Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na–Al–Si−O and Al–Si–O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 38; pp. 32907 - 32919
Main Authors Riley, Brian J, Kroll, Jared O, Peterson, Jacob A, Matyáš, Josef, Olszta, Matthew J, Li, Xiaohong, Vienna, John D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.09.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na–Al–Si−O and Al–Si–O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)­trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na–Al–Si−O aerogels, Na was replaced with Ag, and for the Al–Si–O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na–Al–Si–O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al–Si–O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na–Al–Si–O aerogels were >0.5 m I m s –1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al–Si–O aerogel was 0.31 m I m s –1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.
AbstractList In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na–Al–Si−O and Al–Si–O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)­trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na–Al–Si−O aerogels, Na was replaced with Ag, and for the Al–Si–O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na–Al–Si–O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al–Si–O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na–Al–Si–O aerogels were >0.5 m I m s –1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al–Si–O aerogel was 0.31 m I m s –1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.
In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I (g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag particles were added by soaking the aerogels in aqueous AgNO solutions followed by drying and Ag reduction under H /Ar to form Ag crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag . During the Ag -impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag -functionalized Na-Al-Si-O aerogels were >0.5 m m (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag -functionalized Al-Si-O aerogel was 0.31 m m . The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.
In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were >0.5 mI ms-1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al-Si-O aerogel was 0.31 mI ms-1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were >0.5 mI ms-1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al-Si-O aerogel was 0.31 mI ms-1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.
Here, in this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na–Al–Si-O and Al–Si–O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na–Al–Si-O aerogels, Na was replaced with Ag, and for the Al–Si–O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na–Al–Si–O aerogels was comparable at ~35 atomic %, whereas the Ag-loading in unthiolated Al–Si–O aerogels was significantly lower at ~7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na–Al–Si–O aerogels were >0.5 mIms–1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al–Si–O aerogel was 0.31 mIms–1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.
In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I₂(g). The starting materials for these scaffolds included Na–Al–Si−O and Al–Si–O aerogels, both synthesized from metal alkoxides. The Ag⁰ particles were added by soaking the aerogels in aqueous AgNO₃ solutions followed by drying and Ag⁺ reduction under H₂/Ar to form Ag⁰ crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag⁺. During the Ag⁺-impregnation steps, for the Na–Al–Si−O aerogels, Na was replaced with Ag, and for the Al–Si–O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na–Al–Si–O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al–Si–O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag⁰-functionalized Na–Al–Si–O aerogels were >0.5 mI mₛ–¹ (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag⁰-functionalized Al–Si–O aerogel was 0.31 mI mₛ–¹. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.
Author Matyáš, Josef
Li, Xiaohong
Olszta, Matthew J
Vienna, John D
Peterson, Jacob A
Riley, Brian J
Kroll, Jared O
AuthorAffiliation Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Pacific Northwest National Laboratory
Author_xml – sequence: 1
  givenname: Brian J
  orcidid: 0000-0002-7745-6730
  surname: Riley
  fullname: Riley, Brian J
  email: brian.riley@pnnl.gov
– sequence: 2
  givenname: Jared O
  surname: Kroll
  fullname: Kroll, Jared O
– sequence: 3
  givenname: Jacob A
  surname: Peterson
  fullname: Peterson, Jacob A
– sequence: 4
  givenname: Josef
  surname: Matyáš
  fullname: Matyáš, Josef
– sequence: 5
  givenname: Matthew J
  surname: Olszta
  fullname: Olszta, Matthew J
– sequence: 6
  givenname: Xiaohong
  surname: Li
  fullname: Li, Xiaohong
– sequence: 7
  givenname: John D
  surname: Vienna
  fullname: Vienna, John D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28910079$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1398211$$D View this record in Osti.gov
BookMark eNqFkUtr3TAQhUVJaR7tNstgugoB345kybKWl9CkgQtdpF0LWR41CraUSnKg_z4OvskiELqaB98ZmHOOyUGIAQk5pbChwOg3Y7OZ_Eb2y6TgAzmiivO6Y4IdvPacH5LjnO8B2oaB-EQOWacogFRHRN368RFTvYtmwKHajvPkQ8x-9NYUrLaY4h8cc7XN1U0cfMDqNqYeQ8mfyUdnxoxf9vWE_L76_uvyR737eX1zud3VhjdQ6kFwEMy1oITjPbIOGscdV8wN0qnWqranCCgkSj4woIa7wcpeyJ6LrumxOSFf17sxF6-z9QXtnY0hoC2aNqpjlC7Q-Qo9pPh3xlz05LPFcTQB45w1AwAhKJXwX_TZNN60nMsFPdujcz_hoB-Sn0z6p1_sW4DNCtgUc07oXhEK-jkfveaj9_ksAv5GsPxjio-hJOPH92UXq2zZ6_s4p7A4_h78BETMoNg
CitedBy_id crossref_primary_10_1021_acsapm_2c01407
crossref_primary_10_1021_acsomega_2c05522
crossref_primary_10_1016_j_apsusc_2024_161664
crossref_primary_10_1007_s10904_020_01447_3
crossref_primary_10_1016_j_seppur_2025_132456
crossref_primary_10_1016_j_matchemphys_2019_122328
crossref_primary_10_1021_acs_inorgchem_4c04490
crossref_primary_10_1021_acsanm_3c00264
crossref_primary_10_1021_acsanm_2c01741
crossref_primary_10_1016_j_jnucmat_2022_153635
crossref_primary_10_1021_acsami_3c13800
crossref_primary_10_1021_acsami_0c02396
crossref_primary_10_1007_s11356_023_27485_1
crossref_primary_10_1016_j_cej_2019_122365
crossref_primary_10_1016_j_nucengdes_2021_111529
crossref_primary_10_1021_acsomega_4c03378
crossref_primary_10_1039_D4MA00266K
crossref_primary_10_1246_cl_200245
crossref_primary_10_1021_acs_iecr_2c04357
crossref_primary_10_1002_cssc_201900194
crossref_primary_10_1016_j_cej_2023_145858
crossref_primary_10_1021_acsanm_2c05438
crossref_primary_10_1039_C8RA04775H
crossref_primary_10_1021_acsomega_1c00852
crossref_primary_10_1016_j_jnucmat_2021_153309
crossref_primary_10_1039_D0CS01192D
crossref_primary_10_1021_acsami_0c03155
crossref_primary_10_1016_j_micromeso_2022_111898
crossref_primary_10_1007_s11426_024_2204_8
crossref_primary_10_1021_acs_iecr_3c00892
crossref_primary_10_1016_j_jclepro_2024_144107
crossref_primary_10_1016_j_chemosphere_2020_126448
crossref_primary_10_1016_j_micromeso_2022_112041
crossref_primary_10_1016_j_jnucmat_2019_02_002
crossref_primary_10_1021_acs_iecr_4c02320
crossref_primary_10_1021_acs_iecr_4c00100
crossref_primary_10_1016_j_jcis_2024_01_048
crossref_primary_10_1016_j_ceramint_2022_08_133
crossref_primary_10_1016_j_ica_2024_122135
crossref_primary_10_1016_j_seppur_2023_125052
crossref_primary_10_1016_j_jece_2023_109743
crossref_primary_10_1021_acsomega_9b00491
crossref_primary_10_3390_ma12050686
crossref_primary_10_3233_MGC_210178
crossref_primary_10_1016_j_jnucmat_2018_04_002
crossref_primary_10_3389_fchem_2022_969303
crossref_primary_10_1016_j_jhazmat_2020_123279
crossref_primary_10_1021_acsapm_1c00237
crossref_primary_10_1016_j_nucengdes_2019_02_002
crossref_primary_10_1002_gch2_202000013
crossref_primary_10_1021_acsami_2c01179
crossref_primary_10_1080_00223131_2024_2379881
crossref_primary_10_1016_j_jnucmat_2020_152222
crossref_primary_10_1016_j_jnucmat_2024_155579
crossref_primary_10_1007_s10570_020_03189_4
crossref_primary_10_1016_j_nantod_2020_101034
crossref_primary_10_1021_acs_iecr_1c03902
crossref_primary_10_1039_D0RA08741F
crossref_primary_10_1063_5_0259675
crossref_primary_10_1007_s41365_025_01647_x
crossref_primary_10_1016_j_apsusc_2023_156819
crossref_primary_10_1016_j_jhazmat_2024_136017
crossref_primary_10_1021_acs_iecr_3c04450
crossref_primary_10_1016_j_cej_2022_140365
crossref_primary_10_1016_j_jssc_2019_07_013
crossref_primary_10_1039_D2RA01259F
crossref_primary_10_1016_j_chroma_2022_463760
Cites_doi 10.1016/0022-3093(82)90244-7
10.1021/ja00364a005
10.1039/c1ra00351h
10.1155/2013/702496
10.2172/15009659
10.1073/pnas.48.6.982
10.1080/00387019808006772
10.1021/es400595z
10.1007/BF00540646
10.2172/7287743
10.1016/0022-3093(84)90401-0
10.13182/NT89-A34241
10.1080/14786442508634742
10.1016/j.jnucmat.2015.11.038
10.1016/S0022-3093(86)80078-3
10.1021/ie200248g
10.1016/j.jnucmat.2014.09.057
10.1016/0022-3093(88)90005-1
10.1021/ja00905a001
10.2172/911962
10.1021/es405807w
10.2172/5795448
10.1107/S0108768187097532
10.1016/0022-3093(84)90393-4
10.1021/acs.chemmater.5b00413
10.1134/S1066362209040158
10.1016/j.carbon.2015.03.070
10.13182/NT91-A16225
10.4236/jmp.2010.14031
10.1021/cm401762g
10.2172/1111567
10.1021/ja01269a023
10.6028/jres.109.002
10.13182/NT76-A31646
10.1080/18811248.1987.9733524
10.13182/NT92-A34704
10.1081/SS-120020130
10.1016/j.jnucmat.2016.04.047
10.1134/S1066362211020020
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/acsami.7b10290
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 32919
ExternalDocumentID 1398211
28910079
10_1021_acsami_7b10290
c436917468
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
OIOZB
OTOTI
ID FETCH-LOGICAL-a430t-d54052f6095f4be2803f4f492fd7f96c96b1e0e57e74d201a4fdc7b57b4583be3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Mon Sep 23 03:25:16 EDT 2024
Fri Jul 11 16:17:42 EDT 2025
Fri Jul 11 07:35:00 EDT 2025
Thu Jan 02 23:10:07 EST 2025
Thu Apr 24 22:56:24 EDT 2025
Tue Jul 01 02:29:22 EDT 2025
Thu Aug 27 13:42:25 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords iodine
silver
aerogel
thiolation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a430t-d54052f6095f4be2803f4f492fd7f96c96b1e0e57e74d201a4fdc7b57b4583be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PNNL-SA-126525
AC05-76RL01830
USDOE Office of Nuclear Energy (NE)
ORCID 0000-0002-7745-6730
0000000277456730
OpenAccessLink https://www.osti.gov/servlets/purl/1398211
PMID 28910079
PQID 1944436447
PQPubID 23479
PageCount 13
ParticipantIDs osti_scitechconnect_1398211
proquest_miscellaneous_2000551170
proquest_miscellaneous_1944436447
pubmed_primary_28910079
crossref_primary_10_1021_acsami_7b10290
crossref_citationtrail_10_1021_acsami_7b10290
acs_journals_10_1021_acsami_7b10290
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-27
PublicationDateYYYYMMDD 2017-09-27
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
Frueh A. J. (ref41/cit41) 1957; 10
Ackley R. D. (ref24/cit24) 1973
ref56/cit56
ref16/cit16
Gal I. J. (ref25/cit25) 1974
ref52/cit52
ref59/cit59
Trevorrow L. E. (ref5/cit5) 1983
ref34/cit34
ref20/cit20
ref48/cit48
Iler R. K. (ref31/cit31) 1979
Hebel W. (ref14/cit14) 1982
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Pence D. T. (ref26/cit26) 1972
ref61/cit61
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
Jubin R. (ref58/cit58) 2012
ref65/cit65
ref11/cit11
ref29/cit29
ref32/cit32
ref39/cit39
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Khaskin I. G. (ref36/cit36) 1952; 85
Gregg S. (ref63/cit63) 1982
ref55/cit55
Burger L. L. (ref3/cit3) 2004
ref12/cit12
ref15/cit15
Shaw D. (ref37/cit37) 1980
Thomas T. R. (ref27/cit27) 1977
ref62/cit62
ref66/cit66
ref33/cit33
Pence D. T. (ref22/cit22) 1970; 2
Maeck W. J. (ref23/cit23) 1970; 2
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
Vienna J. D. (ref60/cit60) 2015
Haefner D. R. (ref8/cit8) 2007
ref44/cit44
Jubin R. T. (ref2/cit2) 1979
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1016/0022-3093(82)90244-7
– ident: ref20/cit20
– ident: ref44/cit44
  doi: 10.1021/ja00364a005
– volume-title: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica
  year: 1979
  ident: ref31/cit31
– ident: ref11/cit11
  doi: 10.1039/c1ra00351h
– ident: ref59/cit59
  doi: 10.1155/2013/702496
– volume-title: HWVP Iodine Trap Evaluation, PNNL-14860
  year: 2004
  ident: ref3/cit3
  doi: 10.2172/15009659
– ident: ref4/cit4
– ident: ref43/cit43
  doi: 10.1073/pnas.48.6.982
– ident: ref64/cit64
  doi: 10.1080/00387019808006772
– volume: 2
  volume-title: 11th AEC Air Cleaning Conference, CONF 700816
  year: 1970
  ident: ref22/cit22
– ident: ref50/cit50
– ident: ref47/cit47
– ident: ref9/cit9
  doi: 10.1021/es400595z
– volume: 85
  start-page: 129
  year: 1952
  ident: ref36/cit36
  publication-title: Dokl. Akad. Nauk SSSR
– ident: ref61/cit61
– volume: 10
  start-page: 764
  year: 1957
  ident: ref41/cit41
  publication-title: Acta Crystallogr.
– ident: ref39/cit39
  doi: 10.1007/BF00540646
– volume-title: Adsorption, surface area, and porosity
  year: 1982
  ident: ref63/cit63
– ident: ref19/cit19
– volume-title: Closed Fuel Cycle Waste Treatment Strategy
  year: 2015
  ident: ref60/cit60
– volume-title: Airborne Elemental Iodine Loading Capacities of Metal Zeolites and a Method for Recycling Silver Zeolite, ICP-1119
  year: 1977
  ident: ref27/cit27
  doi: 10.2172/7287743
– ident: ref34/cit34
  doi: 10.1016/0022-3093(84)90401-0
– ident: ref54/cit54
  doi: 10.13182/NT89-A34241
– volume-title: Introduction to Colloid and Surface Chemistry
  year: 1980
  ident: ref37/cit37
– volume-title: A Literature Survey of Methods to Remove Iodine from Off-Gas Streams using Solid Sorbents, ORNL/TM-6607
  year: 1979
  ident: ref2/cit2
– ident: ref51/cit51
– ident: ref40/cit40
  doi: 10.1080/14786442508634742
– ident: ref1/cit1
  doi: 10.1016/j.jnucmat.2015.11.038
– ident: ref29/cit29
  doi: 10.1016/S0022-3093(86)80078-3
– ident: ref12/cit12
  doi: 10.1021/ie200248g
– ident: ref17/cit17
  doi: 10.1016/j.jnucmat.2014.09.057
– ident: ref30/cit30
  doi: 10.1016/0022-3093(88)90005-1
– ident: ref45/cit45
  doi: 10.1021/ja00905a001
– ident: ref49/cit49
– volume-title: Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey, INL/EXT-07-12299
  year: 2007
  ident: ref8/cit8
  doi: 10.2172/911962
– ident: ref10/cit10
  doi: 10.1021/es405807w
– volume-title: Radioactive Waste Management Vol. 7: Management Modes for Iodine-129
  year: 1982
  ident: ref14/cit14
– volume-title: Compatibility of Technologies with Regulations in the Waste Management of H-3, I-129, C-14, and Kr-85. Part I. Initial Information Base, ANL-83-57
  year: 1983
  ident: ref5/cit5
  doi: 10.2172/5795448
– volume-title: Applicability of Inorganic Sorbents for Trapping Radioiodine from LMFBR Fuel Reprocessing Off-Gas, ORNL/TM-4227
  year: 1973
  ident: ref24/cit24
– ident: ref42/cit42
  doi: 10.1107/S0108768187097532
– ident: ref53/cit53
– ident: ref33/cit33
  doi: 10.1016/0022-3093(84)90393-4
– ident: ref28/cit28
  doi: 10.1021/acs.chemmater.5b00413
– ident: ref48/cit48
– ident: ref16/cit16
  doi: 10.1134/S1066362209040158
– volume: 2
  volume-title: 11th AEC Air Cleaning Conference, CONF 700816
  year: 1970
  ident: ref23/cit23
– ident: ref15/cit15
  doi: 10.1016/j.carbon.2015.03.070
– ident: ref57/cit57
  doi: 10.13182/NT91-A16225
– volume-title: 12th AEC Air Cleaning Conference, CONF 720823
  year: 1972
  ident: ref26/cit26
– ident: ref65/cit65
  doi: 10.4236/jmp.2010.14031
– ident: ref13/cit13
  doi: 10.1021/cm401762g
– volume-title: 13th AEC Air Cleaning Conference, CONF 740807
  year: 1974
  ident: ref25/cit25
– ident: ref32/cit32
– volume-title: Fuel Age Impacts on Gaseous Fission Product Capture during Separations
  year: 2012
  ident: ref58/cit58
  doi: 10.2172/1111567
– ident: ref18/cit18
– ident: ref46/cit46
– ident: ref62/cit62
  doi: 10.1021/ja01269a023
– ident: ref66/cit66
  doi: 10.6028/jres.109.002
– ident: ref6/cit6
  doi: 10.13182/NT76-A31646
– ident: ref52/cit52
  doi: 10.1080/18811248.1987.9733524
– ident: ref55/cit55
  doi: 10.13182/NT92-A34704
– ident: ref21/cit21
  doi: 10.1081/SS-120020130
– ident: ref7/cit7
– ident: ref38/cit38
  doi: 10.1016/j.jnucmat.2016.04.047
– ident: ref56/cit56
  doi: 10.1134/S1066362211020020
SSID ssj0063205
Score 2.4890969
Snippet In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included...
In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I (g). The starting materials for these scaffolds included...
In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I₂(g). The starting materials for these scaffolds included...
Here, in this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32907
SubjectTerms aerogel
aluminosilicate aerogel
crystallites
drying
iodine
iodine capture
Iodine Capture: Iodine immobilization
MATERIALS SCIENCE
nanosilver
silicon
silver
silver nitrate
soaking
sodium
sorbents
Title Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents
URI http://dx.doi.org/10.1021/acsami.7b10290
https://www.ncbi.nlm.nih.gov/pubmed/28910079
https://www.proquest.com/docview/1944436447
https://www.proquest.com/docview/2000551170
https://www.osti.gov/servlets/purl/1398211
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QuMCB92MMUBFInAJrmybtsUJMgIDLmMStyqtoArVo7S78euw-xmOa4BjJUZM4iT_XzmdCzvo20MKGnFrFUsqk9GnIpAs-D7dg3yVXBh84PzzymxG7ew6ev_53_I7ge-6l1AWWwhEKWhE458seDwW6WfHVsL1zue9VyYrgkTMagsVq6Rnn-qMR0sUPI9TJ4TAtBpiVoRms16xHRcVPiPklrxfTUl3oj3n2xj_nsEHWGrTpxPX22CRLNtsiq984CLdJNBxjcjS9z6WxxonhshpneTGuH8c5sZ3kL2A_nbhwbnMwdNYZ5hOF6Rc7ZDS4frq6oU09BSqZ3y-pQXTmpUgxlzJlsS5VylIWeakRacR1xJVrQXnCCmYAGEiWGi1UIBQGV5X1d0knyzO7T5wANCkBW0DHgBnphlhM1niRVVwaaHTJKcw5ac5DkVShbs9N6oVImoXoEtqqIdENJTlWxnhbKH8-k3-vyTgWSvZQqwnACOTC1Zg0pMsE4G4IHm-XnLTKTuA0YYhEZjafwjhhAzEfMKJYLIOPmwBnugK-slfvlNlowH3FtJPo4F_z75EVD1ECBrnEIemUk6k9AoxTquNqe38CUHL0TA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h7QE40AcFlkdJVaSezJLEiZNjtALt0gVVWpC4WXbsoBUoqTbZS389M3kstGglOCYaJ7Zn7PlG8wI4ObNBKmwUMqt5xrhSPou4ctHmCS3qdxVqQwnOV9fh6JZf3gV3azDocmFwEiV-qayd-M_VBdwBvqOOOELjU4w2-gdEIh5ZW8lw2l29oe_VMYtomHMWoeLqqjS-Gk-6KC3_0UW9As_UapxZ65uLj_B7OdM6zOThdFHp0_Tvf0Uc37GUT7DVYk8naYTlM6zZ_AtsvqhIuA3xdEah0mxSKGONk-DVNcuLctakyjmJnRf3qE2dpHTGBao960yLuaZgjK9we3F-MxyxtrsCU9w_q5ghrOZlVHAu49pSl6qMZzz2MiOyOEzjULsWWSms4AZhguKZSYUOhCZXq7b-DvTyIrd74ATIV4VIAwcG3Cg3otayxoutDpXBhz78wDXL9nSUsnZ8e65sNkK2G9EH1nFDpm2BcuqT8biS_ueS_k9TmmMl5QExVyKooMq4KYUQpZVE8Buh_duH7x3PJZ4tcpio3BYLnCfKEfcRMYrVNJTqhKjTFfiX3UZglrNBY5aCUOL9N63_GNZHN1cTORlf_zqADY_wA7m_xCH0qvnCHiH6qfS3WuKfACZe_K0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6yguiD97GuR0XBp6ht06Z9LOqyngir4FtImkQWpZVt98Vf70zbXTxY0MeWpE0yM5lvmIuQozMTpNxEITWKWcqk9GnEpAs2T2hAv8tQaUxwvrsPe0_s-jl4bvK4MRcGFlHAl4rKiY9S_a5tU2HAPYX32BWHK3iKwU6fRZ8dWlzJeX98_Ya-V8UtgnHOaATKa1yp8dd81Edp8U0ftXKQq-lYs9I53SXyOFltFWryejIq1Un68aOQ4z-3s0wWGwzqJDXTrJAZk62ShS-VCddI3B9gyDS9zaU22kngChtkeTGoU-acxAzzF9CqTlI4VzmoP-P086HCoIx18tS9fDzv0abLApXMPyupRszmWSw8Z5ky2K3KMstiz2pu4zCNQ-UaICk3nGmAC5JZnXIVcIUuV2X8DdLK8sxsEScA-kpAHDAxYFq6EbaY1V5sVCg1PLTJIexZNFJSiMoB7rmiPgjRHESb0DFFRNoUKsd-GW9Txx9Pxr_XJTqmjuwggQWAC6yQm2IoUVoKAMER2MFtcjCmuwAZQ8eJzEw-gnUCLzEfkCOfPgZTngB9uhz-slkzzWQ1YNRiMEq8_af975O5h4uuuL26v-mQeQ9hBHrB-A5plcOR2QUQVKq9iuk_AW-r_zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver-Loaded+Aluminosilicate+Aerogels+As+Iodine+Sorbents&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Riley%2C+Brian+J&rft.au=Kroll%2C+Jared+O&rft.au=Peterson%2C+Jacob+A&rft.au=Maty%C3%A1%C5%A1%2C+Josef&rft.date=2017-09-27&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=9&rft.issue=38&rft.spage=32907&rft_id=info:doi/10.1021%2Facsami.7b10290&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon