Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction
The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene. Graphene functionalized with mainly heteroatom-based functional groups to enhance its chemical and physical properties is intensively pursued b...
Saved in:
Published in | ACS nano Vol. 9; no. 4; pp. 4193 - 4199 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene. Graphene functionalized with mainly heteroatom-based functional groups to enhance its chemical and physical properties is intensively pursued but often resulted in grafting of the heteroatoms as various functional groups. Here, we show that graphene oxide can be functionalized with predominantly a single type of sulfur moiety and reduced simultaneously to form monothiol-functionalized graphene. The thiol-functionalized graphene shows a high electrical conductivity and heterogeneous electron transfer rate. Graphene is also embedded with a trace amount of manganese impurities originating from a prior graphite oxidation process, which facilitates the thiol-functionalized graphene to function as a hybrid electrocatalyst for oxygen reduction reactions in alkaline medium with an onset potential lower than for Pt/C. Further characterizations of the graphene are performed with X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, and electrochemical impedance spectroscopy. This material contributes to the class of hybrids that are highly active electrocatalysts. |
---|---|
AbstractList | The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene. Graphene functionalized with mainly heteroatom-based functional groups to enhance its chemical and physical properties is intensively pursued but often resulted in grafting of the heteroatoms as various functional groups. Here, we show that graphene oxide can be functionalized with predominantly a single type of sulfur moiety and reduced simultaneously to form monothiol-functionalized graphene. The thiol-functionalized graphene shows a high electrical conductivity and heterogeneous electron transfer rate. Graphene is also embedded with a trace amount of manganese impurities originating from a prior graphite oxidation process, which facilitates the thiol-functionalized graphene to function as a hybrid electrocatalyst for oxygen reduction reactions in alkaline medium with an onset potential lower than for Pt/C. Further characterizations of the graphene are performed with X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, and electrochemical impedance spectroscopy. This material contributes to the class of hybrids that are highly active electrocatalysts. The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene. Graphene functionalized with mainly heteroatom-based functional groups to enhance its chemical and physical properties is intensively pursued but often resulted in grafting of the heteroatoms as various functional groups. Here, we show that graphene oxide can be functionalized with predominantly a single type of sulfur moiety and reduced simultaneously to form monothiol-functionalized graphene. The thiol-functionalized graphene shows a high electrical conductivity and heterogeneous electron transfer rate. Graphene is also embedded with a trace amount of manganese impurities originating from a prior graphite oxidation process, which facilitates the thiol-functionalized graphene to function as a hybrid electrocatalyst for oxygen reduction reactions in alkaline medium with an onset potential lower than for Pt/C. Further characterizations of the graphene are performed with X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, and electrochemical impedance spectroscopy. This material contributes to the class of hybrids that are highly active electrocatalysts. Keywords: graphene; hybrid materials; catalysis; chemical functionalization; electrochemistry |
Author | Chua, Chun Kiang Pumera, Martin |
AuthorAffiliation | Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University |
AuthorAffiliation_xml | – name: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences – name: Nanyang Technological University |
Author_xml | – sequence: 1 givenname: Chun Kiang surname: Chua fullname: Chua, Chun Kiang – sequence: 2 givenname: Martin surname: Pumera fullname: Pumera, Martin email: pumera.research@gmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25816194$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi0E4vvMrfKxUhWwHdtxeqtWLSCBFvEhcYtm4zGbVdZe7ASRf9-0u8AJcZoZ6Xmfw7wHZNsHj4SccHbKmeBnUCcPPpyqGWMyN1tkn5e5zpjRj9vvu-J75CClBWOqMIXeJXtCGa55KffJ4jr40M2b0ELXBE_BW3qLtq__X8HR8wirOXqk09fGIn1pgE49Zjeho3eD7-aYmvSTXgyz2Fg6gQ7aIXXUhTgGhif0H7YjsuOgTXi8mYfk4c_v-8lFdjU9v5z8uspA5qLLZOGYKdEYKYEJqwxwjla5UuS5m9miLkHWlsvagDQcnKilc8g0KHRaiCI_JN_X3lUMzz2mrlo2qca2BY-hTxUvtGA6Z0p-jepCq1Jxo0f0bI3WMaQU0VWr2CwhDhVn1b8uqk0X1aaLMfFtI-9nS7Tv_NvzR-DHGhiT1SL00Y9v-VT3F8RRl2Y |
CitedBy_id | crossref_primary_10_1021_acsaem_8b00552 crossref_primary_10_1021_acsami_0c13442 crossref_primary_10_1002_chem_201704192 crossref_primary_10_1021_acscentsci_9b00812 crossref_primary_10_1021_acsestwater_3c00527 crossref_primary_10_1016_j_surfin_2022_102311 crossref_primary_10_1016_j_ijhydene_2016_10_043 crossref_primary_10_1016_j_jelechem_2020_114231 crossref_primary_10_1002_anie_201605457 crossref_primary_10_1016_j_carbon_2017_03_020 crossref_primary_10_1021_acsami_1c10260 crossref_primary_10_1021_acs_iecr_0c01252 crossref_primary_10_7567_APEX_11_015101 crossref_primary_10_1016_j_cej_2017_02_030 crossref_primary_10_1016_j_nanoen_2019_05_074 crossref_primary_10_1002_aenm_202100666 crossref_primary_10_1016_j_elecom_2016_12_006 crossref_primary_10_1149_2_0931807jes crossref_primary_10_1016_j_electacta_2019_03_070 crossref_primary_10_1039_C8NR03397H crossref_primary_10_1016_j_compositesa_2017_12_028 crossref_primary_10_3390_catal6070108 crossref_primary_10_1021_acs_chemmater_6b04748 crossref_primary_10_1039_C5TA07963B crossref_primary_10_1016_j_mcat_2020_111093 crossref_primary_10_1002_ange_201913578 crossref_primary_10_1002_ep_13344 crossref_primary_10_1039_C9NR01620A crossref_primary_10_1016_j_cej_2023_144648 crossref_primary_10_1149_2_0471902jes crossref_primary_10_3390_nano12010045 crossref_primary_10_1016_j_matlet_2017_09_027 crossref_primary_10_1039_C9CP02823D crossref_primary_10_31590_ejosat_932703 crossref_primary_10_1007_s42452_018_0077_9 crossref_primary_10_1016_j_ceja_2021_100105 crossref_primary_10_1038_srep41213 crossref_primary_10_1039_D1CP04831G crossref_primary_10_1021_acsami_0c00163 crossref_primary_10_1016_j_apsusc_2017_03_150 crossref_primary_10_3390_polym14071290 crossref_primary_10_1021_acsanm_9b00041 crossref_primary_10_1002_anie_201913578 crossref_primary_10_1016_j_microc_2017_02_011 crossref_primary_10_1016_j_carbon_2017_08_045 crossref_primary_10_3389_fonc_2022_953098 crossref_primary_10_1021_acsanm_3c06102 crossref_primary_10_1002_chem_201502535 crossref_primary_10_1002_chem_202000491 crossref_primary_10_1002_adma_202211471 crossref_primary_10_1016_j_ceramint_2020_08_173 crossref_primary_10_1021_acssuschemeng_7b04920 crossref_primary_10_1002_adma_201705775 crossref_primary_10_1021_acsami_8b16027 crossref_primary_10_1088_1742_6596_1695_1_012008 crossref_primary_10_1039_D0NR05263A crossref_primary_10_1002_chem_201504875 crossref_primary_10_1021_acs_jpcc_7b08454 crossref_primary_10_1002_slct_201702409 crossref_primary_10_1039_C6RA09996C crossref_primary_10_1039_C7CS00215G crossref_primary_10_1016_j_isci_2021_102560 crossref_primary_10_1039_D4AY00322E crossref_primary_10_1002_ange_201605457 crossref_primary_10_1016_j_cej_2019_123994 crossref_primary_10_1016_j_compscitech_2019_107751 crossref_primary_10_1021_acsanm_4c01739 crossref_primary_10_1007_s00216_022_04157_6 crossref_primary_10_1039_D0NJ00547A crossref_primary_10_1039_D2CP04082D crossref_primary_10_1016_j_chemosphere_2018_11_181 crossref_primary_10_1039_D1QM00066G crossref_primary_10_1016_j_cej_2023_144463 crossref_primary_10_1021_acsaem_8b01375 crossref_primary_10_1016_j_molliq_2021_115481 crossref_primary_10_1021_acsami_9b13211 crossref_primary_10_3390_w15142529 crossref_primary_10_1002_chem_201504689 crossref_primary_10_1016_S1872_5805_23_60745_0 crossref_primary_10_1002_app_50524 crossref_primary_10_1021_acs_langmuir_3c01446 crossref_primary_10_1016_j_electacta_2019_01_075 crossref_primary_10_1088_2053_1583_ab20f2 crossref_primary_10_1002_adfm_201605797 crossref_primary_10_1002_chem_201705521 crossref_primary_10_1021_acsanm_0c00222 crossref_primary_10_3390_app10165529 crossref_primary_10_1016_j_carbon_2016_08_002 crossref_primary_10_1002_er_6597 crossref_primary_10_1007_s10854_017_6358_z crossref_primary_10_1016_j_trac_2021_116212 crossref_primary_10_1021_acsami_1c25211 |
Cites_doi | 10.1016/j.carbon.2010.09.060 10.1021/cr3000412 10.1039/C4CS00141A 10.1039/c2jm34358d 10.1039/c2cs35474h 10.1021/nn401296b 10.1021/la0475977 10.1002/anie.201404002 10.1021/ac60230a016 10.1039/C3CS60401B 10.1126/science.1158877 10.1002/chem.201304131 10.1038/ncomms1067 10.1039/C3TA13832A 10.1039/B917103G 10.1002/adfm.201200186 10.1002/anie.201309171 10.1016/j.carbon.2011.03.051 10.1021/ja806262m 10.1038/nature11458 10.1038/nmat1849 10.1126/science.1102896 10.1021/cr500023c 10.1002/ange.201007520 10.1016/j.ssc.2007.03.052 10.1021/nn203393d 10.1038/nature12385 10.1002/cphc.200600098 10.1039/C0JM02922J 10.1021/jp808599w |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/acsnano.5b00438 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 4199 |
ExternalDocumentID | 10_1021_acsnano_5b00438 25816194 f67940558 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ CUPRZ GGK NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a432t-47f089e8844a02d58a11ed5f9233fbd7c9a4cd14c8a481af2c4ffe06a5ef62273 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Fri Aug 16 14:38:27 EDT 2024 Sat Aug 17 02:59:15 EDT 2024 Fri Aug 23 00:25:01 EDT 2024 Sat Sep 28 07:55:24 EDT 2024 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | hybrid materials catalysis chemical functionalization electrochemistry graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a432t-47f089e8844a02d58a11ed5f9233fbd7c9a4cd14c8a481af2c4ffe06a5ef62273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25816194 |
PQID | 1676595186 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1762063054 proquest_miscellaneous_1676595186 crossref_primary_10_1021_acsnano_5b00438 pubmed_primary_25816194 acs_journals_10_1021_acsnano_5b00438 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2015-04-28 |
PublicationDateYYYYMMDD | 2015-04-28 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Geim A. K. (ref2/cit2) 2013; 499 Novoselov K. S. (ref3/cit3) 2004; 306 Geim A. K. (ref4/cit4) 2007; 6 Cote L. J. (ref30/cit30) 2009; 131 Kong X. K. (ref13/cit13) 2014; 43 Dreyer D. R. (ref6/cit6) 2010; 39 Geim A. K. (ref5/cit5) 2009; 324 Wang J. (ref26/cit26) 2005; 21 Wang L. (ref29/cit29) 2013; 52 Denis P. A. (ref22/cit22) 2009; 113 Ferrari A. C. (ref24/cit24) 2007; 143 Nicholson R. S. (ref28/cit28) 1965; 37 Lai L. F. (ref10/cit10) 2011; 49 Wang X. (ref12/cit12) 2014; 43 Jiang Z. Q. (ref15/cit15) 2014; 2 Yang S. B. (ref14/cit14) 2012; 22 Moon I. K. (ref25/cit25) 2010; 1 Chua C. K. (ref8/cit8) 2013; 42 Georgakilas V. (ref7/cit7) 2012; 112 Thomas H. R. (ref18/cit18) 2014; 53 Novoselov K. S. (ref1/cit1) 2012; 490 Chua C. K. (ref23/cit23) 2014; 20 Ji X. (ref27/cit27) 2006; 7 Chen Y. (ref21/cit21) 2011; 49 Yang Z. (ref16/cit16) 2011; 6 Chua C. K. (ref20/cit20) 2012; 22 Ambrosi A. (ref9/cit9) 2014; 114 Rourke J. P. (ref19/cit19) 2011; 123 Liu H. (ref11/cit11) 2011; 21 Poh H. L. (ref17/cit17) 2013; 7 |
References_xml | – volume: 49 start-page: 573 year: 2011 ident: ref21/cit21 publication-title: Carbon doi: 10.1016/j.carbon.2010.09.060 contributor: fullname: Chen Y. – volume: 112 start-page: 6156 year: 2012 ident: ref7/cit7 publication-title: Chem. Rev. doi: 10.1021/cr3000412 contributor: fullname: Georgakilas V. – volume: 43 start-page: 7067 year: 2014 ident: ref12/cit12 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00141A contributor: fullname: Wang X. – volume: 22 start-page: 23227 year: 2012 ident: ref20/cit20 publication-title: J. Mater. Chem. doi: 10.1039/c2jm34358d contributor: fullname: Chua C. K. – volume: 42 start-page: 3222 year: 2013 ident: ref8/cit8 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35474h contributor: fullname: Chua C. K. – volume: 7 start-page: 5262 year: 2013 ident: ref17/cit17 publication-title: ACS Nano doi: 10.1021/nn401296b contributor: fullname: Poh H. L. – volume: 21 start-page: 9 year: 2005 ident: ref26/cit26 publication-title: Langmuir doi: 10.1021/la0475977 contributor: fullname: Wang J. – volume: 53 start-page: 7613 year: 2014 ident: ref18/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404002 contributor: fullname: Thomas H. R. – volume: 37 start-page: 1351 year: 1965 ident: ref28/cit28 publication-title: Anal. Chem. doi: 10.1021/ac60230a016 contributor: fullname: Nicholson R. S. – volume: 43 start-page: 2841 year: 2014 ident: ref13/cit13 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60401B contributor: fullname: Kong X. K. – volume: 324 start-page: 1530 year: 2009 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.1158877 contributor: fullname: Geim A. K. – volume: 20 start-page: 1871 year: 2014 ident: ref23/cit23 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201304131 contributor: fullname: Chua C. K. – volume: 1 start-page: 73 year: 2010 ident: ref25/cit25 publication-title: Nat. Commun. doi: 10.1038/ncomms1067 contributor: fullname: Moon I. K. – volume: 2 start-page: 441 year: 2014 ident: ref15/cit15 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13832A contributor: fullname: Jiang Z. Q. – volume: 39 start-page: 228 year: 2010 ident: ref6/cit6 publication-title: Chem. Soc. Rev. doi: 10.1039/B917103G contributor: fullname: Dreyer D. R. – volume: 22 start-page: 3634 year: 2012 ident: ref14/cit14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200186 contributor: fullname: Yang S. B. – volume: 52 start-page: 13818 year: 2013 ident: ref29/cit29 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309171 contributor: fullname: Wang L. – volume: 49 start-page: 3250 year: 2011 ident: ref10/cit10 publication-title: Carbon doi: 10.1016/j.carbon.2011.03.051 contributor: fullname: Lai L. F. – volume: 131 start-page: 1043 year: 2009 ident: ref30/cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806262m contributor: fullname: Cote L. J. – volume: 490 start-page: 192 year: 2012 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature11458 contributor: fullname: Novoselov K. S. – volume: 6 start-page: 183 year: 2007 ident: ref4/cit4 publication-title: Nat. Mater. doi: 10.1038/nmat1849 contributor: fullname: Geim A. K. – volume: 306 start-page: 666 year: 2004 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.1102896 contributor: fullname: Novoselov K. S. – volume: 114 start-page: 7150 year: 2014 ident: ref9/cit9 publication-title: Chem. Rev. doi: 10.1021/cr500023c contributor: fullname: Ambrosi A. – volume: 123 start-page: 3231 year: 2011 ident: ref19/cit19 publication-title: Angew. Chem. doi: 10.1002/ange.201007520 contributor: fullname: Rourke J. P. – volume: 143 start-page: 47 year: 2007 ident: ref24/cit24 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.03.052 contributor: fullname: Ferrari A. C. – volume: 6 start-page: 205 year: 2011 ident: ref16/cit16 publication-title: ACS Nano doi: 10.1021/nn203393d contributor: fullname: Yang Z. – volume: 499 start-page: 419 year: 2013 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature12385 contributor: fullname: Geim A. K. – volume: 7 start-page: 1337 year: 2006 ident: ref27/cit27 publication-title: ChemPhysChem doi: 10.1002/cphc.200600098 contributor: fullname: Ji X. – volume: 21 start-page: 3335 year: 2011 ident: ref11/cit11 publication-title: J. Mater. Chem. doi: 10.1039/C0JM02922J contributor: fullname: Liu H. – volume: 113 start-page: 5612 year: 2009 ident: ref22/cit22 publication-title: J. Phys. Chem. C doi: 10.1021/jp808599w contributor: fullname: Denis P. A. |
SSID | ssj0057876 |
Score | 2.5081809 |
Snippet | The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene.... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4193 |
SubjectTerms | Electrocatalysts Electrochemical impedance spectroscopy Functional groups Graphene Nanostructure Oxides Reduction X-rays |
Title | Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction |
URI | http://dx.doi.org/10.1021/acsnano.5b00438 https://www.ncbi.nlm.nih.gov/pubmed/25816194 https://search.proquest.com/docview/1676595186 https://search.proquest.com/docview/1762063054 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA46XvTgvowbEebgpeMkkzTRmwzqILjgAt5KmiZQhVRsRxx_vS9tx21wORbS15C8l-9r3ssXhFo8BJQAYA0sJ3HAtICYY5YEibFMCQOA0fGnkc_Ow_4tO73jdx9i0d8z-JTsKZ075bI2j8us1SSaogJCw7Og3vVo0fV-F1YJZPhBBhbxruIzZsDDkM6_wtAP3LLEmOO5qjorL6UJfWnJQ3tQxG39Oi7c-Hf359FszTTxYeUaC2jCuEU080l_cAndQ0TDTKVZVRCHlUvwlddyLZ8yi0-8nDWshvjiJU0Mfk4VvnAmuMwKfD10wB3zND_A_aE_9oV7fidomBcYeDC8MATX_LC2jG6Pj256_aC-fCFQrEuLgAnbkftGSsZUhyZcKkJMwi0Qwq6NE6H3FdMJYVoqJomyVDNrTSdU3NiQAilaQQ2XObOGMDcijGMlNRMx8ydXuaCWAU8Tomu1TJqoBaMU1cGTR2VenJKoHrqoHrom2h1NWfRYSXH83HRnNKURhIvPgShnsgHYDoVXUCQy_KUNAISXIuOsiVYrf3j_IOWS-I2f9f_1eQNNA8PiPv1E5SZqFE8DswUspoi3S_99A4z17Ng |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ98GgLXZ6uxIFLljhrx4YbWgEL5VUeErfIcWxpW8lBJItYfj3jJLs8KlB7TJRMHHvG3xeP5wvAOo8RJRBYA8tpGjAtMOaYpUFmLFPCIGCEvhr5-CTuXbHDa349AeGoFgYbUaClokriP6kL0E0855TL2zytklcfYIoLhEtPhroXo7nXu19c55HxOxnJxFjM5y8DHo108RKN3qCYFdTszcCvcSOrHSZ_2oMybeuHV_qN__MWszDd8E6yUzvKHEwY9wU-P1Mj_Aq_Mb5x3Pp5vT2OKJeRc6_sWh3llux7cWucG8npfT8z5K6vyKkzwVlekouhQyZZ9Itt0hv6IjDS9etCw6IkyIrxhiE66pO1b3C1t3vZ7QXNrxgCxTpRGTBhQ7llpGRMhVHGpaLUZNwiPezYNBN6SzGdUaalYpIqG2lmrQljxY2NI6RI8zDpcme-A-FGxGmqpGYiZb6OlYvIMmRtQnSsllkL1rGXkiaUiqTKkkc0abouabquBRujkUtuamGOty_9MRrZBIPHZ0SUM_kAbcfC6ylSGb9zDcKFFybjrAULtVuMHxhxSf0y0OK_tXkNPvYuj4-So4OTn0vwCbkX94mpSC7DZHk7MCvIb8p0tXLpR26R9T0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BkBA8bLABKxvgSX3YS7o6tWNvb1NH6fixVZRKfYsc_5DKJGdaUkT563dO0sKGhthjouTi2He-L_58XwDaPMEsgYk1cpxmEdMCY445GhnrmBIWE0Y3VCN_OUuGE_ZxyqdNUViohcFGFGipqEj8ENWXxjUKA_QAz3vl8w7PKgLrITziglbk7HF_vJx_gwsmNZeM38oIKFaCPn8ZCBlJFzcz0h0ws0o3gw2YrBpa7TK56MzLrKN_3dJwvO-bPIP1Bn-S49phnsMD6zfh6R-qhFvwHeMcx2-W19vkiPKGfA0Kr9VR7siHIHKNcyQ5_zkzlvyYKXLubTTKSzJeeESUxaw4IsNFKAYj_bA-tChKgugYb1igw_629gImg_ff-sOo-SVDpFgvLiMmXFceWikZU93YcKkotYY7hIk9lxmhDxXThjItFZNUuVgz52w3Udy6JEao9BLWfO7tNhBuRZJlSmomMhbqWbmIHUP0JkTPaWla0MZeSpuQKtKKLY9p2nRd2nRdC_aXo5de1gIdd1-6txzdFIMoMCPK23yOthMRdBWpTP5xDaaNIFDGWQte1a6xemDMJQ3LQa__r83v4PHoZJB-Pj37tANPEILxwE_FchfWyqu5fYMwp8zeVl59DU0x97c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monothiolation+and+Reduction+of+Graphene+Oxide+via+One-Pot+Synthesis%3A+Hybrid+Catalyst+for+Oxygen+Reduction&rft.jtitle=ACS+nano&rft.au=Chua%2C+Chun+Kiang&rft.au=Pumera%2C+Martin&rft.date=2015-04-28&rft.eissn=1936-086X&rft.volume=9&rft.issue=4&rft.spage=4193&rft_id=info:doi/10.1021%2Facsnano.5b00438&rft_id=info%3Apmid%2F25816194&rft.externalDocID=25816194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |