Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors

Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble t...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 11; pp. 6320 - 6329
Main Authors Sirhan, Shahrazad Tarboush, Katsman, Regina, Lazar, Michael
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.
AbstractList Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.
Methane (CH₄) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH₄ bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH₄ emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.
Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.
Methane (CH ) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.
Author Katsman, Regina
Sirhan, Shahrazad Tarboush
Lazar, Michael
AuthorAffiliation The Dr. Moses Strauss Department of Marine Geosciences
The University of Haifa
AuthorAffiliation_xml – name: The University of Haifa
– name: The Dr. Moses Strauss Department of Marine Geosciences
Author_xml – sequence: 1
  givenname: Shahrazad Tarboush
  surname: Sirhan
  fullname: Sirhan, Shahrazad Tarboush
– sequence: 2
  givenname: Regina
  orcidid: 0000-0003-4526-474X
  surname: Katsman
  fullname: Katsman, Regina
  email: rkatsman@univ.haifa.ac.il
– sequence: 3
  givenname: Michael
  surname: Lazar
  fullname: Lazar, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31042027$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLeFMzdkiQsSynb8mYRbWboFqYgDIHGzHMdmXSVOazug_vd1tFsOlSpxmsP83tjvvRN0FKZgEXpNYE2AkjNt0tqmvG46kA1vnqEVERQq0QhyhFYAhFUtk7-O0UlK1wBAGTQv0DEjwCnQeoXcV5t3Olj8ce66weLzZGzI-K_POx_w1gdbXUZdRo83084m_6cwt7PO3uDvtvdjodMH_Oku6NGbhHVYwJDjNAw-_MZbbfIU00v03Okh2VeHeYp-bi9-bD5XV98uv2zOryrNGcmVIMaIDrreMS6d7ZmThrDaWAbckQ4Eb2uu-14w0xoOIKzmIFxLmXagJWen6N3-7k2cbueSjBp9cTQMxeI0J0VpTRoqW9r-B0oaRgkVTUHfPkKvpzmGYqRQvJZcgiSFenOg5m60vbqJftTxTj2EXQCxB0ycUorWKeNzSXKJS_tBEVBLqaqUqpZHDqUW3dkj3cPppxXv94pl8e-vT9H3ZCWzUA
CitedBy_id crossref_primary_10_1002_lom3_10506
crossref_primary_10_1016_j_scitotenv_2024_176514
crossref_primary_10_3389_feart_2022_833918
crossref_primary_10_1029_2020WR029375
crossref_primary_10_1016_j_enggeo_2023_107290
crossref_primary_10_1016_j_ijggc_2021_103363
crossref_primary_10_1080_20442041_2024_2327974
crossref_primary_10_1016_j_jconhyd_2021_103938
crossref_primary_10_1016_j_scitotenv_2024_170480
crossref_primary_10_1016_j_earscirev_2024_104908
crossref_primary_10_1007_s00367_019_00629_4
crossref_primary_10_1016_j_scitotenv_2020_137872
crossref_primary_10_18307_2025_0123
crossref_primary_10_1016_j_jsg_2022_104642
crossref_primary_10_1016_j_jes_2021_08_031
crossref_primary_10_1061_JGGEFK_GTENG_11736
crossref_primary_10_3390_ma13132887
crossref_primary_10_1016_j_jenvman_2020_110997
crossref_primary_10_1080_1064119X_2021_1943730
crossref_primary_10_1021_acs_est_9b03034
crossref_primary_10_1029_2022JF006631
crossref_primary_10_1016_j_enggeo_2022_106565
crossref_primary_10_1029_2019GL083100
Cites_doi 10.1016/j.jvolgeores.2004.11.030
10.4319/lo.2005.50.6.1771
10.1029/2009JF001312
10.1007/s00367-011-0243-1
10.1016/S0278-4343(98)00056-9
10.1080/10641199009388234
10.1029/JB076i026p06414
10.1023/A:1024913730848
10.1017/CBO9780511623127
10.2475/03.2009.01
10.1029/2010JF001833
10.1146/annurev.micro.61.080706.093130
10.1357/002224008784815775
10.1007/s00367-012-0305-z
10.1007/978-3-642-19240-1
10.1016/S0012-8252(01)00062-9
10.1016/j.marpetgeo.2012.07.002
10.1016/j.gca.2009.02.008
10.1029/92JD02170
10.1016/0025-3227(95)00054-3
10.1126/science.1196808
10.1016/0016-7037(93)90368-7
10.1007/s11368-011-0338-3
10.1002/2016JG003456
10.1146/annurev.earth.28.1.477
10.4319/lo.2011.56.4.1525
10.1016/S0278-4343(98)00063-6
10.1007/BF00035502
10.1029/2006EO220001
10.1016/S0025-3227(01)00227-4
10.1029/2004GB002238
10.1061/(ASCE)EE.1943-7870.0000205
10.1680/geot.1991.41.2.227
10.1029/2010JB008133
10.1680/geot.1988.38.3.389
10.1021/es9031369
10.1029/2008JB006002
10.1029/2011GL046768
10.1002/aic.690400702
10.1016/S0025-3227(02)00383-3
10.1007/s00367-012-0277-z
10.1016/S0278-4343(98)00059-4
10.1016/j.gca.2007.08.011
10.1029/2011GL046870
10.1002/2016JG003717
10.1144/GSL.QJEG.1989.022.02.04
10.1029/2006GL027509
10.1002/aic.16223
10.1063/1.1712886
10.1002/grl.50629
10.1007/s00254-004-1083-3
10.1016/0025-3227(94)00125-5
10.1029/2005JC003183
10.1016/S0016-7037(02)01072-4
10.1111/gcb.12131
10.1016/S0956-053X(01)00021-6
10.1002/aic.15731
10.1029/JB095iB06p08471
10.1016/j.jsg.2014.11.002
10.1130/G21259.1
10.1029/2003JB002748
10.1016/j.epsl.2013.07.011
ContentType Journal Article
Copyright Copyright American Chemical Society Jun 4, 2019
Copyright_xml – notice: Copyright American Chemical Society Jun 4, 2019
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.8b06848
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 6329
ExternalDocumentID 31042027
10_1021_acs_est_8b06848
c65719146
Genre Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a431t-51cc5b0bdf346fed3f6c137ce304f1b054974add53c9c4005ea405f923af0a643
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 11:41:44 EDT 2025
Thu Jul 10 22:18:04 EDT 2025
Mon Jun 30 13:08:21 EDT 2025
Mon Jul 21 05:48:57 EDT 2025
Tue Jul 01 02:58:03 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Thu Aug 27 13:44:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a431t-51cc5b0bdf346fed3f6c137ce304f1b054974add53c9c4005ea405f923af0a643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4526-474X
PMID 31042027
PQID 2247646061
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_2271826929
proquest_miscellaneous_2218321258
proquest_journals_2247646061
pubmed_primary_31042027
crossref_citationtrail_10_1021_acs_est_8b06848
crossref_primary_10_1021_acs_est_8b06848
acs_journals_10_1021_acs_est_8b06848
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-04
PublicationDateYYYYMMDD 2019-06-04
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
Broek D. (ref31/cit31) 1982
ref23/cit23
ref8/cit8
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
Lawn B. R. (ref43/cit43) 1993
ref20/cit20
Winterwerp J. C. (ref25/cit25) 2004
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Terzaghi K. (ref55/cit55) 1923; 132
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref29/cit29
Gross E. (ref44/cit44) 2011
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
Wang H. (ref58/cit58) 2000
ref26/cit26
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref22/cit22
ref33/cit33
Mitchell J. K. (ref49/cit49) 2005
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref66/cit66
  doi: 10.1016/j.jvolgeores.2004.11.030
– ident: ref40/cit40
  doi: 10.4319/lo.2005.50.6.1771
– ident: ref28/cit28
  doi: 10.1029/2009JF001312
– ident: ref47/cit47
  doi: 10.1007/s00367-011-0243-1
– ident: ref52/cit52
  doi: 10.1016/S0278-4343(98)00056-9
– ident: ref18/cit18
  doi: 10.1080/10641199009388234
– volume-title: Fundamentals of Soil Behavior
  year: 2005
  ident: ref49/cit49
– ident: ref57/cit57
  doi: 10.1029/JB076i026p06414
– ident: ref7/cit7
  doi: 10.1023/A:1024913730848
– volume-title: Fracture of Brittle Solids
  year: 1993
  ident: ref43/cit43
  doi: 10.1017/CBO9780511623127
– ident: ref39/cit39
  doi: 10.2475/03.2009.01
– volume-title: Introduction to the Physics of Cohesive Sediments in the Marine Environment
  year: 2004
  ident: ref25/cit25
– ident: ref32/cit32
  doi: 10.1029/2010JF001833
– ident: ref21/cit21
  doi: 10.1146/annurev.micro.61.080706.093130
– ident: ref37/cit37
  doi: 10.1357/002224008784815775
– ident: ref48/cit48
  doi: 10.1007/s00367-012-0305-z
– volume-title: Fracture Mechanics: With an Introduction to Micromechanics
  year: 2011
  ident: ref44/cit44
  doi: 10.1007/978-3-642-19240-1
– ident: ref62/cit62
  doi: 10.1016/S0012-8252(01)00062-9
– ident: ref22/cit22
  doi: 10.1016/j.marpetgeo.2012.07.002
– ident: ref27/cit27
  doi: 10.1016/j.gca.2009.02.008
– ident: ref61/cit61
  doi: 10.1029/92JD02170
– ident: ref1/cit1
  doi: 10.1016/0025-3227(95)00054-3
– ident: ref6/cit6
  doi: 10.1126/science.1196808
– ident: ref51/cit51
  doi: 10.1016/0016-7037(93)90368-7
– ident: ref8/cit8
  doi: 10.1007/s11368-011-0338-3
– ident: ref16/cit16
  doi: 10.1002/2016JG003456
– ident: ref60/cit60
  doi: 10.1146/annurev.earth.28.1.477
– ident: ref38/cit38
  doi: 10.4319/lo.2011.56.4.1525
– ident: ref45/cit45
  doi: 10.1016/S0278-4343(98)00063-6
– volume-title: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology
  year: 2000
  ident: ref58/cit58
– ident: ref59/cit59
  doi: 10.1007/BF00035502
– ident: ref14/cit14
  doi: 10.1029/2006EO220001
– ident: ref42/cit42
  doi: 10.1016/S0025-3227(01)00227-4
– ident: ref5/cit5
  doi: 10.1029/2004GB002238
– ident: ref50/cit50
  doi: 10.1061/(ASCE)EE.1943-7870.0000205
– ident: ref54/cit54
  doi: 10.1680/geot.1991.41.2.227
– ident: ref41/cit41
  doi: 10.1029/2010JB008133
– ident: ref53/cit53
  doi: 10.1680/geot.1988.38.3.389
– ident: ref2/cit2
  doi: 10.1021/es9031369
– ident: ref34/cit34
  doi: 10.1029/2008JB006002
– ident: ref65/cit65
  doi: 10.1029/2011GL046768
– ident: ref9/cit9
  doi: 10.1002/aic.690400702
– ident: ref23/cit23
  doi: 10.1016/S0025-3227(02)00383-3
– ident: ref46/cit46
  doi: 10.1007/s00367-012-0277-z
– ident: ref35/cit35
  doi: 10.1016/S0278-4343(98)00059-4
– ident: ref10/cit10
  doi: 10.1016/j.gca.2007.08.011
– ident: ref15/cit15
  doi: 10.1029/2011GL046870
– ident: ref17/cit17
  doi: 10.1002/2016JG003717
– ident: ref3/cit3
  doi: 10.1144/GSL.QJEG.1989.022.02.04
– ident: ref64/cit64
  doi: 10.1029/2006GL027509
– ident: ref12/cit12
  doi: 10.1002/aic.16223
– ident: ref56/cit56
  doi: 10.1063/1.1712886
– ident: ref20/cit20
  doi: 10.1002/grl.50629
– ident: ref4/cit4
  doi: 10.1007/s00254-004-1083-3
– ident: ref19/cit19
  doi: 10.1016/0025-3227(94)00125-5
– volume-title: Elementary Engineering Fracture Mechanics
  year: 1982
  ident: ref31/cit31
– ident: ref67/cit67
  doi: 10.1029/2005JC003183
– ident: ref26/cit26
  doi: 10.1016/S0016-7037(02)01072-4
– ident: ref63/cit63
  doi: 10.1111/gcb.12131
– ident: ref11/cit11
  doi: 10.1016/S0956-053X(01)00021-6
– ident: ref33/cit33
  doi: 10.1002/aic.15731
– ident: ref24/cit24
  doi: 10.1029/JB095iB06p08471
– ident: ref30/cit30
  doi: 10.1016/j.jsg.2014.11.002
– volume: 132
  start-page: 125
  year: 1923
  ident: ref55/cit55
  publication-title: SitzungberAkad. Wissen Wien Math-Naturw
– ident: ref13/cit13
  doi: 10.1130/G21259.1
– ident: ref36/cit36
  doi: 10.1029/2003JB002748
– ident: ref29/cit29
  doi: 10.1016/j.epsl.2013.07.011
SSID ssj0002308
Score 2.4143836
Snippet Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great...
Methane (CH ) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great...
Methane (CH₄) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6320
SubjectTerms Ascent
Atmosphere
Bubbles
Emission analysis
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Horizon
Mathematical models
Mechanical properties
Methane
Migration
Ocean floor
prediction
Sediments
solutes
Water circulation
Water column
Title Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors
URI http://dx.doi.org/10.1021/acs.est.8b06848
https://www.ncbi.nlm.nih.gov/pubmed/31042027
https://www.proquest.com/docview/2247646061
https://www.proquest.com/docview/2218321258
https://www.proquest.com/docview/2271826929
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xuCyHBbrAlpeMxIFLQh6Om3Arj1KtBBdA6i2yHVtCoMBu2gu_nhknTVlQgWsytizbM_PZnvkG4DCOVKREpL3ChonHhQg8ZYX0hELfnEQ21QUlJ19di-Ed_zNKRjOy6Pcv-FF4LHXlo4H0UxWIlKeLsBwJVGFCQWc3rdFFJJ1OixVksRi1LD4fOiA3pKv_3dAcbOl8zGC1js6qHDUhhZY8-JOx8vXLR-LGr4e_Bj8bpMn69dZYhwVTdmDlDf9gBzYvZmluKNroefUL7JWhK3XDTidKPRrWd5xPjC5t70s2wB68S6otYQpG-R0UAs_6f4k1XLMbdIcub-6Endfl7ismSxJ0QfGU_s4GdZWfDbgbXNyeDb2mIoMnEWiMvSTUOlGBKmzMhTVFbIUO4542ccBtqBD-4fEELWYS60yjdUiMREBoEURKG0gEP5uwVD6V5jcwKXtGIFgynGfcZghcHfVgEVkEMbzgXTjEqcsbjapy91gehTl9xPnMm_nsgj9dx1w3rOZUXONxfoOjtsFzTegxX3R3ujFm40DI0xMcj31hFw7a36iT9NCCC_M0IRkylAgd089kenS0Q3Taha1607XjQcjN6VJq-3tzsAM_EMZlLoCN78LS-N_E7CFUGqt9pySvK7YOWQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9tAEIBHFA6UA1BaaHh1kThwcerHemNzC4-QAkFCgJSbtbvelVCpaXFygF_PzMZxKCgVvdrj1XofM98-ZgZgNwpVqESovdwGsceF8D1lhfSEQtschzbROTkn9y5E94af9uP-DPhjXxisRIklle4QfxJdIPhOz1BPNhPli4QnH2AOUSSkMd0-vKp1LwJ1Ms5ZkEaiXwfzeVMAWSNd_m2NpiCmMzWdJbisK-lumPxsDgeqqZ9exW_8n79YhsWKO1l7NFA-wYwpVmDhRTTCFVg9nji9oWg168vPYHuGNtgNOxgqdWdY20WAYrSFe1uwDpbgnVCmCZMz8vagC_Gs_YdiiGt2hcbRedHts6PHQv661SWTBQm6K_LkDM86o5w_X-Cmc3x92PWq_AyeROwYeHGgdax8lduIC2vyyAodRC1tIp_bQCEM4mIF9Wcc6VSjroiNRDy0iJTS-hJRaBVmi_vCfAUmZcsIRCfDecptihjrAhHmoUWk4TlvwC42XVbNrzJzR-dhkNFDbM-sas8GNMfdmekqxjml2rib_sFe_cHvUXiP6aKb4_ExqQcCUEtwXAQGDdipX-MMpWMX7Jj7IcmQ2kSQTP4l06KFHrJqA9ZGY6-uDwI4py2q9fe1wTeY7173zrPzHxdnG_ARAS91V9v4JswOHoZmCyFqoLbdvHkGwXIWug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkKr2wLPQ5VGMxIFLljwcb8JteaRAAVWiK-0tsh1bQtBAye4Bfj0z3mygoK3o1Rlbju2Z-fyYbwC2o1CFSoTaK2wQe1wI31NWSE8o9M1xaBNdUHDy-YU47vHTftyvg8IoFgY7UWFLlbvEJ62-K2zNMBDsUjnaynaifJHw5APM0KUdrevuwWVjfxFUJ-O8BWkk-g2hz5sGyCPp6m-PNAFmOneTzUGv6ah7ZXLdHg5UWz--4nD83z-Zh9kaf7LuaMEswJQpF-HzC1bCRVg-eg5-Q9Fa-6slsOeGDtoN2x8qdWNY1zFBMTrKvSpZhi143ynjhCkYRX3Qw3jW_UNc4ppdopN00XR77PChlL-vdMVkSYLuqTwFxbNslPvnC_Syo18Hx16dp8GTCD8GXhxoHStfFTbiwpoiskIHUUebyOc2UAgKcdOCdjSOdKrRZsRGIky0CC2l9SVComWYLm9L8xWYlB0jEEIZzlNuU4SzjpCwCC1CG17wFmzj0OW1nlW5u0IPg5wKcTzzejxb0B5Paa5rrnNKuXEzucJOU-FuRPMxWXR9vEae-4FAqCM4bgaDFmw1n1FT6foFJ-Z2SDJkPhFQJv-S6dCGDzFrC1ZG66_pDwJxTkdVq-8bg034-PMwy89OLn6swSfEeal74cbXYXpwPzQbiKUG6ptTnSe95xk9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+Bubble+Ascent+within+Fine-Grained+Cohesive+Aquatic+Sediments%3A+Dynamics+and+Controlling+Factors&rft.jtitle=Environmental+science+%26+technology&rft.au=Sirhan%2C+Shahrazad+Tarboush&rft.au=Katsman%2C+Regina&rft.au=Lazar%2C+Michael&rft.date=2019-06-04&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=53&rft.issue=11&rft.spage=6320&rft_id=info:doi/10.1021%2Facs.est.8b06848&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon