Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors
Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble t...
Saved in:
Published in | Environmental science & technology Vol. 53; no. 11; pp. 6320 - 6329 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles. |
---|---|
AbstractList | Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles. Methane (CH₄) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH₄ bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH₄ emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles. Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles. Methane (CH ) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles. |
Author | Katsman, Regina Sirhan, Shahrazad Tarboush Lazar, Michael |
AuthorAffiliation | The Dr. Moses Strauss Department of Marine Geosciences The University of Haifa |
AuthorAffiliation_xml | – name: The University of Haifa – name: The Dr. Moses Strauss Department of Marine Geosciences |
Author_xml | – sequence: 1 givenname: Shahrazad Tarboush surname: Sirhan fullname: Sirhan, Shahrazad Tarboush – sequence: 2 givenname: Regina orcidid: 0000-0003-4526-474X surname: Katsman fullname: Katsman, Regina email: rkatsman@univ.haifa.ac.il – sequence: 3 givenname: Michael surname: Lazar fullname: Lazar, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31042027$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v1DAQxS1URLeFMzdkiQsSynb8mYRbWboFqYgDIHGzHMdmXSVOazug_vd1tFsOlSpxmsP83tjvvRN0FKZgEXpNYE2AkjNt0tqmvG46kA1vnqEVERQq0QhyhFYAhFUtk7-O0UlK1wBAGTQv0DEjwCnQeoXcV5t3Olj8ce66weLzZGzI-K_POx_w1gdbXUZdRo83084m_6cwt7PO3uDvtvdjodMH_Oku6NGbhHVYwJDjNAw-_MZbbfIU00v03Okh2VeHeYp-bi9-bD5XV98uv2zOryrNGcmVIMaIDrreMS6d7ZmThrDaWAbckQ4Eb2uu-14w0xoOIKzmIFxLmXagJWen6N3-7k2cbueSjBp9cTQMxeI0J0VpTRoqW9r-B0oaRgkVTUHfPkKvpzmGYqRQvJZcgiSFenOg5m60vbqJftTxTj2EXQCxB0ycUorWKeNzSXKJS_tBEVBLqaqUqpZHDqUW3dkj3cPppxXv94pl8e-vT9H3ZCWzUA |
CitedBy_id | crossref_primary_10_1002_lom3_10506 crossref_primary_10_1016_j_scitotenv_2024_176514 crossref_primary_10_3389_feart_2022_833918 crossref_primary_10_1029_2020WR029375 crossref_primary_10_1016_j_enggeo_2023_107290 crossref_primary_10_1016_j_ijggc_2021_103363 crossref_primary_10_1080_20442041_2024_2327974 crossref_primary_10_1016_j_jconhyd_2021_103938 crossref_primary_10_1016_j_scitotenv_2024_170480 crossref_primary_10_1016_j_earscirev_2024_104908 crossref_primary_10_1007_s00367_019_00629_4 crossref_primary_10_1016_j_scitotenv_2020_137872 crossref_primary_10_18307_2025_0123 crossref_primary_10_1016_j_jsg_2022_104642 crossref_primary_10_1016_j_jes_2021_08_031 crossref_primary_10_1061_JGGEFK_GTENG_11736 crossref_primary_10_3390_ma13132887 crossref_primary_10_1016_j_jenvman_2020_110997 crossref_primary_10_1080_1064119X_2021_1943730 crossref_primary_10_1021_acs_est_9b03034 crossref_primary_10_1029_2022JF006631 crossref_primary_10_1016_j_enggeo_2022_106565 crossref_primary_10_1029_2019GL083100 |
Cites_doi | 10.1016/j.jvolgeores.2004.11.030 10.4319/lo.2005.50.6.1771 10.1029/2009JF001312 10.1007/s00367-011-0243-1 10.1016/S0278-4343(98)00056-9 10.1080/10641199009388234 10.1029/JB076i026p06414 10.1023/A:1024913730848 10.1017/CBO9780511623127 10.2475/03.2009.01 10.1029/2010JF001833 10.1146/annurev.micro.61.080706.093130 10.1357/002224008784815775 10.1007/s00367-012-0305-z 10.1007/978-3-642-19240-1 10.1016/S0012-8252(01)00062-9 10.1016/j.marpetgeo.2012.07.002 10.1016/j.gca.2009.02.008 10.1029/92JD02170 10.1016/0025-3227(95)00054-3 10.1126/science.1196808 10.1016/0016-7037(93)90368-7 10.1007/s11368-011-0338-3 10.1002/2016JG003456 10.1146/annurev.earth.28.1.477 10.4319/lo.2011.56.4.1525 10.1016/S0278-4343(98)00063-6 10.1007/BF00035502 10.1029/2006EO220001 10.1016/S0025-3227(01)00227-4 10.1029/2004GB002238 10.1061/(ASCE)EE.1943-7870.0000205 10.1680/geot.1991.41.2.227 10.1029/2010JB008133 10.1680/geot.1988.38.3.389 10.1021/es9031369 10.1029/2008JB006002 10.1029/2011GL046768 10.1002/aic.690400702 10.1016/S0025-3227(02)00383-3 10.1007/s00367-012-0277-z 10.1016/S0278-4343(98)00059-4 10.1016/j.gca.2007.08.011 10.1029/2011GL046870 10.1002/2016JG003717 10.1144/GSL.QJEG.1989.022.02.04 10.1029/2006GL027509 10.1002/aic.16223 10.1063/1.1712886 10.1002/grl.50629 10.1007/s00254-004-1083-3 10.1016/0025-3227(94)00125-5 10.1029/2005JC003183 10.1016/S0016-7037(02)01072-4 10.1111/gcb.12131 10.1016/S0956-053X(01)00021-6 10.1002/aic.15731 10.1029/JB095iB06p08471 10.1016/j.jsg.2014.11.002 10.1130/G21259.1 10.1029/2003JB002748 10.1016/j.epsl.2013.07.011 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jun 4, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society Jun 4, 2019 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.8b06848 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 6329 |
ExternalDocumentID | 31042027 10_1021_acs_est_8b06848 c65719146 |
Genre | Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a431t-51cc5b0bdf346fed3f6c137ce304f1b054974add53c9c4005ea405f923af0a643 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 11:41:44 EDT 2025 Thu Jul 10 22:18:04 EDT 2025 Mon Jun 30 13:08:21 EDT 2025 Mon Jul 21 05:48:57 EDT 2025 Tue Jul 01 02:58:03 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Thu Aug 27 13:44:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a431t-51cc5b0bdf346fed3f6c137ce304f1b054974add53c9c4005ea405f923af0a643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4526-474X |
PMID | 31042027 |
PQID | 2247646061 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2271826929 proquest_miscellaneous_2218321258 proquest_journals_2247646061 pubmed_primary_31042027 crossref_citationtrail_10_1021_acs_est_8b06848 crossref_primary_10_1021_acs_est_8b06848 acs_journals_10_1021_acs_est_8b06848 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-04 |
PublicationDateYYYYMMDD | 2019-06-04 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 Broek D. (ref31/cit31) 1982 ref23/cit23 ref8/cit8 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 Lawn B. R. (ref43/cit43) 1993 ref20/cit20 Winterwerp J. C. (ref25/cit25) 2004 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Terzaghi K. (ref55/cit55) 1923; 132 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref29/cit29 Gross E. (ref44/cit44) 2011 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref28/cit28 ref40/cit40 Wang H. (ref58/cit58) 2000 ref26/cit26 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref22/cit22 ref33/cit33 Mitchell J. K. (ref49/cit49) 2005 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref66/cit66 doi: 10.1016/j.jvolgeores.2004.11.030 – ident: ref40/cit40 doi: 10.4319/lo.2005.50.6.1771 – ident: ref28/cit28 doi: 10.1029/2009JF001312 – ident: ref47/cit47 doi: 10.1007/s00367-011-0243-1 – ident: ref52/cit52 doi: 10.1016/S0278-4343(98)00056-9 – ident: ref18/cit18 doi: 10.1080/10641199009388234 – volume-title: Fundamentals of Soil Behavior year: 2005 ident: ref49/cit49 – ident: ref57/cit57 doi: 10.1029/JB076i026p06414 – ident: ref7/cit7 doi: 10.1023/A:1024913730848 – volume-title: Fracture of Brittle Solids year: 1993 ident: ref43/cit43 doi: 10.1017/CBO9780511623127 – ident: ref39/cit39 doi: 10.2475/03.2009.01 – volume-title: Introduction to the Physics of Cohesive Sediments in the Marine Environment year: 2004 ident: ref25/cit25 – ident: ref32/cit32 doi: 10.1029/2010JF001833 – ident: ref21/cit21 doi: 10.1146/annurev.micro.61.080706.093130 – ident: ref37/cit37 doi: 10.1357/002224008784815775 – ident: ref48/cit48 doi: 10.1007/s00367-012-0305-z – volume-title: Fracture Mechanics: With an Introduction to Micromechanics year: 2011 ident: ref44/cit44 doi: 10.1007/978-3-642-19240-1 – ident: ref62/cit62 doi: 10.1016/S0012-8252(01)00062-9 – ident: ref22/cit22 doi: 10.1016/j.marpetgeo.2012.07.002 – ident: ref27/cit27 doi: 10.1016/j.gca.2009.02.008 – ident: ref61/cit61 doi: 10.1029/92JD02170 – ident: ref1/cit1 doi: 10.1016/0025-3227(95)00054-3 – ident: ref6/cit6 doi: 10.1126/science.1196808 – ident: ref51/cit51 doi: 10.1016/0016-7037(93)90368-7 – ident: ref8/cit8 doi: 10.1007/s11368-011-0338-3 – ident: ref16/cit16 doi: 10.1002/2016JG003456 – ident: ref60/cit60 doi: 10.1146/annurev.earth.28.1.477 – ident: ref38/cit38 doi: 10.4319/lo.2011.56.4.1525 – ident: ref45/cit45 doi: 10.1016/S0278-4343(98)00063-6 – volume-title: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology year: 2000 ident: ref58/cit58 – ident: ref59/cit59 doi: 10.1007/BF00035502 – ident: ref14/cit14 doi: 10.1029/2006EO220001 – ident: ref42/cit42 doi: 10.1016/S0025-3227(01)00227-4 – ident: ref5/cit5 doi: 10.1029/2004GB002238 – ident: ref50/cit50 doi: 10.1061/(ASCE)EE.1943-7870.0000205 – ident: ref54/cit54 doi: 10.1680/geot.1991.41.2.227 – ident: ref41/cit41 doi: 10.1029/2010JB008133 – ident: ref53/cit53 doi: 10.1680/geot.1988.38.3.389 – ident: ref2/cit2 doi: 10.1021/es9031369 – ident: ref34/cit34 doi: 10.1029/2008JB006002 – ident: ref65/cit65 doi: 10.1029/2011GL046768 – ident: ref9/cit9 doi: 10.1002/aic.690400702 – ident: ref23/cit23 doi: 10.1016/S0025-3227(02)00383-3 – ident: ref46/cit46 doi: 10.1007/s00367-012-0277-z – ident: ref35/cit35 doi: 10.1016/S0278-4343(98)00059-4 – ident: ref10/cit10 doi: 10.1016/j.gca.2007.08.011 – ident: ref15/cit15 doi: 10.1029/2011GL046870 – ident: ref17/cit17 doi: 10.1002/2016JG003717 – ident: ref3/cit3 doi: 10.1144/GSL.QJEG.1989.022.02.04 – ident: ref64/cit64 doi: 10.1029/2006GL027509 – ident: ref12/cit12 doi: 10.1002/aic.16223 – ident: ref56/cit56 doi: 10.1063/1.1712886 – ident: ref20/cit20 doi: 10.1002/grl.50629 – ident: ref4/cit4 doi: 10.1007/s00254-004-1083-3 – ident: ref19/cit19 doi: 10.1016/0025-3227(94)00125-5 – volume-title: Elementary Engineering Fracture Mechanics year: 1982 ident: ref31/cit31 – ident: ref67/cit67 doi: 10.1029/2005JC003183 – ident: ref26/cit26 doi: 10.1016/S0016-7037(02)01072-4 – ident: ref63/cit63 doi: 10.1111/gcb.12131 – ident: ref11/cit11 doi: 10.1016/S0956-053X(01)00021-6 – ident: ref33/cit33 doi: 10.1002/aic.15731 – ident: ref24/cit24 doi: 10.1029/JB095iB06p08471 – ident: ref30/cit30 doi: 10.1016/j.jsg.2014.11.002 – volume: 132 start-page: 125 year: 1923 ident: ref55/cit55 publication-title: SitzungberAkad. Wissen Wien Math-Naturw – ident: ref13/cit13 doi: 10.1130/G21259.1 – ident: ref36/cit36 doi: 10.1029/2003JB002748 – ident: ref29/cit29 doi: 10.1016/j.epsl.2013.07.011 |
SSID | ssj0002308 |
Score | 2.4143836 |
Snippet | Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great... Methane (CH ) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great... Methane (CH₄) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6320 |
SubjectTerms | Ascent Atmosphere Bubbles Emission analysis Greenhouse effect greenhouse gas emissions Greenhouse gases Horizon Mathematical models Mechanical properties Methane Migration Ocean floor prediction Sediments solutes Water circulation Water column |
Title | Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors |
URI | http://dx.doi.org/10.1021/acs.est.8b06848 https://www.ncbi.nlm.nih.gov/pubmed/31042027 https://www.proquest.com/docview/2247646061 https://www.proquest.com/docview/2218321258 https://www.proquest.com/docview/2271826929 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xuCyHBbrAlpeMxIFLQh6Om3Arj1KtBBdA6i2yHVtCoMBu2gu_nhknTVlQgWsytizbM_PZnvkG4DCOVKREpL3ChonHhQg8ZYX0hELfnEQ21QUlJ19di-Ed_zNKRjOy6Pcv-FF4LHXlo4H0UxWIlKeLsBwJVGFCQWc3rdFFJJ1OixVksRi1LD4fOiA3pKv_3dAcbOl8zGC1js6qHDUhhZY8-JOx8vXLR-LGr4e_Bj8bpMn69dZYhwVTdmDlDf9gBzYvZmluKNroefUL7JWhK3XDTidKPRrWd5xPjC5t70s2wB68S6otYQpG-R0UAs_6f4k1XLMbdIcub-6Endfl7ismSxJ0QfGU_s4GdZWfDbgbXNyeDb2mIoMnEWiMvSTUOlGBKmzMhTVFbIUO4542ccBtqBD-4fEELWYS60yjdUiMREBoEURKG0gEP5uwVD6V5jcwKXtGIFgynGfcZghcHfVgEVkEMbzgXTjEqcsbjapy91gehTl9xPnMm_nsgj9dx1w3rOZUXONxfoOjtsFzTegxX3R3ujFm40DI0xMcj31hFw7a36iT9NCCC_M0IRkylAgd089kenS0Q3Taha1607XjQcjN6VJq-3tzsAM_EMZlLoCN78LS-N_E7CFUGqt9pySvK7YOWQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9tAEIBHFA6UA1BaaHh1kThwcerHemNzC4-QAkFCgJSbtbvelVCpaXFygF_PzMZxKCgVvdrj1XofM98-ZgZgNwpVqESovdwGsceF8D1lhfSEQtschzbROTkn9y5E94af9uP-DPhjXxisRIklle4QfxJdIPhOz1BPNhPli4QnH2AOUSSkMd0-vKp1LwJ1Ms5ZkEaiXwfzeVMAWSNd_m2NpiCmMzWdJbisK-lumPxsDgeqqZ9exW_8n79YhsWKO1l7NFA-wYwpVmDhRTTCFVg9nji9oWg168vPYHuGNtgNOxgqdWdY20WAYrSFe1uwDpbgnVCmCZMz8vagC_Gs_YdiiGt2hcbRedHts6PHQv661SWTBQm6K_LkDM86o5w_X-Cmc3x92PWq_AyeROwYeHGgdax8lduIC2vyyAodRC1tIp_bQCEM4mIF9Wcc6VSjroiNRDy0iJTS-hJRaBVmi_vCfAUmZcsIRCfDecptihjrAhHmoUWk4TlvwC42XVbNrzJzR-dhkNFDbM-sas8GNMfdmekqxjml2rib_sFe_cHvUXiP6aKb4_ExqQcCUEtwXAQGDdipX-MMpWMX7Jj7IcmQ2kSQTP4l06KFHrJqA9ZGY6-uDwI4py2q9fe1wTeY7173zrPzHxdnG_ARAS91V9v4JswOHoZmCyFqoLbdvHkGwXIWug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkKr2wLPQ5VGMxIFLljwcb8JteaRAAVWiK-0tsh1bQtBAye4Bfj0z3mygoK3o1Rlbju2Z-fyYbwC2o1CFSoTaK2wQe1wI31NWSE8o9M1xaBNdUHDy-YU47vHTftyvg8IoFgY7UWFLlbvEJ62-K2zNMBDsUjnaynaifJHw5APM0KUdrevuwWVjfxFUJ-O8BWkk-g2hz5sGyCPp6m-PNAFmOneTzUGv6ah7ZXLdHg5UWz--4nD83z-Zh9kaf7LuaMEswJQpF-HzC1bCRVg-eg5-Q9Fa-6slsOeGDtoN2x8qdWNY1zFBMTrKvSpZhi143ynjhCkYRX3Qw3jW_UNc4ppdopN00XR77PChlL-vdMVkSYLuqTwFxbNslPvnC_Syo18Hx16dp8GTCD8GXhxoHStfFTbiwpoiskIHUUebyOc2UAgKcdOCdjSOdKrRZsRGIky0CC2l9SVComWYLm9L8xWYlB0jEEIZzlNuU4SzjpCwCC1CG17wFmzj0OW1nlW5u0IPg5wKcTzzejxb0B5Paa5rrnNKuXEzucJOU-FuRPMxWXR9vEae-4FAqCM4bgaDFmw1n1FT6foFJ-Z2SDJkPhFQJv-S6dCGDzFrC1ZG66_pDwJxTkdVq-8bg034-PMwy89OLn6swSfEeal74cbXYXpwPzQbiKUG6ptTnSe95xk9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+Bubble+Ascent+within+Fine-Grained+Cohesive+Aquatic+Sediments%3A+Dynamics+and+Controlling+Factors&rft.jtitle=Environmental+science+%26+technology&rft.au=Sirhan%2C+Shahrazad+Tarboush&rft.au=Katsman%2C+Regina&rft.au=Lazar%2C+Michael&rft.date=2019-06-04&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=53&rft.issue=11&rft.spage=6320&rft_id=info:doi/10.1021%2Facs.est.8b06848&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |