The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series

•Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In literature the usage of SSA and DWT in building hybrid models is incorrect. In hydrological time series prediction, singular spectrum analys...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 552; pp. 44 - 51
Main Authors Du, Kongchang, Zhao, Ying, Lei, Jiaqiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In literature the usage of SSA and DWT in building hybrid models is incorrect. In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt ‘future’ values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of ‘future’ values. These hybrid models caused incorrect ‘high’ prediction performance and may cause large errors in practice.
AbstractList In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt ‘future’ values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of ‘future’ values. These hybrid models caused incorrect ‘high’ prediction performance and may cause large errors in practice.
•Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In literature the usage of SSA and DWT in building hybrid models is incorrect. In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt ‘future’ values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of ‘future’ values. These hybrid models caused incorrect ‘high’ prediction performance and may cause large errors in practice.
Author Du, Kongchang
Zhao, Ying
Lei, Jiaqiang
Author_xml – sequence: 1
  givenname: Kongchang
  surname: Du
  fullname: Du, Kongchang
  organization: Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
– sequence: 2
  givenname: Ying
  orcidid: 0000-0003-0346-5631
  surname: Zhao
  fullname: Zhao, Ying
  email: yzhaosoils@gmail.com
  organization: Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
– sequence: 3
  givenname: Jiaqiang
  surname: Lei
  fullname: Lei, Jiaqiang
  organization: Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
BookMark eNqFkctuGyEUhlGVSHHSPEIklt3MFOZq1EVVRU0bKVI26RqdgTM2FgMuB6fyA_S9i-WsugkbLvr_T_BxzS5CDMjYnRS1FHL4vKt326NN0deNkGMthlpI9YGt5HpUVTOK8YKthGiaSg6qu2LXRDtRRtt2K_b3ZYvcBRNTQpP5gWCDPM6cXNgcPCRO-3KewHMI4I_kqCwst45Mwoz8D7yix8xLJNAc01JgfHuckrN8iRY98Rz5PqF1BX--Ztw4U4DZLcgJk0P6yC5n8IS3b_MN-_Xw_eX-Z_X0_OPx_ttTBV0rc2XbWSm17ltlpcV-6uy6mQU0BkAOPU5Tr8peKAXzaGWHYAc1GTGh7bsRRtHesE9n7j7F3wekrJfyEPQeAsYD6aZo6dqhX7cl2p-jJkWihLPeJ7dAOmop9Em73uk37fqkXYtBF-2l9-W_nnEZsouhKHL-3fbXc7uIw1eHSZNxGEzRd_ofbaN7h_APEM-onA
CitedBy_id crossref_primary_10_1016_j_jhydrol_2019_124503
crossref_primary_10_1007_s10661_022_09939_0
crossref_primary_10_1016_j_uclim_2024_101950
crossref_primary_10_1016_j_eswa_2021_115149
crossref_primary_10_1016_j_rser_2025_115375
crossref_primary_10_1016_j_compind_2020_103387
crossref_primary_10_5194_hess_24_5491_2020
crossref_primary_10_1007_s11356_020_08164_x
crossref_primary_10_1007_s12665_019_8133_3
crossref_primary_10_1016_j_energy_2022_126589
crossref_primary_10_2166_hydro_2021_023
crossref_primary_10_2166_nh_2021_141
crossref_primary_10_1016_j_jhydrol_2018_07_004
crossref_primary_10_1016_j_apr_2020_06_028
crossref_primary_10_1016_j_ifacol_2022_11_015
crossref_primary_10_1080_15715124_2019_1570934
crossref_primary_10_1002_hyp_14066
crossref_primary_10_3390_cryptography5030024
crossref_primary_10_1016_j_eswa_2023_121350
crossref_primary_10_1007_s00477_022_02367_z
crossref_primary_10_3390_w12071909
crossref_primary_10_1007_s11004_024_10154_5
crossref_primary_10_1007_s12145_022_00853_0
crossref_primary_10_1016_j_watres_2023_119745
crossref_primary_10_1016_j_jhydrol_2023_129962
crossref_primary_10_1007_s40328_021_00338_4
crossref_primary_10_1007_s13201_022_01696_2
crossref_primary_10_1016_j_advwatres_2020_103595
crossref_primary_10_1016_j_jhydrol_2024_132478
crossref_primary_10_1016_j_energy_2024_133911
crossref_primary_10_2478_johh_2020_0043
crossref_primary_10_1109_JSTARS_2024_3395630
crossref_primary_10_1016_j_jhydrol_2021_126816
crossref_primary_10_1016_j_jhydrol_2020_124776
crossref_primary_10_1007_s44288_024_00021_5
crossref_primary_10_1016_j_jhydrol_2018_05_003
crossref_primary_10_1029_2019WR026962
crossref_primary_10_1016_j_ins_2019_12_054
crossref_primary_10_1016_j_atmosres_2017_10_009
crossref_primary_10_1088_1742_6596_2271_1_012019
crossref_primary_10_1109_ACCESS_2020_2998437
crossref_primary_10_1007_s10333_022_00913_7
crossref_primary_10_1016_j_engappai_2025_110514
crossref_primary_10_1016_j_scitotenv_2024_171009
crossref_primary_10_2166_hydro_2019_021
crossref_primary_10_1016_j_neucom_2018_04_071
crossref_primary_10_1038_s41598_023_34133_8
crossref_primary_10_1007_s11269_021_02786_7
crossref_primary_10_1007_s40747_021_00442_6
crossref_primary_10_1016_j_envsoft_2020_104907
crossref_primary_10_1016_j_jenvman_2024_122883
crossref_primary_10_1016_j_envsoft_2021_105119
crossref_primary_10_1007_s00382_022_06646_x
crossref_primary_10_1016_j_jhydrol_2018_11_015
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1038_s41598_024_66663_0
crossref_primary_10_1088_2634_4505_ad5e1d
crossref_primary_10_2139_ssrn_4108850
crossref_primary_10_1016_j_watcyc_2024_09_001
crossref_primary_10_2166_ws_2019_122
crossref_primary_10_1061__ASCE_CF_1943_5509_0001641
crossref_primary_10_1177_14759217231219436
crossref_primary_10_1016_j_jhydrol_2020_125359
crossref_primary_10_3390_w14142264
crossref_primary_10_1007_s00477_023_02531_z
crossref_primary_10_1016_j_scitotenv_2017_08_232
crossref_primary_10_1007_s00477_021_02013_0
crossref_primary_10_1016_j_jhydrol_2018_11_020
crossref_primary_10_1007_s11356_024_33058_7
crossref_primary_10_1038_s41598_024_61855_0
crossref_primary_10_1016_j_agrformet_2019_107647
crossref_primary_10_1016_j_scitotenv_2022_158342
crossref_primary_10_1016_j_engappai_2024_108521
crossref_primary_10_1111_1752_1688_12733
crossref_primary_10_1007_s40747_021_00365_2
crossref_primary_10_1016_j_jhydrol_2021_126358
crossref_primary_10_1016_j_jhydrol_2022_128836
crossref_primary_10_1016_j_jhydrol_2020_125127
crossref_primary_10_1109_ACCESS_2021_3094735
Cites_doi 10.1016/j.jhydrol.2010.05.040
10.1016/0167-2789(86)90031-X
10.1623/hysj.54.5.918
10.1007/s11269-013-0374-4
10.1016/j.engappai.2012.05.023
10.1002/hyp.7448
10.1007/s11269-013-0316-1
10.1029/2007WR006737
10.1016/j.ins.2014.09.002
10.1016/j.engappai.2011.11.003
10.1016/j.jhydrol.2012.11.017
10.1016/j.jhydrol.2015.04.047
10.1016/0022-1694(70)90255-6
10.1016/j.jhydrol.2009.03.038
10.1198/jasa.2002.s239
10.2134/jeq2001.1976
10.1016/j.jhydrol.2014.03.057
10.1016/S0893-6080(03)00022-4
10.1016/j.engappai.2008.09.003
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2017.06.019
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 51
ExternalDocumentID 10_1016_j_jhydrol_2017_06_019
S0022169417304237
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a431t-d3f9998539d1de5b4d82f0a2caa165ebb592f0099af7d14ead69bc0bed547a703
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 12:00:14 EDT 2025
Tue Jul 01 03:07:40 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Singular spectrum analysis
Hydrological time series
Discrete wavelet transform
Artificial network
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a431t-d3f9998539d1de5b4d82f0a2caa165ebb592f0099af7d14ead69bc0bed547a703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0346-5631
PQID 2000436583
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000436583
crossref_primary_10_1016_j_jhydrol_2017_06_019
crossref_citationtrail_10_1016_j_jhydrol_2017_06_019
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2017_06_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kisi, Cimen (b0040) 2009; 54
Sivapragasam, Liong, Pasha (b0075) 2001; 141–152
Valipour, Banihabib, Behbahani (b0080) 2013; 476
Sang (b0070) 2013; 27
Wu, Chau, Li (b0095) 2009; 45
Wu, Chau, Li (b0100) 2009; 372
Broomhead, King (b0015) 1986; 20
Nourani, Alami, Aminfar (b0055) 2009; 22
Partal (b0065) 2009; 23
Kisi, Cimen (b0045) 2012; 25
.
Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series Structure: SSA and Related Techniques. Chapman Hall/CRC Monogr. Stat. Appl. Probab. 320.
Nash, Sutcliffe (b0050) 1970; 10
Wu, Chau, Fan (b0105) 2010; 389
He, Guan, Qin (b0030) 2015; 527
Nourani, Hosseini Baghanam, Adamowski, Kisi (b0060) 2014; 514
Keller, von Steiger, van der Zee, Schulin (b0035) 2001; 30
Hagan (b0025) 2007; 4120
Venkata Ramana, Krishna, Kumar, Pandey (b0085) 2013; 27
Baratta, Cicioni, Masulli, Studer (b0010) 2003; 16
Wu, Chau (b0090) 2013; 26
Abdollahzade, Miranian, Hassani, Iranmanesh (b0005) 2015; 295
Sivapragasam (10.1016/j.jhydrol.2017.06.019_b0075) 2001; 141–152
Nash (10.1016/j.jhydrol.2017.06.019_b0050) 1970; 10
Venkata Ramana (10.1016/j.jhydrol.2017.06.019_b0085) 2013; 27
Broomhead (10.1016/j.jhydrol.2017.06.019_b0015) 1986; 20
Wu (10.1016/j.jhydrol.2017.06.019_b0090) 2013; 26
Wu (10.1016/j.jhydrol.2017.06.019_b0095) 2009; 45
He (10.1016/j.jhydrol.2017.06.019_b0030) 2015; 527
Kisi (10.1016/j.jhydrol.2017.06.019_b0040) 2009; 54
Abdollahzade (10.1016/j.jhydrol.2017.06.019_b0005) 2015; 295
Nourani (10.1016/j.jhydrol.2017.06.019_b0060) 2014; 514
Wu (10.1016/j.jhydrol.2017.06.019_b0100) 2009; 372
Baratta (10.1016/j.jhydrol.2017.06.019_b0010) 2003; 16
Sang (10.1016/j.jhydrol.2017.06.019_b0070) 2013; 27
Wu (10.1016/j.jhydrol.2017.06.019_b0105) 2010; 389
Hagan (10.1016/j.jhydrol.2017.06.019_b0025) 2007; 4120
Nourani (10.1016/j.jhydrol.2017.06.019_b0055) 2009; 22
Valipour (10.1016/j.jhydrol.2017.06.019_b0080) 2013; 476
Keller (10.1016/j.jhydrol.2017.06.019_b0035) 2001; 30
Kisi (10.1016/j.jhydrol.2017.06.019_b0045) 2012; 25
Partal (10.1016/j.jhydrol.2017.06.019_b0065) 2009; 23
10.1016/j.jhydrol.2017.06.019_b0020
References_xml – volume: 22
  start-page: 466
  year: 2009
  end-page: 472
  ident: b0055
  article-title: A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 372
  start-page: 80
  year: 2009
  end-page: 93
  ident: b0100
  article-title: Methods to improve neural network performance in daily flows prediction
  publication-title: J. Hydrol.
– volume: 4120
  start-page: 45308
  year: 2007
  ident: b0025
  article-title: Neural network design
  publication-title: Network
– reference: Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series Structure: SSA and Related Techniques. Chapman Hall/CRC Monogr. Stat. Appl. Probab. 320.
– volume: 141–152
  year: 2001
  ident: b0075
  article-title: Rainfall and runoff forecasting with SSA-SVM approach
  publication-title: J. Hydroinf.
– volume: 30
  start-page: 1976
  year: 2001
  end-page: 1989
  ident: b0035
  article-title: A stochastic empirical model for regional heavy-metal balances in agroecosystems
  publication-title: J. Environ. Qual.
– volume: 476
  start-page: 433
  year: 2013
  end-page: 441
  ident: b0080
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: J. Hydrol.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0050
  article-title: River flow forecasting through conceptual models part I – a discussion of principles
  publication-title: J. Hydrol.
– volume: 27
  start-page: 3697
  year: 2013
  end-page: 3711
  ident: b0085
  article-title: Monthly rainfall prediction using wavelet neural network analysis
  publication-title: Water Resour. Manage.
– reference: .
– volume: 527
  start-page: 88
  year: 2015
  end-page: 100
  ident: b0030
  article-title: A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall
  publication-title: J. Hydrol.
– volume: 26
  start-page: 997
  year: 2013
  end-page: 1007
  ident: b0090
  article-title: Prediction of rainfall time series using modular soft computing methods
  publication-title: Eng. Appl. Artif. Intell.
– volume: 25
  start-page: 783
  year: 2012
  end-page: 792
  ident: b0045
  article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model
  publication-title: Eng. Appl. Artif. Intell.
– volume: 20
  start-page: 217
  year: 1986
  end-page: 236
  ident: b0015
  article-title: Extracting qualitative dynamics from experimental data
  publication-title: Phys. D Nonlinear Phenom.
– volume: 389
  start-page: 146
  year: 2010
  end-page: 167
  ident: b0105
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J. Hydrol.
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: b0060
  article-title: Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review
  publication-title: J. Hydrol.
– volume: 295
  start-page: 107
  year: 2015
  end-page: 125
  ident: b0005
  article-title: A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting
  publication-title: Inf. Sci. (Ny)
– volume: 27
  start-page: 2807
  year: 2013
  end-page: 2821
  ident: b0070
  article-title: Improved wavelet modeling framework for hydrologic time series forecasting
  publication-title: Water Resour. Manage.
– volume: 54
  start-page: 918
  year: 2009
  end-page: 928
  ident: b0040
  article-title: Evapotranspiration modelling using support vector machines
  publication-title: Hydrol. Sci. J.
– volume: 23
  start-page: 3545
  year: 2009
  end-page: 3555
  ident: b0065
  article-title: Modelling evapotranspiration using discrete wavelet transform and neural networks
  publication-title: Hydrol. Process.
– volume: 16
  start-page: 375
  year: 2003
  end-page: 387
  ident: b0010
  article-title: Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting
  publication-title: Neural Netw.
– volume: 45
  start-page: 1
  year: 2009
  end-page: 23
  ident: b0095
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
– volume: 389
  start-page: 146
  year: 2010
  ident: 10.1016/j.jhydrol.2017.06.019_b0105
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.05.040
– volume: 20
  start-page: 217
  year: 1986
  ident: 10.1016/j.jhydrol.2017.06.019_b0015
  article-title: Extracting qualitative dynamics from experimental data
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(86)90031-X
– volume: 54
  start-page: 918
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.019_b0040
  article-title: Evapotranspiration modelling using support vector machines
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.54.5.918
– volume: 27
  start-page: 3697
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.019_b0085
  article-title: Monthly rainfall prediction using wavelet neural network analysis
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-013-0374-4
– volume: 26
  start-page: 997
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.019_b0090
  article-title: Prediction of rainfall time series using modular soft computing methods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.023
– volume: 23
  start-page: 3545
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.019_b0065
  article-title: Modelling evapotranspiration using discrete wavelet transform and neural networks
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7448
– volume: 27
  start-page: 2807
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.019_b0070
  article-title: Improved wavelet modeling framework for hydrologic time series forecasting
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-013-0316-1
– volume: 45
  start-page: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.019_b0095
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006737
– volume: 295
  start-page: 107
  year: 2015
  ident: 10.1016/j.jhydrol.2017.06.019_b0005
  article-title: A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.09.002
– volume: 25
  start-page: 783
  year: 2012
  ident: 10.1016/j.jhydrol.2017.06.019_b0045
  article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.11.003
– volume: 476
  start-page: 433
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.019_b0080
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.017
– volume: 141–152
  year: 2001
  ident: 10.1016/j.jhydrol.2017.06.019_b0075
  article-title: Rainfall and runoff forecasting with SSA-SVM approach
  publication-title: J. Hydroinf.
– volume: 527
  start-page: 88
  year: 2015
  ident: 10.1016/j.jhydrol.2017.06.019_b0030
  article-title: A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.04.047
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.jhydrol.2017.06.019_b0050
  article-title: River flow forecasting through conceptual models part I – a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 372
  start-page: 80
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.019_b0100
  article-title: Methods to improve neural network performance in daily flows prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.03.038
– ident: 10.1016/j.jhydrol.2017.06.019_b0020
  doi: 10.1198/jasa.2002.s239
– volume: 4120
  start-page: 45308
  year: 2007
  ident: 10.1016/j.jhydrol.2017.06.019_b0025
  article-title: Neural network design
  publication-title: Network
– volume: 30
  start-page: 1976
  year: 2001
  ident: 10.1016/j.jhydrol.2017.06.019_b0035
  article-title: A stochastic empirical model for regional heavy-metal balances in agroecosystems
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.1976
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.jhydrol.2017.06.019_b0060
  article-title: Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 16
  start-page: 375
  year: 2003
  ident: 10.1016/j.jhydrol.2017.06.019_b0010
  article-title: Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00022-4
– volume: 22
  start-page: 466
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.019_b0055
  article-title: A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.09.003
SSID ssj0000334
Score 2.5318635
Snippet •Series generated by SSA and DWT contain information of ‘future’ values.•Hybrid models generate false ‘low’ prediction error and cause large errors in test.•In...
In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Artificial network
Discrete wavelet transform
hydrologic data
Hydrological time series
neural networks
Prediction
Singular spectrum analysis
spectral analysis
support vector machines
time series analysis
wavelet
Title The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series
URI https://dx.doi.org/10.1016/j.jhydrol.2017.06.019
https://www.proquest.com/docview/2000436583
Volume 552
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-yghe0ybN5nUsxVIVe7LQW9hkd2mLNCVNkV68-b-dSTYWRSh4y4bskt2ZzH5k5_uGsfuQZMMCLSzh2triPNVWJLRjpUlqh8L3UickcvLLyB-O-dPEmzRYv-bCUFqlif1VTC-jtbnTMavZWc5mxPHtdh3iYQZumdxBDHYekJe3P7ZpHrbr8loxnJ7esng68_Z8upF5RicQTlDKeJLgzt_7069IXW4_g2N2ZHAj9KpXO2ENtThlB6aE-XRzxj7R4EBSCznNB9aUMAaZBvoXQKmmUHIqcxxDGB0SvJBArNwcgTO8CypBUUBRI1kcDKYbInRBWS5nBUUGy5wOdgqoZlSFTaD69ECurFbnbDx4eO0PLVNjwRIIHQpLuhohIu7ZkXSk8hIuw662RTcVwvE9lSRehG2EkUIH0uHod36EZkyU9HggMFxcsL1FtlCXDNC0iFZkpINI8hSBiMvTUGq8ywmGqCbj9crGqREgpzoYb3GdaTaPjUFiMkhMGXdO1GTt727LSoFjV4ewNlv8w5Vi3CV2db2rzRzjZ0ZnJ2KhsvWKqnWSWL8Xulf_H_6aHVKrSlG7YXtFvla3iGmKpFU6bYvt9x6fh6MvYq37Kg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HvQiPrE-R_Aa2zSbJjmKKPXVk4K3ZZPdpRZpSpoi_QH-b2eSjaIIgrdkwyzZncnMR3bmG4CzmGnDIqs8FXStJ0RmvURZ38vSrBurfpj5MRcnPwz7gydx-xw-L8FlUwvDaZXO99c-vfLWbqTjdrMzfXnhGt9ez-c6zCiokjuWYYXZqcIWrFzc3A2GXw45CERDGs4CX4U8nfH5eLTQRc6HEH5UMXky587vIeqHs64i0PUGrDvoiBf1223CkplswarrYj5abMM76RyZbaHgJeGcc8Ywt8i_AzjbFKuyyoLmUI6KhC40cmFuQdgZ3xR3oSixbMAsTYajBdd0YdUxZ4ZljtOCz3ZKrFdUe07kFvXI1mxmO_B0ffV4OfBcmwVPEXooPR1YQokUthPtaxOmQsc921W9TCm_H5o0DRO6JySpbKR9QabXT0iTqdG024o8xi60JvnE7AGSdgmw6MRGiRYZYZFAZLG2NCoYiZg2iGZnZeY4yLkVxqtsks3G0ilEskIkJ935SRvOP8WmNQnHXwJxozb5zZokBYq_RE8bNUv60vj4RE1MPp9xw07m6w_jYP__05_A6uDx4V7e3wzvDmCNn9QZa4fQKou5OSKIU6bHzoQ_APAc_ds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+incorrect+usage+of+singular+spectral+analysis+and+discrete+wavelet+transform+in+hybrid+models+to+predict+hydrological+time+series&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Du%2C+Kongchang&rft.au=Zhao%2C+Ying&rft.au=Lei%2C+Jiaqiang&rft.date=2017-09-01&rft.issn=0022-1694&rft.volume=552+p.44-51&rft.spage=44&rft.epage=51&rft_id=info:doi/10.1016%2Fj.jhydrol.2017.06.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon