Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices
Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 10; pp. 11825 - 11832 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g–1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g–1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices. |
---|---|
AbstractList | Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS
) nanosheets on carbonized silk fabric (MoS
/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS
/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS
/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g
, respectively. The MoS
/CSilk electrode exhibited a high capacity of 810 mA h g
with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS
/CSilk and the synergistic effect of CSilk and MoS
. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices. Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g-1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g-1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g-1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g-1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices. Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS₂) nanosheets on carbonized silk fabric (MoS₂/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS₂/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS₂/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g–¹, respectively. The MoS₂/CSilk electrode exhibited a high capacity of 810 mA h g–¹ with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS₂/CSilk and the synergistic effect of CSilk and MoS₂. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices. Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g–1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g–1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices. |
Author | Yu, Peng Liang, Xiaoping Wang, Haomin Wang, Huimin Lu, Wangdong Jian, Muqiang Zhang, Yingying |
AuthorAffiliation | Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry – name: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology |
Author_xml | – sequence: 1 givenname: Wangdong surname: Lu fullname: Lu, Wangdong organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry – sequence: 2 givenname: Peng surname: Yu fullname: Yu, Peng organization: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology – sequence: 3 givenname: Muqiang surname: Jian fullname: Jian, Muqiang organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry – sequence: 4 givenname: Haomin surname: Wang fullname: Wang, Haomin organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry – sequence: 5 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry – sequence: 6 givenname: Xiaoping orcidid: 0000-0002-2119-1921 surname: Liang fullname: Liang, Xiaoping organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry – sequence: 7 givenname: Yingying orcidid: 0000-0002-8448-3059 surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32054269$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1vFCEUhompsR9666Xh0pjMCgwzO1w221ZN6keyVS_JgTmzUhloYca4_gh_szS79cKkMSE5HHjeE3jfY3IQYkBCnnO24Ezw12AzjG6hjOCs7R6RI66krDrRiIO_eykPyXHO14y1tWDNE3J4V6Ro1RH5_T76rekxzCM9c3n2g-uRfoAQ8zfEKdNT7zYBe_oF0-QseL-lMdAVJBOD-1Uu1s5_pxdgkrMUMl2PkCZ6hT8n55EOMdGvCAlMaT4lzHlOWK0xZBc2FEJPzwOmzZae4Q9nMT8ljwfwGZ_t6wn5fHF-tXpbXX588251elmBFGqqhiWvrYWlKF9qeMdk23EBVnbSCDaI1pRl-n6plEVghey7uu6FlaozBpmqT8jL3dybFG9nzJMeXbboPQSMc9ZCMtZwtWzr_6N106hGlLcU9MUenc2Ivb5Jrrix1fd2F0DuAJtizgkHbd0Ek4thSuC85kzfpap3qep9qkW2-Ed2P_lBwaudoJzr6zinUMx8CP4Di6m0zg |
CitedBy_id | crossref_primary_10_1073_pnas_2318391121 crossref_primary_10_1021_acsaelm_1c00375 crossref_primary_10_1016_j_eng_2023_06_018 crossref_primary_10_1039_D3TC02960C crossref_primary_10_1039_D1TA06741A crossref_primary_10_1021_acsami_1c07976 crossref_primary_10_1021_acs_chemrev_3c00147 crossref_primary_10_1039_D1TA02791C crossref_primary_10_1016_j_cej_2021_130364 crossref_primary_10_1016_j_rser_2023_113999 crossref_primary_10_1088_1361_6439_ad5cfd crossref_primary_10_1021_acsaelm_0c00200 crossref_primary_10_1007_s42765_024_00479_5 crossref_primary_10_1016_j_isci_2021_103477 crossref_primary_10_1016_j_scib_2021_10_005 crossref_primary_10_1007_s40843_022_2397_y crossref_primary_10_1039_D2TA04706C crossref_primary_10_1109_JSEN_2020_3033047 crossref_primary_10_3390_polym14173670 crossref_primary_10_3390_ma14206073 crossref_primary_10_1109_JFLEX_2023_3339587 crossref_primary_10_34133_research_0157 crossref_primary_10_1016_j_sna_2024_116166 crossref_primary_10_1021_acsami_2c04192 crossref_primary_10_1016_j_bioadv_2024_213949 crossref_primary_10_1016_j_nanoen_2024_109801 crossref_primary_10_1021_acsami_1c12915 crossref_primary_10_1002_admt_202201137 crossref_primary_10_1080_19475411_2021_1948457 crossref_primary_10_1021_acsaenm_4c00644 crossref_primary_10_1021_acsami_2c00980 crossref_primary_10_3390_electrochem1040022 crossref_primary_10_1016_j_cej_2023_145534 crossref_primary_10_1002_adma_202414620 crossref_primary_10_3390_polym13050813 crossref_primary_10_1007_s12598_024_03157_y crossref_primary_10_1007_s42765_021_00101_y crossref_primary_10_1007_s11664_022_09922_y crossref_primary_10_1080_15583724_2021_1901737 crossref_primary_10_1007_s44258_023_00001_3 crossref_primary_10_1016_j_ijbiomac_2021_11_122 crossref_primary_10_1016_j_nantod_2023_101873 crossref_primary_10_1021_acsami_1c01961 crossref_primary_10_3390_sym16091242 crossref_primary_10_1016_j_isci_2022_104174 crossref_primary_10_1039_D3RA05730E crossref_primary_10_1002_admt_202201503 crossref_primary_10_1021_acsnano_2c06069 crossref_primary_10_1002_aenm_202100519 crossref_primary_10_3390_s24134321 crossref_primary_10_1016_j_nanoen_2023_108367 crossref_primary_10_1109_JSEN_2024_3391340 crossref_primary_10_1016_j_cej_2022_138193 crossref_primary_10_1016_j_cis_2022_102602 crossref_primary_10_1039_D2TA07653E crossref_primary_10_1002_adma_202313228 crossref_primary_10_1016_j_coco_2024_102122 crossref_primary_10_1016_j_eng_2021_12_017 crossref_primary_10_1016_j_isci_2021_102716 crossref_primary_10_1063_5_0060344 crossref_primary_10_1002_admt_202100773 crossref_primary_10_1039_D0TA03048A crossref_primary_10_1109_JSEN_2021_3060425 crossref_primary_10_1039_D3RA08471J crossref_primary_10_1021_acsami_2c16730 crossref_primary_10_1016_j_cej_2021_133458 crossref_primary_10_1021_acsami_0c20852 crossref_primary_10_1002_adem_202001187 crossref_primary_10_1002_smll_202306655 crossref_primary_10_1007_s42765_023_00338_9 crossref_primary_10_1016_j_nanoen_2023_108988 crossref_primary_10_1021_acsami_1c04256 crossref_primary_10_2139_ssrn_4110659 crossref_primary_10_1039_D3EE03520D crossref_primary_10_1021_acsnano_3c08132 |
Cites_doi | 10.1038/ncomms8260 10.1038/nnano.2010.279 10.1016/j.nanoen.2016.02.053 10.1002/adfm.201401267 10.1038/ncomms4132 10.1021/ja501686w 10.1002/adma.201600408 10.1002/adma.201504239 10.1007/s11249-011-9774-x 10.1038/ncomms5779 10.1002/adma.201603266 10.1002/adfm.201404078 10.1039/c3cc38780a 10.1021/nn4037514 10.1038/nmat3711 10.1038/nnano.2012.192 10.1002/smll.201403036 10.1002/adma.201703700 10.1002/adma.201603395 10.1002/adfm.201606066 10.1002/adfm.201605657 10.1002/adma.201404850 10.1126/science.1206157 10.1039/C3TA14744D 10.1021/acsami.7b13356 10.1038/nnano.2011.36 10.1038/nchem.1589 10.1038/ncomms2832 10.1002/aelm.201700193 10.1126/sciadv.1700015 10.1002/aenm.201601048 10.1002/aenm.201702909 10.1002/adma.201304248 10.1038/ncomms4002 10.1002/adma.201400918 10.1038/nmat3380 10.1038/s41467-017-02685-9 10.1002/anie.201407103 10.1002/adma.201203999 10.1126/science.1234855 10.1126/science.aac5082 10.1002/adma.201601572 10.1021/nn1003937 10.1002/adma.201504244 10.1073/pnas.0401918101 10.1021/acsami.5b11492 10.1126/science.aag2879 10.1002/adfm.201604795 10.1038/nphoton.2013.191 10.1038/nnano.2011.184 10.1002/adma.201505124 10.1002/adma.201503288 10.1021/acsami.6b06984 10.1002/adma.201603527 10.1038/nenergy.2016.138 10.1002/adma.201305182 10.1021/nn200659w 10.1103/PhysRevB.44.5745 10.1002/adfm.201503230 10.1039/C7TC01962A |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b21068 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 11832 |
ExternalDocumentID | 32054269 10_1021_acsami_9b21068 b498488709 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-f713cca72006518046812ac484b20f26b26bbdd799cea0ccad833d2c498bbe093 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 04:22:17 EDT 2025 Fri Jul 11 01:08:54 EDT 2025 Thu Jan 02 22:58:37 EST 2025 Tue Jul 01 01:48:30 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Thu Aug 27 22:09:02 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | carbonized silk energy devices hierarchical structures flexible pressure sensors molybdenum disulfide nanosheets |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-f713cca72006518046812ac484b20f26b26bbdd799cea0ccad833d2c498bbe093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8448-3059 0000-0002-2119-1921 |
PMID | 32054269 |
PQID | 2355952720 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2400519763 proquest_miscellaneous_2355952720 pubmed_primary_32054269 crossref_citationtrail_10_1021_acsami_9b21068 crossref_primary_10_1021_acsami_9b21068 acs_journals_10_1021_acsami_9b21068 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-11 |
PublicationDateYYYYMMDD | 2020-03-11 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1038/ncomms8260 – ident: ref40/cit40 doi: 10.1038/nnano.2010.279 – ident: ref35/cit35 doi: 10.1016/j.nanoen.2016.02.053 – ident: ref58/cit58 doi: 10.1002/adfm.201401267 – ident: ref55/cit55 doi: 10.1038/ncomms4132 – ident: ref60/cit60 doi: 10.1021/ja501686w – ident: ref56/cit56 doi: 10.1002/adma.201600408 – ident: ref6/cit6 doi: 10.1002/adma.201504239 – ident: ref51/cit51 doi: 10.1007/s11249-011-9774-x – ident: ref25/cit25 doi: 10.1038/ncomms5779 – ident: ref39/cit39 doi: 10.1002/adma.201603266 – ident: ref46/cit46 doi: 10.1002/adfm.201404078 – ident: ref59/cit59 doi: 10.1039/c3cc38780a – ident: ref57/cit57 doi: 10.1021/nn4037514 – ident: ref5/cit5 doi: 10.1038/nmat3711 – ident: ref11/cit11 doi: 10.1038/nnano.2012.192 – ident: ref53/cit53 doi: 10.1002/smll.201403036 – ident: ref26/cit26 doi: 10.1002/adma.201703700 – ident: ref16/cit16 doi: 10.1002/adma.201603395 – ident: ref17/cit17 doi: 10.1002/adfm.201606066 – ident: ref32/cit32 doi: 10.1002/adfm.201605657 – ident: ref54/cit54 doi: 10.1002/adma.201404850 – ident: ref29/cit29 doi: 10.1126/science.1206157 – ident: ref44/cit44 doi: 10.1039/C3TA14744D – ident: ref33/cit33 doi: 10.1021/acsami.7b13356 – ident: ref15/cit15 doi: 10.1038/nnano.2011.36 – ident: ref41/cit41 doi: 10.1038/nchem.1589 – ident: ref1/cit1 doi: 10.1038/ncomms2832 – ident: ref27/cit27 doi: 10.1002/aelm.201700193 – ident: ref13/cit13 doi: 10.1126/sciadv.1700015 – ident: ref24/cit24 doi: 10.1002/aenm.201601048 – ident: ref48/cit48 doi: 10.1002/aenm.201702909 – ident: ref2/cit2 doi: 10.1002/adma.201304248 – ident: ref37/cit37 doi: 10.1038/ncomms4002 – ident: ref34/cit34 doi: 10.1002/adma.201400918 – ident: ref19/cit19 doi: 10.1038/nmat3380 – ident: ref10/cit10 doi: 10.1038/s41467-017-02685-9 – ident: ref45/cit45 doi: 10.1002/anie.201407103 – ident: ref42/cit42 doi: 10.1002/adma.201203999 – ident: ref7/cit7 doi: 10.1126/science.1234855 – ident: ref12/cit12 doi: 10.1126/science.aac5082 – ident: ref31/cit31 doi: 10.1002/adma.201601572 – ident: ref50/cit50 doi: 10.1021/nn1003937 – ident: ref3/cit3 doi: 10.1002/adma.201504244 – ident: ref4/cit4 doi: 10.1073/pnas.0401918101 – ident: ref47/cit47 doi: 10.1021/acsami.5b11492 – ident: ref14/cit14 doi: 10.1126/science.aag2879 – ident: ref21/cit21 doi: 10.1002/adfm.201604795 – ident: ref8/cit8 doi: 10.1038/nphoton.2013.191 – ident: ref36/cit36 doi: 10.1038/nnano.2011.184 – ident: ref38/cit38 doi: 10.1002/adma.201505124 – ident: ref18/cit18 doi: 10.1002/adma.201503288 – ident: ref20/cit20 doi: 10.1021/acsami.6b06984 – ident: ref9/cit9 doi: 10.1002/adma.201603527 – ident: ref22/cit22 doi: 10.1038/nenergy.2016.138 – ident: ref52/cit52 doi: 10.1002/adma.201305182 – ident: ref43/cit43 doi: 10.1021/nn200659w – ident: ref49/cit49 doi: 10.1103/PhysRevB.44.5745 – ident: ref28/cit28 doi: 10.1002/adfm.201503230 – ident: ref30/cit30 doi: 10.1039/C7TC01962A |
SSID | ssj0063205 |
Score | 2.5662684 |
Snippet | Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11825 |
SubjectTerms | artificial intelligence electrodes electronics energy lithium batteries molybdenum disulfide monitoring nanosheets physiology robots silk fabric |
Title | Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices |
URI | http://dx.doi.org/10.1021/acsami.9b21068 https://www.ncbi.nlm.nih.gov/pubmed/32054269 https://www.proquest.com/docview/2355952720 https://www.proquest.com/docview/2400519763 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODAm7JA0SCQOLkkTjaxj9W2qwqpXLaF3iKP7bSrpkm1yR7aH9HfzNjJlke1FCm3TJTEnvnmG3tmzNinEo3SOk64VM7yVCrNFTlqrjIZYYIYGecLnA--ZftH6dfj8fGv9Y6_d_BF_EWb1h-Fo5CCk0zeZw9ERhbsSdBktsLcLBEhWZEi8pRL8lir9oy3nvdOyLR_OqE1zDJ4mOmTvt1RGxoT-sSSs-1lh9vm6nbbxjs__il7PNBM2On14hm75-rn7NFvzQdfsOuDprpE61PhYXfeLqtybh0Q2jbtqXNdCzvV_IRAGL6H1GtdVZfQ1DDRCyQcuKIbs3l1BlONBKWgW5idkxrCIaE9IQ0QGYYfZEa-NAv6IsSF4zOfL1-fgK4t7IWyQ9h1AaxesqPp3uFknw-nM3BNPqzjJYW3NP25X5MYx5LibOIK2qQyRRGVIkO60NpcKeN0RJJWJokVJlUS0UUqecU26qZ2rxkIz6socMly51LCASxLO0bMtTS5pcdH7CMNZDFYV1uEjXMRF_3oFsPojhhfTWphhgbn_pyNaq385xv5i761x1rJDysdKcj6_JaKrl2zbAtBdE2N_V72P2TSwJMJyEdss1ewm_d5vfXFxG_-6w_fsofCh_s-nTB-xza6xdJtESfq8H0wh59UnQji |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5QAceD_K0wgkTt7Nq4l9rLpbFdiukNqFvUUe21mqDQmq08Puj-A3M3aS8lIRSDkl4yR2xt98E8-MCXldgBJShjHjwmiWcCGZQEPNRMoDiAECZVyC8-w4nZ4k706Hpztkv8-FwZeweCfrF_F_VBcI9_Gc2xFHAPooKb9CriITiZxKj8bzHnrTOPIxi-iYJ4yj4eqrNP7R3tkiZX-1RVsIpjc0k1vkw-YVfXzJ-d66gT11-Vv1xv_ow21ysyOddNRqyR2yY6q75MZPpQjvkW-zurwA7QLj6cHSrstiqQ1F7K3tZ2MaS0fl8gwhmX70gdiyLC9oXdGxXAGiwiVemC_LczqRgMBKpaXzL6iUdIHYj7hDkRrTTzipXKIWbVMSV4bNXfR8dUZlpemhT0KkB8ZD131yMjlcjKes26uBSbRoDSvQ2UVlyNwfimHI0etG5iBVwhOIgiJKAQ_QOhNCGRmgpOZxrCOVCA5gAhE_ILtVXZlHhEaOZaEbk2bGJIgKUBR6CJBJrjKNzQfkFQ5k3s01m_tl9CjM29HNu9EdENZ_21x15c7drhvlVvk3G_mvbaGPrZIve1XJcS66BRZZmXpt8wjJmxi6le2_yCSeNSOsD8jDVs82z3Pq61KLH_9TD1-Qa9PF7Cg_env8_gm5HrkfAS7QMHxKdpvV2jxDttTAcz9DvgMwMhFD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9swDBa2Dhi2h91HdmrYgD2p9RVbegySBt3RYkDSrW-GKMldUM8uYueh_RH7zSNlJ9iBDBvgJ5uyLZn8SJqHGHtTgFFah7GQylmRSKWFQkUtVCoDiAEC46jA-fAoPThO3p8MT_o6bqqFwZdo8E6ND-KTVJ_bou8wEO7hedoVRwH6Kam8yq5RzI7YejSereE3jSOft4jOeSIkKq91p8Y_xpM-Ms2v-miLkemVzfQ2m29e0-eYnO2uWtg1l791cPzPedxht3rjk486brnLrrjqHrv5U0vC--z7YV1egKUEeT5ZNKuyWFjHEYPr5qtzbcNH5eIUoZl_9gnZuiwveF3xsV4CosMlXpgtyjM-1YAAy3XDZ9-QOfkcdQDiD0cTmX9B4aKCLd6VJi6dmFEWfXXKdWX5vi9G5BPnIewBO57uz8cHot-zQWjUbK0o0OlFpsjoT8UwlOh9owWhTSITiIIiSgEPsDZTyjgdIKWVcWwjkygJ4AIVP2Q7VV25x4xHZG2hO5NmziWIDlAUdgiQaWkyi8MH7DUuZN7LXJP7cHoU5t3q5v3qDphYf9_c9G3PafeNciv92w39edfwYyvlqzW75CiTFGjRlatXTR6hEaeGFOH-C03irWeE9wF71PHa5nnEwlRi_OSfZviSXf80meYf3x19eMpuRPQ_gPINw2dsp12u3HM0mlp44YXkB_JME8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdenum+Disulfide+Nanosheets+Aligned+Vertically+on+Carbonized+Silk+Fabric+as+Smart+Textile+for+Wearable+Pressure-Sensing+and+Energy+Devices&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lu%2C+Wangdong&rft.au=Yu%2C+Peng&rft.au=Jian%2C+Muqiang&rft.au=Wang%2C+Haomin&rft.date=2020-03-11&rft.issn=1944-8252&rft.volume=12&rft.issue=10+p.11825-11832&rft.spage=11825&rft.epage=11832&rft_id=info:doi/10.1021%2Facsami.9b21068&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |