Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-Based Proteomics Data
Liquid chromatography−mass spectrometry-based (LC−MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in intensities and observations (presence/absence) of peptides makes data analysis quit...
Saved in:
Published in | Journal of proteome research Vol. 9; no. 11; pp. 5748 - 5756 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.11.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid chromatography−mass spectrometry-based (LC−MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing observations in LC−MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error or nonrandom mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values across experimental groups. We pair the G-test results, evaluating independence of missing data (IMD) with an analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use three LC−MS data sets to demonstrate the robustness and sensitivity of the IMD−ANOVA approach. |
---|---|
AbstractList | Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing observations in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error or nonrandom mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values across experimental groups. We pair the G-test results, evaluating independence of missing data (IMD) with an analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use three LC-MS data sets to demonstrate the robustness and sensitivity of the IMD-ANOVA approach. Liquid chromatography−mass spectrometry-based (LC−MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing observations in LC−MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error or nonrandom mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values across experimental groups. We pair the G-test results, evaluating independence of missing data (IMD) with an analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use three LC−MS data sets to demonstrate the robustness and sensitivity of the IMD−ANOVA approach. Missing abundance values in LC−MS data are difficult to analyze statistically because the mechanisms by which the data are missing are unknown (processing or biological effect). We present a new approach that pairs a test of independence on missing data to discern qualitative difference across treatment groups with traditional statistical tests that evaluate quantitative differences. The combination of these two statistics yields a more robust statistical description of the data. Liquid chromatography−mass spectrometry-based (LC−MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing observations in LC−MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error or nonrandom mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values across experimental groups. We pair the G-test results, evaluating independence of missing data (IMD) with an analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use three LC−MS data sets to demonstrate the robustness and sensitivity of the IMD−ANOVA approach. Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups. |
Author | Waters, Katrina M Pounds, Joel G Webb-Robertson, Bobbie-Jo M McCue, Lee Ann Metz, Thomas O Matzke, Melissa M Varnum, Susan M Jacobs, Jon M |
Author_xml | – sequence: 1 givenname: Bobbie-Jo M surname: Webb-Robertson fullname: Webb-Robertson, Bobbie-Jo M email: bj@pnl.gov – sequence: 2 givenname: Lee Ann surname: McCue fullname: McCue, Lee Ann – sequence: 3 givenname: Katrina M surname: Waters fullname: Waters, Katrina M – sequence: 4 givenname: Melissa M surname: Matzke fullname: Matzke, Melissa M – sequence: 5 givenname: Jon M surname: Jacobs fullname: Jacobs, Jon M – sequence: 6 givenname: Thomas O surname: Metz fullname: Metz, Thomas O – sequence: 7 givenname: Susan M surname: Varnum fullname: Varnum, Susan M – sequence: 8 givenname: Joel G surname: Pounds fullname: Pounds, Joel G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20831241$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1000135$$D View this record in Osti.gov |
BookMark | eNptkV-L1DAUxYOsuH_0wS8gRRDxoZo0bdO8COv4b2BlF0afQ5re7GZpk5qbLuxX8dOacXYGBZ9yOfnl3EPOKTnywQMhzxl9y2jF3s2RUdpUtXhETljDm5JLKo72cyf5MTlFvKWUNYLyJ-S4oh1nVc1OyK9VmHrnYSg2SSeHyRk9Fudej_cIWARbXMGc3ADF2ifw6JLLsvbDQb80ZokRvMn6eppjuNsOA_jkbDZLLvitzcZd-z-CT_unWNgYpuLbpvygMSe4iiFBmJzB4qNO-il5bPWI8OzhPCM_Pn_6vvpaXlx-Wa_OL0pdc5ZK21ImbTe0tTVcSA5VL7Q0umtF3zVWi0HKwYBtubWirSXQzuim56KvmbCm52fk_c53XvoJMupT1KOao5t0vFdBO_XvjXc36jrcqUqKumM0G7zcGYT8fQqNS2BuTPAeTFK5Gcp4k6HXD1ti-LkAJjU5NDCO2kNYUIm2artaNFvyzY40MSBGsIcojKpt3-rQd2Zf_J39QO4LzsCrHaANqtuwxNws_sfoN3Vstzg |
CitedBy_id | crossref_primary_10_1186_s12934_023_02148_5 crossref_primary_10_1016_j_xcrm_2023_101261 crossref_primary_10_1093_toxsci_kfq363 crossref_primary_10_1371_journal_ppat_1007698 crossref_primary_10_1371_journal_pone_0069374 crossref_primary_10_1002_pmic_201100078 crossref_primary_10_1155_2013_613529 crossref_primary_10_1128_JVI_02520_12 crossref_primary_10_1021_pr501138h crossref_primary_10_1128_IAI_00537_19 crossref_primary_10_3389_fbioe_2021_603832 crossref_primary_10_1074_mcp_M113_030932 crossref_primary_10_1021_pr401206m crossref_primary_10_1016_j_jprot_2018_10_003 crossref_primary_10_1016_j_jprot_2015_01_006 crossref_primary_10_1021_acs_jproteome_8b00840 crossref_primary_10_1021_pr3001767 crossref_primary_10_1021_acs_jproteome_8b00760 crossref_primary_10_1038_s41467_023_37031_9 crossref_primary_10_1039_D3RA01977B crossref_primary_10_1038_s41597_024_03124_3 crossref_primary_10_1186_1752_0509_7_69 crossref_primary_10_1021_acs_analchem_9b04375 crossref_primary_10_1016_j_virol_2015_03_045 crossref_primary_10_7717_peerj_13525 crossref_primary_10_1371_journal_pone_0029263 crossref_primary_10_1021_jacs_1c03321 crossref_primary_10_1021_acs_jproteome_2c00610 crossref_primary_10_1111_mec_15225 crossref_primary_10_1074_mcp_M112_026534 crossref_primary_10_1371_journal_pcbi_1007241 crossref_primary_10_1038_s41467_019_13858_z crossref_primary_10_1038_sdata_2014_33 crossref_primary_10_1016_j_heliyon_2023_e13795 crossref_primary_10_1021_acs_chemrestox_8b00008 crossref_primary_10_1002_pmic_201200269 crossref_primary_10_2144_000113978 crossref_primary_10_1111_mec_13872 crossref_primary_10_1016_j_mec_2022_e00203 crossref_primary_10_1128_mBio_01572_21 crossref_primary_10_1073_pnas_1706928115 crossref_primary_10_1002_pmic_202200237 crossref_primary_10_3390_ijms20010016 crossref_primary_10_1002_hep_25649 crossref_primary_10_1186_s13063_020_04769_2 crossref_primary_10_1371_journal_pcbi_1005013 crossref_primary_10_1039_C6AN02486F crossref_primary_10_1074_mcp_RA119_001777 crossref_primary_10_1124_dmd_115_068593 crossref_primary_10_1074_mcp_RA117_000088 crossref_primary_10_1093_bioinformatics_btr479 crossref_primary_10_1128_mSystems_01307_20 crossref_primary_10_1016_j_jprot_2015_07_016 crossref_primary_10_1074_mcp_M116_065656 crossref_primary_10_1016_j_cell_2019_05_004 crossref_primary_10_1074_mcp_RA118_001018 crossref_primary_10_1128_mSystems_00043_16 crossref_primary_10_1074_jbc_M115_655001 crossref_primary_10_1126_scisignal_2005000 crossref_primary_10_1002_rcm_7808 crossref_primary_10_1186_1471_2105_13_S16_S6 crossref_primary_10_1021_acs_jnatprod_5b00288 crossref_primary_10_3389_fmed_2020_00499 crossref_primary_10_1038_s41598_019_38483_0 crossref_primary_10_1007_s00726_012_1287_x crossref_primary_10_1002_rcm_9068 crossref_primary_10_1074_mcp_RA118_001221 crossref_primary_10_1158_0008_5472_CAN_17_0335 crossref_primary_10_1371_journal_pcbi_1010420 crossref_primary_10_1021_pr400045u crossref_primary_10_3389_fbioe_2020_603488 crossref_primary_10_1016_j_taap_2015_01_019 crossref_primary_10_3389_fcimb_2022_926352 crossref_primary_10_1007_s11306_014_0642_1 crossref_primary_10_1371_journal_pone_0092332 |
Cites_doi | 10.1093/bib/bbp059 10.1021/ac0341261 10.1002/1615-9861(200210)2:10<1406::AID-PROT1406>3.0.CO;2-9 10.1002/sim.4780090710 10.1093/bioinformatics/17.suppl_1.S13 10.1093/bioinformatics/btm281 10.1074/mcp.M700240-MCP200 10.1186/1471-2105-10-43 10.1093/bioinformatics/17.6.520 10.1186/1477-5956-4-1 10.1016/1044-0305(94)80016-2 10.1186/1471-2164-11-15 10.1021/pr050147v 10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W 10.1093/bioinformatics/btp639 10.1186/1471-2105-7-449 10.1002/pmic.200700901 10.1093/bioinformatics/btn217 10.1021/pr070441i 10.1002/pmic.200500500 10.1021/pr050406g 10.1093/bioinformatics/btp362 10.1186/1471-2105-10-87 10.1021/pr700606w 10.1186/1471-2105-9-542 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society Copyright © 2010 American Chemical Society 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: Copyright © 2010 American Chemical Society 2010 American Chemical Society |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | N~. CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 OTOTI 5PM |
DOI | 10.1021/pr1005247 |
DatabaseName | American Chemical Society (ACS) Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Statistics |
DocumentTitleAlternate | Statistical Analyses of Peptide Intensities and Occurrences |
EISSN | 1535-3907 |
EndPage | 5756 |
ExternalDocumentID | 1000135 10_1021_pr1005247 20831241 h93863003 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Evaluation Study Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 1R011GM-084892 – fundername: NIAID NIH HHS grantid: HHSN272200800060C – fundername: NIGMS NIH HHS grantid: R01 GM084892 |
GroupedDBID | - 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 N~. P2P RNS ROL UI2 VF5 VG9 W1F ZA5 --- AAHBH ABJNI ABQRX ADHLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION 7X8 ABFRP OTOTI 5PM |
ID | FETCH-LOGICAL-a431t-f6019f8d64fc3793e2b7a9ca867b85fa7d99dcef63ff7649e08ca5b37b417fcb3 |
IEDL.DBID | ACS |
ISSN | 1535-3893 |
IngestDate | Tue Sep 17 21:13:35 EDT 2024 Fri May 19 00:37:04 EDT 2023 Fri Oct 25 08:29:46 EDT 2024 Fri Dec 06 02:19:05 EST 2024 Sat Sep 28 08:13:48 EDT 2024 Thu Aug 27 13:50:41 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | quantitative statistical analysis Missing data qualitative statistical analysis imputation peak intensity comparison |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a431t-f6019f8d64fc3793e2b7a9ca867b85fa7d99dcef63ff7649e08ca5b37b417fcb3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 PNNL-SA-72886 USDOE AC05-76RL01830 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1021/pr1005247 |
PMID | 20831241 |
PQID | 762684755 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2974810 osti_scitechconnect_1000135 proquest_miscellaneous_762684755 crossref_primary_10_1021_pr1005247 pubmed_primary_20831241 acs_journals_10_1021_pr1005247 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 |
PublicationCentury | 2000 |
PublicationDate | 2010-11-05 |
PublicationDateYYYYMMDD | 2010-11-05 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Aittokallio T. (ref9/cit9) 2010; 11 Li Q. (ref7/cit7) 2009; 10 Nesvizhskii A. I. (ref26/cit26) 2003; 75 Ott R. L. (ref24/cit24) 2010 Cannon W. R. (ref12/cit12) 2005; 4 Celton M. (ref10/cit10) 2010; 11 Zhang N. (ref14/cit14) 2002; 2 Eng K. (ref13/cit13) 1999; 5 Smith R. D. (ref18/cit18) 2002; 2 Monroe M. E. (ref20/cit20) 2007; 2315 Webb-Robertson B. J. (ref23/cit23) 2009 Wang G. (ref3/cit3) 2006; 5 Troyanskaya O. (ref8/cit8) 2001; 17 Daly D. S. (ref16/cit16) 2008; 7 Pavelka N. (ref5/cit5) 2008; 7 Jaitly N. (ref19/cit19) 2009; 10 Brusniak M. Y. (ref1/cit1) 2008; 9 Karpievitch Y. (ref15/cit15) 2009; 25 Bafna V. (ref11/cit11) 2001; 17 Polpitiya A. D. (ref6/cit6) 2008; 24 Hochberg Y. (ref25/cit25) 1990; 9 Zhu Z. (ref4/cit4) 2008; 8 Anderson K. K. (ref21/cit21) 2006; 4 Metz T. O. (ref17/cit17) 2008; 7 Kiebel G. R. (ref2/cit2) 2006; 6 Beagley N. (ref22/cit22) 2010; 26 Hu J. (ref27/cit27) 2006; 7 |
References_xml | – volume: 11 start-page: 253 issue: 2 year: 2010 ident: ref9/cit9 publication-title: Briefings Bioinf. doi: 10.1093/bib/bbp059 contributor: fullname: Aittokallio T. – volume: 75 start-page: 4646 issue: 17 year: 2003 ident: ref26/cit26 publication-title: Anal. Chem. doi: 10.1021/ac0341261 contributor: fullname: Nesvizhskii A. I. – volume: 2 start-page: 1406 issue: 10 year: 2002 ident: ref14/cit14 publication-title: Proteomics doi: 10.1002/1615-9861(200210)2:10<1406::AID-PROT1406>3.0.CO;2-9 contributor: fullname: Zhang N. – volume: 9 start-page: 811 issue: 7 year: 1990 ident: ref25/cit25 publication-title: Stat. Med. doi: 10.1002/sim.4780090710 contributor: fullname: Hochberg Y. – volume: 17 start-page: S13 issue: 1 year: 2001 ident: ref11/cit11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.suppl_1.S13 contributor: fullname: Bafna V. – start-page: 451 year: 2009 ident: ref23/cit23 publication-title: Pac. Symp. Biocomput. contributor: fullname: Webb-Robertson B. J. – volume: 2315 start-page: 2021 year: 2007 ident: ref20/cit20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm281 contributor: fullname: Monroe M. E. – volume: 7 start-page: 631 issue: 4 year: 2008 ident: ref5/cit5 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M700240-MCP200 contributor: fullname: Pavelka N. – volume: 10 start-page: 43 year: 2009 ident: ref7/cit7 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-10-43 contributor: fullname: Li Q. – volume: 17 start-page: 520 issue: 6 year: 2001 ident: ref8/cit8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 contributor: fullname: Troyanskaya O. – volume: 4 start-page: 1 year: 2006 ident: ref21/cit21 publication-title: Proteome Sci. doi: 10.1186/1477-5956-4-1 contributor: fullname: Anderson K. K. – volume: 5 start-page: 976 year: 1999 ident: ref13/cit13 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/1044-0305(94)80016-2 contributor: fullname: Eng K. – volume: 11 start-page: 15 year: 2010 ident: ref10/cit10 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-15 contributor: fullname: Celton M. – volume: 4 start-page: 1687 issue: 5 year: 2005 ident: ref12/cit12 publication-title: J. Proteome Res. doi: 10.1021/pr050147v contributor: fullname: Cannon W. R. – volume: 2 start-page: 513 issue: 5 year: 2002 ident: ref18/cit18 publication-title: Proteomics doi: 10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W contributor: fullname: Smith R. D. – volume: 26 start-page: 280 issue: 2 year: 2010 ident: ref22/cit22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp639 contributor: fullname: Beagley N. – volume: 7 start-page: 449 year: 2006 ident: ref27/cit27 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-449 contributor: fullname: Hu J. – volume: 8 start-page: 1987 issue: 10 year: 2008 ident: ref4/cit4 publication-title: Proteomics doi: 10.1002/pmic.200700901 contributor: fullname: Zhu Z. – volume: 24 start-page: 1556 issue: 13 year: 2008 ident: ref6/cit6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn217 contributor: fullname: Polpitiya A. D. – volume: 7 start-page: 1209 issue: 3 year: 2008 ident: ref16/cit16 publication-title: J. Proteome Res. doi: 10.1021/pr070441i contributor: fullname: Daly D. S. – volume: 6 start-page: 1783 issue: 6 year: 2006 ident: ref2/cit2 publication-title: Proteomics doi: 10.1002/pmic.200500500 contributor: fullname: Kiebel G. R. – volume: 5 start-page: 1214 issue: 5 year: 2006 ident: ref3/cit3 publication-title: J. Proteome Res. doi: 10.1021/pr050406g contributor: fullname: Wang G. – volume: 25 start-page: 2028 issue: 16 year: 2009 ident: ref15/cit15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp362 contributor: fullname: Karpievitch Y. – volume-title: An Introduction to Statistical Methods and Data Analysis year: 2010 ident: ref24/cit24 contributor: fullname: Ott R. L. – volume: 10 start-page: 87 year: 2009 ident: ref19/cit19 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-10-87 contributor: fullname: Jaitly N. – volume: 7 start-page: 698 issue: 2 year: 2008 ident: ref17/cit17 publication-title: J. Proteome Res. doi: 10.1021/pr700606w contributor: fullname: Metz T. O. – volume: 9 start-page: 542 year: 2008 ident: ref1/cit1 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-542 contributor: fullname: Brusniak M. Y. |
SSID | ssj0015703 |
Score | 2.3388293 |
Snippet | Liquid chromatography−mass spectrometry-based (LC−MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of... Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of... |
SourceID | pubmedcentral osti proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5748 |
SubjectTerms | Analysis of Variance BASIC BIOLOGICAL SCIENCES CALCULATION METHODS CONCENTRATION RATIO DATA ANALYSIS Data Interpretation, Statistical Environmental Molecular Sciences Laboratory INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LIQUID COLUMN CHROMATOGRAPHY Mass Spectrometry MASS SPECTROSCOPY PEPTIDES Peptides - analysis PROTEINS Proteomics - methods SENSITIVITY Sensitivity and Specificity STATISTICS |
Title | Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-Based Proteomics Data |
URI | http://dx.doi.org/10.1021/pr1005247 https://www.ncbi.nlm.nih.gov/pubmed/20831241 https://search.proquest.com/docview/762684755 https://www.osti.gov/biblio/1000135 https://pubmed.ncbi.nlm.nih.gov/PMC2974810 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R7aG9UEpbWKDIanvNdp2HnRzbpQhVKqq0IHGL_CwIKYs22QsHfgi_lhnnIbal7SWKnHEie8aZb-zxZ4BPTiWJ8IJHXDsVpcZNI21RITzzKpbKGu5CguypODlPv19kFxvw8S8r-DH_fLPkNHeZymfwPJYYdhP-mc2HpQKikGpJUbOIvG9PH_S4KrkeU6-5ntECh9BTsPL37MhH7ub4FRz1m3baLJPryarRE3P7J4fjv1qyBZsd3GRfWvt4DRuu2oYXs_6Utzdwjz8EDI6dZQQ7A2szyQeqElezhWc_Ke_FOtYluxMBK1OVHcqJp3gZ9gzWrJ2ioBvbZSEFxdNr5le_qlBQNX3VmtHmFvZjHn1FX4pvJM4I2iVdsyPVqLdwfvztbHYSdec1RAphSBN5DO4Kn1uRepPguHexlqowKhdS56h7aYsCe9WLxHsp0sJNc6MynUidcumNTt7BqFpUbheYdIWzyighUXCaqTxNC4PmJFxuEGPoMRyiQstuvNVlWEqPeTl08Rg-9LrGwsDb8ZTQPllBiWCDGHMNpRaZhmicERhnY2C9cZSoFFpIUZVbrOoSHYhAr56hyE5rK8M3Yjq5DVHRGOSaFQ0CROe9_qS6ugy03jGGdjmf7v2vafvwMqQw0Nx2dgCjZrly7xEZNfowjAy8nt5NHgCnKQ0J |
link.rule.ids | 230,314,780,784,885,2765,27076,27080,27924,27925,56738,56762,56788,56812 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7BciiXCsprW2gtxDWwTmI7ObaFaulLSG2l3iI_oZcsWqfX_pD-Wma8SeiiStwiZ-w8Po_msz3-DPDJ66KQQfKMG6-z0vpZZhwCwkXQudLOcp8SZM_l_Ko8vhbXvUwO7YXBl4jYUkyL-H_VBfiX30tOU5ilegrPhEQXpkMu7z6PKwakJLXSRhUZBeFBRehhVYpANq5FoMkCPekxdvlvkuSDqHP0AjZ7usj2V_i-hCe-3YKNw-GUtldwjw6Ng1vvGNHGpLpM9klqxEe2COwH5a04z_pkdRJQZbp1YznpDC_Tnr_IVlMMdOH6LKIEHDVzcfOzTQVtN1SNjDansLOL7ABjIbZImg-0yzmyr7rTr-Hq6Nvl4Tzrz1vINNKILgs4OKtD5WQZbIF-63OjdG11JZWpEDvl6hp_R5BFCEqWtZ9VVgtTKFNyFawp3sCkXbT-HTDla--01VKh4Uzoqixri91B-soiRzBT2EUkmt5fYpOWwnPejFBN4eMAEhYm3Y3HjHYIvgbJAineWkoNsh3JMCOxFVNgA6oNgkILIbr1i9vYYO-RGJUFmrxdgTw-I6eT15DVTEGtwT8akBz3-p325leS5c5xaFbx2fb_Pm0PNuaXZ6fN6ffzkx14ntIRaJ5avIdJt7z1H5DldGY3de8_qyX7Mg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BIkEvlGdZWoqFuKask9hOju22q_IqlZZKvUV-QoWUrTbZCz-FX8uMN4m6VSW4Rc7ESeyx57P9-TPAe6-zTAbJE268TnLrJ4lxWCFcBJ0q7Sz3kSB7Jk8v8k-X4rIbKNJeGPyIBnNq4iI-teprFzqFAf7heslpGjNX9-GBwF6WKFyH0_mwakBqUmt9VJFQIO6VhG4-SlHINhtRaLTA1nQXwrxNlLwReWbb8G345kg4-XWwas2B_X1LzvH_f-oJPO5AKDtce81TuOfrZ_Bo2p_99hz-YDeBQ2bvGIHRqOVM9lHAxDdsEdg5sWGcZx0FnmRZma7dkE7qxcu4k7Bh64kLunAdNym6A2Uzv_pRx4S67R9tGG15YV_nyRFGWMyRlCRo73TDjnWrX8DF7OT79DTpTnFINIKTNgk45CtD4WQebIa9gU-N0qXVhVSmQI9QriyxgIPMQlAyL_2ksFqYTJmcq2BN9hJG9aL2r4ApX3qnrZYKDSdCF3leWnQy6QuLyMOMYR9LuepaYVPFBfaUV0MRj-FdX-2YGNU87jLaJYeoEIKQjq4lwpFtSdwZ4bIYA-v9pMJKoeUVXfvFqqkwrEiM9QJNdtZuM7wjpfPcECuNQW041GBAIt-bd-qrn1HsO8UBX8Enr__1a2_h4fnxrPry8ezzLmxFjgNNfos9GLXLlX-D0Kk1-7G9_AVo5xbe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Statistical+Analyses+of+Peptide+Intensities+and+Peptide+Occurrences+Improves+Identification+of+Significant+Peptides+from+MS-Based+Proteomics+Data&rft.jtitle=Journal+of+proteome+research&rft.au=Webb-Robertson%2C+Bobbie-Jo+M&rft.au=McCue%2C+Lee+Ann&rft.au=Waters%2C+Katrina+M&rft.au=Matzke%2C+Melissa+M&rft.date=2010-11-05&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=9&rft.issue=11&rft.spage=5748&rft.epage=5756&rft_id=info:doi/10.1021%2Fpr1005247&rft.externalDocID=h93863003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |