Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complica...
Saved in:
Published in | Biomacromolecules Vol. 15; no. 3; pp. 908 - 914 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
10.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments. |
---|---|
AbstractList | Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC₅₀ > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments. Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments. Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC 50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments. Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/ mu g SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC sub(50) > 200 mu g/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments. Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments. |
Author | Lin, Yinan Xu, Qiaobing Kaplan, David L Xia, Xiao-Xia Wang, Ming |
AuthorAffiliation | State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Tufts University Department of Biomedical Engineering Shanghai Jiao Tong University |
AuthorAffiliation_xml | – name: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology – name: Tufts University – name: Shanghai Jiao Tong University – name: Department of Biomedical Engineering |
Author_xml | – sequence: 1 givenname: Xiao-Xia surname: Xia fullname: Xia, Xiao-Xia – sequence: 2 givenname: Ming surname: Wang fullname: Wang, Ming – sequence: 3 givenname: Yinan surname: Lin fullname: Lin, Yinan – sequence: 4 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing – sequence: 5 givenname: David L surname: Kaplan fullname: Kaplan, David L email: david.kaplan@tufts.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28363091$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24527851$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFTEUhYNU7EUf_AMyL4I-jM11MnkRSlutcNBC63PIZHZO02aSYzJTOP_eOe1pvVDQpx3Y317slbX30U5MERB6TfAHgik57AaOiRSKP0N7RNCm5g2mO3dvUUup5C7aL-UaY6wYFy_QLuWCylaQPVTO1n1Oq6vUeVud5GlZX2a_XEKGvrqA4OqjUmDowrpKrvpqYlqZPHoboFQup6G68OGmPg2mjD7WC38D1XlOI_hYnaewHiDPXMp3ytUJBH8Lef0SPXcmFHi1rQfo-6fTy-OzevHt85fjo0VtOCNj3RIHAou-J65xjJJOMmxA9dY611I7G7aNkoY7gXkrjGEdbpUF6gCkE4qyA_TxXnc1dQP0FuKYTdCr7AeT1zoZr__sRH-ll-lWM9UywjYC77YCOf2YoIx68MVCCCZCmoqm848KQRnm_0TnKDinTHH1HyhuOBFCyhl987uDx9Uf8puBt1vAFGuCyyZaX35xLWsYVhvu8J6zOZWSwWnrRzP6tDHugyZYby5JP17SPPH-r4kH0afY7RbGFn2dphznWJ_gfgLAAtSi |
CitedBy_id | crossref_primary_10_2217_nnm_2019_0058 crossref_primary_10_1016_j_ijbiomac_2024_131954 crossref_primary_10_1021_acs_biomac_8b00837 crossref_primary_10_1002_wnan_1303 crossref_primary_10_1021_nn501816z crossref_primary_10_1007_s41745_019_00114_y crossref_primary_10_1155_2015_209032 crossref_primary_10_1021_ol5032798 crossref_primary_10_1016_j_addr_2022_114544 crossref_primary_10_3390_molecules201219804 crossref_primary_10_1039_C7RA10363H crossref_primary_10_1002_adfm_201403453 crossref_primary_10_1016_j_msec_2019_110009 crossref_primary_10_1021_acs_biomac_6b01759 crossref_primary_10_1039_C8NJ03251C crossref_primary_10_1021_acs_biomac_5b01003 crossref_primary_10_1002_adfm_201600236 crossref_primary_10_1016_j_rpor_2014_11_010 crossref_primary_10_1146_annurev_bioeng_092419_061127 crossref_primary_10_1002_ijch_201500016 crossref_primary_10_1007_s11431_018_9403_8 crossref_primary_10_1016_j_giant_2023_100158 crossref_primary_10_3390_biomedicines7020046 crossref_primary_10_3390_cancers13215389 crossref_primary_10_1016_j_actbio_2014_10_040 crossref_primary_10_1016_j_addr_2020_08_008 crossref_primary_10_1021_acsbiomaterials_6b00688 crossref_primary_10_1002_mabi_201400419 crossref_primary_10_1177_08853282231192186 crossref_primary_10_3389_fbioe_2022_960501 crossref_primary_10_3390_polym16152097 crossref_primary_10_2217_nnm_2016_0375 crossref_primary_10_1002_pro_4878 crossref_primary_10_1021_acs_biomac_5b01231 crossref_primary_10_1080_00914037_2019_1706515 crossref_primary_10_1021_acs_bioconjchem_8b00354 crossref_primary_10_1002_cbic_202300149 crossref_primary_10_1007_s13346_024_01719_2 crossref_primary_10_1002_mabi_201700192 crossref_primary_10_1021_acs_jpclett_9b01591 crossref_primary_10_1016_j_addr_2020_10_008 crossref_primary_10_3389_fphar_2024_1345281 crossref_primary_10_1002_adhm_202201583 crossref_primary_10_1016_j_cej_2020_126362 crossref_primary_10_3390_jfb10040049 crossref_primary_10_1007_s13346_025_01830_y crossref_primary_10_1002_bit_25861 crossref_primary_10_1021_acsami_7b05664 crossref_primary_10_1016_j_eurpolymj_2014_07_004 crossref_primary_10_1021_acs_bioconjchem_8b00404 crossref_primary_10_1098_rsob_180113 crossref_primary_10_1177_08853282231184572 crossref_primary_10_1155_2016_1087250 crossref_primary_10_2147_IJN_S384085 crossref_primary_10_1016_j_jconrel_2015_03_020 crossref_primary_10_4155_tde_15_28 crossref_primary_10_1016_j_jddst_2021_102426 crossref_primary_10_1002_chem_202400582 crossref_primary_10_3390_polym9080311 crossref_primary_10_1021_acs_biomac_6b00973 crossref_primary_10_1016_j_actbio_2021_12_031 crossref_primary_10_1021_acs_accounts_6b00616 crossref_primary_10_1016_j_actbio_2019_11_050 crossref_primary_10_1016_j_ijpharm_2025_125401 crossref_primary_10_1080_1061186X_2020_1757099 crossref_primary_10_1016_j_ab_2017_12_023 crossref_primary_10_1002_adhm_202000266 crossref_primary_10_1016_j_addr_2022_114462 crossref_primary_10_1016_j_addr_2022_114622 crossref_primary_10_3390_ma9040221 crossref_primary_10_1021_acssuschemeng_6b02392 crossref_primary_10_1016_j_progpolymsci_2022_101578 crossref_primary_10_1080_10717544_2025_2449703 crossref_primary_10_1016_j_ijpharm_2018_02_007 crossref_primary_10_1002_wnan_1350 crossref_primary_10_1016_j_biomaterials_2017_04_036 crossref_primary_10_1021_acsami_7b01003 crossref_primary_10_1002_jemt_22666 crossref_primary_10_1016_j_addr_2022_114579 crossref_primary_10_1016_j_cej_2025_160117 crossref_primary_10_1517_17425247_2015_989830 crossref_primary_10_1039_C8CS00187A crossref_primary_10_1080_10717544_2018_1469686 crossref_primary_10_1039_C9NR08475D crossref_primary_10_3389_fmats_2015_00074 crossref_primary_10_1016_j_addr_2015_12_007 crossref_primary_10_1021_acsbiomaterials_9b00408 crossref_primary_10_1016_j_ijpharm_2020_119537 crossref_primary_10_3390_pharmaceutics14112512 crossref_primary_10_1080_09205063_2024_2397215 crossref_primary_10_1080_17425247_2020_1813713 crossref_primary_10_1016_j_addr_2023_114728 crossref_primary_10_1021_acs_nanolett_9b05094 crossref_primary_10_1007_s11706_015_0314_8 crossref_primary_10_1007_s13770_018_0148_4 crossref_primary_10_1021_acsbiomaterials_6b00310 crossref_primary_10_1021_acsbiomaterials_6b00794 crossref_primary_10_1080_03639045_2020_1810269 crossref_primary_10_2116_analsci_19N024 crossref_primary_10_1016_j_biomaterials_2018_01_001 crossref_primary_10_1016_j_coche_2014_11_005 crossref_primary_10_1002_mabi_202200122 crossref_primary_10_1039_C9ME00002J crossref_primary_10_1088_1402_4896_aab4e2 crossref_primary_10_1016_j_addr_2022_114673 crossref_primary_10_1016_j_carbpol_2015_10_090 crossref_primary_10_3390_ma13214946 |
Cites_doi | 10.1126/science.1095833 10.1016/S0142-9612(02)00353-8 10.1073/pnas.1305804110 10.1016/j.biomaterials.2010.07.044 10.1016/S0169-409X(02)00060-1 10.1016/j.powtec.2007.01.035 10.1016/j.jconrel.2010.05.006 10.1016/j.addr.2010.07.001 10.1039/c2cs15303c 10.1098/rstb.2001.1023 10.1038/nature02388 10.1016/j.biomaterials.2009.03.012 10.1021/nn103585f 10.1002/smll.201002242 10.1021/bm201165h 10.1146/annurev-chembioeng-073009-100847 10.1016/j.copbio.2005.06.009 10.3109/09687688.2010.510804 10.1002/pro.2063 10.1021/bm1010504 10.1016/j.addr.2010.04.006 10.1038/nmat2569 10.1002/aic.690491202 10.1016/j.addr.2010.04.007 10.1021/ja0764862 10.1002/anie.201001356 10.1002/anie.201200899 10.1021/cr940351u 10.1016/S0939-6411(96)00017-3 10.1016/S0169-409X(02)00063-7 10.1158/0008-5472.CAN-11-2890 10.1039/c2cs15309b 10.1002/smll.201101076 10.1002/adhm.201300034 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society 2015 INIST-CNRS Copyright © 2014 American Chemical Society 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society |
DBID | N~. AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7S9 L.6 5PM |
DOI | 10.1021/bm4017594 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1526-4602 |
EndPage | 914 |
ExternalDocumentID | PMC3983132 24527851 28363091 10_1021_bm4017594 g58991442 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: P41 EB002520 |
GroupedDBID | - 02 23N 4.4 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 N~. P2P RNS ROL RSW TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 AFFNX IHE IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a431t-81fe505dd1f6f321b730ae9dccff82c175c697a4f50485aa3b089ce2fee7f5923 |
IEDL.DBID | N~. |
ISSN | 1525-7797 1526-4602 |
IngestDate | Thu Aug 21 18:18:26 EDT 2025 Fri Jul 11 08:06:02 EDT 2025 Fri Jul 11 07:15:46 EDT 2025 Fri Jul 11 02:34:39 EDT 2025 Mon Jul 21 06:07:01 EDT 2025 Wed Apr 02 07:15:04 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Tue Jul 01 04:07:46 EDT 2025 Thu Aug 27 13:42:38 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Biological properties Nanoparticle Control release polymer Elastin Cytotoxicity Drug carrier Experimental study Doxorubicin In vitro Hela cell line Nanoencapsulation Biological activity Silk Biomimetic compound Internalization Molecular aggregation Recombinant protein Aqueous solution Subcellular distribution Tumor cell Release |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a431t-81fe505dd1f6f321b730ae9dccff82c175c697a4f50485aa3b089ce2fee7f5923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1021/bm4017594 |
PMID | 24527851 |
PQID | 1506415577 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3983132 proquest_miscellaneous_2000552304 proquest_miscellaneous_1524423949 proquest_miscellaneous_1506415577 pubmed_primary_24527851 pascalfrancis_primary_28363091 crossref_citationtrail_10_1021_bm4017594 crossref_primary_10_1021_bm4017594 acs_journals_10_1021_bm4017594 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-Mar-10 |
PublicationDateYYYYMMDD | 2014-03-10 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-Mar-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ren D. (ref31/cit31) 2011; 7 Frandsen J. L. (ref2/cit2) 2012; 41 Arora H. C. (ref34/cit34) 2012; 72 Liechty W. B. (ref7/cit7) 2010; 1 Hu X. (ref17/cit17) 2010; 31 Xia X. X. (ref21/cit21) 2011; 12 Kim W. (ref22/cit22) 2010; 49 Langer R. (ref10/cit10) 2004; 428 Kim W. (ref11/cit11) 2010; 62 Allen T. M. (ref3/cit3) 2004; 303 Anumolu R. (ref19/cit19) 2011; 5 Chilkoti A. (ref13/cit13) 2002; 54 Saha R. N. (ref4/cit4) 2010; 27 Hu X. (ref18/cit18) 2010; 11 McDaniel J. R. (ref26/cit26) 2013; 52 Morlock M. (ref8/cit8) 1997; 43 Maskarinec S. A. (ref9/cit9) 2005; 16 dos Santos T. (ref32/cit32) 2011; 7 Fujita Y. (ref12/cit12) 2009; 30 Langer R. (ref6/cit6) 2003; 49 Altman G. H. (ref5/cit5) 2003; 24 Urry D. W. (ref24/cit24) 2002; 357 Choi C. H. (ref30/cit30) 2013; 110 Dreher M. R. (ref25/cit25) 2008; 130 Numata K. (ref14/cit14) 2010; 146 Megeed Z. (ref15/cit15) 2002; 54 Uhrich K. E. (ref1/cit1) 1999; 99 Gustafson J. A. (ref16/cit16) 2010; 62 MacKay J. A. (ref27/cit27) 2009; 8 Jaworek A. (ref20/cit20) 2007; 176 Seib F. P. (ref28/cit28) 2013; 2 Shah M. (ref29/cit29) 2012; 21 Urry D. W. (ref23/cit23) 2010; 62 Canton I. (ref33/cit33) 2012; 41 |
References_xml | – volume: 303 start-page: 1818 year: 2004 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.1095833 – volume: 24 start-page: 401 year: 2003 ident: ref5/cit5 publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00353-8 – volume: 110 start-page: 7625 year: 2013 ident: ref30/cit30 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1305804110 – volume: 31 start-page: 8121 year: 2010 ident: ref17/cit17 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.044 – volume: 54 start-page: 1093 year: 2002 ident: ref13/cit13 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(02)00060-1 – volume: 176 start-page: 18 year: 2007 ident: ref20/cit20 publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.01.035 – volume: 146 start-page: 136 year: 2010 ident: ref14/cit14 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2010.05.006 – volume: 62 start-page: 1404 year: 2010 ident: ref23/cit23 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.07.001 – volume: 41 start-page: 2696 year: 2012 ident: ref2/cit2 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15303c – volume: 357 start-page: 169 year: 2002 ident: ref24/cit24 publication-title: Philos. Trans. R. Soc., B doi: 10.1098/rstb.2001.1023 – volume: 428 start-page: 487 year: 2004 ident: ref10/cit10 publication-title: Nature doi: 10.1038/nature02388 – volume: 30 start-page: 3450 year: 2009 ident: ref12/cit12 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.03.012 – volume: 5 start-page: 5374 year: 2011 ident: ref19/cit19 publication-title: ACS Nano doi: 10.1021/nn103585f – volume: 7 start-page: 1051 year: 2011 ident: ref31/cit31 publication-title: Small doi: 10.1002/smll.201002242 – volume: 12 start-page: 3844 year: 2011 ident: ref21/cit21 publication-title: Biomacromolecules doi: 10.1021/bm201165h – volume: 1 start-page: 149 year: 2010 ident: ref7/cit7 publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-073009-100847 – volume: 16 start-page: 422 year: 2005 ident: ref9/cit9 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2005.06.009 – volume: 27 start-page: 215 year: 2010 ident: ref4/cit4 publication-title: Mol. Membr. Biol. doi: 10.3109/09687688.2010.510804 – volume: 21 start-page: 743 year: 2012 ident: ref29/cit29 publication-title: Protein Sci. doi: 10.1002/pro.2063 – volume: 11 start-page: 3178 year: 2010 ident: ref18/cit18 publication-title: Biomacromolecules doi: 10.1021/bm1010504 – volume: 62 start-page: 1509 year: 2010 ident: ref16/cit16 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.04.006 – volume: 8 start-page: 993 year: 2009 ident: ref27/cit27 publication-title: Nat. Mater. doi: 10.1038/nmat2569 – volume: 49 start-page: 2990 year: 2003 ident: ref6/cit6 publication-title: AIChE J. doi: 10.1002/aic.690491202 – volume: 62 start-page: 1468 year: 2010 ident: ref11/cit11 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.04.007 – volume: 130 start-page: 687 year: 2008 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0764862 – volume: 49 start-page: 4257 year: 2010 ident: ref22/cit22 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001356 – volume: 52 start-page: 1683 year: 2013 ident: ref26/cit26 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201200899 – volume: 99 start-page: 3181 year: 1999 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr940351u – volume: 43 start-page: 29 year: 1997 ident: ref8/cit8 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(96)00017-3 – volume: 54 start-page: 1075 year: 2002 ident: ref15/cit15 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(02)00063-7 – volume: 72 start-page: 769 year: 2012 ident: ref34/cit34 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2890 – volume: 41 start-page: 2718 year: 2012 ident: ref33/cit33 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15309b – volume: 7 start-page: 3341 year: 2011 ident: ref32/cit32 publication-title: Small doi: 10.1002/smll.201101076 – volume: 2 start-page: 1606 year: 2013 ident: ref28/cit28 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201300034 |
SSID | ssj0009345 |
Score | 2.4623148 |
Snippet | Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development... Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 908 |
SubjectTerms | Antineoplastic agents Applied sciences Biological and medical sciences Cell Line, Tumor - drug effects Chemotherapy confocal laser scanning microscopy cytotoxicity doxorubicin Doxorubicin - administration & dosage Doxorubicin - chemistry Drug Carriers - chemistry Drug Delivery Systems elastin Elastin - chemistry endocytosis Exact sciences and technology flow cytometry Humans Hydrophobic and Hydrophilic Interactions hydrophobicity in vitro studies inhibitory concentration 50 Medical sciences Microscopy, Atomic Force nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry Natural polymers neoplasm cells Neoplasms - drug therapy Pharmacology. Drug treatments Physicochemistry of polymers polymers Polymers - chemistry Proteins silk Silk - chemistry |
Title | Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery |
URI | http://dx.doi.org/10.1021/bm4017594 https://www.ncbi.nlm.nih.gov/pubmed/24527851 https://www.proquest.com/docview/1506415577 https://www.proquest.com/docview/1524423949 https://www.proquest.com/docview/2000552304 https://pubmed.ncbi.nlm.nih.gov/PMC3983132 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RemilqqLQRyhdGeihF5fGeTg-VgtohQAhLUjcIsexISIkq30c9sJv70w2u7DVAudMImvGk_nGM_4G4GeuQ2lMEnGEx0SqrRTXgTIcI58WTvqZyunu8Nl53LsKT66j6zXYf6aCL_yD7B5TABmp8A28FXGSkPedP_x-ZNYNmknENMcHoaKSc_qgp69S6DGjpdDzYaBHqAU3G1-xCl_-3yb5JO4cb8DHFjCyvzMLf4I1W23Cu-58TtsWjHrTfFgPbuusMOxwOLnhl5hx39AMTta3peNU173PyimrHcOfKWbJbTMco7slrF-Ud_wIQfS4qPhpcWfZBXE3FBW7qMspHWszBLbNl9mhLamPY_oZro6PLrs93o5S4BoRwpgnvrOIdfLcd7ELhJ-hY2urcmOcS4RBJZlYSR26CD060jrI_iTKWOGslS5CEPgF1qu6st-AaUEEQAjUhMxRVqlQysBhqps5ETqrPOigrtPWFUZpU-UWfrowhge_5mZITUtETvMwylWiewvRwYx9Y5VQZ8mWC0lETnGAeMiD3blxU7QNVUR0ZesJro3o-hBRSfmSDCIgGiCvnpeh-05Rc77uwdfZpnlcRRgJUpcHcmk7LQSI4Hv5SVXcNkTfgUqIWXP7NY1-h_eI40LetBnuwPp4OLE_ECuNsw7mCt1-p_GYfw4NEGU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3Lj9MwEIdHsBwWCSHehEcxiAMXA3HiOj6ifahAt1ppu9LeIsexd6PNJlXTHnrhb2cmTdstKnDOxLJmPPHn2P4NwMfcxMraRHLEYxLV1pqbSFuOM58RXoWZzunu8MmoPziPf1zIi04mh-7CYCcabKlpN_E36gLhl-wGVwJK6vgu3EMIkZSEo1-fNwK7UVuQmMr5IDFqtVIRuv0qzUC22ZqBHkxMg87wyyoWuzDzz9OSt6af40fwsONG9m0Z6Mdwx1VPYP9gVa7tKTSDRT6tJ1d1Vlh2OJ1f8jEuvC-pFCc7c6XntL17k5ULVnuG31RcLHdn4hhdMWFnRXnNj5ClZ0XFh8W1Y6ck4VBU7LQuF_R3myHfti2zQ1fScY7FMzg_PhofDHhXUYEbBIUZT0LvEHnyPPR9H4kww_w2TufWep8Ii06yfa1M7CUmtjQmyr4m2jrhnVNeIgs-h72qrtxLYEaQDhDymlA52modKxV5XPFmXsTe6QB66Ou0y4gmbTe7RZiugxHAp1UYUtvpkVNZjHKX6Ye16WQpwrHLqLcVy7UlAlQ_QiwK4P0quCnGhjZGTOXqOfaNVPsQrJT6lw2CENWR13-3oWtPsv3NHsCL5aDZ9CKWgtwVgNoaTmsD0vneflIVV63ed6QTEth89T-PvoP9wfhkmA6_j36-hvuIdjFvTx6-gb3ZdO7eIj7Nsl6bN78BO18VEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3fb9MwEMdPY5MACU0bP8OgGMQDL4bFSer4Ea2rChtVpW3S3iLHsbdoWVI17UNf-Nu5S9NuRWU85xJZd7n4c7H9PYDPmQ6lMXHEEY9JVFsprgNlOM58Wjjppyqjs8O_ht3BRfjzMrpsC0U6C4ODqPFJdbOIT1k9zlyrMOB_S2-xGpCRCh_BDmLIISXi8PfXO5HdoGlKTC19kBqVXCoJ3b-VZiFTr81Cz8a6Roe4RSeLTaj5947Je1NQfw92W3Zk3xfB3octWz6HJ0fLlm0voB7Ms0k1vq7S3LDeZHbFz7H4vqJ2nOzMFo7TEu9tWsxZ5Rh-V7FgbvfFMTpmws7y4oYfI09P85Kf5jeWjUjGIS_ZqCrm9IebIeM2T2Y9W9CWjvlLuOgfnx8NeNtVgWuEhSmPfWcRe7LMd10XCD_FHNdWZcY4FwuDTjJdJXXoIkzuSOsgPYyVscJZK12EPPgKtsuqtG-AaUFaQMhsQmZoq1QoZeCw6k2dCJ1VHnTQ10mbFXXSLHgLP1kFw4MvyzAkptUkp9YYxSbTTyvT8UKIY5NRZy2WK0uEqG6AaOTBx2VwE4wNLY7o0lYzHBsp9yFcSfmQDcIQ9ZJX_7aho09R86vdg9eLl-ZuFGEkyF0eyLXXaWVAWt_rV8r8utH8DlRMIptv_-fRD_B41Osnpz-GJwfwFOku5M3mw3ewPZ3M7HskqGnaadLmDzBQFh8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+Drug-Triggered+Self-Assembly+of+Nanoparticles+from+Silk-Elastin-Like+Protein+Polymers+for+Drug+Delivery&rft.jtitle=Biomacromolecules&rft.au=Xia%2C+Xiao-Xia&rft.au=Wang%2C+Ming&rft.au=Lin%2C+Yinan&rft.au=Xu%2C+Qiaobing&rft.date=2014-03-10&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=15&rft.issue=3&rft.spage=908&rft.epage=914&rft_id=info:doi/10.1021%2Fbm4017594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bm4017594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |