Engineering of Hollow Core–Shell Interlinked Carbon Spheres for Highly Stable Lithium–Sulfur Batteries

We report engineered hollow core–shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li–S batteries. The hollow core–shell interlinked carbon spheres were obtained thr...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 8; pp. 8504 - 8513
Main Authors Sun, Qiang, He, Bin, Zhang, Xiang-Qian, Lu, An-Hui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report engineered hollow core–shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li–S batteries. The hollow core–shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core–shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li–S batteries, such a hierarchical structure provides access to Li+ ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon–sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g–1 after 200 cycles at a current density of 0.5 C).
AbstractList We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g(-1) after 200 cycles at a current density of 0.5 C).
We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO sub(2) shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li super(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g super(-1) after 200 cycles at a current density of 0.5 C). Keywords: core-shell; Li-S battery; porous carbon; hollow structure; self-deposition
Author Sun, Qiang
He, Bin
Zhang, Xiang-Qian
Lu, An-Hui
AuthorAffiliation Dalian University of Technology
State Key Laboratory of Fine Chemicals, School of Chemical Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Fine Chemicals, School of Chemical Engineering
– name: Dalian University of Technology
Author_xml – sequence: 1
  givenname: Qiang
  surname: Sun
  fullname: Sun, Qiang
– sequence: 2
  givenname: Bin
  surname: He
  fullname: He, Bin
– sequence: 3
  givenname: Xiang-Qian
  surname: Zhang
  fullname: Zhang, Xiang-Qian
– sequence: 4
  givenname: An-Hui
  surname: Lu
  fullname: Lu, An-Hui
  email: anhuilu@dlut.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26182333$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9KAzEQh4NUbP1z9iY5ClJNNpvs7lGLWqHgoQrelmR3tk1Nk5pkEW--g2_ok7jS2oOgpxmY7xuY-e2jnnUWEDqm5JyShF7IKlhp3TlXhKV5voMGtGBiSHLx1Nv2nPbRfggLQniWZ2IP9RNB84QxNkCLazvTFsBrO8OuwWNnjHvFI-fh8_1jOgdj8J2N4I22z1DjkfTKWTxdzcFDwI3zeKxnc_OGp1EqA3ii41y3y2-5NU3r8ZWMna4hHKLdRpoAR5t6gB5vrh9G4-Hk_vZudDkZypQlcZhJBVWSJTUpakohpURxkQPPeQoMCgGpTFVB0pw1qhKp6k6XhCua1ZxnTVOxA3S63rvy7qWFEMulDlV3iLTg2lDSTCREUFJkHXqyQVu1hLpceb2U_q38-U8HXKyByrsQPDRbhJLyO4Fyk0C5SaAz-C-j0lFG7Wz0Upt_vLO11w3KhWu97X70J_0FN16d3w
CitedBy_id crossref_primary_10_1126_sciadv_abi7403
crossref_primary_10_1016_j_microc_2021_105984
crossref_primary_10_1039_C8TA05904G
crossref_primary_10_1021_acsnano_6b08627
crossref_primary_10_1002_cplu_201700182
crossref_primary_10_1016_S1872_5805_23_60710_3
crossref_primary_10_1016_j_ensm_2015_09_008
crossref_primary_10_1021_acs_chemmater_9b01986
crossref_primary_10_1016_j_carbon_2022_09_020
crossref_primary_10_1002_advs_201800026
crossref_primary_10_1002_aenm_201803900
crossref_primary_10_1039_C9TA12235D
crossref_primary_10_1016_j_fuel_2024_131295
crossref_primary_10_1007_s41918_020_00093_0
crossref_primary_10_1016_j_nantod_2018_02_006
crossref_primary_10_1016_j_jpowsour_2016_11_102
crossref_primary_10_1002_chem_201703130
crossref_primary_10_1016_j_ssi_2022_115961
crossref_primary_10_1002_adma_201700449
crossref_primary_10_1016_j_cclet_2023_109200
crossref_primary_10_1016_j_jcis_2021_04_093
crossref_primary_10_1021_acssuschemeng_9b01951
crossref_primary_10_1002_cnma_202000168
crossref_primary_10_1002_admi_201701274
crossref_primary_10_1021_acsnano_5b07340
crossref_primary_10_1016_j_mser_2017_09_001
crossref_primary_10_1002_adma_201602210
crossref_primary_10_1002_smll_201804786
crossref_primary_10_1016_j_eurpolymj_2024_112844
crossref_primary_10_1007_s12274_017_1454_1
crossref_primary_10_1016_j_ensm_2020_09_005
crossref_primary_10_1039_C7TA08768C
crossref_primary_10_1002_cey2_137
crossref_primary_10_1002_adma_201804204
crossref_primary_10_1039_C8TA10266J
crossref_primary_10_1021_jacs_2c06436
crossref_primary_10_1002_slct_201800704
crossref_primary_10_1002_aenm_201502539
crossref_primary_10_1007_s12274_021_3425_9
crossref_primary_10_1007_s12274_019_2381_0
crossref_primary_10_1016_j_jallcom_2022_166334
crossref_primary_10_1039_C9TA00975B
crossref_primary_10_1016_j_est_2024_112347
crossref_primary_10_1002_aenm_201904026
crossref_primary_10_1039_C8TA02353K
crossref_primary_10_1002_aenm_201701518
crossref_primary_10_3390_nano13111768
crossref_primary_10_1016_j_cej_2019_123163
crossref_primary_10_1016_j_joule_2017_12_003
crossref_primary_10_1016_j_micromeso_2020_110705
crossref_primary_10_1039_C8TA02027B
crossref_primary_10_1016_j_partic_2023_09_007
crossref_primary_10_1002_aenm_201701082
crossref_primary_10_1016_j_jpowsour_2018_06_003
crossref_primary_10_1007_s12274_021_3290_6
crossref_primary_10_1016_j_electacta_2019_135482
crossref_primary_10_1039_C5NR08570E
crossref_primary_10_1016_j_cej_2021_130129
crossref_primary_10_1002_adma_201901125
crossref_primary_10_1002_adma_201804626
crossref_primary_10_1016_j_cclet_2018_08_013
crossref_primary_10_20964_2018_07_38
crossref_primary_10_1002_smll_201906634
crossref_primary_10_1039_C6TA08557A
crossref_primary_10_1039_C8NR07560C
crossref_primary_10_1016_j_jallcom_2022_166144
crossref_primary_10_1016_j_jechem_2019_04_023
crossref_primary_10_1002_advs_201800621
crossref_primary_10_1002_slct_201700407
crossref_primary_10_1039_C7NR00999B
crossref_primary_10_1002_adsu_201700081
crossref_primary_10_1039_C8TA06610H
crossref_primary_10_1039_D0TA11624F
crossref_primary_10_1002_asia_201701343
crossref_primary_10_1021_acsaem_9b00680
crossref_primary_10_1088_2631_7990_aca44c
crossref_primary_10_1002_aenm_202000651
crossref_primary_10_1016_j_molliq_2022_119287
crossref_primary_10_1039_D0PY00490A
crossref_primary_10_1002_adfm_202101326
crossref_primary_10_1016_j_cej_2022_135790
crossref_primary_10_1016_j_electacta_2018_09_115
crossref_primary_10_1002_adfm_201504589
crossref_primary_10_1021_acs_langmuir_3c00135
crossref_primary_10_1002_smll_202104469
crossref_primary_10_1021_acsaem_8b00227
crossref_primary_10_1002_adma_201801104
crossref_primary_10_1149_1945_7111_ab9cd2
crossref_primary_10_1016_j_jpowsour_2019_02_014
crossref_primary_10_1039_D4TA00234B
crossref_primary_10_1002_adma_201903886
crossref_primary_10_1021_acsnano_1c09402
crossref_primary_10_1016_S1872_5805_24_60879_6
crossref_primary_10_1016_S1872_5805_20_60519_4
crossref_primary_10_1021_acsanm_2c01758
crossref_primary_10_1002_adma_201904177
crossref_primary_10_1021_acsanm_0c02073
crossref_primary_10_1021_acsami_6b15392
crossref_primary_10_1039_D0EE03316B
crossref_primary_10_1039_D2TA07613F
crossref_primary_10_1039_D1NR05681F
crossref_primary_10_1002_adfm_201909265
crossref_primary_10_1002_anie_201914972
crossref_primary_10_1039_C7TA06781J
crossref_primary_10_1002_adfm_201707597
crossref_primary_10_1007_s41918_018_0010_3
crossref_primary_10_3390_polym11111754
crossref_primary_10_1021_acsmaterialslett_9b00179
crossref_primary_10_1016_j_diamond_2023_110323
crossref_primary_10_1002_celc_201500536
crossref_primary_10_1039_C8RA08658C
crossref_primary_10_1142_S1793292020300029
crossref_primary_10_1016_j_cclet_2018_04_019
crossref_primary_10_1002_ange_201914972
crossref_primary_10_1021_acssuschemeng_9b02906
crossref_primary_10_1039_D2TA06686F
crossref_primary_10_1039_C6EE02364A
crossref_primary_10_1021_acsami_8b12682
crossref_primary_10_1002_aenm_201602078
crossref_primary_10_1016_j_jpowsour_2021_230174
crossref_primary_10_1021_acs_langmuir_8b03973
crossref_primary_10_1039_C8CC07594H
crossref_primary_10_1021_acs_energyfuels_3c00088
crossref_primary_10_1002_ange_202415036
crossref_primary_10_1002_smtd_201700345
crossref_primary_10_1039_C7TA08520F
crossref_primary_10_1039_C6TA08742F
crossref_primary_10_1039_D1TA06863F
crossref_primary_10_1016_j_cej_2023_142268
crossref_primary_10_1039_D1EE03396D
crossref_primary_10_1038_srep33871
crossref_primary_10_1039_C9TA05527D
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1021_jacs_7b01464
crossref_primary_10_1016_j_electacta_2019_04_157
crossref_primary_10_1016_j_carbon_2016_10_035
crossref_primary_10_1021_acsami_0c02980
crossref_primary_10_1016_j_jallcom_2017_10_115
crossref_primary_10_1002_adma_202302793
crossref_primary_10_1021_acs_iecr_9b01727
crossref_primary_10_1016_j_electacta_2018_05_144
crossref_primary_10_1039_D0TA04089D
crossref_primary_10_1016_j_electacta_2018_05_029
crossref_primary_10_1016_j_electacta_2019_134849
crossref_primary_10_1002_adfm_201906117
crossref_primary_10_1016_j_jcis_2017_10_102
crossref_primary_10_1039_C6TA00483K
crossref_primary_10_1007_s12274_017_1737_6
crossref_primary_10_1002_aenm_201700283
crossref_primary_10_1039_C6NR03229J
crossref_primary_10_1002_cplu_201900216
crossref_primary_10_1002_adfm_201503726
crossref_primary_10_1002_batt_202200154
crossref_primary_10_1007_s12274_019_2324_9
crossref_primary_10_1515_ntrev_2021_0114
crossref_primary_10_1016_j_cej_2021_129649
crossref_primary_10_1039_C8TA00529J
crossref_primary_10_1039_C7QI00479F
crossref_primary_10_1016_j_carbon_2018_11_056
crossref_primary_10_1021_acsami_8b03611
crossref_primary_10_1016_j_mtchem_2024_102196
crossref_primary_10_1002_adfm_201705253
crossref_primary_10_1007_s40820_019_0249_1
crossref_primary_10_1039_D0TA00284D
crossref_primary_10_1016_j_apsusc_2020_146754
crossref_primary_10_1021_acs_chemmater_6b03365
crossref_primary_10_1016_j_compositesb_2019_107025
crossref_primary_10_1002_adfm_202106679
crossref_primary_10_1007_s12039_018_1518_0
crossref_primary_10_1039_C6TA03187K
crossref_primary_10_1021_acsami_8b16921
crossref_primary_10_1021_acsanm_3c00501
crossref_primary_10_1016_j_cej_2025_161227
crossref_primary_10_1016_j_electacta_2019_01_070
crossref_primary_10_1021_acsenergylett_7b01254
crossref_primary_10_1016_j_electacta_2020_136378
crossref_primary_10_1002_admi_201601195
crossref_primary_10_1016_j_carbon_2017_11_025
crossref_primary_10_1039_C7CC04523A
crossref_primary_10_1002_cey2_69
crossref_primary_10_1016_j_cej_2018_08_132
crossref_primary_10_1016_j_jcis_2021_08_171
crossref_primary_10_1002_adfm_201601897
crossref_primary_10_1016_j_electacta_2018_12_075
crossref_primary_10_1039_C7TA03606J
crossref_primary_10_1021_acsami_9b06456
crossref_primary_10_1039_C6TA07864H
crossref_primary_10_1007_s12598_022_02140_9
crossref_primary_10_1002_smll_202006504
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1016_j_elecom_2017_07_010
crossref_primary_10_1039_D0QM00303D
crossref_primary_10_1021_acsami_5b12496
crossref_primary_10_1039_C6RA22039H
crossref_primary_10_3390_batteries8050045
crossref_primary_10_1002_aenm_201700260
crossref_primary_10_1021_acsaem_7b00153
crossref_primary_10_1021_acsenergylett_2c02313
crossref_primary_10_1016_j_jallcom_2017_12_110
crossref_primary_10_1039_C7TA00799J
crossref_primary_10_1016_j_carbon_2019_05_022
crossref_primary_10_1016_j_matchemphys_2018_12_101
crossref_primary_10_1016_j_carbon_2018_09_067
crossref_primary_10_1002_adfm_201606663
crossref_primary_10_1002_adfm_201901730
crossref_primary_10_1016_j_isci_2018_07_021
crossref_primary_10_1063_1_5081915
crossref_primary_10_1039_C6TA06285G
crossref_primary_10_1039_C9NR05670J
crossref_primary_10_1039_C7TA03236F
crossref_primary_10_1002_aenm_202001456
crossref_primary_10_1002_anie_202415036
crossref_primary_10_1016_j_nanoen_2018_10_001
crossref_primary_10_1038_s41467_017_00575_8
crossref_primary_10_1016_j_carbon_2018_07_023
crossref_primary_10_1021_acsnano_6b00888
crossref_primary_10_1039_C5RA25880D
crossref_primary_10_1007_s10008_017_3629_9
crossref_primary_10_1021_acsnano_9b05727
crossref_primary_10_1016_j_jechem_2016_11_003
crossref_primary_10_1016_j_jpowsour_2022_231921
crossref_primary_10_15541_jim20190276
crossref_primary_10_1002_adfm_201703936
crossref_primary_10_1016_j_jpowsour_2016_08_128
crossref_primary_10_1016_j_jpowsour_2022_231922
crossref_primary_10_1002_smtd_202401580
crossref_primary_10_1002_aesr_202100007
crossref_primary_10_1016_j_ssi_2022_115948
crossref_primary_10_1088_1361_6528_ab4841
crossref_primary_10_1007_s10904_024_03037_z
crossref_primary_10_1016_j_cej_2021_130316
crossref_primary_10_1016_j_jpowsour_2020_229358
crossref_primary_10_1002_smll_201804874
crossref_primary_10_1021_acs_langmuir_8b03477
crossref_primary_10_1016_j_jechem_2018_04_014
crossref_primary_10_1039_C6TA10111A
crossref_primary_10_1016_j_jpowsour_2017_03_088
crossref_primary_10_1016_j_carbon_2021_04_060
crossref_primary_10_1039_C6RA23943A
crossref_primary_10_1039_C8TA01257A
crossref_primary_10_1016_j_cclet_2021_02_027
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1002_cnma_201800021
Cites_doi 10.1038/ncomms6682
10.1021/nn501284q
10.1016/j.electacta.2013.11.041
10.1002/celc.201300182
10.1038/nmat2460
10.1002/admi.201400227
10.1002/adma.201401243
10.1021/nl2027684
10.1021/nl304795g
10.1021/ar3001348
10.1002/aenm.201401752
10.1002/smll.201202671
10.1021/cr500062v
10.1039/c1jm12979a
10.1021/ja513009v
10.1039/C4CC08980D
10.1021/nl200658a
10.1002/anie.201205292
10.1002/adma.201302877
10.1016/S1388-2481(02)00358-2
10.1016/j.jpowsour.2014.05.111
10.1021/nl501383g
10.1021/nn203436j
10.1021/nn404439r
10.1002/anie.201107817
10.1016/S0013-4686(03)00258-5
10.1039/c002639e
10.1021/ar300179v
10.1021/nl504963e
10.1021/nl202297p
10.1021/am4000535
10.1002/aenm.201301473
10.1016/S1387-1811(03)00506-7
10.1021/nl401729r
10.1002/anie.201411109
10.1002/anie.201105486
10.1039/c2cp40808b
10.1021/cm902050j
10.1038/ncomms2513
10.1039/c3ta10660h
10.1021/nn503220h
10.1038/nmat3191
10.1021/ja308170k
10.2174/157341307780619279
10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
10.1021/ja206333w
10.1038/ncomms4410
10.1038/ncomms3985
10.1039/c3cp50653c
10.1039/c3ta11045a
10.1021/nn503985s
10.1039/c1ee01219c
10.1016/j.nanoen.2014.11.062
10.1039/b925751a
10.1021/cm504460p
10.1002/anie.201100637
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1021/acsnano.5b03488
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 8513
ExternalDocumentID 26182333
10_1021_acsnano_5b03488
a638388282
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-a432t-7abec272d09d11e410b568e5854e3e96e4a4b90483fbc64b5b0a05b17d557ffc3
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Thu Jul 10 17:32:18 EDT 2025
Tue Jul 15 03:06:24 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Tue Jul 01 01:33:52 EDT 2025
Thu Aug 27 13:42:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords porous carbon
core−shell
Li−S battery
hollow structure
self-deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a432t-7abec272d09d11e410b568e5854e3e96e4a4b90483fbc64b5b0a05b17d557ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26182333
PQID 1762061097
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1762061097
pubmed_primary_26182333
crossref_primary_10_1021_acsnano_5b03488
crossref_citationtrail_10_1021_acsnano_5b03488
acs_journals_10_1021_acsnano_5b03488
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-25
PublicationDateYYYYMMDD 2015-08-25
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
Zeng H. C. (ref43/cit43) 2007; 3
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Ai X.-P. (ref10/cit10) 2012; 18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref55/cit55
  doi: 10.1038/ncomms6682
– volume: 18
  start-page: 224
  year: 2012
  ident: ref10/cit10
  publication-title: J. Electrochem.
– ident: ref47/cit47
  doi: 10.1021/nn501284q
– ident: ref11/cit11
  doi: 10.1016/j.electacta.2013.11.041
– ident: ref16/cit16
  doi: 10.1002/celc.201300182
– ident: ref20/cit20
  doi: 10.1038/nmat2460
– ident: ref53/cit53
  doi: 10.1002/admi.201400227
– ident: ref57/cit57
  doi: 10.1002/adma.201401243
– ident: ref38/cit38
  doi: 10.1021/nl2027684
– ident: ref52/cit52
  doi: 10.1021/nl304795g
– ident: ref3/cit3
  doi: 10.1021/ar3001348
– ident: ref44/cit44
  doi: 10.1002/aenm.201401752
– ident: ref41/cit41
  doi: 10.1002/smll.201202671
– ident: ref24/cit24
  doi: 10.1021/cr500062v
– ident: ref36/cit36
  doi: 10.1039/c1jm12979a
– ident: ref32/cit32
  doi: 10.1021/ja513009v
– ident: ref54/cit54
  doi: 10.1039/C4CC08980D
– ident: ref12/cit12
  doi: 10.1021/nl200658a
– ident: ref50/cit50
  doi: 10.1002/anie.201205292
– ident: ref9/cit9
  doi: 10.1002/adma.201302877
– ident: ref14/cit14
  doi: 10.1016/S1388-2481(02)00358-2
– ident: ref23/cit23
  doi: 10.1016/j.jpowsour.2014.05.111
– ident: ref45/cit45
  doi: 10.1021/nl501383g
– ident: ref35/cit35
  doi: 10.1021/nn203436j
– ident: ref27/cit27
  doi: 10.1021/nn404439r
– ident: ref33/cit33
  doi: 10.1002/anie.201107817
– ident: ref15/cit15
  doi: 10.1016/S0013-4686(03)00258-5
– ident: ref31/cit31
  doi: 10.1039/c002639e
– ident: ref2/cit2
  doi: 10.1021/ar300179v
– ident: ref6/cit6
  doi: 10.1021/nl504963e
– ident: ref5/cit5
  doi: 10.1021/nl202297p
– ident: ref17/cit17
  doi: 10.1021/am4000535
– ident: ref29/cit29
  doi: 10.1002/aenm.201301473
– ident: ref42/cit42
  doi: 10.1016/S1387-1811(03)00506-7
– ident: ref51/cit51
  doi: 10.1021/nl401729r
– ident: ref18/cit18
  doi: 10.1002/anie.201411109
– ident: ref40/cit40
  doi: 10.1002/anie.201105486
– ident: ref30/cit30
  doi: 10.1039/c2cp40808b
– ident: ref37/cit37
  doi: 10.1021/cm902050j
– ident: ref8/cit8
  doi: 10.1038/ncomms2513
– ident: ref19/cit19
  doi: 10.1039/c3ta10660h
– ident: ref21/cit21
  doi: 10.1021/nn503220h
– ident: ref4/cit4
  doi: 10.1038/nmat3191
– ident: ref7/cit7
  doi: 10.1021/ja308170k
– volume: 3
  start-page: 177
  year: 2007
  ident: ref43/cit43
  publication-title: Curr. Nanosci.
  doi: 10.2174/157341307780619279
– ident: ref49/cit49
  doi: 10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
– ident: ref39/cit39
  doi: 10.1021/ja206333w
– ident: ref48/cit48
  doi: 10.1038/ncomms4410
– ident: ref46/cit46
  doi: 10.1038/ncomms3985
– ident: ref25/cit25
  doi: 10.1039/c3cp50653c
– ident: ref13/cit13
  doi: 10.1039/c3ta11045a
– ident: ref28/cit28
  doi: 10.1021/nn503985s
– ident: ref34/cit34
  doi: 10.1039/c1ee01219c
– ident: ref56/cit56
  doi: 10.1016/j.nanoen.2014.11.062
– ident: ref1/cit1
  doi: 10.1039/b925751a
– ident: ref22/cit22
  doi: 10.1021/cm504460p
– ident: ref26/cit26
  doi: 10.1002/anie.201100637
SSID ssj0057876
Score 2.5869224
Snippet We report engineered hollow core–shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are...
We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8504
SubjectTerms Carbon
Cathodes
Lithium sulfur batteries
Nanostructure
Pyrolysis
Silicon dioxide
Sulfur
Voids
Title Engineering of Hollow Core–Shell Interlinked Carbon Spheres for Highly Stable Lithium–Sulfur Batteries
URI http://dx.doi.org/10.1021/acsnano.5b03488
https://www.ncbi.nlm.nih.gov/pubmed/26182333
https://www.proquest.com/docview/1762061097
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVguZRDgdLS5UtG6qGXbBMntpNjtaJaIeCyVOot8jhj9WOboE2iqpz4D_xDfgnjJLsUqhUcI8WW7XnOvPFMnhk7sNYpAJUFkLqMApS0CDKXZYE2TiGaRIaF_zn502c1O00-nMmz32LRf2fwRXRkbF2asppICGNC20P2SKhU-zjreDpffXQ97lSfQKYAmVjEWsXnXgfeDdn6Tze0gVt2PubkSV-dVXfShL605GrSNjCx3-4LN_57-E_Z9sA0-XEPjWfsAZY77PEd_cHn7PLOE68cnxEoqhs-rZb48_uPua8R5d2RoU_zYsGnZglVyedeigBrTnyX-zqRxS0nzgoL5B8vmvOL9to3bheuXfJevpOi8V12evL-y3QWDJcvBCaJRUPGIusKLYowK6IIkygEqVKk6CLBGDOFiUkg84L0DqxKgOZnQgmRLqTUztl4j43KqsR9xoXR2hpUziqKRwwAEEuMbaFBGqHRjNkBrVI-bJ467_LiIsqHpcuHpRuzycpkuR0EzP09GovNDQ7XDb722h2bX323wkBO-8snTUyJVUuDIW8Rek16PWYvenCsO6PoMxVxHL_8vwm8YltEt6Q_kRbyNRs1yxbfEKVp4G0H5l_XhvW1
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAO5R-2_BmpSFyyJE7sbA4cqoVqS7e9bCv1FmxnrG5ZErRJVJUT78AL8Cq8Ck_COMkuBbQSl0ocE8WO7Rl7vvGMPwNsGWOl1jLx9MAm5KAMMi-xSeLFykpEFQk_c4eT9w_k6Ch6dyyO1-Db4iwMNaKkmsomiP-LXSB4Re9ylRd9of2QlK5Lo9zD8zNy0srXu29Ioi8433l7OBx53T0CnopCXtF_qaE85pmfZEGAUeBrIQdIQDnCEBOJkYp04rjVrTYy0vQL5QsdxJkQsbUmpHqvwFWCPty5d9vDyWKtd-ou27g1-eUEXpbkQX812Fk_U_5u_VZA2sa07dyE78tBaTJaPvTrSvfN5z_4Iv_nUbsFGx2uZtvtRLgNa5jfgRsX2BbvwumFJ1ZYNqIpUJyxYTHHH1--TlxGLGs2SF1QGzM2VHNd5GziiBewZITumcuKmZ0zQuh6hmw8rU6m9UdXuJ7Zes5astIplvfg6FI6ex_W8yLHh8C4imOjUFojyftSWmvCxKHJYi0Uj1H1YIukknZLRZk2WQA8SDtRpZ2oetBfaEpqOrp2d2vIbHWBl8sCn1qmktWfPl-oXkqriQsRqRyLmhpDttF3DPxxDx60OrmsjHztAQ_DcPPfOvAMro0O98fpePdg7xFcJ6Ap3F48F49hvZrX-ITAXKWfNvOJwfvLVsWfsqdYeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIiE4tPx3KT9GKhKXLIkTO5sDh2rLaktLhbRU6i3YzlgsLEm1SVSVE-_AK_AqvAhPwjjJrgpoJS6VOCaKHdszY3_jGX8G2DHGSq1l4umBTchBGWReYpPEi5WViCoSfuYOJ785kuPj6PWJOFmD74uzMNSIkmoqmyC-s-rTzHYMA8ELep-rvOgL7YekeF0q5QGen5GjVr7c3yOpPuN89OrdcOx1dwl4Kgp5Rf-mxvKYZ36SBQFGga-FHCCB5QhDTCRGKtKJ41e32shI0y-UL3QQZ0LE1pqQ6r0CV12Q0Ll4u8PJYr53Ki_b2DX55gRglgRCfzXYrYCm_H0FXAFrm-VttAk_lgPTZLV86teV7psvf3BG_u8jdxM2OnzNdluDuAVrmN-GGxdYF-_AxwtPrLBsTKZQnLFhMcefX79NXGYsazZKXXAbMzZUc13kbOIIGLBkhPKZy46ZnTNC6nqG7HBafZjWn13hembrOWtJS6dY3oXjS-nsPVjPixy3gHEVx0ahtEaSF6a01oSNQ5PFWigeo-rBDkkl7aaMMm2yAXiQdqJKO1H1oL_QltR0tO3u9pDZ6gLPlwVOW8aS1Z8-XahfSrOKCxWpHIuaGkNrpO-Y-OMe3G_1clkZ-dwDHobhg3_rwBO49nZvlB7uHx1sw3XCm8JtyXPxENareY2PCNNV-nFjUgzeX7Ym_gLv31r7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Hollow+Core%E2%80%93Shell+Interlinked+Carbon+Spheres+for+Highly+Stable+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=ACS+nano&rft.au=Sun%2C+Qiang&rft.au=He%2C+Bin&rft.au=Zhang%2C+Xiang-Qian&rft.au=Lu%2C+An-Hui&rft.date=2015-08-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=8&rft.spage=8504&rft.epage=8513&rft_id=info:doi/10.1021%2Facsnano.5b03488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_5b03488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon