Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices

Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 10; pp. 11825 - 11832
Main Authors Lu, Wangdong, Yu, Peng, Jian, Muqiang, Wang, Haomin, Wang, Huimin, Liang, Xiaoping, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g–1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g–1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.
AbstractList Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS ) nanosheets on carbonized silk fabric (MoS /CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS /CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS /CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g , respectively. The MoS /CSilk electrode exhibited a high capacity of 810 mA h g with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS /CSilk and the synergistic effect of CSilk and MoS . The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.
Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g-1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g-1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g-1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g-1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.
Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS₂) nanosheets on carbonized silk fabric (MoS₂/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS₂/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS₂/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g–¹, respectively. The MoS₂/CSilk electrode exhibited a high capacity of 810 mA h g–¹ with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS₂/CSilk and the synergistic effect of CSilk and MoS₂. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.
Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g–1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g–1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.
Author Yu, Peng
Liang, Xiaoping
Wang, Haomin
Wang, Huimin
Lu, Wangdong
Jian, Muqiang
Zhang, Yingying
AuthorAffiliation Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
AuthorAffiliation_xml – name: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
– name: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
Author_xml – sequence: 1
  givenname: Wangdong
  surname: Lu
  fullname: Lu, Wangdong
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
– sequence: 2
  givenname: Peng
  surname: Yu
  fullname: Yu, Peng
  organization: Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
– sequence: 3
  givenname: Muqiang
  surname: Jian
  fullname: Jian, Muqiang
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
– sequence: 4
  givenname: Haomin
  surname: Wang
  fullname: Wang, Haomin
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
– sequence: 5
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
– sequence: 6
  givenname: Xiaoping
  orcidid: 0000-0002-2119-1921
  surname: Liang
  fullname: Liang, Xiaoping
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
– sequence: 7
  givenname: Yingying
  orcidid: 0000-0002-8448-3059
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32054269$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEUhompsR9666Xh0pjMCgwzO1w221ZN6keyVS_JgTmzUhloYca4_gh_szS79cKkMSE5HHjeE3jfY3IQYkBCnnO24Ezw12AzjG6hjOCs7R6RI66krDrRiIO_eykPyXHO14y1tWDNE3J4V6Ro1RH5_T76rekxzCM9c3n2g-uRfoAQ8zfEKdNT7zYBe_oF0-QseL-lMdAVJBOD-1Uu1s5_pxdgkrMUMl2PkCZ6hT8n55EOMdGvCAlMaT4lzHlOWK0xZBc2FEJPzwOmzZae4Q9nMT8ljwfwGZ_t6wn5fHF-tXpbXX588251elmBFGqqhiWvrYWlKF9qeMdk23EBVnbSCDaI1pRl-n6plEVghey7uu6FlaozBpmqT8jL3dybFG9nzJMeXbboPQSMc9ZCMtZwtWzr_6N106hGlLcU9MUenc2Ivb5Jrrix1fd2F0DuAJtizgkHbd0Ek4thSuC85kzfpap3qep9qkW2-Ed2P_lBwaudoJzr6zinUMx8CP4Di6m0zg
CitedBy_id crossref_primary_10_1073_pnas_2318391121
crossref_primary_10_1021_acsaelm_1c00375
crossref_primary_10_1016_j_eng_2023_06_018
crossref_primary_10_1039_D3TC02960C
crossref_primary_10_1039_D1TA06741A
crossref_primary_10_1021_acsami_1c07976
crossref_primary_10_1021_acs_chemrev_3c00147
crossref_primary_10_1039_D1TA02791C
crossref_primary_10_1016_j_cej_2021_130364
crossref_primary_10_1016_j_rser_2023_113999
crossref_primary_10_1088_1361_6439_ad5cfd
crossref_primary_10_1021_acsaelm_0c00200
crossref_primary_10_1007_s42765_024_00479_5
crossref_primary_10_1016_j_isci_2021_103477
crossref_primary_10_1016_j_scib_2021_10_005
crossref_primary_10_1007_s40843_022_2397_y
crossref_primary_10_1039_D2TA04706C
crossref_primary_10_1109_JSEN_2020_3033047
crossref_primary_10_3390_polym14173670
crossref_primary_10_3390_ma14206073
crossref_primary_10_1109_JFLEX_2023_3339587
crossref_primary_10_34133_research_0157
crossref_primary_10_1016_j_sna_2024_116166
crossref_primary_10_1021_acsami_2c04192
crossref_primary_10_1016_j_bioadv_2024_213949
crossref_primary_10_1016_j_nanoen_2024_109801
crossref_primary_10_1021_acsami_1c12915
crossref_primary_10_1002_admt_202201137
crossref_primary_10_1080_19475411_2021_1948457
crossref_primary_10_1021_acsaenm_4c00644
crossref_primary_10_1021_acsami_2c00980
crossref_primary_10_3390_electrochem1040022
crossref_primary_10_1016_j_cej_2023_145534
crossref_primary_10_1002_adma_202414620
crossref_primary_10_3390_polym13050813
crossref_primary_10_1007_s12598_024_03157_y
crossref_primary_10_1007_s42765_021_00101_y
crossref_primary_10_1007_s11664_022_09922_y
crossref_primary_10_1080_15583724_2021_1901737
crossref_primary_10_1007_s44258_023_00001_3
crossref_primary_10_1016_j_ijbiomac_2021_11_122
crossref_primary_10_1016_j_nantod_2023_101873
crossref_primary_10_1021_acsami_1c01961
crossref_primary_10_3390_sym16091242
crossref_primary_10_1016_j_isci_2022_104174
crossref_primary_10_1039_D3RA05730E
crossref_primary_10_1002_admt_202201503
crossref_primary_10_1021_acsnano_2c06069
crossref_primary_10_1002_aenm_202100519
crossref_primary_10_3390_s24134321
crossref_primary_10_1016_j_nanoen_2023_108367
crossref_primary_10_1109_JSEN_2024_3391340
crossref_primary_10_1016_j_cej_2022_138193
crossref_primary_10_1016_j_cis_2022_102602
crossref_primary_10_1039_D2TA07653E
crossref_primary_10_1002_adma_202313228
crossref_primary_10_1016_j_coco_2024_102122
crossref_primary_10_1016_j_eng_2021_12_017
crossref_primary_10_1016_j_isci_2021_102716
crossref_primary_10_1063_5_0060344
crossref_primary_10_1002_admt_202100773
crossref_primary_10_1039_D0TA03048A
crossref_primary_10_1109_JSEN_2021_3060425
crossref_primary_10_1039_D3RA08471J
crossref_primary_10_1021_acsami_2c16730
crossref_primary_10_1016_j_cej_2021_133458
crossref_primary_10_1021_acsami_0c20852
crossref_primary_10_1002_adem_202001187
crossref_primary_10_1002_smll_202306655
crossref_primary_10_1007_s42765_023_00338_9
crossref_primary_10_1016_j_nanoen_2023_108988
crossref_primary_10_1021_acsami_1c04256
crossref_primary_10_2139_ssrn_4110659
crossref_primary_10_1039_D3EE03520D
crossref_primary_10_1021_acsnano_3c08132
Cites_doi 10.1038/ncomms8260
10.1038/nnano.2010.279
10.1016/j.nanoen.2016.02.053
10.1002/adfm.201401267
10.1038/ncomms4132
10.1021/ja501686w
10.1002/adma.201600408
10.1002/adma.201504239
10.1007/s11249-011-9774-x
10.1038/ncomms5779
10.1002/adma.201603266
10.1002/adfm.201404078
10.1039/c3cc38780a
10.1021/nn4037514
10.1038/nmat3711
10.1038/nnano.2012.192
10.1002/smll.201403036
10.1002/adma.201703700
10.1002/adma.201603395
10.1002/adfm.201606066
10.1002/adfm.201605657
10.1002/adma.201404850
10.1126/science.1206157
10.1039/C3TA14744D
10.1021/acsami.7b13356
10.1038/nnano.2011.36
10.1038/nchem.1589
10.1038/ncomms2832
10.1002/aelm.201700193
10.1126/sciadv.1700015
10.1002/aenm.201601048
10.1002/aenm.201702909
10.1002/adma.201304248
10.1038/ncomms4002
10.1002/adma.201400918
10.1038/nmat3380
10.1038/s41467-017-02685-9
10.1002/anie.201407103
10.1002/adma.201203999
10.1126/science.1234855
10.1126/science.aac5082
10.1002/adma.201601572
10.1021/nn1003937
10.1002/adma.201504244
10.1073/pnas.0401918101
10.1021/acsami.5b11492
10.1126/science.aag2879
10.1002/adfm.201604795
10.1038/nphoton.2013.191
10.1038/nnano.2011.184
10.1002/adma.201505124
10.1002/adma.201503288
10.1021/acsami.6b06984
10.1002/adma.201603527
10.1038/nenergy.2016.138
10.1002/adma.201305182
10.1021/nn200659w
10.1103/PhysRevB.44.5745
10.1002/adfm.201503230
10.1039/C7TC01962A
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b21068
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 11832
ExternalDocumentID 32054269
10_1021_acsami_9b21068
b498488709
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-f713cca72006518046812ac484b20f26b26bbdd799cea0ccad833d2c498bbe093
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 04:22:17 EDT 2025
Fri Jul 11 01:08:54 EDT 2025
Thu Jan 02 22:58:37 EST 2025
Tue Jul 01 01:48:30 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Thu Aug 27 22:09:02 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords carbonized silk
energy devices
hierarchical structures
flexible pressure sensors
molybdenum disulfide nanosheets
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-f713cca72006518046812ac484b20f26b26bbdd799cea0ccad833d2c498bbe093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8448-3059
0000-0002-2119-1921
PMID 32054269
PQID 2355952720
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2400519763
proquest_miscellaneous_2355952720
pubmed_primary_32054269
crossref_citationtrail_10_1021_acsami_9b21068
crossref_primary_10_1021_acsami_9b21068
acs_journals_10_1021_acsami_9b21068
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-11
PublicationDateYYYYMMDD 2020-03-11
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1038/ncomms8260
– ident: ref40/cit40
  doi: 10.1038/nnano.2010.279
– ident: ref35/cit35
  doi: 10.1016/j.nanoen.2016.02.053
– ident: ref58/cit58
  doi: 10.1002/adfm.201401267
– ident: ref55/cit55
  doi: 10.1038/ncomms4132
– ident: ref60/cit60
  doi: 10.1021/ja501686w
– ident: ref56/cit56
  doi: 10.1002/adma.201600408
– ident: ref6/cit6
  doi: 10.1002/adma.201504239
– ident: ref51/cit51
  doi: 10.1007/s11249-011-9774-x
– ident: ref25/cit25
  doi: 10.1038/ncomms5779
– ident: ref39/cit39
  doi: 10.1002/adma.201603266
– ident: ref46/cit46
  doi: 10.1002/adfm.201404078
– ident: ref59/cit59
  doi: 10.1039/c3cc38780a
– ident: ref57/cit57
  doi: 10.1021/nn4037514
– ident: ref5/cit5
  doi: 10.1038/nmat3711
– ident: ref11/cit11
  doi: 10.1038/nnano.2012.192
– ident: ref53/cit53
  doi: 10.1002/smll.201403036
– ident: ref26/cit26
  doi: 10.1002/adma.201703700
– ident: ref16/cit16
  doi: 10.1002/adma.201603395
– ident: ref17/cit17
  doi: 10.1002/adfm.201606066
– ident: ref32/cit32
  doi: 10.1002/adfm.201605657
– ident: ref54/cit54
  doi: 10.1002/adma.201404850
– ident: ref29/cit29
  doi: 10.1126/science.1206157
– ident: ref44/cit44
  doi: 10.1039/C3TA14744D
– ident: ref33/cit33
  doi: 10.1021/acsami.7b13356
– ident: ref15/cit15
  doi: 10.1038/nnano.2011.36
– ident: ref41/cit41
  doi: 10.1038/nchem.1589
– ident: ref1/cit1
  doi: 10.1038/ncomms2832
– ident: ref27/cit27
  doi: 10.1002/aelm.201700193
– ident: ref13/cit13
  doi: 10.1126/sciadv.1700015
– ident: ref24/cit24
  doi: 10.1002/aenm.201601048
– ident: ref48/cit48
  doi: 10.1002/aenm.201702909
– ident: ref2/cit2
  doi: 10.1002/adma.201304248
– ident: ref37/cit37
  doi: 10.1038/ncomms4002
– ident: ref34/cit34
  doi: 10.1002/adma.201400918
– ident: ref19/cit19
  doi: 10.1038/nmat3380
– ident: ref10/cit10
  doi: 10.1038/s41467-017-02685-9
– ident: ref45/cit45
  doi: 10.1002/anie.201407103
– ident: ref42/cit42
  doi: 10.1002/adma.201203999
– ident: ref7/cit7
  doi: 10.1126/science.1234855
– ident: ref12/cit12
  doi: 10.1126/science.aac5082
– ident: ref31/cit31
  doi: 10.1002/adma.201601572
– ident: ref50/cit50
  doi: 10.1021/nn1003937
– ident: ref3/cit3
  doi: 10.1002/adma.201504244
– ident: ref4/cit4
  doi: 10.1073/pnas.0401918101
– ident: ref47/cit47
  doi: 10.1021/acsami.5b11492
– ident: ref14/cit14
  doi: 10.1126/science.aag2879
– ident: ref21/cit21
  doi: 10.1002/adfm.201604795
– ident: ref8/cit8
  doi: 10.1038/nphoton.2013.191
– ident: ref36/cit36
  doi: 10.1038/nnano.2011.184
– ident: ref38/cit38
  doi: 10.1002/adma.201505124
– ident: ref18/cit18
  doi: 10.1002/adma.201503288
– ident: ref20/cit20
  doi: 10.1021/acsami.6b06984
– ident: ref9/cit9
  doi: 10.1002/adma.201603527
– ident: ref22/cit22
  doi: 10.1038/nenergy.2016.138
– ident: ref52/cit52
  doi: 10.1002/adma.201305182
– ident: ref43/cit43
  doi: 10.1021/nn200659w
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.44.5745
– ident: ref28/cit28
  doi: 10.1002/adfm.201503230
– ident: ref30/cit30
  doi: 10.1039/C7TC01962A
SSID ssj0063205
Score 2.5662684
Snippet Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11825
SubjectTerms artificial intelligence
electrodes
electronics
energy
lithium batteries
molybdenum disulfide
monitoring
nanosheets
physiology
robots
silk fabric
Title Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices
URI http://dx.doi.org/10.1021/acsami.9b21068
https://www.ncbi.nlm.nih.gov/pubmed/32054269
https://www.proquest.com/docview/2355952720
https://www.proquest.com/docview/2400519763
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODAm7JA0SCQOLkkTjaxj9W2qwqpXLaF3iKP7bSrpkm1yR7aH9HfzNjJlke1FCm3TJTEnvnmG3tmzNinEo3SOk64VM7yVCrNFTlqrjIZYYIYGecLnA--ZftH6dfj8fGv9Y6_d_BF_EWb1h-Fo5CCk0zeZw9ERhbsSdBktsLcLBEhWZEi8pRL8lir9oy3nvdOyLR_OqE1zDJ4mOmTvt1RGxoT-sSSs-1lh9vm6nbbxjs__il7PNBM2On14hm75-rn7NFvzQdfsOuDprpE61PhYXfeLqtybh0Q2jbtqXNdCzvV_IRAGL6H1GtdVZfQ1DDRCyQcuKIbs3l1BlONBKWgW5idkxrCIaE9IQ0QGYYfZEa-NAv6IsSF4zOfL1-fgK4t7IWyQ9h1AaxesqPp3uFknw-nM3BNPqzjJYW3NP25X5MYx5LibOIK2qQyRRGVIkO60NpcKeN0RJJWJokVJlUS0UUqecU26qZ2rxkIz6socMly51LCASxLO0bMtTS5pcdH7CMNZDFYV1uEjXMRF_3oFsPojhhfTWphhgbn_pyNaq385xv5i761x1rJDysdKcj6_JaKrl2zbAtBdE2N_V72P2TSwJMJyEdss1ewm_d5vfXFxG_-6w_fsofCh_s-nTB-xza6xdJtESfq8H0wh59UnQji
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5QAceD_K0wgkTt7Nq4l9rLpbFdiukNqFvUUe21mqDQmq08Puj-A3M3aS8lIRSDkl4yR2xt98E8-MCXldgBJShjHjwmiWcCGZQEPNRMoDiAECZVyC8-w4nZ4k706Hpztkv8-FwZeweCfrF_F_VBcI9_Gc2xFHAPooKb9CriITiZxKj8bzHnrTOPIxi-iYJ4yj4eqrNP7R3tkiZX-1RVsIpjc0k1vkw-YVfXzJ-d66gT11-Vv1xv_ow21ysyOddNRqyR2yY6q75MZPpQjvkW-zurwA7QLj6cHSrstiqQ1F7K3tZ2MaS0fl8gwhmX70gdiyLC9oXdGxXAGiwiVemC_LczqRgMBKpaXzL6iUdIHYj7hDkRrTTzipXKIWbVMSV4bNXfR8dUZlpemhT0KkB8ZD131yMjlcjKes26uBSbRoDSvQ2UVlyNwfimHI0etG5iBVwhOIgiJKAQ_QOhNCGRmgpOZxrCOVCA5gAhE_ILtVXZlHhEaOZaEbk2bGJIgKUBR6CJBJrjKNzQfkFQ5k3s01m_tl9CjM29HNu9EdENZ_21x15c7drhvlVvk3G_mvbaGPrZIve1XJcS66BRZZmXpt8wjJmxi6le2_yCSeNSOsD8jDVs82z3Pq61KLH_9TD1-Qa9PF7Cg_env8_gm5HrkfAS7QMHxKdpvV2jxDttTAcz9DvgMwMhFD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9swDBa2Dhi2h91HdmrYgD2p9RVbegySBt3RYkDSrW-GKMldUM8uYueh_RH7zSNlJ9iBDBvgJ5uyLZn8SJqHGHtTgFFah7GQylmRSKWFQkUtVCoDiAEC46jA-fAoPThO3p8MT_o6bqqFwZdo8E6ND-KTVJ_bou8wEO7hedoVRwH6Kam8yq5RzI7YejSereE3jSOft4jOeSIkKq91p8Y_xpM-Ms2v-miLkemVzfQ2m29e0-eYnO2uWtg1l791cPzPedxht3rjk486brnLrrjqHrv5U0vC--z7YV1egKUEeT5ZNKuyWFjHEYPr5qtzbcNH5eIUoZl_9gnZuiwveF3xsV4CosMlXpgtyjM-1YAAy3XDZ9-QOfkcdQDiD0cTmX9B4aKCLd6VJi6dmFEWfXXKdWX5vi9G5BPnIewBO57uz8cHot-zQWjUbK0o0OlFpsjoT8UwlOh9owWhTSITiIIiSgEPsDZTyjgdIKWVcWwjkygJ4AIVP2Q7VV25x4xHZG2hO5NmziWIDlAUdgiQaWkyi8MH7DUuZN7LXJP7cHoU5t3q5v3qDphYf9_c9G3PafeNciv92w39edfwYyvlqzW75CiTFGjRlatXTR6hEaeGFOH-C03irWeE9wF71PHa5nnEwlRi_OSfZviSXf80meYf3x19eMpuRPQ_gPINw2dsp12u3HM0mlp44YXkB_JME8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdenum+Disulfide+Nanosheets+Aligned+Vertically+on+Carbonized+Silk+Fabric+as+Smart+Textile+for+Wearable+Pressure-Sensing+and+Energy+Devices&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lu%2C+Wangdong&rft.au=Yu%2C+Peng&rft.au=Jian%2C+Muqiang&rft.au=Wang%2C+Haomin&rft.date=2020-03-11&rft.issn=1944-8252&rft.volume=12&rft.issue=10+p.11825-11832&rft.spage=11825&rft.epage=11832&rft_id=info:doi/10.1021%2Facsami.9b21068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon