: 2005 ident: 10.1029/2011JB008220:bruh05 article-title: The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates publication-title: Geol. Soc. Spec. Publ. doi: 10.1144/GSL.SP.2005.245.01.14 – volume: 48 start-page: 1207 issue: 6 year: 2000 ident: 10.1029/2011JB008220:bae00 article-title: Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00445-0 – volume: 45 start-page: 275 issue: 2 year: 2004 ident: 10.1029/2011JB008220:zimm04 article-title: Rheological properties of partially molten lherzolite publication-title: J. Petrol. doi: 10.1093/petrology/egg089 – volume: 113 start-page: B02303 year: 2008 ident: 10.1029/2011JB008220:nett08 article-title: Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America publication-title: J. Geophys. Res. doi: 10.1029/2006JB004819 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816914 |
Score | 2.4866064 |
Snippet | We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the... We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anisotropy Continental dynamics crystallographic-preferred orientation Deformation dislocation creep electron backscatter diffraction Flow Geology Geophysics grain boundary sliding mantle viscosity Materials creep Materials science Microstructure Paterson apparatus Plate tectonics Rheology Upper mantle |
Title | Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation |
URI | https://api.istex.fr/ark:/67375/WNG-R7GBCFKP-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JB008220 https://www.proquest.com/docview/881422745 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH5iVJN2mRhsWseGfBi7gIUTO2nMZVorElS0CpWhcbMcJ5GqZQlL2KD_Hj_jVnAYNyuyHMnv2e_z8_P3AXwOA4MXjYLaRR1SkTBB85wVVOqQV_Z4oFmMb4e_z-LTSzG9iq58bU7vyypXe6LbqIvWYI78KEkwWzES0dfrPxRFo_By1StovIBBYAMNOniSZusUC2pKSMfuHdoGlTzgvvSdhfIII9907BjP2ZOgNMD5vXuCOB_jVhd40i147REj-fZg4jewUTbb8DJzirxL23I1nKbfgTpDuQeSO6GkbkksgsTAROy3C92Qie7qtidtvfhnkeUxSev2ltT6liD792-siumJbgpiuqVFjLXnsl4gRySS0XZlQdpu4Z8qNW_hMj35MTmlXkyBaqQoo8i7xSrpyHzsqVRYHFPFPIjykZZlHCIrPWeF0BaPMFlqzQJTRVyWotIiNoHh72CzaZvyPZC44EgCVJkoqoQ2Mkk40ubpuMBnuQkfwsFqNpXxTOMoeFErd-MdSvV47oewv-59_cCw8Z9-X5xh1p109wur0kaR-jnL1HyUjSfp2blKh7C7spzyC7JXa_cZwqEz5rP_UtNsPg7iJAo_PDvYLrxa5ZhZ8BE2b7q_5ScLUm7yPeeKezAYn8zO5_co-d_y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQheEJ-iGx9-YLxANMd20hgJIVpIunar0NjE3ozjJFK1kIx0UPpH8T_ic5Nqe2Bve7Mi6yL5zr7z-e73A3jFfIMPjcKzm5p5IqLCS1OaeVIzXtjrgaYh9g4fTsPRiRifBqcb8LfrhcGyyu5MdAd1VhvMke9FEWYr-iL4cP7TQ9IofFztGDRWVjHJlwt7Y5u_3_9k1bvLWPz5eDjyWlIBTyNUl4f4U7SQDtTG3s6E9edFyP0g7WuZhwzR2TnNhLZ-mcpca-qbIuAyF4UWofENt3JvwZaVJbGCMIqTdUoHOSykQxNnduBJ7vO21J4yuYeedjxwCOv0ihPcQn3-uRLhXo6TnaOL78O9NkIlH1cm9QA28uoh3E4cA_DSjlzNqJk_gjJBegmSOmKmZklsxIqOkNhvX3VFhrop6zmpy9lvG8m-I3FZL0ipFwTRxn9gFc6c6CojplnaCLVssbNniEmJ4LdNnpG6mbWtUdVjOLmRdX4Cm1Vd5U-BhBlH0KHCBEEhtJFRxBGmT4cZtgFHvAdvutVUpkU2R4KNUrkXdibV5bXvwe569vkK0eM_8147xawn6eYMq-D6gfo2TdRRPxkM48kXFfdgp9Ocag-AuVqbaw_eOmVe-y81To4GfhgFbPtaYS_hzuj48EAd7E8nO3C3y29T_xlsXjS_8uc2QLpIXzizJPD9pvfBP6iSF9U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxFNsy8MHygWsdWznYSSE2C1JuwurqlC1N-M4ibQiTUpSWPan8e_weJNVe6C33qzIciTPjGc8nvk-hF4xz8BDoyDWqBkRERUkTWlGpGa8sNcDTQPoHf4yC_aPxeTUP91Af_teGCir7M9Ed1BntYEc-TCKIFsRCn9YdFURh3vxh_OfBAik4KG1Z9NYacg0Xy7s7a19f7BnRb3LWPzp23ifdAQDRANsFwEsKlpIB3Bjb2rC-vYi4J6fhlrmAQOkdk4zoa2PpjLXmnqm8LnMRaFFYDzD7bq30FbIIwrkCVGcrNM7wGchHbI4swMiuce7snvK5BC87mTk0NbpFYe4BbL9cyXavRwzO6cX30f3umgVf1yp1wO0kVcP0e3EsQEv7cjVj5r2ESoToJrAqSNpapbYRq_gFLH99lVXeKybsm5xXc5_26j2HY7LeoFLvcCAPH4GFTkt1lWGTbO00WrZ4WjPAZ8SgHCbPMN1M-_apKrH6PhG9vkJ2qzqKn-KcJBxACAqjO8XQhsZRRwg-3SQQUtwxAfoTb-bynQo50C2USr32s6kurz3A7S7nn2-Qvf4z7zXTjDrSbr5ARVxoa9OZok6CpPROJ4eqniAdnrJqe4waNVadQforRPmtf9Sk-Ro5AWRz7avXewlumMtQH0-mE130N0-1U29Z2jzovmVP7ex0kX6wmklRt9v2gz-AffSHAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+sliding+in+San+Carlos+olivine%3A+Flow+law+parameters+and+crystallographic-preferred+orientation&rft.jtitle=Journal+of+Geophysical+Research&rft.au=Hansen%2C+L.+N.&rft.au=Zimmerman%2C+M.+E.&rft.au=Kohlstedt%2C+D.+L.&rft.date=2011-08-01&rft.issn=0148-0227&rft.volume=116&rft.issue=B8&rft_id=info:doi/10.1029%2F2011JB008220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2011JB008220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |