Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery

Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complica...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 15; no. 3; pp. 908 - 914
Main Authors Xia, Xiao-Xia, Wang, Ming, Lin, Yinan, Xu, Qiaobing, Kaplan, David L
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 10.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.
AbstractList Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC₅₀ > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC 50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/ mu g SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC sub(50) > 200 mu g/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.
Author Lin, Yinan
Xu, Qiaobing
Kaplan, David L
Xia, Xiao-Xia
Wang, Ming
AuthorAffiliation State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology
Tufts University
Department of Biomedical Engineering
Shanghai Jiao Tong University
AuthorAffiliation_xml – name: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology
– name: Tufts University
– name: Shanghai Jiao Tong University
– name: Department of Biomedical Engineering
Author_xml – sequence: 1
  givenname: Xiao-Xia
  surname: Xia
  fullname: Xia, Xiao-Xia
– sequence: 2
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
– sequence: 3
  givenname: Yinan
  surname: Lin
  fullname: Lin, Yinan
– sequence: 4
  givenname: Qiaobing
  surname: Xu
  fullname: Xu, Qiaobing
– sequence: 5
  givenname: David L
  surname: Kaplan
  fullname: Kaplan, David L
  email: david.kaplan@tufts.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28363091$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24527851$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFTEUhYNU7EUf_AMyL4I-jM11MnkRSlutcNBC63PIZHZO02aSYzJTOP_eOe1pvVDQpx3Y317slbX30U5MERB6TfAHgik57AaOiRSKP0N7RNCm5g2mO3dvUUup5C7aL-UaY6wYFy_QLuWCylaQPVTO1n1Oq6vUeVud5GlZX2a_XEKGvrqA4OqjUmDowrpKrvpqYlqZPHoboFQup6G68OGmPg2mjD7WC38D1XlOI_hYnaewHiDPXMp3ytUJBH8Lef0SPXcmFHi1rQfo-6fTy-OzevHt85fjo0VtOCNj3RIHAou-J65xjJJOMmxA9dY611I7G7aNkoY7gXkrjGEdbpUF6gCkE4qyA_TxXnc1dQP0FuKYTdCr7AeT1zoZr__sRH-ll-lWM9UywjYC77YCOf2YoIx68MVCCCZCmoqm848KQRnm_0TnKDinTHH1HyhuOBFCyhl987uDx9Uf8puBt1vAFGuCyyZaX35xLWsYVhvu8J6zOZWSwWnrRzP6tDHugyZYby5JP17SPPH-r4kH0afY7RbGFn2dphznWJ_gfgLAAtSi
CitedBy_id crossref_primary_10_2217_nnm_2019_0058
crossref_primary_10_1016_j_ijbiomac_2024_131954
crossref_primary_10_1021_acs_biomac_8b00837
crossref_primary_10_1002_wnan_1303
crossref_primary_10_1021_nn501816z
crossref_primary_10_1007_s41745_019_00114_y
crossref_primary_10_1155_2015_209032
crossref_primary_10_1021_ol5032798
crossref_primary_10_1016_j_addr_2022_114544
crossref_primary_10_3390_molecules201219804
crossref_primary_10_1039_C7RA10363H
crossref_primary_10_1002_adfm_201403453
crossref_primary_10_1016_j_msec_2019_110009
crossref_primary_10_1021_acs_biomac_6b01759
crossref_primary_10_1039_C8NJ03251C
crossref_primary_10_1021_acs_biomac_5b01003
crossref_primary_10_1002_adfm_201600236
crossref_primary_10_1016_j_rpor_2014_11_010
crossref_primary_10_1146_annurev_bioeng_092419_061127
crossref_primary_10_1002_ijch_201500016
crossref_primary_10_1007_s11431_018_9403_8
crossref_primary_10_1016_j_giant_2023_100158
crossref_primary_10_3390_biomedicines7020046
crossref_primary_10_3390_cancers13215389
crossref_primary_10_1016_j_actbio_2014_10_040
crossref_primary_10_1016_j_addr_2020_08_008
crossref_primary_10_1021_acsbiomaterials_6b00688
crossref_primary_10_1002_mabi_201400419
crossref_primary_10_1177_08853282231192186
crossref_primary_10_3389_fbioe_2022_960501
crossref_primary_10_3390_polym16152097
crossref_primary_10_2217_nnm_2016_0375
crossref_primary_10_1002_pro_4878
crossref_primary_10_1021_acs_biomac_5b01231
crossref_primary_10_1080_00914037_2019_1706515
crossref_primary_10_1021_acs_bioconjchem_8b00354
crossref_primary_10_1002_cbic_202300149
crossref_primary_10_1007_s13346_024_01719_2
crossref_primary_10_1002_mabi_201700192
crossref_primary_10_1021_acs_jpclett_9b01591
crossref_primary_10_1016_j_addr_2020_10_008
crossref_primary_10_3389_fphar_2024_1345281
crossref_primary_10_1002_adhm_202201583
crossref_primary_10_1016_j_cej_2020_126362
crossref_primary_10_3390_jfb10040049
crossref_primary_10_1007_s13346_025_01830_y
crossref_primary_10_1002_bit_25861
crossref_primary_10_1021_acsami_7b05664
crossref_primary_10_1016_j_eurpolymj_2014_07_004
crossref_primary_10_1021_acs_bioconjchem_8b00404
crossref_primary_10_1098_rsob_180113
crossref_primary_10_1177_08853282231184572
crossref_primary_10_1155_2016_1087250
crossref_primary_10_2147_IJN_S384085
crossref_primary_10_1016_j_jconrel_2015_03_020
crossref_primary_10_4155_tde_15_28
crossref_primary_10_1016_j_jddst_2021_102426
crossref_primary_10_1002_chem_202400582
crossref_primary_10_3390_polym9080311
crossref_primary_10_1021_acs_biomac_6b00973
crossref_primary_10_1016_j_actbio_2021_12_031
crossref_primary_10_1021_acs_accounts_6b00616
crossref_primary_10_1016_j_actbio_2019_11_050
crossref_primary_10_1016_j_ijpharm_2025_125401
crossref_primary_10_1080_1061186X_2020_1757099
crossref_primary_10_1016_j_ab_2017_12_023
crossref_primary_10_1002_adhm_202000266
crossref_primary_10_1016_j_addr_2022_114462
crossref_primary_10_1016_j_addr_2022_114622
crossref_primary_10_3390_ma9040221
crossref_primary_10_1021_acssuschemeng_6b02392
crossref_primary_10_1016_j_progpolymsci_2022_101578
crossref_primary_10_1080_10717544_2025_2449703
crossref_primary_10_1016_j_ijpharm_2018_02_007
crossref_primary_10_1002_wnan_1350
crossref_primary_10_1016_j_biomaterials_2017_04_036
crossref_primary_10_1021_acsami_7b01003
crossref_primary_10_1002_jemt_22666
crossref_primary_10_1016_j_addr_2022_114579
crossref_primary_10_1016_j_cej_2025_160117
crossref_primary_10_1517_17425247_2015_989830
crossref_primary_10_1039_C8CS00187A
crossref_primary_10_1080_10717544_2018_1469686
crossref_primary_10_1039_C9NR08475D
crossref_primary_10_3389_fmats_2015_00074
crossref_primary_10_1016_j_addr_2015_12_007
crossref_primary_10_1021_acsbiomaterials_9b00408
crossref_primary_10_1016_j_ijpharm_2020_119537
crossref_primary_10_3390_pharmaceutics14112512
crossref_primary_10_1080_09205063_2024_2397215
crossref_primary_10_1080_17425247_2020_1813713
crossref_primary_10_1016_j_addr_2023_114728
crossref_primary_10_1021_acs_nanolett_9b05094
crossref_primary_10_1007_s11706_015_0314_8
crossref_primary_10_1007_s13770_018_0148_4
crossref_primary_10_1021_acsbiomaterials_6b00310
crossref_primary_10_1021_acsbiomaterials_6b00794
crossref_primary_10_1080_03639045_2020_1810269
crossref_primary_10_2116_analsci_19N024
crossref_primary_10_1016_j_biomaterials_2018_01_001
crossref_primary_10_1016_j_coche_2014_11_005
crossref_primary_10_1002_mabi_202200122
crossref_primary_10_1039_C9ME00002J
crossref_primary_10_1088_1402_4896_aab4e2
crossref_primary_10_1016_j_addr_2022_114673
crossref_primary_10_1016_j_carbpol_2015_10_090
crossref_primary_10_3390_ma13214946
Cites_doi 10.1126/science.1095833
10.1016/S0142-9612(02)00353-8
10.1073/pnas.1305804110
10.1016/j.biomaterials.2010.07.044
10.1016/S0169-409X(02)00060-1
10.1016/j.powtec.2007.01.035
10.1016/j.jconrel.2010.05.006
10.1016/j.addr.2010.07.001
10.1039/c2cs15303c
10.1098/rstb.2001.1023
10.1038/nature02388
10.1016/j.biomaterials.2009.03.012
10.1021/nn103585f
10.1002/smll.201002242
10.1021/bm201165h
10.1146/annurev-chembioeng-073009-100847
10.1016/j.copbio.2005.06.009
10.3109/09687688.2010.510804
10.1002/pro.2063
10.1021/bm1010504
10.1016/j.addr.2010.04.006
10.1038/nmat2569
10.1002/aic.690491202
10.1016/j.addr.2010.04.007
10.1021/ja0764862
10.1002/anie.201001356
10.1002/anie.201200899
10.1021/cr940351u
10.1016/S0939-6411(96)00017-3
10.1016/S0169-409X(02)00063-7
10.1158/0008-5472.CAN-11-2890
10.1039/c2cs15309b
10.1002/smll.201101076
10.1002/adhm.201300034
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright © 2014 American Chemical Society 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society
DBID N~.
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7S9
L.6
5PM
DOI 10.1021/bm4017594
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE


Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1526-4602
EndPage 914
ExternalDocumentID PMC3983132
24527851
28363091
10_1021_bm4017594
g58991442
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB002520
GroupedDBID -
02
23N
4.4
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
N~.
P2P
RNS
ROL
RSW
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
AFFNX
IHE
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7S9
L.6
5PM
ID FETCH-LOGICAL-a431t-81fe505dd1f6f321b730ae9dccff82c175c697a4f50485aa3b089ce2fee7f5923
IEDL.DBID N~.
ISSN 1525-7797
1526-4602
IngestDate Thu Aug 21 18:18:26 EDT 2025
Fri Jul 11 08:06:02 EDT 2025
Fri Jul 11 07:15:46 EDT 2025
Fri Jul 11 02:34:39 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
Wed Apr 02 07:15:04 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Tue Jul 01 04:07:46 EDT 2025
Thu Aug 27 13:42:38 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biological properties
Nanoparticle
Control release polymer
Elastin
Cytotoxicity
Drug carrier
Experimental study
Doxorubicin
In vitro
Hela cell line
Nanoencapsulation
Biological activity
Silk
Biomimetic compound
Internalization
Molecular aggregation
Recombinant protein
Aqueous solution
Subcellular distribution
Tumor cell
Release
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a431t-81fe505dd1f6f321b730ae9dccff82c175c697a4f50485aa3b089ce2fee7f5923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1021/bm4017594
PMID 24527851
PQID 1506415577
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3983132
proquest_miscellaneous_2000552304
proquest_miscellaneous_1524423949
proquest_miscellaneous_1506415577
pubmed_primary_24527851
pascalfrancis_primary_28363091
crossref_citationtrail_10_1021_bm4017594
crossref_primary_10_1021_bm4017594
acs_journals_10_1021_bm4017594
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-Mar-10
PublicationDateYYYYMMDD 2014-03-10
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-Mar-10
  day: 10
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ren D. (ref31/cit31) 2011; 7
Frandsen J. L. (ref2/cit2) 2012; 41
Arora H. C. (ref34/cit34) 2012; 72
Liechty W. B. (ref7/cit7) 2010; 1
Hu X. (ref17/cit17) 2010; 31
Xia X. X. (ref21/cit21) 2011; 12
Kim W. (ref22/cit22) 2010; 49
Langer R. (ref10/cit10) 2004; 428
Kim W. (ref11/cit11) 2010; 62
Allen T. M. (ref3/cit3) 2004; 303
Anumolu R. (ref19/cit19) 2011; 5
Chilkoti A. (ref13/cit13) 2002; 54
Saha R. N. (ref4/cit4) 2010; 27
Hu X. (ref18/cit18) 2010; 11
McDaniel J. R. (ref26/cit26) 2013; 52
Morlock M. (ref8/cit8) 1997; 43
Maskarinec S. A. (ref9/cit9) 2005; 16
dos Santos T. (ref32/cit32) 2011; 7
Fujita Y. (ref12/cit12) 2009; 30
Langer R. (ref6/cit6) 2003; 49
Altman G. H. (ref5/cit5) 2003; 24
Urry D. W. (ref24/cit24) 2002; 357
Choi C. H. (ref30/cit30) 2013; 110
Dreher M. R. (ref25/cit25) 2008; 130
Numata K. (ref14/cit14) 2010; 146
Megeed Z. (ref15/cit15) 2002; 54
Uhrich K. E. (ref1/cit1) 1999; 99
Gustafson J. A. (ref16/cit16) 2010; 62
MacKay J. A. (ref27/cit27) 2009; 8
Jaworek A. (ref20/cit20) 2007; 176
Seib F. P. (ref28/cit28) 2013; 2
Shah M. (ref29/cit29) 2012; 21
Urry D. W. (ref23/cit23) 2010; 62
Canton I. (ref33/cit33) 2012; 41
References_xml – volume: 303
  start-page: 1818
  year: 2004
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.1095833
– volume: 24
  start-page: 401
  year: 2003
  ident: ref5/cit5
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00353-8
– volume: 110
  start-page: 7625
  year: 2013
  ident: ref30/cit30
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1305804110
– volume: 31
  start-page: 8121
  year: 2010
  ident: ref17/cit17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.044
– volume: 54
  start-page: 1093
  year: 2002
  ident: ref13/cit13
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(02)00060-1
– volume: 176
  start-page: 18
  year: 2007
  ident: ref20/cit20
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.01.035
– volume: 146
  start-page: 136
  year: 2010
  ident: ref14/cit14
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2010.05.006
– volume: 62
  start-page: 1404
  year: 2010
  ident: ref23/cit23
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.07.001
– volume: 41
  start-page: 2696
  year: 2012
  ident: ref2/cit2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15303c
– volume: 357
  start-page: 169
  year: 2002
  ident: ref24/cit24
  publication-title: Philos. Trans. R. Soc., B
  doi: 10.1098/rstb.2001.1023
– volume: 428
  start-page: 487
  year: 2004
  ident: ref10/cit10
  publication-title: Nature
  doi: 10.1038/nature02388
– volume: 30
  start-page: 3450
  year: 2009
  ident: ref12/cit12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.03.012
– volume: 5
  start-page: 5374
  year: 2011
  ident: ref19/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn103585f
– volume: 7
  start-page: 1051
  year: 2011
  ident: ref31/cit31
  publication-title: Small
  doi: 10.1002/smll.201002242
– volume: 12
  start-page: 3844
  year: 2011
  ident: ref21/cit21
  publication-title: Biomacromolecules
  doi: 10.1021/bm201165h
– volume: 1
  start-page: 149
  year: 2010
  ident: ref7/cit7
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-073009-100847
– volume: 16
  start-page: 422
  year: 2005
  ident: ref9/cit9
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2005.06.009
– volume: 27
  start-page: 215
  year: 2010
  ident: ref4/cit4
  publication-title: Mol. Membr. Biol.
  doi: 10.3109/09687688.2010.510804
– volume: 21
  start-page: 743
  year: 2012
  ident: ref29/cit29
  publication-title: Protein Sci.
  doi: 10.1002/pro.2063
– volume: 11
  start-page: 3178
  year: 2010
  ident: ref18/cit18
  publication-title: Biomacromolecules
  doi: 10.1021/bm1010504
– volume: 62
  start-page: 1509
  year: 2010
  ident: ref16/cit16
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.04.006
– volume: 8
  start-page: 993
  year: 2009
  ident: ref27/cit27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2569
– volume: 49
  start-page: 2990
  year: 2003
  ident: ref6/cit6
  publication-title: AIChE J.
  doi: 10.1002/aic.690491202
– volume: 62
  start-page: 1468
  year: 2010
  ident: ref11/cit11
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.04.007
– volume: 130
  start-page: 687
  year: 2008
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0764862
– volume: 49
  start-page: 4257
  year: 2010
  ident: ref22/cit22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001356
– volume: 52
  start-page: 1683
  year: 2013
  ident: ref26/cit26
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201200899
– volume: 99
  start-page: 3181
  year: 1999
  ident: ref1/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/cr940351u
– volume: 43
  start-page: 29
  year: 1997
  ident: ref8/cit8
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(96)00017-3
– volume: 54
  start-page: 1075
  year: 2002
  ident: ref15/cit15
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(02)00063-7
– volume: 72
  start-page: 769
  year: 2012
  ident: ref34/cit34
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2890
– volume: 41
  start-page: 2718
  year: 2012
  ident: ref33/cit33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15309b
– volume: 7
  start-page: 3341
  year: 2011
  ident: ref32/cit32
  publication-title: Small
  doi: 10.1002/smll.201101076
– volume: 2
  start-page: 1606
  year: 2013
  ident: ref28/cit28
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201300034
SSID ssj0009345
Score 2.4623148
Snippet Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development...
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 908
SubjectTerms Antineoplastic agents
Applied sciences
Biological and medical sciences
Cell Line, Tumor - drug effects
Chemotherapy
confocal laser scanning microscopy
cytotoxicity
doxorubicin
Doxorubicin - administration & dosage
Doxorubicin - chemistry
Drug Carriers - chemistry
Drug Delivery Systems
elastin
Elastin - chemistry
endocytosis
Exact sciences and technology
flow cytometry
Humans
Hydrophobic and Hydrophilic Interactions
hydrophobicity
in vitro studies
inhibitory concentration 50
Medical sciences
Microscopy, Atomic Force
nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Natural polymers
neoplasm cells
Neoplasms - drug therapy
Pharmacology. Drug treatments
Physicochemistry of polymers
polymers
Polymers - chemistry
Proteins
silk
Silk - chemistry
Title Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery
URI http://dx.doi.org/10.1021/bm4017594
https://www.ncbi.nlm.nih.gov/pubmed/24527851
https://www.proquest.com/docview/1506415577
https://www.proquest.com/docview/1524423949
https://www.proquest.com/docview/2000552304
https://pubmed.ncbi.nlm.nih.gov/PMC3983132
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RemilqqLQRyhdGeihF5fGeTg-VgtohQAhLUjcIsexISIkq30c9sJv70w2u7DVAudMImvGk_nGM_4G4GeuQ2lMEnGEx0SqrRTXgTIcI58WTvqZyunu8Nl53LsKT66j6zXYf6aCL_yD7B5TABmp8A28FXGSkPedP_x-ZNYNmknENMcHoaKSc_qgp69S6DGjpdDzYaBHqAU3G1-xCl_-3yb5JO4cb8DHFjCyvzMLf4I1W23Cu-58TtsWjHrTfFgPbuusMOxwOLnhl5hx39AMTta3peNU173PyimrHcOfKWbJbTMco7slrF-Ud_wIQfS4qPhpcWfZBXE3FBW7qMspHWszBLbNl9mhLamPY_oZro6PLrs93o5S4BoRwpgnvrOIdfLcd7ELhJ-hY2urcmOcS4RBJZlYSR26CD060jrI_iTKWOGslS5CEPgF1qu6st-AaUEEQAjUhMxRVqlQysBhqps5ETqrPOigrtPWFUZpU-UWfrowhge_5mZITUtETvMwylWiewvRwYx9Y5VQZ8mWC0lETnGAeMiD3blxU7QNVUR0ZesJro3o-hBRSfmSDCIgGiCvnpeh-05Rc77uwdfZpnlcRRgJUpcHcmk7LQSI4Hv5SVXcNkTfgUqIWXP7NY1-h_eI40LetBnuwPp4OLE_ECuNsw7mCt1-p_GYfw4NEGU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3Lj9MwEIdHsBwWCSHehEcxiAMXA3HiOj6ifahAt1ppu9LeIsexd6PNJlXTHnrhb2cmTdstKnDOxLJmPPHn2P4NwMfcxMraRHLEYxLV1pqbSFuOM58RXoWZzunu8MmoPziPf1zIi04mh-7CYCcabKlpN_E36gLhl-wGVwJK6vgu3EMIkZSEo1-fNwK7UVuQmMr5IDFqtVIRuv0qzUC22ZqBHkxMg87wyyoWuzDzz9OSt6af40fwsONG9m0Z6Mdwx1VPYP9gVa7tKTSDRT6tJ1d1Vlh2OJ1f8jEuvC-pFCc7c6XntL17k5ULVnuG31RcLHdn4hhdMWFnRXnNj5ClZ0XFh8W1Y6ck4VBU7LQuF_R3myHfti2zQ1fScY7FMzg_PhofDHhXUYEbBIUZT0LvEHnyPPR9H4kww_w2TufWep8Ii06yfa1M7CUmtjQmyr4m2jrhnVNeIgs-h72qrtxLYEaQDhDymlA52modKxV5XPFmXsTe6QB66Ou0y4gmbTe7RZiugxHAp1UYUtvpkVNZjHKX6Ye16WQpwrHLqLcVy7UlAlQ_QiwK4P0quCnGhjZGTOXqOfaNVPsQrJT6lw2CENWR13-3oWtPsv3NHsCL5aDZ9CKWgtwVgNoaTmsD0vneflIVV63ed6QTEth89T-PvoP9wfhkmA6_j36-hvuIdjFvTx6-gb3ZdO7eIj7Nsl6bN78BO18VEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3fb9MwEMdPY5MACU0bP8OgGMQDL4bFSer4Ea2rChtVpW3S3iLHsbdoWVI17UNf-Nu5S9NuRWU85xJZd7n4c7H9PYDPmQ6lMXHEEY9JVFsprgNlOM58Wjjppyqjs8O_ht3BRfjzMrpsC0U6C4ODqPFJdbOIT1k9zlyrMOB_S2-xGpCRCh_BDmLIISXi8PfXO5HdoGlKTC19kBqVXCoJ3b-VZiFTr81Cz8a6Roe4RSeLTaj5947Je1NQfw92W3Zk3xfB3octWz6HJ0fLlm0voB7Ms0k1vq7S3LDeZHbFz7H4vqJ2nOzMFo7TEu9tWsxZ5Rh-V7FgbvfFMTpmws7y4oYfI09P85Kf5jeWjUjGIS_ZqCrm9IebIeM2T2Y9W9CWjvlLuOgfnx8NeNtVgWuEhSmPfWcRe7LMd10XCD_FHNdWZcY4FwuDTjJdJXXoIkzuSOsgPYyVscJZK12EPPgKtsuqtG-AaUFaQMhsQmZoq1QoZeCw6k2dCJ1VHnTQ10mbFXXSLHgLP1kFw4MvyzAkptUkp9YYxSbTTyvT8UKIY5NRZy2WK0uEqG6AaOTBx2VwE4wNLY7o0lYzHBsp9yFcSfmQDcIQ9ZJX_7aho09R86vdg9eLl-ZuFGEkyF0eyLXXaWVAWt_rV8r8utH8DlRMIptv_-fRD_B41Osnpz-GJwfwFOku5M3mw3ewPZ3M7HskqGnaadLmDzBQFh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+Drug-Triggered+Self-Assembly+of+Nanoparticles+from+Silk-Elastin-Like+Protein+Polymers+for+Drug+Delivery&rft.jtitle=Biomacromolecules&rft.au=Xia%2C+Xiao-Xia&rft.au=Wang%2C+Ming&rft.au=Lin%2C+Yinan&rft.au=Xu%2C+Qiaobing&rft.date=2014-03-10&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=15&rft.issue=3&rft.spage=908&rft.epage=914&rft_id=info:doi/10.1021%2Fbm4017594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bm4017594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon