Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants

A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal re...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 26; pp. 16584 - 16594
Main Authors Xu, Ziqiang, Li, Man, Li, Xia, Liu, Xiangmei, Ma, Fei, Wu, Shuilin, Yeung, K. W. K, Han, Yong, Chu, Paul K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag+ was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased.
AbstractList A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO₃ solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag⁺ was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased.
A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag+ was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased.
A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag(+) was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased.A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag(+) was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased.
Author Ma, Fei
Liu, Xiangmei
Chu, Paul K
Wu, Shuilin
Han, Yong
Li, Man
Xu, Ziqiang
Li, Xia
Yeung, K. W. K
AuthorAffiliation The University of Hong Kong
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering
Hubei University
Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine
Department of Physics & Materials Science
City University of Hong Kong
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering
Xi’an Jiaotong University
AuthorAffiliation_xml – name: Xi’an Jiaotong University
– name: Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine
– name: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering
– name: City University of Hong Kong
– name: Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering
– name: Department of Physics & Materials Science
– name: The University of Hong Kong
– name: Hubei University
Author_xml – sequence: 1
  givenname: Ziqiang
  surname: Xu
  fullname: Xu, Ziqiang
– sequence: 2
  givenname: Man
  surname: Li
  fullname: Li, Man
– sequence: 3
  givenname: Xia
  surname: Li
  fullname: Li, Xia
– sequence: 4
  givenname: Xiangmei
  surname: Liu
  fullname: Liu, Xiangmei
  email: shuilin.wu@gmail.com
– sequence: 5
  givenname: Fei
  surname: Ma
  fullname: Ma, Fei
– sequence: 6
  givenname: Shuilin
  surname: Wu
  fullname: Wu, Shuilin
– sequence: 7
  givenname: K. W. K
  surname: Yeung
  fullname: Yeung, K. W. K
– sequence: 8
  givenname: Yong
  surname: Han
  fullname: Han, Yong
  email: yonghan@mail.xjtu.edu.cn
– sequence: 9
  givenname: Paul K
  surname: Chu
  fullname: Chu, Paul K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27336202$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLw0AUhQep2IduXUqWIrTOK5NkWeqjhaIL6zrcJBOYkszEmUml_96R1i4EcXUvh-9cLueM0UAbLRG6JnhGMCX3UDpo1UwUmBNBztCIZJxPUxrTwWnnfIjGzm0xFozi-AINacKYoJiO0HKuvSqg9NIqaKJ56dVO-X1k6uhNNTtpowfTySraKA8avIxeQJtPZaWLjA5qtGq7BrR3l-i8hsbJq-OcoPenx81iOV2_Pq8W8_UUOM38VGYyo3ESE-A1QJwkgrGKpRxiUaesyHBa1ZSJpEhJmZRZVpEiTWqWCg44PC_YBN0e7nbWfPTS-bxVrpRNeEKa3uUUY8xYzAn-FyUppjwRlGYBvTmifdHKKu-sasHu85-gAjA7AKU1zllZnxCC8-8m8kMT-bGJYOC_DGWI0CujvQXV_G27O9iCnm9Nb3UI8y_4CxWfmao
CitedBy_id crossref_primary_10_1002_jbm_b_34450
crossref_primary_10_1016_j_apsusc_2023_158533
crossref_primary_10_1016_j_msec_2017_05_115
crossref_primary_10_1021_acsbiomaterials_7b00103
crossref_primary_10_1038_s41598_024_57951_w
crossref_primary_10_1002_adma_202307756
crossref_primary_10_1021_acsnano_0c09617
crossref_primary_10_1016_j_cej_2024_155193
crossref_primary_10_1021_acsbiomaterials_8b00594
crossref_primary_10_3390_met11010092
crossref_primary_10_1007_s12598_021_01754_9
crossref_primary_10_1016_j_saa_2018_07_063
crossref_primary_10_1007_s12598_021_01799_w
crossref_primary_10_1016_j_apsusc_2016_12_158
crossref_primary_10_1016_j_colsurfb_2016_12_016
crossref_primary_10_1016_j_jcis_2022_08_052
crossref_primary_10_1016_j_msec_2019_01_019
crossref_primary_10_1016_j_porgcoat_2020_105711
crossref_primary_10_1016_j_mser_2022_100712
crossref_primary_10_1016_j_bioactmat_2017_02_001
crossref_primary_10_1111_ijac_14083
crossref_primary_10_1016_j_surfcoat_2019_06_007
crossref_primary_10_1039_C8BM00353J
crossref_primary_10_1142_S2251237317400019
crossref_primary_10_1016_j_ceramint_2020_03_004
crossref_primary_10_1007_s12598_019_01225_2
crossref_primary_10_1016_j_jmbbm_2020_103934
crossref_primary_10_1016_j_mtbio_2023_100784
crossref_primary_10_1021_acsami_3c17400
crossref_primary_10_1021_acsami_8b22136
crossref_primary_10_1021_acsami_6b09457
crossref_primary_10_1021_acsami_7b04950
crossref_primary_10_1021_acsami_7b10818
crossref_primary_10_1016_j_mtcomm_2022_104229
crossref_primary_10_1002_jbm_b_34108
crossref_primary_10_1016_j_msec_2017_03_259
crossref_primary_10_3390_ma17235710
crossref_primary_10_1016_j_mtchem_2021_100539
crossref_primary_10_1016_j_cej_2018_04_023
crossref_primary_10_3390_ijms24010272
crossref_primary_10_1016_j_bioactmat_2020_08_001
crossref_primary_10_1021_acsabm_2c00014
crossref_primary_10_1021_acsbiomaterials_9b01695
crossref_primary_10_1016_j_carbpol_2021_117639
crossref_primary_10_1021_acsami_6b15448
crossref_primary_10_1021_acsomega_7b00442
crossref_primary_10_1016_j_apsb_2021_03_019
crossref_primary_10_1039_D1AN01370J
crossref_primary_10_1088_1361_6528_aca2b2
crossref_primary_10_1002_admi_202000057
crossref_primary_10_1016_j_micpath_2020_104134
crossref_primary_10_1016_j_molstruc_2022_134810
crossref_primary_10_1002_jbm_b_35403
crossref_primary_10_1021_acsbiomaterials_8b00857
crossref_primary_10_3390_biology10020137
crossref_primary_10_1016_j_msec_2019_110154
crossref_primary_10_1016_j_apsusc_2019_07_224
crossref_primary_10_1016_j_matchemphys_2023_128228
crossref_primary_10_1039_C9BM01507H
crossref_primary_10_1016_j_surfcoat_2021_127739
crossref_primary_10_1021_acsami_6b09343
crossref_primary_10_1016_j_matpr_2021_01_831
crossref_primary_10_1021_acsami_0c00871
crossref_primary_10_1016_j_cattod_2021_08_016
crossref_primary_10_1039_D2SC02980D
crossref_primary_10_1002_admi_202400164
crossref_primary_10_2174_1573413715666191126093258
crossref_primary_10_1021_acsami_7b04810
crossref_primary_10_1021_acscentsci_8b00177
crossref_primary_10_1021_acsami_8b02527
crossref_primary_10_1039_D3RA00908D
crossref_primary_10_1080_21870764_2021_2006877
crossref_primary_10_1016_j_cej_2020_125783
crossref_primary_10_1016_j_ceramint_2023_07_081
crossref_primary_10_1016_j_surfcoat_2018_02_100
crossref_primary_10_1016_j_matchemphys_2021_125483
crossref_primary_10_1002_smll_201704347
crossref_primary_10_1016_j_biomaterials_2025_123136
crossref_primary_10_3390_ma11081403
crossref_primary_10_1002_jbm_b_34725
crossref_primary_10_1002_adem_202200077
crossref_primary_10_1016_j_jiec_2020_08_008
crossref_primary_10_1016_j_ceramint_2020_02_195
crossref_primary_10_1021_acsami_8b09640
crossref_primary_10_1080_21663831_2023_2250110
crossref_primary_10_1016_S1003_6326_22_66011_4
crossref_primary_10_1016_j_mtcomm_2022_104246
crossref_primary_10_1016_j_matdes_2017_11_018
crossref_primary_10_1039_D1TB01830B
crossref_primary_10_1016_j_ijbiomac_2022_05_015
crossref_primary_10_1021_acsami_7b17351
crossref_primary_10_1021_acsami_1c25014
crossref_primary_10_1116_6_0000625
crossref_primary_10_1016_j_colsurfb_2018_11_003
crossref_primary_10_1021_acsami_7b06702
Cites_doi 10.1002/jps.24001
10.1021/am5045604
10.1533/9781845699246
10.1016/j.actbio.2012.10.017
10.1016/0168-3659(87)90035-6
10.2147/IJN.S45742
10.1021/es201918f
10.1021/cm070845a
10.2147/IJN.S28450
10.1016/j.vacuum.2011.06.011
10.1002/(SICI)1522-9505(19991101)271:1<24::AID-APMC24>3.0.CO;2-L
10.1016/j.biomaterials.2010.08.035
10.1016/j.apsusc.2013.02.130
10.1002/jbm.a.31648
10.1016/j.msec.2015.12.062
10.1016/j.biomaterials.2015.10.035
10.1021/acsami.5b06639
10.1016/j.biomaterials.2008.08.043
10.1016/j.burns.2006.06.020
10.1016/j.apsusc.2009.02.076
10.1016/j.biomaterials.2010.09.066
10.1016/0142-9612(96)83289-3
10.1021/nl802145n
10.1021/es202417t
10.1021/bm100755x
10.1016/j.biomaterials.2006.01.017
10.1002/anie.201205923
10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K
10.1016/j.tsf.2013.03.093
10.1016/j.biomaterials.2013.01.074
10.1016/j.biomaterials.2014.02.005
10.1016/j.chembiol.2005.06.013
10.1016/j.bmcl.2007.03.005
10.1021/nl301934w
10.1016/j.actbio.2010.09.034
10.1007/s10856-012-4596-4
10.1016/j.mser.2004.11.001
10.1088/0957-4484/22/11/115603
10.2147/IJN.S2709
10.1039/C5RA04077A
10.1142/S0218625X09013244
10.1016/j.mser.2014.04.001
10.1016/S0040-6090(98)01102-X
10.1016/j.jdent.2012.01.008
10.1088/0957-4484/18/29/295608
10.1039/c1sm05412k
10.1179/1753555713Y.0000000113
10.1016/j.biomaterials.2003.11.033
10.1002/jbm.b.31463
10.1016/j.actbio.2012.04.004
10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
10.1016/j.carbon.2015.05.084
10.1002/adma.201203370
10.1021/jp903037f
10.2147/IJN.S75999
10.1016/j.electacta.2010.10.099
10.1016/j.actbio.2011.02.037
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.6b04161
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 16594
ExternalDocumentID 27336202
10_1021_acsami_6b04161
b195742855
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-e9e925751a4faa577633d384a56f83b908df2367b81c7c99d1b87f3864a032063
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Jul 10 22:11:13 EDT 2025
Fri Jul 11 01:13:28 EDT 2025
Thu Apr 03 07:00:08 EDT 2025
Tue Jul 01 02:28:49 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Thu Aug 27 13:43:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Ag nanoparticle
antibacterial
nanostructured film
implant
titanium
nanowire
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-e9e925751a4faa577633d384a56f83b908df2367b81c7c99d1b87f3864a032063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27336202
PQID 1802476229
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000335410
proquest_miscellaneous_1802476229
pubmed_primary_27336202
crossref_primary_10_1021_acsami_6b04161
crossref_citationtrail_10_1021_acsami_6b04161
acs_journals_10_1021_acsami_6b04161
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-06
PublicationDateYYYYMMDD 2016-07-06
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
Niinomi M. (ref1/cit1) 2010
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1002/jps.24001
– ident: ref18/cit18
  doi: 10.1021/am5045604
– volume-title: Metals for Biomedical Devices
  year: 2010
  ident: ref1/cit1
  doi: 10.1533/9781845699246
– ident: ref40/cit40
  doi: 10.1016/j.actbio.2012.10.017
– ident: ref53/cit53
  doi: 10.1016/0168-3659(87)90035-6
– ident: ref24/cit24
  doi: 10.2147/IJN.S45742
– ident: ref55/cit55
  doi: 10.1021/es201918f
– ident: ref6/cit6
  doi: 10.1021/cm070845a
– ident: ref32/cit32
  doi: 10.2147/IJN.S28450
– ident: ref54/cit54
  doi: 10.1016/j.vacuum.2011.06.011
– ident: ref27/cit27
  doi: 10.1002/(SICI)1522-9505(19991101)271:1<24::AID-APMC24>3.0.CO;2-L
– ident: ref29/cit29
  doi: 10.1016/j.biomaterials.2010.08.035
– ident: ref33/cit33
  doi: 10.1016/j.apsusc.2013.02.130
– ident: ref28/cit28
  doi: 10.1002/jbm.a.31648
– ident: ref39/cit39
  doi: 10.1016/j.msec.2015.12.062
– ident: ref57/cit57
  doi: 10.1016/j.biomaterials.2015.10.035
– ident: ref10/cit10
  doi: 10.1021/acsami.5b06639
– ident: ref31/cit31
  doi: 10.1016/j.biomaterials.2008.08.043
– ident: ref37/cit37
  doi: 10.1016/j.burns.2006.06.020
– ident: ref43/cit43
  doi: 10.1016/j.apsusc.2009.02.076
– ident: ref38/cit38
  doi: 10.1016/j.biomaterials.2010.09.066
– ident: ref2/cit2
  doi: 10.1016/0142-9612(96)83289-3
– ident: ref12/cit12
  doi: 10.1021/nl802145n
– ident: ref45/cit45
  doi: 10.1021/es202417t
– ident: ref56/cit56
  doi: 10.1021/bm100755x
– ident: ref51/cit51
  doi: 10.1016/j.biomaterials.2006.01.017
– ident: ref36/cit36
  doi: 10.1002/anie.201205923
– ident: ref48/cit48
  doi: 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K
– ident: ref8/cit8
  doi: 10.1016/j.tsf.2013.03.093
– ident: ref21/cit21
  doi: 10.1016/j.biomaterials.2013.01.074
– ident: ref26/cit26
  doi: 10.1016/j.biomaterials.2014.02.005
– ident: ref23/cit23
  doi: 10.1016/j.chembiol.2005.06.013
– ident: ref22/cit22
  doi: 10.1016/j.bmcl.2007.03.005
– ident: ref46/cit46
  doi: 10.1021/nl301934w
– ident: ref3/cit3
  doi: 10.1016/j.actbio.2010.09.034
– ident: ref49/cit49
  doi: 10.1007/s10856-012-4596-4
– ident: ref4/cit4
  doi: 10.1016/j.mser.2004.11.001
– ident: ref42/cit42
  doi: 10.1088/0957-4484/22/11/115603
– ident: ref16/cit16
  doi: 10.2147/IJN.S2709
– ident: ref17/cit17
  doi: 10.1039/C5RA04077A
– ident: ref50/cit50
  doi: 10.1142/S0218625X09013244
– ident: ref5/cit5
  doi: 10.1016/j.mser.2014.04.001
– ident: ref7/cit7
  doi: 10.1016/S0040-6090(98)01102-X
– ident: ref30/cit30
  doi: 10.1016/j.jdent.2012.01.008
– ident: ref13/cit13
  doi: 10.1088/0957-4484/18/29/295608
– ident: ref14/cit14
  doi: 10.1039/c1sm05412k
– ident: ref25/cit25
  doi: 10.1179/1753555713Y.0000000113
– ident: ref19/cit19
  doi: 10.1016/j.biomaterials.2003.11.033
– ident: ref20/cit20
  doi: 10.1002/jbm.b.31463
– ident: ref44/cit44
  doi: 10.1016/j.actbio.2012.04.004
– ident: ref52/cit52
  doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
– ident: ref34/cit34
  doi: 10.1016/j.carbon.2015.05.084
– ident: ref47/cit47
  doi: 10.1002/adma.201203370
– ident: ref11/cit11
  doi: 10.1021/jp903037f
– ident: ref15/cit15
  doi: 10.2147/IJN.S75999
– ident: ref9/cit9
  doi: 10.1016/j.electacta.2010.10.099
– ident: ref41/cit41
  doi: 10.1016/j.actbio.2011.02.037
SSID ssj0063205
Score 2.4973688
Snippet A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16584
SubjectTerms Animals
Anti-Bacterial Agents - pharmacology
antibacterial properties
Bacteria - drug effects
biocompatibility
Cell Line
Cell Survival - drug effects
cell viability
chemical reduction
chitosan
Chitosan - chemistry
Mice
nanosilver
nanowires
Nanowires - chemistry
Nanowires - toxicity
Prostheses and Implants - microbiology
silver
Silver - pharmacology
silver nitrate
titanium
Titanium - pharmacology
ultraviolet radiation
Title Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants
URI http://dx.doi.org/10.1021/acsami.6b04161
https://www.ncbi.nlm.nih.gov/pubmed/27336202
https://www.proquest.com/docview/1802476229
https://www.proquest.com/docview/2000335410
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz247wsRBU8Z26RNk6OMyiDoRQfmVtI0gUFpxXYu_nrfazuuDHotr2R7y9e-l-8RcuYTy6XljnllAhblXjKVa81yrazBaz82xovCd_dyMIxuR_Ho83_Hzww-Dy-MrbAVjswCxOLzZJFLsGAEQf2Hqc-VgjfFivBFHjEFEWtKz_jrfQxCtvoehGYgyybC3Ky2dEdVQ0yIhSVPvUmd9ezbb9rGPye_RlY6mEkvW71YJ3Ou2CDLX8gHN8ngsqjHWUvWjKK27SNBS08fxlgvTa_KF5fTxzHgR0CkFBxxiczGFS0LeEqRWBiraLbI8Ob6sT9gXV8FZiD61MxppznmW0zkjYkTcDEiFyoysfRKZDpQuUdit0yFNrFa52GmEi-UjAy2W5dimywUZeF2CTVC6DjzYeBiG4XcmEQmiQNU4oWLAx_skVPYgrSziyptUt48TNt9Sbt92SNsehyp7ajJsUPG80z58w_5l5aUY6bkyfR0U7AbTIaYwpUTmIkCdAKRgOvZMniNSYg4CmEdO61qfIzHkUeSB3z_Xys8IEuAtGRT5ysPyUL9OnFHgGbq7LhR5HfG5e18
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9lA4QCkUSnkYgcTJbWInjn1ctVQLtFWlbqXeIsexpVWrpCLZC7-emTy2ULQSvVqTxB6PPV80M98AfA6ZE8oJz4O2EU_KoLgujeGl0c5S2Y9LqVD49ExNL5PvV-nVGhyMtTA4iQbf1HRB_Dt2gfgAx6gjjioiguSPYAORiCCTnhxejFevkqLLWcQf84RrdFwjS-M_z5Mvcs3fvmgFwOwczfEzOF9Oscsvud5ftMW--3WPvfEBa9iCpwPoZJPeSp7Dmq-24ckfVIQvYDqp2nnRUzeTqOu7SrA6sIs5ZU-zo_rWl2w2RzSJ-JThtVwTz3HD6gpHGdEMU07NS7g8_jo7nPKhywK36Ita7o03gqIvNgnWphleOLKUOrGpCloWJtJlIJq3Qscuc8aUcaGzILVKLDVfV3IH1qu68q-BWSlNWoQ48qlLYmFtprLMI0YJ0qdRiHbhE6ogH05Jk3cBcBHnvV7yQS-7wMddyd1AVE79Mm5Wyn9Zyt_2FB0rJT-Om5zjKaLQiK18vcCZaMQq6BeEWS1DRU1SpkmM63jVW8jye4JYJUUk3vzXCj_A5nR2epKffDv7sQePEYOpLgNYvYX19ufCv0Oc0xbvO9v-DeDD9d0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddCmN92LqPdt3WTmWDPSm1JVuWHkPTkK0fDJJA3owsSxBa7FA7L_vrd-ePsA8C26s429LppPuZu_sdIZ99Yrm03DGvTMCi3Eumcq1ZrpU1WPZjYywUvr2T00X0bRkvuzpurIWBSVTwpqoJ4uOpXue-YxgIL2Acu-LILEBY_oTsY8wOzXp0OeuvXyl4k7cIP-cRU-C8eqbGv55Hf2Sr3_3RDpDZOJvJCzLfTrPJMbkfbupsaH_8weD4n-s4JM878ElHrbW8JHuueEUOfqEkfE2mo6JeZS2FM4ratrsELT2drTCLmo7LtcvpfAWoEnAqheu5RL7jipYFjFKkG8bcmjdkMbmaX05Z122BGfBJNXPaaY5RGBN5Y-IELh6RCxWZWHolMh2o3CPdW6ZCm1it8zBTiRdKRgabsEtxRAZFWbi3hBohdJz5MHCxjUJuTCKTxAFW8cLFgQ9OyCdQQdqdliptAuE8TFu9pJ1eTgjrdya1HWE59s142Cn_ZSu_bqk6dkqe9xudwmnCEIkpXLmBmSjALOAfuN4tg8VNQsRRCOs4bq1k-z2O7JI84O_-aYUfydPv40l68_Xu-j15BlBMNonA8gMZ1I8bdwpwp87OGvP-CfiH-GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+Activity+of+Silver+Doped+Titanate+Nanowires+on+Ti+Implants&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Xu%2C+Ziqiang&rft.au=Li%2C+Man&rft.au=Li%2C+Xia&rft.au=Liu%2C+Xiangmei&rft.date=2016-07-06&rft.eissn=1944-8252&rft.volume=8&rft.issue=26&rft.spage=16584&rft_id=info:doi/10.1021%2Facsami.6b04161&rft_id=info%3Apmid%2F27336202&rft.externalDocID=27336202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon