Complex analysis a modern first course in function theory
A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental p...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Hoboken, New Jersey
Wiley
2015
John Wiley & Sons, Inc John Wiley & Sons, Incorporated Wiley-Blackwell |
Edition | 1st ed. |
Subjects | |
Online Access | Get full text |
ISBN | 1118956397 9781118705223 9781118956397 111870522X 1118705270 9781118705278 |
Cover
Loading…
Table of Contents:
- Intro -- Title Page -- Copyright -- Table of Contents -- Dedication -- Preface -- Chapter 1: The Complex Numbers -- 1.1 Why? -- 1.2 The Algebra of Complex Numbers -- 1.3 The Geometry of the Complex Plane -- 1.4 The Topology of the Complex Plane -- 1.5 The Extended Complex Plane -- 1.6 Complex Sequences -- 1.7 Complex Series -- Chapter 2: Complex Functions and Mappings -- 2.1 Continuous Functions -- 2.2 Uniform Convergence -- 2.3 Power Series -- 2.4 Elementary Functions and Euler's Formula -- 2.5 Continuous Functions as Mappings -- 2.6 Linear Fractional Transformations -- 2.7 Derivatives -- 2.8 The Calculus of Real-Variable Functions -- 2.9 Contour Integrals -- Chapter 3: Analytic Functions -- 3.1 The Principle of Analyticity -- 3.2 Differentiable Functions are Analytic -- 3.3 Consequences of Goursat's Theorem -- 3.4 The Zeros of Analytic Functions -- 3.5 The Open Mapping Theorem and Maximum Principle -- 3.6 The Cauchy-Riemann Equations -- 3.7 Conformal Mapping and Local Univalence -- Chapter 4: Cauchy's Integral Theory -- 4.1 The Index of a Closed Contour -- 4.2 The Cauchy Integral Formula -- 4.3 Cauchy's Theorem -- Chapter 5: The Residue Theorem -- 5.1 Laurent Series -- 5.2 Classification of Singularities -- 5.3 Residues -- 5.4 Evaluation of Real Integrals -- 5.5 The Laplace Transform -- Chapter 6: Harmonic Functions and Fourier Series -- 6.1 Harmonic Functions -- 6.2 The Poisson Integral Formula -- 6.3 Further Connections to Analytic Functions -- 6.4 Fourier Series -- Epilogue -- Local Uniform Convergence -- Harnack's Theorem -- Results for Simply Connected Domains -- The Riemann Mapping Theorem -- Appendix A: Sets and Functions -- Sets and Elements -- Functions -- Appendix B: Topics from Advanced Calculus -- The Supremum and Infimum -- Uniform Continuity -- The Cauchy Product -- Leibniz's Rule -- References -- Index
- End User License Agreement