Complex analysis a modern first course in function theory

A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental p...

Full description

Saved in:
Bibliographic Details
Main Author Muir, Jerry R
Format eBook Book
LanguageEnglish
Published Hoboken, New Jersey Wiley 2015
John Wiley & Sons, Inc
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition1st ed.
Subjects
Online AccessGet full text
ISBN1118956397
9781118705223
9781118956397
111870522X
1118705270
9781118705278

Cover

Loading…
Table of Contents:
  • Intro -- Title Page -- Copyright -- Table of Contents -- Dedication -- Preface -- Chapter 1: The Complex Numbers -- 1.1 Why? -- 1.2 The Algebra of Complex Numbers -- 1.3 The Geometry of the Complex Plane -- 1.4 The Topology of the Complex Plane -- 1.5 The Extended Complex Plane -- 1.6 Complex Sequences -- 1.7 Complex Series -- Chapter 2: Complex Functions and Mappings -- 2.1 Continuous Functions -- 2.2 Uniform Convergence -- 2.3 Power Series -- 2.4 Elementary Functions and Euler's Formula -- 2.5 Continuous Functions as Mappings -- 2.6 Linear Fractional Transformations -- 2.7 Derivatives -- 2.8 The Calculus of Real-Variable Functions -- 2.9 Contour Integrals -- Chapter 3: Analytic Functions -- 3.1 The Principle of Analyticity -- 3.2 Differentiable Functions are Analytic -- 3.3 Consequences of Goursat's Theorem -- 3.4 The Zeros of Analytic Functions -- 3.5 The Open Mapping Theorem and Maximum Principle -- 3.6 The Cauchy-Riemann Equations -- 3.7 Conformal Mapping and Local Univalence -- Chapter 4: Cauchy's Integral Theory -- 4.1 The Index of a Closed Contour -- 4.2 The Cauchy Integral Formula -- 4.3 Cauchy's Theorem -- Chapter 5: The Residue Theorem -- 5.1 Laurent Series -- 5.2 Classification of Singularities -- 5.3 Residues -- 5.4 Evaluation of Real Integrals -- 5.5 The Laplace Transform -- Chapter 6: Harmonic Functions and Fourier Series -- 6.1 Harmonic Functions -- 6.2 The Poisson Integral Formula -- 6.3 Further Connections to Analytic Functions -- 6.4 Fourier Series -- Epilogue -- Local Uniform Convergence -- Harnack's Theorem -- Results for Simply Connected Domains -- The Riemann Mapping Theorem -- Appendix A: Sets and Functions -- Sets and Elements -- Functions -- Appendix B: Topics from Advanced Calculus -- The Supremum and Infimum -- Uniform Continuity -- The Cauchy Product -- Leibniz's Rule -- References -- Index
  • End User License Agreement