Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation

We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation‐accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stre...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Vol. 116; no. B8
Main Authors Hansen, L. N., Zimmerman, M. E., Kohlstedt, D. L.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.08.2011
Subjects
Online AccessGet full text
ISSN0148-0227
2169-9313
2156-2202
2169-9356
DOI10.1029/2011JB008220

Cover

Loading…
Abstract We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation‐accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stress exponent and the activation energy. Grain boundary maps, created with electron backscatter diffraction data, were used to quantify grain size distributions for each sample. Inversion of the resulting data produced the following flow law for GBS: GBS = 104.8 ± 0.8 (σ2.9 ± 0.3/d0.7 ± 0.1) exp[(−445 ± 20 kJ mol−1)/RT], with σ, d, and GBS in units of MPa, μm, and s−1, respectively. Although relatively weak, crystallographic‐preferred orientations (CPOs) have [010] maxima parallel to the compression direction along with [100] and [001] girdles perpendicular to the compression direction. CPOs and subgrain boundary misorientation axes suggest that the (010)[100] slip system contributes significantly to deformation. We propose that these experimental results are best modeled by a deformation mechanism in which strain is accomplished primarily through grain boundary sliding accommodated by the motion of dislocations. Extrapolation of our flow laws to mantle conditions suggests that GBS is likely to be the dominant deformation mechanism in both lithospheric shear zones and asthenospheric flow, and therefore strong upper mantle seismic anisotropy can not be attributed solely to the dominance of dislocation creep. Key Points We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed crystallographic fabrics agree with patterns of seismic anisotropy
AbstractList We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed crystallographic fabrics agree with patterns of seismic anisotropy We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation-accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stress exponent and the activation energy. Grain boundary maps, created with electron backscatter diffraction data, were used to quantify grain size distributions for each sample. Inversion of the resulting data produced the following flow law for GBS: $\dot{\varepsilon}$GBS = 104.8 ± 0.8 (2.9 ± 0.3/d0.7 ± 0.1) exp[(445 ± 20 kJ mol1)/RT], with , d, and $\dot{\varepsilon}$GBS in units of MPa, m, and s1, respectively. Although relatively weak, crystallographic-preferred orientations (CPOs) have [010] maxima parallel to the compression direction along with [100] and [001] girdles perpendicular to the compression direction. CPOs and subgrain boundary misorientation axes suggest that the (010)[100] slip system contributes significantly to deformation. We propose that these experimental results are best modeled by a deformation mechanism in which strain is accomplished primarily through grain boundary sliding accommodated by the motion of dislocations. Extrapolation of our flow laws to mantle conditions suggests that GBS is likely to be the dominant deformation mechanism in both lithospheric shear zones and asthenospheric flow, and therefore strong upper mantle seismic anisotropy can not be attributed solely to the dominance of dislocation creep.
We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the dislocation‐accommodated grain boundary sliding regime (GBS). Each experiment included load and temperature steps to determine both the stress exponent and the activation energy. Grain boundary maps, created with electron backscatter diffraction data, were used to quantify grain size distributions for each sample. Inversion of the resulting data produced the following flow law for GBS: GBS = 104.8 ± 0.8 (σ2.9 ± 0.3/d0.7 ± 0.1) exp[(−445 ± 20 kJ mol−1)/RT], with σ, d, and GBS in units of MPa, μm, and s−1, respectively. Although relatively weak, crystallographic‐preferred orientations (CPOs) have [010] maxima parallel to the compression direction along with [100] and [001] girdles perpendicular to the compression direction. CPOs and subgrain boundary misorientation axes suggest that the (010)[100] slip system contributes significantly to deformation. We propose that these experimental results are best modeled by a deformation mechanism in which strain is accomplished primarily through grain boundary sliding accommodated by the motion of dislocations. Extrapolation of our flow laws to mantle conditions suggests that GBS is likely to be the dominant deformation mechanism in both lithospheric shear zones and asthenospheric flow, and therefore strong upper mantle seismic anisotropy can not be attributed solely to the dominance of dislocation creep. Key Points We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed crystallographic fabrics agree with patterns of seismic anisotropy
ArticleNumber B08201
Author Kohlstedt, D. L.
Hansen, L. N.
Zimmerman, M. E.
Author_xml – sequence: 1
  givenname: L. N.
  surname: Hansen
  fullname: Hansen, L. N.
  email: hanse983@umn.edu
  organization: Department of Earth Science, University of Minnesota-Twin Cities, Minnesota, Minneapolis, USA
– sequence: 2
  givenname: M. E.
  surname: Zimmerman
  fullname: Zimmerman, M. E.
  organization: Department of Earth Science, University of Minnesota-Twin Cities, Minnesota, Minneapolis, USA
– sequence: 3
  givenname: D. L.
  surname: Kohlstedt
  fullname: Kohlstedt, D. L.
  organization: Department of Earth Science, University of Minnesota-Twin Cities, Minnesota, Minneapolis, USA
BookMark eNp9kE9vEzEQxS2USoS0Nz6AxZkt_r-73EhElpaqoALiaE12vcHBtRd70zTfvkaLKoREfRlr9N7MvN8LNPPBG4ReUnJOCavfMELp5ZKQijHyDM0ZlarIXzZDc0JFVRDGyufoLKUdyU9IJQidI9dEsB5vwt53EI84OdtZv8W59wU8XkF0IeHg7J315i1eu3DADg54gAi3ZjQxYfAdbuMxjeBc2EYYfti2GKLpTYymwyFa40cYbfCn6KQHl8zZn7pA39bvv64-FFefmovVu6sCBOesqJXgpK9LmsPwigtJZa84lZsSaqNyJiE56QRUQpHaABDa9pLXRvQgVEtbvkCvprlDDL_2Jo16F_bR55W6qqjIIPKEBXo9idoYUsrn6iHa28xAU6J_E9V_E81y9o-8tVOqMRN0_zPxyXSwzhyfXKAvm5slVZVk2VVMLptGc__ogvhTq5KXUn-_bvRN2SxX64-f9Zo_ALs1l1Y
CitedBy_id crossref_primary_10_1016_j_jsg_2014_12_006
crossref_primary_10_1002_ggge_20184
crossref_primary_10_1029_2020JB019415
crossref_primary_10_1029_2020JB019416
crossref_primary_10_1016_j_pepi_2013_11_012
crossref_primary_10_1016_j_lithos_2015_11_012
crossref_primary_10_1016_j_pepi_2013_11_011
crossref_primary_10_1073_pnas_1915140117
crossref_primary_10_1007_s00269_017_0935_9
crossref_primary_10_1016_j_epsl_2019_115713
crossref_primary_10_1017_jfm_2023_1003
crossref_primary_10_1016_j_pepi_2020_106639
crossref_primary_10_1016_j_jsg_2016_04_011
crossref_primary_10_1002_2015JB012513
crossref_primary_10_1016_j_jsg_2019_04_015
crossref_primary_10_1016_j_epsl_2016_09_029
crossref_primary_10_1144_M49_5
crossref_primary_10_1016_j_earscirev_2020_103185
crossref_primary_10_5194_se_13_583_2022
crossref_primary_10_1016_j_tecto_2012_09_001
crossref_primary_10_1073_pnas_1608269113
crossref_primary_10_1029_2020JB019375
crossref_primary_10_1029_2023AV000972
crossref_primary_10_3390_min11121351
crossref_primary_10_1007_s00410_017_1375_8
crossref_primary_10_1016_j_tecto_2017_04_017
crossref_primary_10_1002_2017JB014333
crossref_primary_10_1098_rsta_2017_0417
crossref_primary_10_1016_j_ultramic_2016_06_002
crossref_primary_10_5194_tc_14_2429_2020
crossref_primary_10_1016_j_tecto_2024_230333
crossref_primary_10_1029_2018JB015836
crossref_primary_10_1002_2015JB012096
crossref_primary_10_1016_j_tecto_2017_08_038
crossref_primary_10_1016_j_epsl_2016_06_054
crossref_primary_10_1016_j_epsl_2018_10_049
crossref_primary_10_1016_j_epsl_2021_117360
crossref_primary_10_1016_j_tecto_2017_10_008
crossref_primary_10_1002_2016GC006361
crossref_primary_10_1016_j_jsg_2016_09_002
crossref_primary_10_1073_pnas_2219076120
crossref_primary_10_3390_min10040345
crossref_primary_10_3390_min11060600
crossref_primary_10_1016_j_tecto_2023_229722
crossref_primary_10_1016_j_epsl_2012_09_030
crossref_primary_10_1144_M56_2020_19
crossref_primary_10_1038_s41467_021_23633_8
crossref_primary_10_1038_s41561_022_00964_9
crossref_primary_10_1002_adem_202300470
crossref_primary_10_1016_j_pepi_2012_05_001
crossref_primary_10_1016_j_lithos_2017_05_002
crossref_primary_10_2139_ssrn_4150594
crossref_primary_10_2138_am_2019_6629
crossref_primary_10_5194_se_8_751_2017
crossref_primary_10_1016_j_tecto_2015_12_003
crossref_primary_10_5194_se_12_2369_2021
crossref_primary_10_1016_j_epsl_2016_06_025
crossref_primary_10_1016_j_tecto_2012_10_037
crossref_primary_10_1029_2018JB016912
crossref_primary_10_1002_2017JB014847
crossref_primary_10_1002_2013JB010473
crossref_primary_10_1002_2015GC006102
crossref_primary_10_1002_2014JB011782
crossref_primary_10_1016_j_jsg_2019_103874
crossref_primary_10_1016_j_epsl_2015_02_013
crossref_primary_10_3390_min11050493
crossref_primary_10_1016_j_jsg_2023_104861
crossref_primary_10_1016_j_crte_2018_10_001
crossref_primary_10_1016_j_epsl_2014_03_052
crossref_primary_10_1029_2022GC010542
crossref_primary_10_1029_2019JB018071
crossref_primary_10_1029_2023GC011212
crossref_primary_10_1016_j_gete_2023_100465
crossref_primary_10_1016_j_epsl_2017_05_016
crossref_primary_10_1029_2018JB015818
crossref_primary_10_1016_j_jsg_2019_103891
crossref_primary_10_1029_2020JB020273
crossref_primary_10_1016_j_tecto_2014_04_018
crossref_primary_10_1029_2018JB016903
crossref_primary_10_1016_j_pepi_2016_08_004
crossref_primary_10_1016_j_epsl_2019_04_019
crossref_primary_10_1016_j_tecto_2014_12_008
crossref_primary_10_1186_s40645_020_00388_2
crossref_primary_10_1002_2014GC005692
crossref_primary_10_1029_2019GC008289
crossref_primary_10_1002_2015JB012628
crossref_primary_10_1016_j_tecto_2013_11_029
crossref_primary_10_3390_min11101036
crossref_primary_10_1016_j_epsl_2013_11_009
crossref_primary_10_1016_j_epsl_2024_118767
crossref_primary_10_1029_2020JB020323
crossref_primary_10_1002_2013JB010619
crossref_primary_10_1130_G48532_1
crossref_primary_10_1016_j_jsg_2021_104446
crossref_primary_10_1029_2018GC007834
crossref_primary_10_1016_j_jsg_2017_11_008
crossref_primary_10_1029_2018JB016736
crossref_primary_10_1002_jgrb_50284
crossref_primary_10_5575_geosoc_2017_0006
crossref_primary_10_1016_j_msea_2025_148175
crossref_primary_10_22226_2410_3535_2022_1_5_14
crossref_primary_10_5194_ejm_33_249_2021
crossref_primary_10_1016_j_epsl_2016_04_008
crossref_primary_10_1029_2019JB017968
crossref_primary_10_1029_2019GC008399
crossref_primary_10_1016_j_epsl_2013_11_037
crossref_primary_10_1002_2014JB011845
crossref_primary_10_1029_2023GC011096
crossref_primary_10_1002_2016JB013425
crossref_primary_10_1126_sciadv_1701338
crossref_primary_10_1029_2021JB021824
crossref_primary_10_1038_s41467_021_26996_0
crossref_primary_10_1002_2015GL065837
crossref_primary_10_1016_j_jog_2017_05_002
crossref_primary_10_1029_2020JB021302
crossref_primary_10_1007_s00410_023_02071_3
crossref_primary_10_1016_j_epsl_2018_03_027
crossref_primary_10_1029_2022AV000751
crossref_primary_10_1029_2024JB029812
crossref_primary_10_1029_2018JB016728
crossref_primary_10_5194_se_8_1211_2017
crossref_primary_10_1126_sciadv_1500360
crossref_primary_10_1016_j_jsg_2019_103871
crossref_primary_10_1016_j_tecto_2021_229087
crossref_primary_10_1029_2020JB019629
crossref_primary_10_2138_am_2019_6892
crossref_primary_10_1016_j_pepi_2012_04_006
crossref_primary_10_1016_j_lithos_2020_105572
crossref_primary_10_1029_2023JB027699
crossref_primary_10_1016_j_matchar_2020_110759
crossref_primary_10_1002_2017GC007309
crossref_primary_10_1016_j_pepi_2017_07_011
crossref_primary_10_1016_j_tecto_2018_07_026
crossref_primary_10_1029_2022JB024683
crossref_primary_10_1073_pnas_2203448120
crossref_primary_10_1016_j_jsg_2022_104708
crossref_primary_10_1016_j_jsg_2014_08_001
crossref_primary_10_1016_j_epsl_2012_04_016
crossref_primary_10_2138_gselements_19_3_151
crossref_primary_10_1007_s00410_018_1468_z
crossref_primary_10_1029_2018TC005447
crossref_primary_10_1016_j_pepi_2018_12_004
crossref_primary_10_1016_j_matchemphys_2022_127215
crossref_primary_10_1016_j_epsl_2018_10_017
crossref_primary_10_1093_gji_ggac428
crossref_primary_10_1029_2018JB016558
crossref_primary_10_1016_j_pepi_2018_03_002
crossref_primary_10_1002_2014JB011584
crossref_primary_10_1029_2017JB015133
crossref_primary_10_1002_2015JB012134
crossref_primary_10_1029_2022JB025723
crossref_primary_10_1038_nature11671
crossref_primary_10_1016_j_pepi_2014_12_002
crossref_primary_10_1029_2022JB025724
crossref_primary_10_1016_j_jsg_2018_06_006
crossref_primary_10_1016_j_jsg_2018_06_005
crossref_primary_10_1016_j_epsl_2016_09_002
crossref_primary_10_1029_2012JB009305
crossref_primary_10_5194_ejm_33_39_2021
crossref_primary_10_2138_am_2019_6666
crossref_primary_10_1016_j_epsl_2013_06_017
crossref_primary_10_1029_2018GC007842
crossref_primary_10_1029_2020JB019888
crossref_primary_10_2138_am_2018_6174
crossref_primary_10_1029_2020JB020196
crossref_primary_10_1073_pnas_1218335110
crossref_primary_10_1029_2019JB019242
crossref_primary_10_1029_2018JB015853
crossref_primary_10_1093_petrology_egv053
crossref_primary_10_1029_2018JB015613
crossref_primary_10_1016_j_jsg_2013_07_012
crossref_primary_10_1029_2022JB024069
crossref_primary_10_1029_2020GL090056
crossref_primary_10_1002_2015JB012302
crossref_primary_10_1016_j_lithos_2016_07_038
crossref_primary_10_1016_j_tecto_2024_230508
crossref_primary_10_1029_2019GL083529
crossref_primary_10_1016_j_epsl_2020_116349
crossref_primary_10_5575_geosoc_2017_0019
crossref_primary_10_1016_j_jsg_2022_104658
crossref_primary_10_1029_2020JB020626
crossref_primary_10_1080_14786435_2016_1177232
crossref_primary_10_1186_s40623_021_01543_9
Cites_doi 10.1016/0025-5416(71)90085-1
10.1007/BF02664244
10.1093/petrology/egp059
10.1144/GSL.SP.2005.243.01.11
10.1017/CBO9780511525230
10.1016/0012-821X(86)90008-7
10.1029/90JB01723
10.1007/s10853-009-3780-5
10.1080/14786437008220939
10.1029/2002GL015480
10.1016/j.jsg.2004.01.008
10.1029/2000JB900179
10.1029/JB082i036p05737
10.1029/2000JB900180
10.1016/S1359-6454(98)00128-1
10.1111/j.1365-246X.1985.tb05105.x
10.1017/CBO9780511564451
10.1029/GL007i009p00649
10.1029/2002GC000308
10.1007/BF02656607
10.1007/s12583-010-0113-1
10.1029/2010JB007748
10.1029/JB091iB08p08151
10.1126/science.290.5496.1564
10.1007/BF00309372
10.1016/0001-6160(78)90116-5
10.1111/j.1365-246X.1989.tb04446.x
10.1016/j.epsl.2008.03.063
10.1080/01418618508245271
10.1007/s11661-001-0106-x
10.1016/0956-7151(94)90322-0
10.1016/0001-6160(73)90057-6
10.1126/science.203.4377.261
10.1080/01418618008243892
10.1002/zamm.19280080302
10.1029/94JB02128
10.1016/S0191-8141(01)00087-6
10.1016/j.tecto.2007.09.002
10.1029/2000JB900336
10.1016/j.epsl.2006.06.006
10.1111/j.1365-2818.2006.01698.x
10.1016/0012-821X(96)00154-9
10.1007/s10853-006-6476-0
10.1016/S0191-8141(98)00010-8
10.1029/JB079i005p00706
10.1029/95JB01292
10.1016/j.epsl.2005.02.008
10.1016/S0040-1951(98)00141-3
10.1016/j.epsl.2009.03.014
10.1046/j.1365-246X.2003.02085.x
10.1029/2000GL011443
10.1016/0040-1951(89)90221-7
10.1007/978-3-642-81456-3
10.1016/j.tecto.2006.05.025
10.1029/JB079i014p02045
10.1016/S0012-821X(99)00046-1
10.1016/S0040-1951(99)00229-2
10.1029/JB089iB09p07861
10.1016/S0191-8141(01)00030-X
10.1111/j.1365-2818.2007.01814.x
10.1016/j.tecto.2005.08.023
10.1080/01418610008216501
10.1144/GSL.SP.2005.245.01.14
10.1016/S1359-6454(99)00445-0
10.1093/petrology/egg089
10.1029/2006JB004819
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by American Geophysical Union
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
3V.
7ST
7TG
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2011JB008220
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9356
EndPage n/a
ExternalDocumentID 2419010301
10_1029_2011JB008220
JGRB16852
ark_67375_WNG_R7GBCFKP_F
Genre article
Feature
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
05W
0R~
33P
3V.
52M
702
7ST
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
RJQFR
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-a4332-96430f9710083834515f6315b7a9e62204530d4a84609eaa01cf539e4fa46c1c3
IEDL.DBID 8FG
ISSN 0148-0227
2169-9313
IngestDate Fri Jul 25 10:34:17 EDT 2025
Tue Jul 01 02:42:14 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Wed Jan 22 17:10:29 EST 2025
Wed Oct 30 09:58:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue B8
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4332-96430f9710083834515f6315b7a9e62204530d4a84609eaa01cf539e4fa46c1c3
Notes Tab-delimited Table 1.Tab-delimited Table A1.Tab-delimited Table A2.
ark:/67375/WNG-R7GBCFKP-F
ArticleID:2011JB008220
istex:CD19A40C72162BD6687A8AF131DB747B2297B2B2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 881422745
PQPubID 54731
PageCount 16
ParticipantIDs proquest_journals_881422745
crossref_primary_10_1029_2011JB008220
crossref_citationtrail_10_1029_2011JB008220
wiley_primary_10_1029_2011JB008220_JGRB16852
istex_primary_ark_67375_WNG_R7GBCFKP_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Duong, K., and F. Mohamed (2001), Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy, Metall. Mater. Trans. A, 32(1), 103-113, doi:10.1007/s11661-001-0106-x.
Barrett, C., J. Lytton, and O. Sherby (1967), Effect of grain size and annealing treatment on steady-state creep of copper, Trans. Metall. Soc. AIME, 239(2), 170-180.
Kruse, R., H. Stünitz, and K. Kunze (2001), Dynamic recrystallization processes in plagioclase porphyroclasts, J. Struct. Geol., 23(11), 1781-1802, doi:10.1016/S0191-8141(01)00030-X.
Ashby, M., and R. Verrall (1973), Diffusion-accommodated flow and superplasticity, Acta Metall., 21(2), 149-163, doi:10.1016/0001-6160(73)90057-6.
Bystricky, M., F. Heidelbach, and S. Mackwell (2006), Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates, Tectonophysics, 427(1-4), 115-132, doi:10.1016/j.tecto.2006.05.025.
Warren, J. M., G. Hirth, and P. B. Kelemen (2008), Evolution of olivine lattice preferred orientation during simple shear in the mantle, Earth Planet. Sci. Lett., 272, 501-512, doi:10.1016/j.epsl.2008.03.063.
Cooper, R., and D. Kohlstedt (1984), Sintering of olivine and olivine-basalt aggregates, Phys. Chem. Miner., 11(1), 5-16, doi:10.1007/BF00309372.
Ross, J. V., H. G. Ave'Lallemant, and N. L. Carter (1979), Activation volume for creep in the upper mantle, Science, 203(4377), 261-263, doi:10.1126/science.203.4377.261.
Shei, S., and T. Langdon (1978), The mechanical properties of a superplastic quasi-single phase copper alloy, Acta Metall., 26(4), 639-646, doi:10.1016/0001-6160(78)90116-5.
Keefner, J. W., S. J. Mackwell, D. L. Kohlstedt, and F. Heidelbach (2011), Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle, J. Geophys. Res., 116, B05201, doi:10.1029/2010JB007748.
Hirth, G., and D. Kohlstedt (1995b), Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981-2001, doi:10.1029/94JB02128.
Tommasi, A., B. Tikoff, and A. Vauchez (1999), Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth Planet. Sci. Lett., 168(1-2), 173-186, doi:10.1016/S0012-821X(99)00046-1.
Raj, R., and M. F. Ashby (1971), On grain boundary sliding and diffusional creep, Metall. Mater. Trans. B, 2(4), 1113-1127, doi:10.1007/BF02664244.
Nishimura, C. E., and D. W. Forsyth (1989), The anisotropic structure of the upper mantle in the Pacific, Geophys. J. Int., 96, 203-229, doi:10.1111/j.1365-246X.1989.tb04446.x.
Prior, D. J., J. Wheeler, L. Peruzzo, R. Spiess, and C. Storey (2002), Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies, J. Struct. Geol., 24(6-7), 999-1011, doi:10.1016/S0191-8141(01)00087-6.
Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144(1-2), 93-108, doi:10.1016/0012-821X(96)00154-9.
Karato, S. (1989), Grain growth kinetics in olivine aggregates, Tectonophysics, 168(4), 255-273, doi:10.1016/0040-1951(89)90221-7.
Karato, S., M. Paterson, and J. Fitzgerald (1986), Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151-8176, doi:10.1029/JB091iB08p08151.
Skemer, P., I. Katayama, Z. Jiang, and S. Karato (2005), The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation, Tectonophysics, 411(1-4), 157-167, doi:10.1016/j.tecto.2005.08.023.
Wang, Z., Y. Zhao, and D. L. Kohlstedt (2010), Dislocation creep accommodated by grain boundary sliding in dunite, J. Earth Sci., 21(5), 541-554, doi:10.1007/s12583-010-0113-1.
Karato, S., M. Toriumi, and T. Fujii (1980), Dynamic recrystallization of olivine single crystals during high-temperature creep, Geophys. Res. Lett., 7(9), 649-652, doi:10.1029/GL007i009p00649.
Mei, S., and D. L. Kohlstedt (2000a), Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res., 105, 21,457-21,469, doi:10.1029/2000JB900179.
Dohmen, R., S. Chakraborty, and H. Becker (2002), Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle, Geophys. Res. Lett., 29(21), 2030, doi:10.1029/2002GL015480.
Nettles, M., and A. M. Dziewoński (2008), Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America, J. Geophys. Res., 113, B02303, doi:10.1029/2006JB004819.
Précigout, J., F. Gueydan, D. Gapais, C. Garrido, and A. Essaifi (2007), Strain localisation in the subcontinental mantle-A ductile alternative to the brittle mantle, Tectonophysics, 445(3-4), 318-336, doi:10.1016/j.tecto.2007.09.002.
Chopra, P., and M. Paterson (1984), The role of water in the deformation of dunite, J. Geophys. Res., 89, 7861-7876, doi:10.1029/JB089iB09p07861.
Shearer, P., and J. Orcutt (1985), Anisotropy in the oceanic lithosphere-Theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific, Geophys. J. Int., 80, 493-526, doi:10.1111/j.1365-246X.1985.tb05105.x.
Behn, M. D., G. Hirth, and J. R. Elsenbeck (2009), Implications of grain size evolution on the seismic structure of the oceanic upper mantle, Earth Planet. Sci. Lett., 282(1-4), 178-189, doi:10.1016/j.epsl.2009.03.014.
Mingard, K. P., B. Roebuck, E. G. Bennett, M. Thomas, B. P. Wynne, and E. J. Palmiere (2007), Grain size measurement by EBSD in complex hot deformed metal alloy microstructures, J. Microsc., 227(3), 298-308, doi:10.1111/j.1365-2818.2007.01814.x.
Bae, D., and A. Ghosh (2000), Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition, Acta Mater., 48(6), 1207-1224, doi:10.1016/S1359-6454(99)00445-0.
Kohlstedt, D. L., and C. Goetze (1974), Low-stress high-temperature creep in olivine single crystals, J. Geophys. Res., 79, 2045-2051, doi:10.1029/JB079i014p02045.
Durham, W. B., and C. Goetze (1977), Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., 82, 5737-5753, doi:10.1029/JB082i036p05737.
Langdon, T. G. (1970), Grain boundary sliding as a deformation mechanism during creep, Philos. Mag., 22(178), 689-700, doi:10.1080/14786437008220939.
Nitsan, U. (1974), Stability field of olivine with respect to oxidation and reduction, J. Geophys. Res., 79(5), 706-711, doi:10.1029/JB079i005p00706.
Poirier, J.-P. (1985), Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511564451.
Langdon, T. G. (1994), Unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater., 42, 2437-2443, doi:10.1016/0956-7151(94)90322-0.
Bystricky, M., K. Kunze, L. Burlini, and J. P. Burg (2000), High shear strain of olivine aggregates; rheological and seismic consequences, Science, 290(5496), 1564-1567, doi:10.1126/science.290.5496.1564.
Bai, Q., S. Mackwell, and D. Kohlstedt (1991), High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples, J. Geophys. Res., 96, 2441-2463, doi:10.1029/90JB01723.
Goldsby, D., and D. Kohlstedt (2001), Superplastic deformation of ice: Experimental observations, J. Geophys. Res., 106, 11,017-11,030, doi:10.1029/2000JB900336.
Langdon, T. G. (2009), Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci., 44(22), 5998-6010, doi:10.1007/s10853-009-3780-5.
Mei, S., and D. Kohlstedt (2000b), Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime, J. Geophys. Res., 105, 21,471-21,481, doi:10.1029/2000JB900180.
Nieh, T., J. Wadsworth, and O. Sherby (1997), Superplasticity in Metals and Ceramics, Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511525230.
Hirth, G., and D. Kohlstedt (1995a), Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime, J. Geophys. Res., 100, 15,441-15,449, doi:10.1029/95JB01292.
Ricoult, D. L., and D. L. Kohlstedt (1985), Creep of Fe2SiO4 and CO2SiO4 single crystals in controlled thermodynamic environments, Philos. Mag. A, 51(1), 79-93, doi:10.1080/01418618508245271.
Duong, K., and F. Mohamed (1998), Effect of impurity content on boundary sliding behavior in the superplastic Zn-22% Al alloy, Acta Mater., 46(13), 4571-4586, doi:10.1016/S1359-6454(98)00128-1.
Valcke, S. L. A., G. M. Pennock, M. R. Drury, and J. H. P. De Bresser (2006), Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite, J. Microsc., 224(3), 264-276, doi:10.1111/j.1365-2818.2006.01698.x.
Faul, U. H., and I. Jackson (2005), The seismological signature of temperature and grain size variations in the upper mantle, Earth Planet. Sci. Lett., 234(1-2), 119-134, doi:10.1016/j.epsl.2005.02.008.
Underwood, E. (1970), Quantitative Stereology, Addison-Wesley, Reading, Mass.
Bruhn, D., D. L. Kohlstedt, and K. H. Lee (2005), The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates, Geol. Soc. Spec. Publ., 245(1), 291-302, doi:10.1144/GSL.SP.2005.245.01.14.
Ismail, W. B., and D. Mainprice (1998), An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots, Tectonophysics, 296(1-2), 145-157, doi:10.1016/S0040-1951(98)00141-3.
Langdon, T. G. (2006), Grain boundary sliding revisited: Developments in sliding over four decades, J. Mater. Sci., 41(3), 597-609, doi:10.1007/s10853-006-6476-0.
Gifkins, R. (1970), Optical Microscopy of Metals, Elsevier, New York.
Gifkins, R. (1976), Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Trans. A, 7(8), 1225-1232, doi:10
2011; 116
2009; 44
1990; 56
2007; 227
2000; 48
1980; 41
2002; 51
1991; 96
1986; 78
2005; 411
2004; 26
1996; 144
1999; 168
1970
2003; 155
2000; 290
2001; 106
1967; 239
1998; 46
1971; 8
2010; 21
1984; 11
1970; 22
2003; 4
1985
2009; 282
1985; 51
1982
1978; 26
2008; 113
1980
1971; 2
2006; 248
2003; 83
2008; 272
2007; 445
1986; 91
1974; 79
1979; 203
2000; 27
2003; 138
2005; 234
2000; 316
1984; 89
2004; 45
1985; 80
1997
2006
1982; 765
1928; 8
2001; 23
1998; 20
1976; 7
1977; 82
1998; 296
1994; 42
1989; 96
2006; 41
2006; 427
2002; 29
1973; 21
2005; 243
1989; 168
2005; 245
2000; 105
2002; 24
1980; 7
2000; 80
1995; 100
2010; 51
2006; 224
2001; 32
Gifkins (10.1029/2011JB008220:gifk70) 1970
Nieh (10.1029/2011JB008220:nieh97) 1997
Bae (10.1029/2011JB008220:bae00) 2000; 48
Keefner (10.1029/2011JB008220:keef11) 2011; 116
Kohlstedt (10.1029/2011JB008220:kohl74) 1974; 79
Eberhardt (10.1029/2011JB008220:eber80) 1980; 41
Dohmen (10.1029/2011JB008220:dohm02) 2002; 29
Karato (10.1029/2011JB008220:kara89) 1989; 168
Duong (10.1029/2011JB008220:duon98) 1998; 46
Langdon (10.1029/2011JB008220:lang70) 1970; 22
Shei (10.1029/2011JB008220:shei78) 1978; 26
Langdon (10.1029/2011JB008220:lang82) 1982; 765
Nitsan (10.1029/2011JB008220:nits74) 1974; 79
Hirth (10.1029/2011JB008220:hirt96) 1996; 144
Nettles (10.1029/2011JB008220:nett08) 2008; 113
Kellerman Slotemaker (10.1029/2011JB008220:kell06) 2006
Mei (10.1029/2011JB008220:mei00b) 2000; 105
Mingard (10.1029/2011JB008220:ming07) 2007; 227
Prior (10.1029/2011JB008220:prio02) 2002; 24
Bai (10.1029/2011JB008220:bai91) 1991; 96
Karato (10.1029/2011JB008220:kara80) 1980; 7
Skemer (10.1029/2011JB008220:skem05) 2005; 411
Wang (10.1029/2011JB008220:wang10) 2010; 21
von Mises (10.1029/2011JB008220:vonm28) 1928; 8
Shearer (10.1029/2011JB008220:shea85) 1985; 80
Cooper (10.1029/2011JB008220:coop84) 1984; 11
Paterson (10.1029/2011JB008220:pate90) 1990; 56
Behn (10.1029/2011JB008220:behn09) 2009; 282
Warren (10.1029/2011JB008220:warr08) 2008; 272
Toy (10.1029/2011JB008220:toy10) 2010; 51
Langdon (10.1029/2011JB008220:lang94) 1994; 42
Chopra (10.1029/2011JB008220:chop84) 1984; 89
Ricoult (10.1029/2011JB008220:rico85) 1985; 51
Mukherjee (10.1029/2011JB008220:mukh71) 1971; 8
Padmanabhan (10.1029/2011JB008220:padm80) 1980
Hall (10.1029/2011JB008220:hall03) 2003; 4
Karato (10.1029/2011JB008220:kara03) 2003; 83
Barrett (10.1029/2011JB008220:barr67) 1967; 239
Zimmerman (10.1029/2011JB008220:zimm04) 2004; 45
Faul (10.1029/2011JB008220:faul05) 2005; 234
Langdon (10.1029/2011JB008220:lang06) 2006; 41
Ismail (10.1029/2011JB008220:isma98) 1998; 296
Karato (10.1029/2011JB008220:kara86) 1986; 91
Warren (10.1029/2011JB008220:warr06) 2006; 248
Ross (10.1029/2011JB008220:ross79) 1979; 203
Ashby (10.1029/2011JB008220:ashb73) 1973; 21
Heilbronner (10.1029/2011JB008220:heil98) 1998; 20
Durham (10.1029/2011JB008220:durh77) 1977; 82
Précigout (10.1029/2011JB008220:prec07) 2007; 445
Gribb (10.1029/2011JB008220:grib00) 2000; 27
Langdon (10.1029/2011JB008220:lang09) 2009; 44
Becker (10.1029/2011JB008220:beck03) 2003; 155
Hirth (10.1029/2011JB008220:hirt03) 2003; 138
Raj (10.1029/2011JB008220:raj71) 1971; 2
Nishimura (10.1029/2011JB008220:nish89) 1989; 96
Gifkins (10.1029/2011JB008220:gifk76) 1976; 7
Hirth (10.1029/2011JB008220:hirt02) 2002; 51
Valcke (10.1029/2011JB008220:valc06) 2006; 224
Goldsby (10.1029/2011JB008220:gold01) 2001; 106
Zhang (10.1029/2011JB008220:zhan00) 2000; 316
Mei (10.1029/2011JB008220:mei00a) 2000; 105
Poirier (10.1029/2011JB008220:poir85) 1985
Bystricky (10.1029/2011JB008220:byst00) 2000; 290
Hirth (10.1029/2011JB008220:hirt95b) 1995; 100
Duong (10.1029/2011JB008220:duon01) 2001; 32
Bruhn (10.1029/2011JB008220:bruh05) 2005; 245
Drury (10.1029/2011JB008220:drur05) 2005; 243
Tommasi (10.1029/2011JB008220:tomm99) 1999; 168
Hirth (10.1029/2011JB008220:hirt95a) 1995; 100
Underwood (10.1029/2011JB008220:unde70) 1970
Kruse (10.1029/2011JB008220:krus01) 2001; 23
Duong (10.1029/2011JB008220:duon00) 2000; 80
Ter Heege (10.1029/2011JB008220:terh04) 2004; 26
Craig (10.1029/2011JB008220:crai86) 1986; 78
Frost (10.1029/2011JB008220:fros82) 1982
Bystricky (10.1029/2011JB008220:byst06) 2006; 427
References_xml – reference: Bruhn, D., D. L. Kohlstedt, and K. H. Lee (2005), The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates, Geol. Soc. Spec. Publ., 245(1), 291-302, doi:10.1144/GSL.SP.2005.245.01.14.
– reference: Heilbronner, R., and D. Bruhn (1998), The influence of three-dimensional grain size distributions on the rheology of polyphase rocks, J. Struct. Geol., 20(6), 695-705, doi:10.1016/S0191-8141(98)00010-8.
– reference: Poirier, J.-P. (1985), Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511564451.
– reference: Précigout, J., F. Gueydan, D. Gapais, C. Garrido, and A. Essaifi (2007), Strain localisation in the subcontinental mantle-A ductile alternative to the brittle mantle, Tectonophysics, 445(3-4), 318-336, doi:10.1016/j.tecto.2007.09.002.
– reference: Karato, S., M. Toriumi, and T. Fujii (1980), Dynamic recrystallization of olivine single crystals during high-temperature creep, Geophys. Res. Lett., 7(9), 649-652, doi:10.1029/GL007i009p00649.
– reference: Keefner, J. W., S. J. Mackwell, D. L. Kohlstedt, and F. Heidelbach (2011), Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle, J. Geophys. Res., 116, B05201, doi:10.1029/2010JB007748.
– reference: Barrett, C., J. Lytton, and O. Sherby (1967), Effect of grain size and annealing treatment on steady-state creep of copper, Trans. Metall. Soc. AIME, 239(2), 170-180.
– reference: Kruse, R., H. Stünitz, and K. Kunze (2001), Dynamic recrystallization processes in plagioclase porphyroclasts, J. Struct. Geol., 23(11), 1781-1802, doi:10.1016/S0191-8141(01)00030-X.
– reference: Mei, S., and D. Kohlstedt (2000b), Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime, J. Geophys. Res., 105, 21,471-21,481, doi:10.1029/2000JB900180.
– reference: Langdon, T. G. (2009), Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci., 44(22), 5998-6010, doi:10.1007/s10853-009-3780-5.
– reference: Zimmerman, M. E., and D. L. Kohlstedt (2004), Rheological properties of partially molten lherzolite, J. Petrol., 45(2), 275-298, doi:10.1093/petrology/egg089.
– reference: Karato, S. (1989), Grain growth kinetics in olivine aggregates, Tectonophysics, 168(4), 255-273, doi:10.1016/0040-1951(89)90221-7.
– reference: Prior, D. J., J. Wheeler, L. Peruzzo, R. Spiess, and C. Storey (2002), Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies, J. Struct. Geol., 24(6-7), 999-1011, doi:10.1016/S0191-8141(01)00087-6.
– reference: Raj, R., and M. F. Ashby (1971), On grain boundary sliding and diffusional creep, Metall. Mater. Trans. B, 2(4), 1113-1127, doi:10.1007/BF02664244.
– reference: Toy, V. G., J. Newman, W. Lamb, and B. Tikoff (2010), The role of pyroxenites in formation of shear instabilities in the mantle: Evidence from an ultramafic ultramylonite, Twin Sisters Massif, Washington, J. Petrol., 51(1-2), 55-80, doi:10.1093/petrology/egp059.
– reference: Bae, D., and A. Ghosh (2000), Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition, Acta Mater., 48(6), 1207-1224, doi:10.1016/S1359-6454(99)00445-0.
– reference: Skemer, P., I. Katayama, Z. Jiang, and S. Karato (2005), The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation, Tectonophysics, 411(1-4), 157-167, doi:10.1016/j.tecto.2005.08.023.
– reference: Warren, J. M., and G. Hirth (2006), Grain size sensitive deformation mechanisms in naturally deformed peridotites, Earth Planet. Sci. Lett., 248(1-2), 438-450, doi:10.1016/j.epsl.2006.06.006.
– reference: Mingard, K. P., B. Roebuck, E. G. Bennett, M. Thomas, B. P. Wynne, and E. J. Palmiere (2007), Grain size measurement by EBSD in complex hot deformed metal alloy microstructures, J. Microsc., 227(3), 298-308, doi:10.1111/j.1365-2818.2007.01814.x.
– reference: Duong, K., and F. Mohamed (2000), Effect of Cd on the boundary sliding behaviour in superplastic Pb-62 wt Sn alloy, Philos. Mag. A, 80(11), 2721-2735, doi:10.1080/01418610008216501.
– reference: Hirth, G., and D. Kohlstedt (1995b), Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981-2001, doi:10.1029/94JB02128.
– reference: Kohlstedt, D. L., and C. Goetze (1974), Low-stress high-temperature creep in olivine single crystals, J. Geophys. Res., 79, 2045-2051, doi:10.1029/JB079i014p02045.
– reference: Langdon, T. G. (2006), Grain boundary sliding revisited: Developments in sliding over four decades, J. Mater. Sci., 41(3), 597-609, doi:10.1007/s10853-006-6476-0.
– reference: Tommasi, A., B. Tikoff, and A. Vauchez (1999), Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth Planet. Sci. Lett., 168(1-2), 173-186, doi:10.1016/S0012-821X(99)00046-1.
– reference: Cooper, R., and D. Kohlstedt (1984), Sintering of olivine and olivine-basalt aggregates, Phys. Chem. Miner., 11(1), 5-16, doi:10.1007/BF00309372.
– reference: Gifkins, R. (1976), Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Trans. A, 7(8), 1225-1232, doi:10.1007/BF02656607.
– reference: Nettles, M., and A. M. Dziewoński (2008), Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America, J. Geophys. Res., 113, B02303, doi:10.1029/2006JB004819.
– reference: von Mises, R. (1928), Mechanik der plastischen Formänderung von Kristallen, Z. Angew. Math. Mech., 8, 161-185, doi:10.1002/zamm.19280080302.
– reference: Bai, Q., S. Mackwell, and D. Kohlstedt (1991), High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples, J. Geophys. Res., 96, 2441-2463, doi:10.1029/90JB01723.
– reference: Shearer, P., and J. Orcutt (1985), Anisotropy in the oceanic lithosphere-Theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific, Geophys. J. Int., 80, 493-526, doi:10.1111/j.1365-246X.1985.tb05105.x.
– reference: Ter Heege, J., J. De Bresser, and C. Spiers (2004), Composite flow laws for crystalline materials with log-normally distributed grain size: Theory and application to olivine, J. Struct. Geol., 26(9), 1693-1705, doi:10.1016/j.jsg.2004.01.008.
– reference: Ashby, M., and R. Verrall (1973), Diffusion-accommodated flow and superplasticity, Acta Metall., 21(2), 149-163, doi:10.1016/0001-6160(73)90057-6.
– reference: Dohmen, R., S. Chakraborty, and H. Becker (2002), Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle, Geophys. Res. Lett., 29(21), 2030, doi:10.1029/2002GL015480.
– reference: Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144(1-2), 93-108, doi:10.1016/0012-821X(96)00154-9.
– reference: Behn, M. D., G. Hirth, and J. R. Elsenbeck (2009), Implications of grain size evolution on the seismic structure of the oceanic upper mantle, Earth Planet. Sci. Lett., 282(1-4), 178-189, doi:10.1016/j.epsl.2009.03.014.
– reference: Hall, C. E., and E. M. Parmentier (2003), Influence of grain size evolution on convective instability, Geochem. Geophys. Geosyst., 4(3), 1029, doi:10.1029/2002GC000308.
– reference: Shei, S., and T. Langdon (1978), The mechanical properties of a superplastic quasi-single phase copper alloy, Acta Metall., 26(4), 639-646, doi:10.1016/0001-6160(78)90116-5.
– reference: Hirth, G., and D. Kohlstedt (1995a), Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime, J. Geophys. Res., 100, 15,441-15,449, doi:10.1029/95JB01292.
– reference: Nitsan, U. (1974), Stability field of olivine with respect to oxidation and reduction, J. Geophys. Res., 79(5), 706-711, doi:10.1029/JB079i005p00706.
– reference: Ismail, W. B., and D. Mainprice (1998), An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots, Tectonophysics, 296(1-2), 145-157, doi:10.1016/S0040-1951(98)00141-3.
– reference: Valcke, S. L. A., G. M. Pennock, M. R. Drury, and J. H. P. De Bresser (2006), Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite, J. Microsc., 224(3), 264-276, doi:10.1111/j.1365-2818.2006.01698.x.
– reference: Bystricky, M., K. Kunze, L. Burlini, and J. P. Burg (2000), High shear strain of olivine aggregates; rheological and seismic consequences, Science, 290(5496), 1564-1567, doi:10.1126/science.290.5496.1564.
– reference: Bystricky, M., F. Heidelbach, and S. Mackwell (2006), Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates, Tectonophysics, 427(1-4), 115-132, doi:10.1016/j.tecto.2006.05.025.
– reference: Mei, S., and D. L. Kohlstedt (2000a), Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res., 105, 21,457-21,469, doi:10.1029/2000JB900179.
– reference: Mukherjee, A. K. (1971), The rate controlling mechanism in superplasticity, Mater. Sci. Eng., 8, 83-89, doi:10.1016/0025-5416(71)90085-1.
– reference: Wang, Z., Y. Zhao, and D. L. Kohlstedt (2010), Dislocation creep accommodated by grain boundary sliding in dunite, J. Earth Sci., 21(5), 541-554, doi:10.1007/s12583-010-0113-1.
– reference: Padmanabhan, K., and G. Davies (1980), Superplasticity, Springer, New York.
– reference: Karato, S., and H. Jung (2003), Effects of pressure on high-temperature dislocation creep in olivine, Philos. Mag. A, 83(3), doi:10.1080/0141861021000025829.
– reference: Craig, C. H., and D. McKenzie (1986), The existence of a thin low-viscosity layer beneath the lithosphere, Earth Planet. Sci. Lett., 78, 420-426, doi:10.1016/0012-821X(86)90008-7.
– reference: Becker, T. W., J. B. Kellogg, G. Ekstrom, and R. J. O'Connell (2003), Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models, Geophys. J. Int., 155(2), 696-714, doi:10.1046/j.1365-246X.2003.02085.x.
– reference: Chopra, P., and M. Paterson (1984), The role of water in the deformation of dunite, J. Geophys. Res., 89, 7861-7876, doi:10.1029/JB089iB09p07861.
– reference: Warren, J. M., G. Hirth, and P. B. Kelemen (2008), Evolution of olivine lattice preferred orientation during simple shear in the mantle, Earth Planet. Sci. Lett., 272, 501-512, doi:10.1016/j.epsl.2008.03.063.
– reference: Langdon, T. G. (1970), Grain boundary sliding as a deformation mechanism during creep, Philos. Mag., 22(178), 689-700, doi:10.1080/14786437008220939.
– reference: Nishimura, C. E., and D. W. Forsyth (1989), The anisotropic structure of the upper mantle in the Pacific, Geophys. J. Int., 96, 203-229, doi:10.1111/j.1365-246X.1989.tb04446.x.
– reference: Karato, S., M. Paterson, and J. Fitzgerald (1986), Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151-8176, doi:10.1029/JB091iB08p08151.
– reference: Underwood, E. (1970), Quantitative Stereology, Addison-Wesley, Reading, Mass.
– reference: Nieh, T., J. Wadsworth, and O. Sherby (1997), Superplasticity in Metals and Ceramics, Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511525230.
– reference: Faul, U. H., and I. Jackson (2005), The seismological signature of temperature and grain size variations in the upper mantle, Earth Planet. Sci. Lett., 234(1-2), 119-134, doi:10.1016/j.epsl.2005.02.008.
– reference: Ricoult, D. L., and D. L. Kohlstedt (1985), Creep of Fe2SiO4 and CO2SiO4 single crystals in controlled thermodynamic environments, Philos. Mag. A, 51(1), 79-93, doi:10.1080/01418618508245271.
– reference: Duong, K., and F. Mohamed (1998), Effect of impurity content on boundary sliding behavior in the superplastic Zn-22% Al alloy, Acta Mater., 46(13), 4571-4586, doi:10.1016/S1359-6454(98)00128-1.
– reference: Gribb, T., and R. F. Cooper (2000), The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine, Geophys. Res. Lett., 27(15), 2341-2344, doi:10.1029/2000GL011443.
– reference: Frost, H., and M. Ashby (1982), Deformation Mechanism Maps, Pergamon, New York.
– reference: Gifkins, R. (1970), Optical Microscopy of Metals, Elsevier, New York.
– reference: Zhang, S., S. Karato, J. Fitzgerald, U. H. Faul, and Y. Zhou (2000), Simple shear deformation of olivine aggregates, Tectonophysics, 316(1-2), 133-152, doi:10.1016/S0040-1951(99)00229-2.
– reference: Durham, W. B., and C. Goetze (1977), Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., 82, 5737-5753, doi:10.1029/JB082i036p05737.
– reference: Ross, J. V., H. G. Ave'Lallemant, and N. L. Carter (1979), Activation volume for creep in the upper mantle, Science, 203(4377), 261-263, doi:10.1126/science.203.4377.261.
– reference: Drury, M. (2005), Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere, Geol. Soc. Spec. Publ., 243(1), 143-158, doi:10.1144/GSL.SP.2005.243.01.11.
– reference: Duong, K., and F. Mohamed (2001), Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy, Metall. Mater. Trans. A, 32(1), 103-113, doi:10.1007/s11661-001-0106-x.
– reference: Langdon, T. G. (1994), Unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater., 42, 2437-2443, doi:10.1016/0956-7151(94)90322-0.
– reference: Goldsby, D., and D. Kohlstedt (2001), Superplastic deformation of ice: Experimental observations, J. Geophys. Res., 106, 11,017-11,030, doi:10.1029/2000JB900336.
– reference: Eberhardt, A., and B. Baudelet (1980), Interphase boundary sliding at high temperature in two-phase (α/β)-brass bicrystals, Philos. Mag. A, 41(6), 843-869, doi:10.1080/01418618008243892.
– volume: 29
  issue: 21
  year: 2002
  article-title: Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle
  publication-title: Geophys. Res. Lett.
– year: 1985
– volume: 445
  start-page: 318
  issue: 3–4
  year: 2007
  end-page: 336
  article-title: Strain localisation in the subcontinental mantle—A ductile alternative to the brittle mantle
  publication-title: Tectonophysics
– volume: 51
  start-page: 55
  issue: 1–2
  year: 2010
  end-page: 80
  article-title: The role of pyroxenites in formation of shear instabilities in the mantle: Evidence from an ultramafic ultramylonite, Twin Sisters Massif, Washington
  publication-title: J. Petrol.
– volume: 96
  start-page: 2441
  year: 1991
  end-page: 2463
  article-title: High‐temperature creep of olivine single crystals: 1. Mechanical results for buffered samples
  publication-title: J. Geophys. Res.
– volume: 20
  start-page: 695
  issue: 6
  year: 1998
  end-page: 705
  article-title: The influence of three‐dimensional grain size distributions on the rheology of polyphase rocks
  publication-title: J. Struct. Geol.
– volume: 7
  start-page: 1225
  issue: 8
  year: 1976
  end-page: 1232
  article-title: Grain‐boundary sliding and its accommodation during creep and superplasticity
  publication-title: Metall. Trans. A
– volume: 21
  start-page: 149
  issue: 2
  year: 1973
  end-page: 163
  article-title: Diffusion‐accommodated flow and superplasticity
  publication-title: Acta Metall.
– volume: 23
  start-page: 1781
  issue: 11
  year: 2001
  end-page: 1802
  article-title: Dynamic recrystallization processes in plagioclase porphyroclasts
  publication-title: J. Struct. Geol.
– volume: 290
  start-page: 1564
  issue: 5496
  year: 2000
  end-page: 1567
  article-title: High shear strain of olivine aggregates; rheological and seismic consequences
  publication-title: Science
– volume: 27
  start-page: 2341
  issue: 15
  year: 2000
  end-page: 2344
  article-title: The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine
  publication-title: Geophys. Res. Lett.
– volume: 2
  start-page: 1113
  issue: 4
  year: 1971
  end-page: 1127
  article-title: On grain boundary sliding and diffusional creep
  publication-title: Metall. Mater. Trans. B
– volume: 296
  start-page: 145
  issue: 1–2
  year: 1998
  end-page: 157
  article-title: An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots
  publication-title: Tectonophysics
– volume: 83
  issue: 3
  year: 2003
  article-title: Effects of pressure on high‐temperature dislocation creep in olivine
  publication-title: Philos. Mag. A
– volume: 96
  start-page: 203
  year: 1989
  end-page: 229
  article-title: The anisotropic structure of the upper mantle in the Pacific
  publication-title: Geophys. J. Int.
– volume: 105
  start-page: 21,471
  year: 2000
  end-page: 21,481
  article-title: Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime
  publication-title: J. Geophys. Res.
– volume: 239
  start-page: 170
  issue: 2
  year: 1967
  end-page: 180
  article-title: Effect of grain size and annealing treatment on steady‐state creep of copper
  publication-title: Trans. Metall. Soc. AIME
– volume: 42
  start-page: 2437
  year: 1994
  end-page: 2443
  article-title: Unified approach to grain boundary sliding in creep and superplasticity
  publication-title: Acta Metall. Mater.
– volume: 8
  start-page: 83
  year: 1971
  end-page: 89
  article-title: The rate controlling mechanism in superplasticity
  publication-title: Mater. Sci. Eng.
– volume: 100
  start-page: 1981
  year: 1995
  end-page: 2001
  article-title: Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime
  publication-title: J. Geophys. Res.
– year: 1982
– volume: 116
  year: 2011
  article-title: Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle
  publication-title: J. Geophys. Res.
– volume: 48
  start-page: 1207
  issue: 6
  year: 2000
  end-page: 1224
  article-title: Grain size and temperature dependence of superplastic deformation in an Al‐Mg alloy under isostructural condition
  publication-title: Acta Mater.
– volume: 78
  start-page: 420
  year: 1986
  end-page: 426
  article-title: The existence of a thin low‐viscosity layer beneath the lithosphere
  publication-title: Earth Planet. Sci. Lett.
– volume: 316
  start-page: 133
  issue: 1–2
  year: 2000
  end-page: 152
  article-title: Simple shear deformation of olivine aggregates
  publication-title: Tectonophysics
– volume: 282
  start-page: 178
  issue: 1–4
  year: 2009
  end-page: 189
  article-title: Implications of grain size evolution on the seismic structure of the oceanic upper mantle
  publication-title: Earth Planet. Sci. Lett.
– volume: 224
  start-page: 264
  issue: 3
  year: 2006
  end-page: 276
  article-title: Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite
  publication-title: J. Microsc.
– volume: 427
  start-page: 115
  issue: 1–4
  year: 2006
  end-page: 132
  article-title: Large‐strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine‐magnesiowüstite aggregates
  publication-title: Tectonophysics
– volume: 11
  start-page: 5
  issue: 1
  year: 1984
  end-page: 16
  article-title: Sintering of olivine and olivine‐basalt aggregates
  publication-title: Phys. Chem. Miner.
– volume: 144
  start-page: 93
  issue: 1–2
  year: 1996
  end-page: 108
  article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere
  publication-title: Earth Planet. Sci. Lett.
– volume: 155
  start-page: 696
  issue: 2
  year: 2003
  end-page: 714
  article-title: Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle‐circulation models
  publication-title: Geophys. J. Int.
– volume: 168
  start-page: 255
  issue: 4
  year: 1989
  end-page: 273
  article-title: Grain growth kinetics in olivine aggregates
  publication-title: Tectonophysics
– volume: 56
  start-page: 187
  year: 1990
  end-page: 194
– year: 1997
– volume: 272
  start-page: 501
  year: 2008
  end-page: 512
  article-title: Evolution of olivine lattice preferred orientation during simple shear in the mantle
  publication-title: Earth Planet. Sci. Lett.
– volume: 245
  start-page: 291
  issue: 1
  year: 2005
  end-page: 302
  article-title: The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates
  publication-title: Geol. Soc. Spec. Publ.
– volume: 22
  start-page: 689
  issue: 178
  year: 1970
  end-page: 700
  article-title: Grain boundary sliding as a deformation mechanism during creep
  publication-title: Philos. Mag.
– volume: 26
  start-page: 639
  issue: 4
  year: 1978
  end-page: 646
  article-title: The mechanical properties of a superplastic quasi‐single phase copper alloy
  publication-title: Acta Metall.
– volume: 80
  start-page: 2721
  issue: 11
  year: 2000
  end-page: 2735
  article-title: Effect of Cd on the boundary sliding behaviour in superplastic Pb‐62 wt Sn alloy
  publication-title: Philos. Mag. A
– volume: 24
  start-page: 999
  issue: 6–7
  year: 2002
  end-page: 1011
  article-title: Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies
  publication-title: J. Struct. Geol.
– volume: 89
  start-page: 7861
  year: 1984
  end-page: 7876
  article-title: The role of water in the deformation of dunite
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America
  publication-title: J. Geophys. Res.
– volume: 80
  start-page: 493
  year: 1985
  end-page: 526
  article-title: Anisotropy in the oceanic lithosphere—Theory and observations from the Ngendei seismic refraction experiment in the south‐west Pacific
  publication-title: Geophys. J. Int.
– volume: 243
  start-page: 143
  issue: 1
  year: 2005
  end-page: 158
  article-title: Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere
  publication-title: Geol. Soc. Spec. Publ.
– volume: 26
  start-page: 1693
  issue: 9
  year: 2004
  end-page: 1705
  article-title: Composite flow laws for crystalline materials with log‐normally distributed grain size: Theory and application to olivine
  publication-title: J. Struct. Geol.
– volume: 227
  start-page: 298
  issue: 3
  year: 2007
  end-page: 308
  article-title: Grain size measurement by EBSD in complex hot deformed metal alloy microstructures
  publication-title: J. Microsc.
– volume: 4
  issue: 3
  year: 2003
  article-title: Influence of grain size evolution on convective instability
  publication-title: Geochem. Geophys. Geosyst.
– volume: 91
  start-page: 8151
  year: 1986
  end-page: 8176
  article-title: Rheology of synthetic olivine aggregates: Influence of grain size and water
  publication-title: J. Geophys. Res.
– volume: 234
  start-page: 119
  issue: 1–2
  year: 2005
  end-page: 134
  article-title: The seismological signature of temperature and grain size variations in the upper mantle
  publication-title: Earth Planet. Sci. Lett.
– volume: 105
  start-page: 21,457
  year: 2000
  end-page: 21,469
  article-title: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime
  publication-title: J. Geophys. Res.
– volume: 7
  start-page: 649
  issue: 9
  year: 1980
  end-page: 652
  article-title: Dynamic recrystallization of olivine single crystals during high‐temperature creep
  publication-title: Geophys. Res. Lett.
– volume: 248
  start-page: 438
  issue: 1–2
  year: 2006
  end-page: 450
  article-title: Grain size sensitive deformation mechanisms in naturally deformed peridotites
  publication-title: Earth Planet. Sci. Lett.
– volume: 44
  start-page: 5998
  issue: 22
  year: 2009
  end-page: 6010
  article-title: Seventy‐five years of superplasticity: Historic developments and new opportunities
  publication-title: J. Mater. Sci.
– volume: 168
  start-page: 173
  issue: 1–2
  year: 1999
  end-page: 186
  article-title: Upper mantle tectonics: Three‐dimensional deformation, olivine crystallographic fabrics and seismic properties
  publication-title: Earth Planet. Sci. Lett.
– volume: 106
  start-page: 11,017
  year: 2001
  end-page: 11,030
  article-title: Superplastic deformation of ice: Experimental observations
  publication-title: J. Geophys. Res.
– volume: 51
  start-page: 79
  issue: 1
  year: 1985
  end-page: 93
  article-title: Creep of Fe SiO and CO SiO single crystals in controlled thermodynamic environments
  publication-title: Philos. Mag. A
– volume: 51
  start-page: 97
  year: 2002
  end-page: 120
– volume: 79
  start-page: 706
  issue: 5
  year: 1974
  end-page: 711
  article-title: Stability field of olivine with respect to oxidation and reduction
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 541
  issue: 5
  year: 2010
  end-page: 554
  article-title: Dislocation creep accommodated by grain boundary sliding in dunite
  publication-title: J. Earth Sci.
– volume: 411
  start-page: 157
  issue: 1–4
  year: 2005
  end-page: 167
  article-title: The misorientation index: Development of a new method for calculating the strength of lattice‐preferred orientation
  publication-title: Tectonophysics
– volume: 8
  start-page: 161
  year: 1928
  end-page: 185
  article-title: Mechanik der plastischen Formänderung von Kristallen
  publication-title: Z. Angew. Math. Mech.
– volume: 32
  start-page: 103
  issue: 1
  year: 2001
  end-page: 113
  article-title: Effect of impurity type on boundary sliding behavior in the superplastic Zn‐22 pct Al alloy
  publication-title: Metall. Mater. Trans. A
– volume: 41
  start-page: 597
  issue: 3
  year: 2006
  end-page: 609
  article-title: Grain boundary sliding revisited: Developments in sliding over four decades
  publication-title: J. Mater. Sci.
– year: 1980
– volume: 41
  start-page: 843
  issue: 6
  year: 1980
  end-page: 869
  article-title: Interphase boundary sliding at high temperature in two‐phase ( / )‐brass bicrystals
  publication-title: Philos. Mag. A
– volume: 100
  start-page: 15,441
  year: 1995
  end-page: 15,449
  article-title: Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime
  publication-title: J. Geophys. Res.
– year: 2006
– volume: 138
  start-page: 83
  year: 2003
  end-page: 105
– volume: 45
  start-page: 275
  issue: 2
  year: 2004
  end-page: 298
  article-title: Rheological properties of partially molten lherzolite
  publication-title: J. Petrol.
– volume: 765
  start-page: 435
  year: 1982
  end-page: 451
– volume: 46
  start-page: 4571
  issue: 13
  year: 1998
  end-page: 4586
  article-title: Effect of impurity content on boundary sliding behavior in the superplastic Zn–22% Al alloy
  publication-title: Acta Mater.
– year: 1970
– volume: 79
  start-page: 2045
  year: 1974
  end-page: 2051
  article-title: Low‐stress high‐temperature creep in olivine single crystals
  publication-title: J. Geophys. Res.
– volume: 203
  start-page: 261
  issue: 4377
  year: 1979
  end-page: 263
  article-title: Activation volume for creep in the upper mantle
  publication-title: Science
– volume: 82
  start-page: 5737
  year: 1977
  end-page: 5753
  article-title: Plastic flow of oriented single crystals of olivine: 1. Mechanical data
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 83
  year: 1971
  ident: 10.1029/2011JB008220:mukh71
  article-title: The rate controlling mechanism in superplasticity
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(71)90085-1
– volume: 2
  start-page: 1113
  issue: 4
  year: 1971
  ident: 10.1029/2011JB008220:raj71
  article-title: On grain boundary sliding and diffusional creep
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/BF02664244
– volume: 51
  volume-title: Laboratory constraints on the rheology of the upper mantle
  year: 2002
  ident: 10.1029/2011JB008220:hirt02
– volume: 51
  start-page: 55
  issue: 1–2
  year: 2010
  ident: 10.1029/2011JB008220:toy10
  article-title: The role of pyroxenites in formation of shear instabilities in the mantle: Evidence from an ultramafic ultramylonite, Twin Sisters Massif, Washington
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egp059
– volume: 243
  start-page: 143
  issue: 1
  year: 2005
  ident: 10.1029/2011JB008220:drur05
  article-title: Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere
  publication-title: Geol. Soc. Spec. Publ.
  doi: 10.1144/GSL.SP.2005.243.01.11
– volume-title: Superplasticity in Metals and Ceramics
  year: 1997
  ident: 10.1029/2011JB008220:nieh97
  doi: 10.1017/CBO9780511525230
– volume-title: Quantitative Stereology
  year: 1970
  ident: 10.1029/2011JB008220:unde70
– volume: 78
  start-page: 420
  year: 1986
  ident: 10.1029/2011JB008220:crai86
  article-title: The existence of a thin low-viscosity layer beneath the lithosphere
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(86)90008-7
– volume-title: Deformation Mechanism Maps
  year: 1982
  ident: 10.1029/2011JB008220:fros82
– volume: 96
  start-page: 2441
  year: 1991
  ident: 10.1029/2011JB008220:bai91
  article-title: High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples
  publication-title: J. Geophys. Res.
  doi: 10.1029/90JB01723
– volume: 44
  start-page: 5998
  issue: 22
  year: 2009
  ident: 10.1029/2011JB008220:lang09
  article-title: Seventy-five years of superplasticity: Historic developments and new opportunities
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3780-5
– volume: 22
  start-page: 689
  issue: 178
  year: 1970
  ident: 10.1029/2011JB008220:lang70
  article-title: Grain boundary sliding as a deformation mechanism during creep
  publication-title: Philos. Mag.
  doi: 10.1080/14786437008220939
– volume: 29
  start-page: 2030
  issue: 21
  year: 2002
  ident: 10.1029/2011JB008220:dohm02
  article-title: Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL015480
– volume: 26
  start-page: 1693
  issue: 9
  year: 2004
  ident: 10.1029/2011JB008220:terh04
  article-title: Composite flow laws for crystalline materials with log-normally distributed grain size: Theory and application to olivine
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2004.01.008
– volume: 105
  start-page: 21457
  year: 2000
  ident: 10.1029/2011JB008220:mei00a
  article-title: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900179
– volume: 82
  start-page: 5737
  year: 1977
  ident: 10.1029/2011JB008220:durh77
  article-title: Plastic flow of oriented single crystals of olivine: 1. Mechanical data
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB082i036p05737
– volume: 105
  start-page: 21471
  year: 2000
  ident: 10.1029/2011JB008220:mei00b
  article-title: Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900180
– volume: 46
  start-page: 4571
  issue: 13
  year: 1998
  ident: 10.1029/2011JB008220:duon98
  article-title: Effect of impurity content on boundary sliding behavior in the superplastic Zn–22% Al alloy
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00128-1
– volume: 83
  issue: 3
  year: 2003
  ident: 10.1029/2011JB008220:kara03
  article-title: Effects of pressure on high-temperature dislocation creep in olivine
  publication-title: Philos. Mag. A
– volume: 80
  start-page: 493
  year: 1985
  ident: 10.1029/2011JB008220:shea85
  article-title: Anisotropy in the oceanic lithosphere—Theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1985.tb05105.x
– volume: 138
  volume-title: Rheology of the mantle wedge
  year: 2003
  ident: 10.1029/2011JB008220:hirt03
– volume-title: Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals
  year: 1985
  ident: 10.1029/2011JB008220:poir85
  doi: 10.1017/CBO9780511564451
– volume: 7
  start-page: 649
  issue: 9
  year: 1980
  ident: 10.1029/2011JB008220:kara80
  article-title: Dynamic recrystallization of olivine single crystals during high-temperature creep
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL007i009p00649
– volume: 4
  start-page: 1029
  issue: 3
  year: 2003
  ident: 10.1029/2011JB008220:hall03
  article-title: Influence of grain size evolution on convective instability
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2002GC000308
– volume-title: Optical Microscopy of Metals
  year: 1970
  ident: 10.1029/2011JB008220:gifk70
– volume: 7
  start-page: 1225
  issue: 8
  year: 1976
  ident: 10.1029/2011JB008220:gifk76
  article-title: Grain-boundary sliding and its accommodation during creep and superplasticity
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02656607
– volume: 765
  volume-title: An evaluation of deformation models for grain boundary sliding
  year: 1982
  ident: 10.1029/2011JB008220:lang82
– volume: 21
  start-page: 541
  issue: 5
  year: 2010
  ident: 10.1029/2011JB008220:wang10
  article-title: Dislocation creep accommodated by grain boundary sliding in dunite
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-010-0113-1
– volume: 116
  start-page: B05201
  year: 2011
  ident: 10.1029/2011JB008220:keef11
  article-title: Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JB007748
– volume: 91
  start-page: 8151
  year: 1986
  ident: 10.1029/2011JB008220:kara86
  article-title: Rheology of synthetic olivine aggregates: Influence of grain size and water
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB091iB08p08151
– volume: 290
  start-page: 1564
  issue: 5496
  year: 2000
  ident: 10.1029/2011JB008220:byst00
  article-title: High shear strain of olivine aggregates; rheological and seismic consequences
  publication-title: Science
  doi: 10.1126/science.290.5496.1564
– volume: 11
  start-page: 5
  issue: 1
  year: 1984
  ident: 10.1029/2011JB008220:coop84
  article-title: Sintering of olivine and olivine-basalt aggregates
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00309372
– year: 2006
  ident: 10.1029/2011JB008220:kell06
  article-title: Dynamic recrystallization and grain growth in olivine rocks
– volume: 26
  start-page: 639
  issue: 4
  year: 1978
  ident: 10.1029/2011JB008220:shei78
  article-title: The mechanical properties of a superplastic quasi-single phase copper alloy
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(78)90116-5
– volume: 96
  start-page: 203
  year: 1989
  ident: 10.1029/2011JB008220:nish89
  article-title: The anisotropic structure of the upper mantle in the Pacific
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1989.tb04446.x
– volume: 272
  start-page: 501
  year: 2008
  ident: 10.1029/2011JB008220:warr08
  article-title: Evolution of olivine lattice preferred orientation during simple shear in the mantle
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.03.063
– volume: 51
  start-page: 79
  issue: 1
  year: 1985
  ident: 10.1029/2011JB008220:rico85
  article-title: Creep of Fe2SiO4 and CO2SiO4 single crystals in controlled thermodynamic environments
  publication-title: Philos. Mag. A
  doi: 10.1080/01418618508245271
– volume: 32
  start-page: 103
  issue: 1
  year: 2001
  ident: 10.1029/2011JB008220:duon01
  article-title: Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-001-0106-x
– volume: 42
  start-page: 2437
  year: 1994
  ident: 10.1029/2011JB008220:lang94
  article-title: Unified approach to grain boundary sliding in creep and superplasticity
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90322-0
– volume: 21
  start-page: 149
  issue: 2
  year: 1973
  ident: 10.1029/2011JB008220:ashb73
  article-title: Diffusion-accommodated flow and superplasticity
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(73)90057-6
– volume: 203
  start-page: 261
  issue: 4377
  year: 1979
  ident: 10.1029/2011JB008220:ross79
  article-title: Activation volume for creep in the upper mantle
  publication-title: Science
  doi: 10.1126/science.203.4377.261
– volume: 41
  start-page: 843
  issue: 6
  year: 1980
  ident: 10.1029/2011JB008220:eber80
  article-title: Interphase boundary sliding at high temperature in two-phase (α/β)-brass bicrystals
  publication-title: Philos. Mag. A
  doi: 10.1080/01418618008243892
– volume: 56
  volume-title: Rock deformation experimentation,
  year: 1990
  ident: 10.1029/2011JB008220:pate90
– volume: 8
  start-page: 161
  year: 1928
  ident: 10.1029/2011JB008220:vonm28
  article-title: Mechanik der plastischen Formänderung von Kristallen
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19280080302
– volume: 100
  start-page: 1981
  year: 1995
  ident: 10.1029/2011JB008220:hirt95b
  article-title: Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB02128
– volume: 24
  start-page: 999
  issue: 6–7
  year: 2002
  ident: 10.1029/2011JB008220:prio02
  article-title: Some garnet microstructures; an illustration of the potential of orientation maps and misorientation analysis in microstructural studies
  publication-title: J. Struct. Geol.
  doi: 10.1016/S0191-8141(01)00087-6
– volume: 445
  start-page: 318
  issue: 3–4
  year: 2007
  ident: 10.1029/2011JB008220:prec07
  article-title: Strain localisation in the subcontinental mantle—A ductile alternative to the brittle mantle
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2007.09.002
– volume: 106
  start-page: 11017
  year: 2001
  ident: 10.1029/2011JB008220:gold01
  article-title: Superplastic deformation of ice: Experimental observations
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900336
– volume: 248
  start-page: 438
  issue: 1–2
  year: 2006
  ident: 10.1029/2011JB008220:warr06
  article-title: Grain size sensitive deformation mechanisms in naturally deformed peridotites
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2006.06.006
– volume: 224
  start-page: 264
  issue: 3
  year: 2006
  ident: 10.1029/2011JB008220:valc06
  article-title: Electron backscattered diffraction as a tool to quantify subgrains in deformed calcite
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2006.01698.x
– volume: 144
  start-page: 93
  issue: 1–2
  year: 1996
  ident: 10.1029/2011JB008220:hirt96
  article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(96)00154-9
– volume: 41
  start-page: 597
  issue: 3
  year: 2006
  ident: 10.1029/2011JB008220:lang06
  article-title: Grain boundary sliding revisited: Developments in sliding over four decades
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-6476-0
– volume: 20
  start-page: 695
  issue: 6
  year: 1998
  ident: 10.1029/2011JB008220:heil98
  article-title: The influence of three-dimensional grain size distributions on the rheology of polyphase rocks
  publication-title: J. Struct. Geol.
  doi: 10.1016/S0191-8141(98)00010-8
– volume: 79
  start-page: 706
  issue: 5
  year: 1974
  ident: 10.1029/2011JB008220:nits74
  article-title: Stability field of olivine with respect to oxidation and reduction
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB079i005p00706
– volume: 100
  start-page: 15441
  year: 1995
  ident: 10.1029/2011JB008220:hirt95a
  article-title: Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JB01292
– volume: 234
  start-page: 119
  issue: 1–2
  year: 2005
  ident: 10.1029/2011JB008220:faul05
  article-title: The seismological signature of temperature and grain size variations in the upper mantle
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.02.008
– volume: 296
  start-page: 145
  issue: 1–2
  year: 1998
  ident: 10.1029/2011JB008220:isma98
  article-title: An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy; continents and their mantle roots
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(98)00141-3
– volume: 239
  start-page: 170
  issue: 2
  year: 1967
  ident: 10.1029/2011JB008220:barr67
  article-title: Effect of grain size and annealing treatment on steady-state creep of copper
  publication-title: Trans. Metall. Soc. AIME
– volume: 282
  start-page: 178
  issue: 1–4
  year: 2009
  ident: 10.1029/2011JB008220:behn09
  article-title: Implications of grain size evolution on the seismic structure of the oceanic upper mantle
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2009.03.014
– volume: 155
  start-page: 696
  issue: 2
  year: 2003
  ident: 10.1029/2011JB008220:beck03
  article-title: Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2003.02085.x
– volume: 27
  start-page: 2341
  issue: 15
  year: 2000
  ident: 10.1029/2011JB008220:grib00
  article-title: The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL011443
– volume: 168
  start-page: 255
  issue: 4
  year: 1989
  ident: 10.1029/2011JB008220:kara89
  article-title: Grain growth kinetics in olivine aggregates
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(89)90221-7
– volume-title: Superplasticity
  year: 1980
  ident: 10.1029/2011JB008220:padm80
  doi: 10.1007/978-3-642-81456-3
– volume: 427
  start-page: 115
  issue: 1–4
  year: 2006
  ident: 10.1029/2011JB008220:byst06
  article-title: Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2006.05.025
– volume: 79
  start-page: 2045
  year: 1974
  ident: 10.1029/2011JB008220:kohl74
  article-title: Low-stress high-temperature creep in olivine single crystals
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB079i014p02045
– volume: 168
  start-page: 173
  issue: 1–2
  year: 1999
  ident: 10.1029/2011JB008220:tomm99
  article-title: Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(99)00046-1
– volume: 316
  start-page: 133
  issue: 1–2
  year: 2000
  ident: 10.1029/2011JB008220:zhan00
  article-title: Simple shear deformation of olivine aggregates
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(99)00229-2
– volume: 89
  start-page: 7861
  year: 1984
  ident: 10.1029/2011JB008220:chop84
  article-title: The role of water in the deformation of dunite
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB089iB09p07861
– volume: 23
  start-page: 1781
  issue: 11
  year: 2001
  ident: 10.1029/2011JB008220:krus01
  article-title: Dynamic recrystallization processes in plagioclase porphyroclasts
  publication-title: J. Struct. Geol.
  doi: 10.1016/S0191-8141(01)00030-X
– volume: 227
  start-page: 298
  issue: 3
  year: 2007
  ident: 10.1029/2011JB008220:ming07
  article-title: Grain size measurement by EBSD in complex hot deformed metal alloy microstructures
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2007.01814.x
– volume: 411
  start-page: 157
  issue: 1–4
  year: 2005
  ident: 10.1029/2011JB008220:skem05
  article-title: The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2005.08.023
– volume: 80
  start-page: 2721
  issue: 11
  year: 2000
  ident: 10.1029/2011JB008220:duon00
  article-title: Effect of Cd on the boundary sliding behaviour in superplastic Pb-62 wt Sn alloy
  publication-title: Philos. Mag. A
  doi: 10.1080/01418610008216501
– volume: 245
  start-page: 291
  issue: 1
  year: 2005
  ident: 10.1029/2011JB008220:bruh05
  article-title: The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates
  publication-title: Geol. Soc. Spec. Publ.
  doi: 10.1144/GSL.SP.2005.245.01.14
– volume: 48
  start-page: 1207
  issue: 6
  year: 2000
  ident: 10.1029/2011JB008220:bae00
  article-title: Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00445-0
– volume: 45
  start-page: 275
  issue: 2
  year: 2004
  ident: 10.1029/2011JB008220:zimm04
  article-title: Rheological properties of partially molten lherzolite
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egg089
– volume: 113
  start-page: B02303
  year: 2008
  ident: 10.1029/2011JB008220:nett08
  article-title: Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JB004819
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816914
Score 2.4866064
Snippet We performed triaxial compressive creep experiments on aggregates of San Carlos olivine to develop a flow law and to examine microstructural development in the...
We determined a flow law for the grain boundary sliding (GBS) regime Extrapolations of our flow law imply that GBS is dominant in the upper mantle Observed...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anisotropy
Continental dynamics
crystallographic-preferred orientation
Deformation
dislocation creep
electron backscatter diffraction
Flow
Geology
Geophysics
grain boundary sliding
mantle viscosity
Materials creep
Materials science
Microstructure
Paterson apparatus
Plate tectonics
Rheology
Upper mantle
Title Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation
URI https://api.istex.fr/ark:/67375/WNG-R7GBCFKP-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JB008220
https://www.proquest.com/docview/881422745
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH5iVJN2mRhsWseGfBi7gIUTO2nMZVorElS0CpWhcbMcJ5GqZQlL2KD_Hj_jVnAYNyuyHMnv2e_z8_P3AXwOA4MXjYLaRR1SkTBB85wVVOqQV_Z4oFmMb4e_z-LTSzG9iq58bU7vyypXe6LbqIvWYI78KEkwWzES0dfrPxRFo_By1StovIBBYAMNOniSZusUC2pKSMfuHdoGlTzgvvSdhfIII9907BjP2ZOgNMD5vXuCOB_jVhd40i147REj-fZg4jewUTbb8DJzirxL23I1nKbfgTpDuQeSO6GkbkksgsTAROy3C92Qie7qtidtvfhnkeUxSev2ltT6liD792-siumJbgpiuqVFjLXnsl4gRySS0XZlQdpu4Z8qNW_hMj35MTmlXkyBaqQoo8i7xSrpyHzsqVRYHFPFPIjykZZlHCIrPWeF0BaPMFlqzQJTRVyWotIiNoHh72CzaZvyPZC44EgCVJkoqoQ2Mkk40ubpuMBnuQkfwsFqNpXxTOMoeFErd-MdSvV47oewv-59_cCw8Z9-X5xh1p109wur0kaR-jnL1HyUjSfp2blKh7C7spzyC7JXa_cZwqEz5rP_UtNsPg7iJAo_PDvYLrxa5ZhZ8BE2b7q_5ScLUm7yPeeKezAYn8zO5_co-d_y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQheEJ-iGx9-YLxANMd20hgJIVpIunar0NjE3ozjJFK1kIx0UPpH8T_ic5Nqe2Bve7Mi6yL5zr7z-e73A3jFfIMPjcKzm5p5IqLCS1OaeVIzXtjrgaYh9g4fTsPRiRifBqcb8LfrhcGyyu5MdAd1VhvMke9FEWYr-iL4cP7TQ9IofFztGDRWVjHJlwt7Y5u_3_9k1bvLWPz5eDjyWlIBTyNUl4f4U7SQDtTG3s6E9edFyP0g7WuZhwzR2TnNhLZ-mcpca-qbIuAyF4UWofENt3JvwZaVJbGCMIqTdUoHOSykQxNnduBJ7vO21J4yuYeedjxwCOv0ihPcQn3-uRLhXo6TnaOL78O9NkIlH1cm9QA28uoh3E4cA_DSjlzNqJk_gjJBegmSOmKmZklsxIqOkNhvX3VFhrop6zmpy9lvG8m-I3FZL0ipFwTRxn9gFc6c6CojplnaCLVssbNniEmJ4LdNnpG6mbWtUdVjOLmRdX4Cm1Vd5U-BhBlH0KHCBEEhtJFRxBGmT4cZtgFHvAdvutVUpkU2R4KNUrkXdibV5bXvwe569vkK0eM_8147xawn6eYMq-D6gfo2TdRRPxkM48kXFfdgp9Ocag-AuVqbaw_eOmVe-y81To4GfhgFbPtaYS_hzuj48EAd7E8nO3C3y29T_xlsXjS_8uc2QLpIXzizJPD9pvfBP6iSF9U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxFNsy8MHygWsdWznYSSE2C1JuwurqlC1N-M4ibQiTUpSWPan8e_weJNVe6C33qzIciTPjGc8nvk-hF4xz8BDoyDWqBkRERUkTWlGpGa8sNcDTQPoHf4yC_aPxeTUP91Af_teGCir7M9Ed1BntYEc-TCKIFsRCn9YdFURh3vxh_OfBAik4KG1Z9NYacg0Xy7s7a19f7BnRb3LWPzp23ifdAQDRANsFwEsKlpIB3Bjb2rC-vYi4J6fhlrmAQOkdk4zoa2PpjLXmnqm8LnMRaFFYDzD7bq30FbIIwrkCVGcrNM7wGchHbI4swMiuce7snvK5BC87mTk0NbpFYe4BbL9cyXavRwzO6cX30f3umgVf1yp1wO0kVcP0e3EsQEv7cjVj5r2ESoToJrAqSNpapbYRq_gFLH99lVXeKybsm5xXc5_26j2HY7LeoFLvcCAPH4GFTkt1lWGTbO00WrZ4WjPAZ8SgHCbPMN1M-_apKrH6PhG9vkJ2qzqKn-KcJBxACAqjO8XQhsZRRwg-3SQQUtwxAfoTb-bynQo50C2USr32s6kurz3A7S7nn2-Qvf4z7zXTjDrSbr5ARVxoa9OZok6CpPROJ4eqniAdnrJqe4waNVadQforRPmtf9Sk-Ro5AWRz7avXewlumMtQH0-mE130N0-1U29Z2jzovmVP7ex0kX6wmklRt9v2gz-AffSHAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+sliding+in+San+Carlos+olivine%3A+Flow+law+parameters+and+crystallographic-preferred+orientation&rft.jtitle=Journal+of+Geophysical+Research&rft.au=Hansen%2C+L.+N.&rft.au=Zimmerman%2C+M.+E.&rft.au=Kohlstedt%2C+D.+L.&rft.date=2011-08-01&rft.issn=0148-0227&rft.volume=116&rft.issue=B8&rft_id=info:doi/10.1029%2F2011JB008220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2011JB008220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon