Engineering of Hollow Core–Shell Interlinked Carbon Spheres for Highly Stable Lithium–Sulfur Batteries
We report engineered hollow core–shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li–S batteries. The hollow core–shell interlinked carbon spheres were obtained thr...
Saved in:
Published in | ACS nano Vol. 9; no. 8; pp. 8504 - 8513 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report engineered hollow core–shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li–S batteries. The hollow core–shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core–shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li–S batteries, such a hierarchical structure provides access to Li+ ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon–sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g–1 after 200 cycles at a current density of 0.5 C). |
---|---|
AbstractList | We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g(-1) after 200 cycles at a current density of 0.5 C). We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO sub(2) shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li super(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g super(-1) after 200 cycles at a current density of 0.5 C). Keywords: core-shell; Li-S battery; porous carbon; hollow structure; self-deposition |
Author | Sun, Qiang He, Bin Zhang, Xiang-Qian Lu, An-Hui |
AuthorAffiliation | Dalian University of Technology State Key Laboratory of Fine Chemicals, School of Chemical Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Fine Chemicals, School of Chemical Engineering – name: Dalian University of Technology |
Author_xml | – sequence: 1 givenname: Qiang surname: Sun fullname: Sun, Qiang – sequence: 2 givenname: Bin surname: He fullname: He, Bin – sequence: 3 givenname: Xiang-Qian surname: Zhang fullname: Zhang, Xiang-Qian – sequence: 4 givenname: An-Hui surname: Lu fullname: Lu, An-Hui email: anhuilu@dlut.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26182333$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9KAzEQh4NUbP1z9iY5ClJNNpvs7lGLWqHgoQrelmR3tk1Nk5pkEW--g2_ok7jS2oOgpxmY7xuY-e2jnnUWEDqm5JyShF7IKlhp3TlXhKV5voMGtGBiSHLx1Nv2nPbRfggLQniWZ2IP9RNB84QxNkCLazvTFsBrO8OuwWNnjHvFI-fh8_1jOgdj8J2N4I22z1DjkfTKWTxdzcFDwI3zeKxnc_OGp1EqA3ii41y3y2-5NU3r8ZWMna4hHKLdRpoAR5t6gB5vrh9G4-Hk_vZudDkZypQlcZhJBVWSJTUpakohpURxkQPPeQoMCgGpTFVB0pw1qhKp6k6XhCua1ZxnTVOxA3S63rvy7qWFEMulDlV3iLTg2lDSTCREUFJkHXqyQVu1hLpceb2U_q38-U8HXKyByrsQPDRbhJLyO4Fyk0C5SaAz-C-j0lFG7Wz0Upt_vLO11w3KhWu97X70J_0FN16d3w |
CitedBy_id | crossref_primary_10_1126_sciadv_abi7403 crossref_primary_10_1016_j_microc_2021_105984 crossref_primary_10_1039_C8TA05904G crossref_primary_10_1021_acsnano_6b08627 crossref_primary_10_1002_cplu_201700182 crossref_primary_10_1016_S1872_5805_23_60710_3 crossref_primary_10_1016_j_ensm_2015_09_008 crossref_primary_10_1021_acs_chemmater_9b01986 crossref_primary_10_1016_j_carbon_2022_09_020 crossref_primary_10_1002_advs_201800026 crossref_primary_10_1002_aenm_201803900 crossref_primary_10_1039_C9TA12235D crossref_primary_10_1016_j_fuel_2024_131295 crossref_primary_10_1007_s41918_020_00093_0 crossref_primary_10_1016_j_nantod_2018_02_006 crossref_primary_10_1016_j_jpowsour_2016_11_102 crossref_primary_10_1002_chem_201703130 crossref_primary_10_1016_j_ssi_2022_115961 crossref_primary_10_1002_adma_201700449 crossref_primary_10_1016_j_cclet_2023_109200 crossref_primary_10_1016_j_jcis_2021_04_093 crossref_primary_10_1021_acssuschemeng_9b01951 crossref_primary_10_1002_cnma_202000168 crossref_primary_10_1002_admi_201701274 crossref_primary_10_1021_acsnano_5b07340 crossref_primary_10_1016_j_mser_2017_09_001 crossref_primary_10_1002_adma_201602210 crossref_primary_10_1002_smll_201804786 crossref_primary_10_1016_j_eurpolymj_2024_112844 crossref_primary_10_1007_s12274_017_1454_1 crossref_primary_10_1016_j_ensm_2020_09_005 crossref_primary_10_1039_C7TA08768C crossref_primary_10_1002_cey2_137 crossref_primary_10_1002_adma_201804204 crossref_primary_10_1039_C8TA10266J crossref_primary_10_1021_jacs_2c06436 crossref_primary_10_1002_slct_201800704 crossref_primary_10_1002_aenm_201502539 crossref_primary_10_1007_s12274_021_3425_9 crossref_primary_10_1007_s12274_019_2381_0 crossref_primary_10_1016_j_jallcom_2022_166334 crossref_primary_10_1039_C9TA00975B crossref_primary_10_1016_j_est_2024_112347 crossref_primary_10_1002_aenm_201904026 crossref_primary_10_1039_C8TA02353K crossref_primary_10_1002_aenm_201701518 crossref_primary_10_3390_nano13111768 crossref_primary_10_1016_j_cej_2019_123163 crossref_primary_10_1016_j_joule_2017_12_003 crossref_primary_10_1016_j_micromeso_2020_110705 crossref_primary_10_1039_C8TA02027B crossref_primary_10_1016_j_partic_2023_09_007 crossref_primary_10_1002_aenm_201701082 crossref_primary_10_1016_j_jpowsour_2018_06_003 crossref_primary_10_1007_s12274_021_3290_6 crossref_primary_10_1016_j_electacta_2019_135482 crossref_primary_10_1039_C5NR08570E crossref_primary_10_1016_j_cej_2021_130129 crossref_primary_10_1002_adma_201901125 crossref_primary_10_1002_adma_201804626 crossref_primary_10_1016_j_cclet_2018_08_013 crossref_primary_10_20964_2018_07_38 crossref_primary_10_1002_smll_201906634 crossref_primary_10_1039_C6TA08557A crossref_primary_10_1039_C8NR07560C crossref_primary_10_1016_j_jallcom_2022_166144 crossref_primary_10_1016_j_jechem_2019_04_023 crossref_primary_10_1002_advs_201800621 crossref_primary_10_1002_slct_201700407 crossref_primary_10_1039_C7NR00999B crossref_primary_10_1002_adsu_201700081 crossref_primary_10_1039_C8TA06610H crossref_primary_10_1039_D0TA11624F crossref_primary_10_1002_asia_201701343 crossref_primary_10_1021_acsaem_9b00680 crossref_primary_10_1088_2631_7990_aca44c crossref_primary_10_1002_aenm_202000651 crossref_primary_10_1016_j_molliq_2022_119287 crossref_primary_10_1039_D0PY00490A crossref_primary_10_1002_adfm_202101326 crossref_primary_10_1016_j_cej_2022_135790 crossref_primary_10_1016_j_electacta_2018_09_115 crossref_primary_10_1002_adfm_201504589 crossref_primary_10_1021_acs_langmuir_3c00135 crossref_primary_10_1002_smll_202104469 crossref_primary_10_1021_acsaem_8b00227 crossref_primary_10_1002_adma_201801104 crossref_primary_10_1149_1945_7111_ab9cd2 crossref_primary_10_1016_j_jpowsour_2019_02_014 crossref_primary_10_1039_D4TA00234B crossref_primary_10_1002_adma_201903886 crossref_primary_10_1021_acsnano_1c09402 crossref_primary_10_1016_S1872_5805_24_60879_6 crossref_primary_10_1016_S1872_5805_20_60519_4 crossref_primary_10_1021_acsanm_2c01758 crossref_primary_10_1002_adma_201904177 crossref_primary_10_1021_acsanm_0c02073 crossref_primary_10_1021_acsami_6b15392 crossref_primary_10_1039_D0EE03316B crossref_primary_10_1039_D2TA07613F crossref_primary_10_1039_D1NR05681F crossref_primary_10_1002_adfm_201909265 crossref_primary_10_1002_anie_201914972 crossref_primary_10_1039_C7TA06781J crossref_primary_10_1002_adfm_201707597 crossref_primary_10_1007_s41918_018_0010_3 crossref_primary_10_3390_polym11111754 crossref_primary_10_1021_acsmaterialslett_9b00179 crossref_primary_10_1016_j_diamond_2023_110323 crossref_primary_10_1002_celc_201500536 crossref_primary_10_1039_C8RA08658C crossref_primary_10_1142_S1793292020300029 crossref_primary_10_1016_j_cclet_2018_04_019 crossref_primary_10_1002_ange_201914972 crossref_primary_10_1021_acssuschemeng_9b02906 crossref_primary_10_1039_D2TA06686F crossref_primary_10_1039_C6EE02364A crossref_primary_10_1021_acsami_8b12682 crossref_primary_10_1002_aenm_201602078 crossref_primary_10_1016_j_jpowsour_2021_230174 crossref_primary_10_1021_acs_langmuir_8b03973 crossref_primary_10_1039_C8CC07594H crossref_primary_10_1021_acs_energyfuels_3c00088 crossref_primary_10_1002_ange_202415036 crossref_primary_10_1002_smtd_201700345 crossref_primary_10_1039_C7TA08520F crossref_primary_10_1039_C6TA08742F crossref_primary_10_1039_D1TA06863F crossref_primary_10_1016_j_cej_2023_142268 crossref_primary_10_1039_D1EE03396D crossref_primary_10_1038_srep33871 crossref_primary_10_1039_C9TA05527D crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1021_jacs_7b01464 crossref_primary_10_1016_j_electacta_2019_04_157 crossref_primary_10_1016_j_carbon_2016_10_035 crossref_primary_10_1021_acsami_0c02980 crossref_primary_10_1016_j_jallcom_2017_10_115 crossref_primary_10_1002_adma_202302793 crossref_primary_10_1021_acs_iecr_9b01727 crossref_primary_10_1016_j_electacta_2018_05_144 crossref_primary_10_1039_D0TA04089D crossref_primary_10_1016_j_electacta_2018_05_029 crossref_primary_10_1016_j_electacta_2019_134849 crossref_primary_10_1002_adfm_201906117 crossref_primary_10_1016_j_jcis_2017_10_102 crossref_primary_10_1039_C6TA00483K crossref_primary_10_1007_s12274_017_1737_6 crossref_primary_10_1002_aenm_201700283 crossref_primary_10_1039_C6NR03229J crossref_primary_10_1002_cplu_201900216 crossref_primary_10_1002_adfm_201503726 crossref_primary_10_1002_batt_202200154 crossref_primary_10_1007_s12274_019_2324_9 crossref_primary_10_1515_ntrev_2021_0114 crossref_primary_10_1016_j_cej_2021_129649 crossref_primary_10_1039_C8TA00529J crossref_primary_10_1039_C7QI00479F crossref_primary_10_1016_j_carbon_2018_11_056 crossref_primary_10_1021_acsami_8b03611 crossref_primary_10_1016_j_mtchem_2024_102196 crossref_primary_10_1002_adfm_201705253 crossref_primary_10_1007_s40820_019_0249_1 crossref_primary_10_1039_D0TA00284D crossref_primary_10_1016_j_apsusc_2020_146754 crossref_primary_10_1021_acs_chemmater_6b03365 crossref_primary_10_1016_j_compositesb_2019_107025 crossref_primary_10_1002_adfm_202106679 crossref_primary_10_1007_s12039_018_1518_0 crossref_primary_10_1039_C6TA03187K crossref_primary_10_1021_acsami_8b16921 crossref_primary_10_1021_acsanm_3c00501 crossref_primary_10_1016_j_cej_2025_161227 crossref_primary_10_1016_j_electacta_2019_01_070 crossref_primary_10_1021_acsenergylett_7b01254 crossref_primary_10_1016_j_electacta_2020_136378 crossref_primary_10_1002_admi_201601195 crossref_primary_10_1016_j_carbon_2017_11_025 crossref_primary_10_1039_C7CC04523A crossref_primary_10_1002_cey2_69 crossref_primary_10_1016_j_cej_2018_08_132 crossref_primary_10_1016_j_jcis_2021_08_171 crossref_primary_10_1002_adfm_201601897 crossref_primary_10_1016_j_electacta_2018_12_075 crossref_primary_10_1039_C7TA03606J crossref_primary_10_1021_acsami_9b06456 crossref_primary_10_1039_C6TA07864H crossref_primary_10_1007_s12598_022_02140_9 crossref_primary_10_1002_smll_202006504 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1016_j_elecom_2017_07_010 crossref_primary_10_1039_D0QM00303D crossref_primary_10_1021_acsami_5b12496 crossref_primary_10_1039_C6RA22039H crossref_primary_10_3390_batteries8050045 crossref_primary_10_1002_aenm_201700260 crossref_primary_10_1021_acsaem_7b00153 crossref_primary_10_1021_acsenergylett_2c02313 crossref_primary_10_1016_j_jallcom_2017_12_110 crossref_primary_10_1039_C7TA00799J crossref_primary_10_1016_j_carbon_2019_05_022 crossref_primary_10_1016_j_matchemphys_2018_12_101 crossref_primary_10_1016_j_carbon_2018_09_067 crossref_primary_10_1002_adfm_201606663 crossref_primary_10_1002_adfm_201901730 crossref_primary_10_1016_j_isci_2018_07_021 crossref_primary_10_1063_1_5081915 crossref_primary_10_1039_C6TA06285G crossref_primary_10_1039_C9NR05670J crossref_primary_10_1039_C7TA03236F crossref_primary_10_1002_aenm_202001456 crossref_primary_10_1002_anie_202415036 crossref_primary_10_1016_j_nanoen_2018_10_001 crossref_primary_10_1038_s41467_017_00575_8 crossref_primary_10_1016_j_carbon_2018_07_023 crossref_primary_10_1021_acsnano_6b00888 crossref_primary_10_1039_C5RA25880D crossref_primary_10_1007_s10008_017_3629_9 crossref_primary_10_1021_acsnano_9b05727 crossref_primary_10_1016_j_jechem_2016_11_003 crossref_primary_10_1016_j_jpowsour_2022_231921 crossref_primary_10_15541_jim20190276 crossref_primary_10_1002_adfm_201703936 crossref_primary_10_1016_j_jpowsour_2016_08_128 crossref_primary_10_1016_j_jpowsour_2022_231922 crossref_primary_10_1002_smtd_202401580 crossref_primary_10_1002_aesr_202100007 crossref_primary_10_1016_j_ssi_2022_115948 crossref_primary_10_1088_1361_6528_ab4841 crossref_primary_10_1007_s10904_024_03037_z crossref_primary_10_1016_j_cej_2021_130316 crossref_primary_10_1016_j_jpowsour_2020_229358 crossref_primary_10_1002_smll_201804874 crossref_primary_10_1021_acs_langmuir_8b03477 crossref_primary_10_1016_j_jechem_2018_04_014 crossref_primary_10_1039_C6TA10111A crossref_primary_10_1016_j_jpowsour_2017_03_088 crossref_primary_10_1016_j_carbon_2021_04_060 crossref_primary_10_1039_C6RA23943A crossref_primary_10_1039_C8TA01257A crossref_primary_10_1016_j_cclet_2021_02_027 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1002_cnma_201800021 |
Cites_doi | 10.1038/ncomms6682 10.1021/nn501284q 10.1016/j.electacta.2013.11.041 10.1002/celc.201300182 10.1038/nmat2460 10.1002/admi.201400227 10.1002/adma.201401243 10.1021/nl2027684 10.1021/nl304795g 10.1021/ar3001348 10.1002/aenm.201401752 10.1002/smll.201202671 10.1021/cr500062v 10.1039/c1jm12979a 10.1021/ja513009v 10.1039/C4CC08980D 10.1021/nl200658a 10.1002/anie.201205292 10.1002/adma.201302877 10.1016/S1388-2481(02)00358-2 10.1016/j.jpowsour.2014.05.111 10.1021/nl501383g 10.1021/nn203436j 10.1021/nn404439r 10.1002/anie.201107817 10.1016/S0013-4686(03)00258-5 10.1039/c002639e 10.1021/ar300179v 10.1021/nl504963e 10.1021/nl202297p 10.1021/am4000535 10.1002/aenm.201301473 10.1016/S1387-1811(03)00506-7 10.1021/nl401729r 10.1002/anie.201411109 10.1002/anie.201105486 10.1039/c2cp40808b 10.1021/cm902050j 10.1038/ncomms2513 10.1039/c3ta10660h 10.1021/nn503220h 10.1038/nmat3191 10.1021/ja308170k 10.2174/157341307780619279 10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X 10.1021/ja206333w 10.1038/ncomms4410 10.1038/ncomms3985 10.1039/c3cp50653c 10.1039/c3ta11045a 10.1021/nn503985s 10.1039/c1ee01219c 10.1016/j.nanoen.2014.11.062 10.1039/b925751a 10.1021/cm504460p 10.1002/anie.201100637 |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1021/acsnano.5b03488 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 8513 |
ExternalDocumentID | 26182333 10_1021_acsnano_5b03488 a638388282 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
ID | FETCH-LOGICAL-a432t-7abec272d09d11e410b568e5854e3e96e4a4b90483fbc64b5b0a05b17d557ffc3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Thu Jul 10 17:32:18 EDT 2025 Tue Jul 15 03:06:24 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Tue Jul 01 01:33:52 EDT 2025 Thu Aug 27 13:42:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | porous carbon core−shell Li−S battery hollow structure self-deposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a432t-7abec272d09d11e410b568e5854e3e96e4a4b90483fbc64b5b0a05b17d557ffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26182333 |
PQID | 1762061097 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1762061097 pubmed_primary_26182333 crossref_primary_10_1021_acsnano_5b03488 crossref_citationtrail_10_1021_acsnano_5b03488 acs_journals_10_1021_acsnano_5b03488 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-25 |
PublicationDateYYYYMMDD | 2015-08-25 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 Zeng H. C. (ref43/cit43) 2007; 3 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 Ai X.-P. (ref10/cit10) 2012; 18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref55/cit55 doi: 10.1038/ncomms6682 – volume: 18 start-page: 224 year: 2012 ident: ref10/cit10 publication-title: J. Electrochem. – ident: ref47/cit47 doi: 10.1021/nn501284q – ident: ref11/cit11 doi: 10.1016/j.electacta.2013.11.041 – ident: ref16/cit16 doi: 10.1002/celc.201300182 – ident: ref20/cit20 doi: 10.1038/nmat2460 – ident: ref53/cit53 doi: 10.1002/admi.201400227 – ident: ref57/cit57 doi: 10.1002/adma.201401243 – ident: ref38/cit38 doi: 10.1021/nl2027684 – ident: ref52/cit52 doi: 10.1021/nl304795g – ident: ref3/cit3 doi: 10.1021/ar3001348 – ident: ref44/cit44 doi: 10.1002/aenm.201401752 – ident: ref41/cit41 doi: 10.1002/smll.201202671 – ident: ref24/cit24 doi: 10.1021/cr500062v – ident: ref36/cit36 doi: 10.1039/c1jm12979a – ident: ref32/cit32 doi: 10.1021/ja513009v – ident: ref54/cit54 doi: 10.1039/C4CC08980D – ident: ref12/cit12 doi: 10.1021/nl200658a – ident: ref50/cit50 doi: 10.1002/anie.201205292 – ident: ref9/cit9 doi: 10.1002/adma.201302877 – ident: ref14/cit14 doi: 10.1016/S1388-2481(02)00358-2 – ident: ref23/cit23 doi: 10.1016/j.jpowsour.2014.05.111 – ident: ref45/cit45 doi: 10.1021/nl501383g – ident: ref35/cit35 doi: 10.1021/nn203436j – ident: ref27/cit27 doi: 10.1021/nn404439r – ident: ref33/cit33 doi: 10.1002/anie.201107817 – ident: ref15/cit15 doi: 10.1016/S0013-4686(03)00258-5 – ident: ref31/cit31 doi: 10.1039/c002639e – ident: ref2/cit2 doi: 10.1021/ar300179v – ident: ref6/cit6 doi: 10.1021/nl504963e – ident: ref5/cit5 doi: 10.1021/nl202297p – ident: ref17/cit17 doi: 10.1021/am4000535 – ident: ref29/cit29 doi: 10.1002/aenm.201301473 – ident: ref42/cit42 doi: 10.1016/S1387-1811(03)00506-7 – ident: ref51/cit51 doi: 10.1021/nl401729r – ident: ref18/cit18 doi: 10.1002/anie.201411109 – ident: ref40/cit40 doi: 10.1002/anie.201105486 – ident: ref30/cit30 doi: 10.1039/c2cp40808b – ident: ref37/cit37 doi: 10.1021/cm902050j – ident: ref8/cit8 doi: 10.1038/ncomms2513 – ident: ref19/cit19 doi: 10.1039/c3ta10660h – ident: ref21/cit21 doi: 10.1021/nn503220h – ident: ref4/cit4 doi: 10.1038/nmat3191 – ident: ref7/cit7 doi: 10.1021/ja308170k – volume: 3 start-page: 177 year: 2007 ident: ref43/cit43 publication-title: Curr. Nanosci. doi: 10.2174/157341307780619279 – ident: ref49/cit49 doi: 10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X – ident: ref39/cit39 doi: 10.1021/ja206333w – ident: ref48/cit48 doi: 10.1038/ncomms4410 – ident: ref46/cit46 doi: 10.1038/ncomms3985 – ident: ref25/cit25 doi: 10.1039/c3cp50653c – ident: ref13/cit13 doi: 10.1039/c3ta11045a – ident: ref28/cit28 doi: 10.1021/nn503985s – ident: ref34/cit34 doi: 10.1039/c1ee01219c – ident: ref56/cit56 doi: 10.1016/j.nanoen.2014.11.062 – ident: ref1/cit1 doi: 10.1039/b925751a – ident: ref22/cit22 doi: 10.1021/cm504460p – ident: ref26/cit26 doi: 10.1002/anie.201100637 |
SSID | ssj0057876 |
Score | 2.5869224 |
Snippet | We report engineered hollow core–shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are... We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8504 |
SubjectTerms | Carbon Cathodes Lithium sulfur batteries Nanostructure Pyrolysis Silicon dioxide Sulfur Voids |
Title | Engineering of Hollow Core–Shell Interlinked Carbon Spheres for Highly Stable Lithium–Sulfur Batteries |
URI | http://dx.doi.org/10.1021/acsnano.5b03488 https://www.ncbi.nlm.nih.gov/pubmed/26182333 https://www.proquest.com/docview/1762061097 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVguZRDgdLS5UtG6qGXbBMntpNjtaJaIeCyVOot8jhj9WOboE2iqpz4D_xDfgnjJLsUqhUcI8WW7XnOvPFMnhk7sNYpAJUFkLqMApS0CDKXZYE2TiGaRIaF_zn502c1O00-nMmz32LRf2fwRXRkbF2asppICGNC20P2SKhU-zjreDpffXQ97lSfQKYAmVjEWsXnXgfeDdn6Tze0gVt2PubkSV-dVXfShL605GrSNjCx3-4LN_57-E_Z9sA0-XEPjWfsAZY77PEd_cHn7PLOE68cnxEoqhs-rZb48_uPua8R5d2RoU_zYsGnZglVyedeigBrTnyX-zqRxS0nzgoL5B8vmvOL9to3bheuXfJevpOi8V12evL-y3QWDJcvBCaJRUPGIusKLYowK6IIkygEqVKk6CLBGDOFiUkg84L0DqxKgOZnQgmRLqTUztl4j43KqsR9xoXR2hpUziqKRwwAEEuMbaFBGqHRjNkBrVI-bJ467_LiIsqHpcuHpRuzycpkuR0EzP09GovNDQ7XDb722h2bX323wkBO-8snTUyJVUuDIW8Rek16PWYvenCsO6PoMxVxHL_8vwm8YltEt6Q_kRbyNRs1yxbfEKVp4G0H5l_XhvW1 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAO5R-2_BmpSFyyJE7sbA4cqoVqS7e9bCv1FmxnrG5ZErRJVJUT78AL8Cq8Ck_COMkuBbQSl0ocE8WO7Rl7vvGMPwNsGWOl1jLx9MAm5KAMMi-xSeLFykpEFQk_c4eT9w_k6Ch6dyyO1-Db4iwMNaKkmsomiP-LXSB4Re9ylRd9of2QlK5Lo9zD8zNy0srXu29Ioi8433l7OBx53T0CnopCXtF_qaE85pmfZEGAUeBrIQdIQDnCEBOJkYp04rjVrTYy0vQL5QsdxJkQsbUmpHqvwFWCPty5d9vDyWKtd-ou27g1-eUEXpbkQX812Fk_U_5u_VZA2sa07dyE78tBaTJaPvTrSvfN5z_4Iv_nUbsFGx2uZtvtRLgNa5jfgRsX2BbvwumFJ1ZYNqIpUJyxYTHHH1--TlxGLGs2SF1QGzM2VHNd5GziiBewZITumcuKmZ0zQuh6hmw8rU6m9UdXuJ7Zes5astIplvfg6FI6ex_W8yLHh8C4imOjUFojyftSWmvCxKHJYi0Uj1H1YIukknZLRZk2WQA8SDtRpZ2oetBfaEpqOrp2d2vIbHWBl8sCn1qmktWfPl-oXkqriQsRqRyLmhpDttF3DPxxDx60OrmsjHztAQ_DcPPfOvAMro0O98fpePdg7xFcJ6Ap3F48F49hvZrX-ITAXKWfNvOJwfvLVsWfsqdYeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIiE4tPx3KT9GKhKXLIkTO5sDh2rLaktLhbRU6i3YzlgsLEm1SVSVE-_AK_AqvAhPwjjJrgpoJS6VOCaKHdszY3_jGX8G2DHGSq1l4umBTchBGWReYpPEi5WViCoSfuYOJ785kuPj6PWJOFmD74uzMNSIkmoqmyC-s-rTzHYMA8ELep-rvOgL7YekeF0q5QGen5GjVr7c3yOpPuN89OrdcOx1dwl4Kgp5Rf-mxvKYZ36SBQFGga-FHCCB5QhDTCRGKtKJ41e32shI0y-UL3QQZ0LE1pqQ6r0CV12Q0Ll4u8PJYr53Ki_b2DX55gRglgRCfzXYrYCm_H0FXAFrm-VttAk_lgPTZLV86teV7psvf3BG_u8jdxM2OnzNdluDuAVrmN-GGxdYF-_AxwtPrLBsTKZQnLFhMcefX79NXGYsazZKXXAbMzZUc13kbOIIGLBkhPKZy46ZnTNC6nqG7HBafZjWn13hembrOWtJS6dY3oXjS-nsPVjPixy3gHEVx0ahtEaSF6a01oSNQ5PFWigeo-rBDkkl7aaMMm2yAXiQdqJKO1H1oL_QltR0tO3u9pDZ6gLPlwVOW8aS1Z8-XahfSrOKCxWpHIuaGkNrpO-Y-OMe3G_1clkZ-dwDHobhg3_rwBO49nZvlB7uHx1sw3XCm8JtyXPxENareY2PCNNV-nFjUgzeX7Ym_gLv31r7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Hollow+Core%E2%80%93Shell+Interlinked+Carbon+Spheres+for+Highly+Stable+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=ACS+nano&rft.au=Sun%2C+Qiang&rft.au=He%2C+Bin&rft.au=Zhang%2C+Xiang-Qian&rft.au=Lu%2C+An-Hui&rft.date=2015-08-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=8&rft.spage=8504&rft.epage=8513&rft_id=info:doi/10.1021%2Facsnano.5b03488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_5b03488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |