The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series
•Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In literature the usage of SSA and DWT in building hybrid models is incorrect. In hydrological time series prediction, singular spectrum analys...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 552; pp. 44 - 51 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In literature the usage of SSA and DWT in building hybrid models is incorrect.
In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt ‘future’ values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of ‘future’ values. These hybrid models caused incorrect ‘high’ prediction performance and may cause large errors in practice. |
---|---|
AbstractList | In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt ‘future’ values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of ‘future’ values. These hybrid models caused incorrect ‘high’ prediction performance and may cause large errors in practice. •Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In literature the usage of SSA and DWT in building hybrid models is incorrect. In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt ‘future’ values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of ‘future’ values. These hybrid models caused incorrect ‘high’ prediction performance and may cause large errors in practice. |
Author | Du, Kongchang Zhao, Ying Lei, Jiaqiang |
Author_xml | – sequence: 1 givenname: Kongchang surname: Du fullname: Du, Kongchang organization: Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China – sequence: 2 givenname: Ying orcidid: 0000-0003-0346-5631 surname: Zhao fullname: Zhao, Ying email: yzhaosoils@gmail.com organization: Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China – sequence: 3 givenname: Jiaqiang surname: Lei fullname: Lei, Jiaqiang organization: Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China |
BookMark | eNqFkctuGyEUhlGVSHHSPEIklt3MFOZq1EVVRU0bKVI26RqdgTM2FgMuB6fyA_S9i-WsugkbLvr_T_BxzS5CDMjYnRS1FHL4vKt326NN0deNkGMthlpI9YGt5HpUVTOK8YKthGiaSg6qu2LXRDtRRtt2K_b3ZYvcBRNTQpP5gWCDPM6cXNgcPCRO-3KewHMI4I_kqCwst45Mwoz8D7yix8xLJNAc01JgfHuckrN8iRY98Rz5PqF1BX--Ztw4U4DZLcgJk0P6yC5n8IS3b_MN-_Xw_eX-Z_X0_OPx_ttTBV0rc2XbWSm17ltlpcV-6uy6mQU0BkAOPU5Tr8peKAXzaGWHYAc1GTGh7bsRRtHesE9n7j7F3wekrJfyEPQeAsYD6aZo6dqhX7cl2p-jJkWihLPeJ7dAOmop9Em73uk37fqkXYtBF-2l9-W_nnEZsouhKHL-3fbXc7uIw1eHSZNxGEzRd_ofbaN7h_APEM-onA |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2019_124503 crossref_primary_10_1007_s10661_022_09939_0 crossref_primary_10_1016_j_uclim_2024_101950 crossref_primary_10_1016_j_eswa_2021_115149 crossref_primary_10_1016_j_rser_2025_115375 crossref_primary_10_1016_j_compind_2020_103387 crossref_primary_10_5194_hess_24_5491_2020 crossref_primary_10_1007_s11356_020_08164_x crossref_primary_10_1007_s12665_019_8133_3 crossref_primary_10_1016_j_energy_2022_126589 crossref_primary_10_2166_hydro_2021_023 crossref_primary_10_2166_nh_2021_141 crossref_primary_10_1016_j_jhydrol_2018_07_004 crossref_primary_10_1016_j_apr_2020_06_028 crossref_primary_10_1016_j_ifacol_2022_11_015 crossref_primary_10_1080_15715124_2019_1570934 crossref_primary_10_1002_hyp_14066 crossref_primary_10_3390_cryptography5030024 crossref_primary_10_1016_j_eswa_2023_121350 crossref_primary_10_1007_s00477_022_02367_z crossref_primary_10_3390_w12071909 crossref_primary_10_1007_s11004_024_10154_5 crossref_primary_10_1007_s12145_022_00853_0 crossref_primary_10_1016_j_watres_2023_119745 crossref_primary_10_1016_j_jhydrol_2023_129962 crossref_primary_10_1007_s40328_021_00338_4 crossref_primary_10_1007_s13201_022_01696_2 crossref_primary_10_1016_j_advwatres_2020_103595 crossref_primary_10_1016_j_jhydrol_2024_132478 crossref_primary_10_1016_j_energy_2024_133911 crossref_primary_10_2478_johh_2020_0043 crossref_primary_10_1109_JSTARS_2024_3395630 crossref_primary_10_1016_j_jhydrol_2021_126816 crossref_primary_10_1016_j_jhydrol_2020_124776 crossref_primary_10_1007_s44288_024_00021_5 crossref_primary_10_1016_j_jhydrol_2018_05_003 crossref_primary_10_1029_2019WR026962 crossref_primary_10_1016_j_ins_2019_12_054 crossref_primary_10_1016_j_atmosres_2017_10_009 crossref_primary_10_1088_1742_6596_2271_1_012019 crossref_primary_10_1109_ACCESS_2020_2998437 crossref_primary_10_1007_s10333_022_00913_7 crossref_primary_10_1016_j_engappai_2025_110514 crossref_primary_10_1016_j_scitotenv_2024_171009 crossref_primary_10_2166_hydro_2019_021 crossref_primary_10_1016_j_neucom_2018_04_071 crossref_primary_10_1038_s41598_023_34133_8 crossref_primary_10_1007_s11269_021_02786_7 crossref_primary_10_1007_s40747_021_00442_6 crossref_primary_10_1016_j_envsoft_2020_104907 crossref_primary_10_1016_j_jenvman_2024_122883 crossref_primary_10_1016_j_envsoft_2021_105119 crossref_primary_10_1007_s00382_022_06646_x crossref_primary_10_1016_j_jhydrol_2018_11_015 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1038_s41598_024_66663_0 crossref_primary_10_1088_2634_4505_ad5e1d crossref_primary_10_2139_ssrn_4108850 crossref_primary_10_1016_j_watcyc_2024_09_001 crossref_primary_10_2166_ws_2019_122 crossref_primary_10_1061__ASCE_CF_1943_5509_0001641 crossref_primary_10_1177_14759217231219436 crossref_primary_10_1016_j_jhydrol_2020_125359 crossref_primary_10_3390_w14142264 crossref_primary_10_1007_s00477_023_02531_z crossref_primary_10_1016_j_scitotenv_2017_08_232 crossref_primary_10_1007_s00477_021_02013_0 crossref_primary_10_1016_j_jhydrol_2018_11_020 crossref_primary_10_1007_s11356_024_33058_7 crossref_primary_10_1038_s41598_024_61855_0 crossref_primary_10_1016_j_agrformet_2019_107647 crossref_primary_10_1016_j_scitotenv_2022_158342 crossref_primary_10_1016_j_engappai_2024_108521 crossref_primary_10_1111_1752_1688_12733 crossref_primary_10_1007_s40747_021_00365_2 crossref_primary_10_1016_j_jhydrol_2021_126358 crossref_primary_10_1016_j_jhydrol_2022_128836 crossref_primary_10_1016_j_jhydrol_2020_125127 crossref_primary_10_1109_ACCESS_2021_3094735 |
Cites_doi | 10.1016/j.jhydrol.2010.05.040 10.1016/0167-2789(86)90031-X 10.1623/hysj.54.5.918 10.1007/s11269-013-0374-4 10.1016/j.engappai.2012.05.023 10.1002/hyp.7448 10.1007/s11269-013-0316-1 10.1029/2007WR006737 10.1016/j.ins.2014.09.002 10.1016/j.engappai.2011.11.003 10.1016/j.jhydrol.2012.11.017 10.1016/j.jhydrol.2015.04.047 10.1016/0022-1694(70)90255-6 10.1016/j.jhydrol.2009.03.038 10.1198/jasa.2002.s239 10.2134/jeq2001.1976 10.1016/j.jhydrol.2014.03.057 10.1016/S0893-6080(03)00022-4 10.1016/j.engappai.2008.09.003 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2017.06.019 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 51 |
ExternalDocumentID | 10_1016_j_jhydrol_2017_06_019 S0022169417304237 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a431t-d3f9998539d1de5b4d82f0a2caa165ebb592f0099af7d14ead69bc0bed547a703 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 12:00:14 EDT 2025 Tue Jul 01 03:07:40 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Singular spectrum analysis Hydrological time series Discrete wavelet transform Artificial network Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a431t-d3f9998539d1de5b4d82f0a2caa165ebb592f0099af7d14ead69bc0bed547a703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0346-5631 |
PQID | 2000436583 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000436583 crossref_primary_10_1016_j_jhydrol_2017_06_019 crossref_citationtrail_10_1016_j_jhydrol_2017_06_019 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2017_06_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2017 2017-09-00 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kisi, Cimen (b0040) 2009; 54 Sivapragasam, Liong, Pasha (b0075) 2001; 141–152 Valipour, Banihabib, Behbahani (b0080) 2013; 476 Sang (b0070) 2013; 27 Wu, Chau, Li (b0095) 2009; 45 Wu, Chau, Li (b0100) 2009; 372 Broomhead, King (b0015) 1986; 20 Nourani, Alami, Aminfar (b0055) 2009; 22 Partal (b0065) 2009; 23 Kisi, Cimen (b0045) 2012; 25 . Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series Structure: SSA and Related Techniques. Chapman Hall/CRC Monogr. Stat. Appl. Probab. 320. Nash, Sutcliffe (b0050) 1970; 10 Wu, Chau, Fan (b0105) 2010; 389 He, Guan, Qin (b0030) 2015; 527 Nourani, Hosseini Baghanam, Adamowski, Kisi (b0060) 2014; 514 Keller, von Steiger, van der Zee, Schulin (b0035) 2001; 30 Hagan (b0025) 2007; 4120 Venkata Ramana, Krishna, Kumar, Pandey (b0085) 2013; 27 Baratta, Cicioni, Masulli, Studer (b0010) 2003; 16 Wu, Chau (b0090) 2013; 26 Abdollahzade, Miranian, Hassani, Iranmanesh (b0005) 2015; 295 Sivapragasam (10.1016/j.jhydrol.2017.06.019_b0075) 2001; 141–152 Nash (10.1016/j.jhydrol.2017.06.019_b0050) 1970; 10 Venkata Ramana (10.1016/j.jhydrol.2017.06.019_b0085) 2013; 27 Broomhead (10.1016/j.jhydrol.2017.06.019_b0015) 1986; 20 Wu (10.1016/j.jhydrol.2017.06.019_b0090) 2013; 26 Wu (10.1016/j.jhydrol.2017.06.019_b0095) 2009; 45 He (10.1016/j.jhydrol.2017.06.019_b0030) 2015; 527 Kisi (10.1016/j.jhydrol.2017.06.019_b0040) 2009; 54 Abdollahzade (10.1016/j.jhydrol.2017.06.019_b0005) 2015; 295 Nourani (10.1016/j.jhydrol.2017.06.019_b0060) 2014; 514 Wu (10.1016/j.jhydrol.2017.06.019_b0100) 2009; 372 Baratta (10.1016/j.jhydrol.2017.06.019_b0010) 2003; 16 Sang (10.1016/j.jhydrol.2017.06.019_b0070) 2013; 27 Wu (10.1016/j.jhydrol.2017.06.019_b0105) 2010; 389 Hagan (10.1016/j.jhydrol.2017.06.019_b0025) 2007; 4120 Nourani (10.1016/j.jhydrol.2017.06.019_b0055) 2009; 22 Valipour (10.1016/j.jhydrol.2017.06.019_b0080) 2013; 476 Keller (10.1016/j.jhydrol.2017.06.019_b0035) 2001; 30 Kisi (10.1016/j.jhydrol.2017.06.019_b0045) 2012; 25 Partal (10.1016/j.jhydrol.2017.06.019_b0065) 2009; 23 10.1016/j.jhydrol.2017.06.019_b0020 |
References_xml | – volume: 22 start-page: 466 year: 2009 end-page: 472 ident: b0055 article-title: A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation publication-title: Eng. Appl. Artif. Intell. – volume: 372 start-page: 80 year: 2009 end-page: 93 ident: b0100 article-title: Methods to improve neural network performance in daily flows prediction publication-title: J. Hydrol. – volume: 4120 start-page: 45308 year: 2007 ident: b0025 article-title: Neural network design publication-title: Network – reference: Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series Structure: SSA and Related Techniques. Chapman Hall/CRC Monogr. Stat. Appl. Probab. 320. – volume: 141–152 year: 2001 ident: b0075 article-title: Rainfall and runoff forecasting with SSA-SVM approach publication-title: J. Hydroinf. – volume: 30 start-page: 1976 year: 2001 end-page: 1989 ident: b0035 article-title: A stochastic empirical model for regional heavy-metal balances in agroecosystems publication-title: J. Environ. Qual. – volume: 476 start-page: 433 year: 2013 end-page: 441 ident: b0080 article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir publication-title: J. Hydrol. – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: b0050 article-title: River flow forecasting through conceptual models part I – a discussion of principles publication-title: J. Hydrol. – volume: 27 start-page: 3697 year: 2013 end-page: 3711 ident: b0085 article-title: Monthly rainfall prediction using wavelet neural network analysis publication-title: Water Resour. Manage. – reference: . – volume: 527 start-page: 88 year: 2015 end-page: 100 ident: b0030 article-title: A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall publication-title: J. Hydrol. – volume: 26 start-page: 997 year: 2013 end-page: 1007 ident: b0090 article-title: Prediction of rainfall time series using modular soft computing methods publication-title: Eng. Appl. Artif. Intell. – volume: 25 start-page: 783 year: 2012 end-page: 792 ident: b0045 article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model publication-title: Eng. Appl. Artif. Intell. – volume: 20 start-page: 217 year: 1986 end-page: 236 ident: b0015 article-title: Extracting qualitative dynamics from experimental data publication-title: Phys. D Nonlinear Phenom. – volume: 389 start-page: 146 year: 2010 end-page: 167 ident: b0105 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J. Hydrol. – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: b0060 article-title: Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review publication-title: J. Hydrol. – volume: 295 start-page: 107 year: 2015 end-page: 125 ident: b0005 article-title: A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting publication-title: Inf. Sci. (Ny) – volume: 27 start-page: 2807 year: 2013 end-page: 2821 ident: b0070 article-title: Improved wavelet modeling framework for hydrologic time series forecasting publication-title: Water Resour. Manage. – volume: 54 start-page: 918 year: 2009 end-page: 928 ident: b0040 article-title: Evapotranspiration modelling using support vector machines publication-title: Hydrol. Sci. J. – volume: 23 start-page: 3545 year: 2009 end-page: 3555 ident: b0065 article-title: Modelling evapotranspiration using discrete wavelet transform and neural networks publication-title: Hydrol. Process. – volume: 16 start-page: 375 year: 2003 end-page: 387 ident: b0010 article-title: Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting publication-title: Neural Netw. – volume: 45 start-page: 1 year: 2009 end-page: 23 ident: b0095 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. – volume: 389 start-page: 146 year: 2010 ident: 10.1016/j.jhydrol.2017.06.019_b0105 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.05.040 – volume: 20 start-page: 217 year: 1986 ident: 10.1016/j.jhydrol.2017.06.019_b0015 article-title: Extracting qualitative dynamics from experimental data publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/0167-2789(86)90031-X – volume: 54 start-page: 918 year: 2009 ident: 10.1016/j.jhydrol.2017.06.019_b0040 article-title: Evapotranspiration modelling using support vector machines publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.54.5.918 – volume: 27 start-page: 3697 year: 2013 ident: 10.1016/j.jhydrol.2017.06.019_b0085 article-title: Monthly rainfall prediction using wavelet neural network analysis publication-title: Water Resour. Manage. doi: 10.1007/s11269-013-0374-4 – volume: 26 start-page: 997 year: 2013 ident: 10.1016/j.jhydrol.2017.06.019_b0090 article-title: Prediction of rainfall time series using modular soft computing methods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.05.023 – volume: 23 start-page: 3545 year: 2009 ident: 10.1016/j.jhydrol.2017.06.019_b0065 article-title: Modelling evapotranspiration using discrete wavelet transform and neural networks publication-title: Hydrol. Process. doi: 10.1002/hyp.7448 – volume: 27 start-page: 2807 year: 2013 ident: 10.1016/j.jhydrol.2017.06.019_b0070 article-title: Improved wavelet modeling framework for hydrologic time series forecasting publication-title: Water Resour. Manage. doi: 10.1007/s11269-013-0316-1 – volume: 45 start-page: 1 year: 2009 ident: 10.1016/j.jhydrol.2017.06.019_b0095 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. doi: 10.1029/2007WR006737 – volume: 295 start-page: 107 year: 2015 ident: 10.1016/j.jhydrol.2017.06.019_b0005 article-title: A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.09.002 – volume: 25 start-page: 783 year: 2012 ident: 10.1016/j.jhydrol.2017.06.019_b0045 article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.11.003 – volume: 476 start-page: 433 year: 2013 ident: 10.1016/j.jhydrol.2017.06.019_b0080 article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.017 – volume: 141–152 year: 2001 ident: 10.1016/j.jhydrol.2017.06.019_b0075 article-title: Rainfall and runoff forecasting with SSA-SVM approach publication-title: J. Hydroinf. – volume: 527 start-page: 88 year: 2015 ident: 10.1016/j.jhydrol.2017.06.019_b0030 article-title: A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.04.047 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.jhydrol.2017.06.019_b0050 article-title: River flow forecasting through conceptual models part I – a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 372 start-page: 80 year: 2009 ident: 10.1016/j.jhydrol.2017.06.019_b0100 article-title: Methods to improve neural network performance in daily flows prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.038 – ident: 10.1016/j.jhydrol.2017.06.019_b0020 doi: 10.1198/jasa.2002.s239 – volume: 4120 start-page: 45308 year: 2007 ident: 10.1016/j.jhydrol.2017.06.019_b0025 article-title: Neural network design publication-title: Network – volume: 30 start-page: 1976 year: 2001 ident: 10.1016/j.jhydrol.2017.06.019_b0035 article-title: A stochastic empirical model for regional heavy-metal balances in agroecosystems publication-title: J. Environ. Qual. doi: 10.2134/jeq2001.1976 – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.jhydrol.2017.06.019_b0060 article-title: Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 – volume: 16 start-page: 375 year: 2003 ident: 10.1016/j.jhydrol.2017.06.019_b0010 article-title: Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00022-4 – volume: 22 start-page: 466 year: 2009 ident: 10.1016/j.jhydrol.2017.06.019_b0055 article-title: A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2008.09.003 |
SSID | ssj0000334 |
Score | 2.5318635 |
Snippet | •Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In... In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 44 |
SubjectTerms | Artificial network Discrete wavelet transform hydrologic data Hydrological time series neural networks Prediction Singular spectrum analysis spectral analysis support vector machines time series analysis wavelet |
Title | The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series |
URI | https://dx.doi.org/10.1016/j.jhydrol.2017.06.019 https://www.proquest.com/docview/2000436583 |
Volume | 552 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-yghe0ybN5nUsxVIVe7LQW9hkd2mLNCVNkV68-b-dSTYWRSh4y4bskt2ZzH5k5_uGsfuQZMMCLSzh2triPNVWJLRjpUlqh8L3UickcvLLyB-O-dPEmzRYv-bCUFqlif1VTC-jtbnTMavZWc5mxPHtdh3iYQZumdxBDHYekJe3P7ZpHrbr8loxnJ7esng68_Z8upF5RicQTlDKeJLgzt_7069IXW4_g2N2ZHAj9KpXO2ENtThlB6aE-XRzxj7R4EBSCznNB9aUMAaZBvoXQKmmUHIqcxxDGB0SvJBArNwcgTO8CypBUUBRI1kcDKYbInRBWS5nBUUGy5wOdgqoZlSFTaD69ECurFbnbDx4eO0PLVNjwRIIHQpLuhohIu7ZkXSk8hIuw662RTcVwvE9lSRehG2EkUIH0uHod36EZkyU9HggMFxcsL1FtlCXDNC0iFZkpINI8hSBiMvTUGq8ywmGqCbj9crGqREgpzoYb3GdaTaPjUFiMkhMGXdO1GTt727LSoFjV4ewNlv8w5Vi3CV2db2rzRzjZ0ZnJ2KhsvWKqnWSWL8Xulf_H_6aHVKrSlG7YXtFvla3iGmKpFU6bYvt9x6fh6MvYq37Kg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HvQiPrE-R_Aa2zSbJjmKKPXVk4K3ZZPdpRZpSpoi_QH-b2eSjaIIgrdkwyzZncnMR3bmG4CzmGnDIqs8FXStJ0RmvURZ38vSrBurfpj5MRcnPwz7gydx-xw-L8FlUwvDaZXO99c-vfLWbqTjdrMzfXnhGt9ez-c6zCiokjuWYYXZqcIWrFzc3A2GXw45CERDGs4CX4U8nfH5eLTQRc6HEH5UMXky587vIeqHs64i0PUGrDvoiBf1223CkplswarrYj5abMM76RyZbaHgJeGcc8Ywt8i_AzjbFKuyyoLmUI6KhC40cmFuQdgZ3xR3oSixbMAsTYajBdd0YdUxZ4ZljtOCz3ZKrFdUe07kFvXI1mxmO_B0ffV4OfBcmwVPEXooPR1YQokUthPtaxOmQsc921W9TCm_H5o0DRO6JySpbKR9QabXT0iTqdG024o8xi60JvnE7AGSdgmw6MRGiRYZYZFAZLG2NCoYiZg2iGZnZeY4yLkVxqtsks3G0ilEskIkJ935SRvOP8WmNQnHXwJxozb5zZokBYq_RE8bNUv60vj4RE1MPp9xw07m6w_jYP__05_A6uDx4V7e3wzvDmCNn9QZa4fQKou5OSKIU6bHzoQ_APAc_ds |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+incorrect+usage+of+singular+spectral+analysis+and+discrete+wavelet+transform+in+hybrid+models+to+predict+hydrological+time+series&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Du%2C+Kongchang&rft.au=Zhao%2C+Ying&rft.au=Lei%2C+Jiaqiang&rft.date=2017-09-01&rft.issn=0022-1694&rft.volume=552+p.44-51&rft.spage=44&rft.epage=51&rft_id=info:doi/10.1016%2Fj.jhydrol.2017.06.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |