Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants
A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal re...
Saved in:
Published in | ACS applied materials & interfaces Vol. 8; no. 26; pp. 16584 - 16594 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag+ was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased. |
---|---|
AbstractList | A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO₃ solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag⁺ was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased. A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag+ was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased. A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag(+) was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased.A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag(+) was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased. |
Author | Ma, Fei Liu, Xiangmei Chu, Paul K Wu, Shuilin Han, Yong Li, Man Xu, Ziqiang Li, Xia Yeung, K. W. K |
AuthorAffiliation | The University of Hong Kong Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering Hubei University Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine Department of Physics & Materials Science City University of Hong Kong State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering Xi’an Jiaotong University |
AuthorAffiliation_xml | – name: Xi’an Jiaotong University – name: Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine – name: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering – name: City University of Hong Kong – name: Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering – name: Department of Physics & Materials Science – name: The University of Hong Kong – name: Hubei University |
Author_xml | – sequence: 1 givenname: Ziqiang surname: Xu fullname: Xu, Ziqiang – sequence: 2 givenname: Man surname: Li fullname: Li, Man – sequence: 3 givenname: Xia surname: Li fullname: Li, Xia – sequence: 4 givenname: Xiangmei surname: Liu fullname: Liu, Xiangmei email: shuilin.wu@gmail.com – sequence: 5 givenname: Fei surname: Ma fullname: Ma, Fei – sequence: 6 givenname: Shuilin surname: Wu fullname: Wu, Shuilin – sequence: 7 givenname: K. W. K surname: Yeung fullname: Yeung, K. W. K – sequence: 8 givenname: Yong surname: Han fullname: Han, Yong email: yonghan@mail.xjtu.edu.cn – sequence: 9 givenname: Paul K surname: Chu fullname: Chu, Paul K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27336202$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLw0AUhQep2IduXUqWIrTOK5NkWeqjhaIL6zrcJBOYkszEmUml_96R1i4EcXUvh-9cLueM0UAbLRG6JnhGMCX3UDpo1UwUmBNBztCIZJxPUxrTwWnnfIjGzm0xFozi-AINacKYoJiO0HKuvSqg9NIqaKJ56dVO-X1k6uhNNTtpowfTySraKA8avIxeQJtPZaWLjA5qtGq7BrR3l-i8hsbJq-OcoPenx81iOV2_Pq8W8_UUOM38VGYyo3ESE-A1QJwkgrGKpRxiUaesyHBa1ZSJpEhJmZRZVpEiTWqWCg44PC_YBN0e7nbWfPTS-bxVrpRNeEKa3uUUY8xYzAn-FyUppjwRlGYBvTmifdHKKu-sasHu85-gAjA7AKU1zllZnxCC8-8m8kMT-bGJYOC_DGWI0CujvQXV_G27O9iCnm9Nb3UI8y_4CxWfmao |
CitedBy_id | crossref_primary_10_1002_jbm_b_34450 crossref_primary_10_1016_j_apsusc_2023_158533 crossref_primary_10_1016_j_msec_2017_05_115 crossref_primary_10_1021_acsbiomaterials_7b00103 crossref_primary_10_1038_s41598_024_57951_w crossref_primary_10_1002_adma_202307756 crossref_primary_10_1021_acsnano_0c09617 crossref_primary_10_1016_j_cej_2024_155193 crossref_primary_10_1021_acsbiomaterials_8b00594 crossref_primary_10_3390_met11010092 crossref_primary_10_1007_s12598_021_01754_9 crossref_primary_10_1016_j_saa_2018_07_063 crossref_primary_10_1007_s12598_021_01799_w crossref_primary_10_1016_j_apsusc_2016_12_158 crossref_primary_10_1016_j_colsurfb_2016_12_016 crossref_primary_10_1016_j_jcis_2022_08_052 crossref_primary_10_1016_j_msec_2019_01_019 crossref_primary_10_1016_j_porgcoat_2020_105711 crossref_primary_10_1016_j_mser_2022_100712 crossref_primary_10_1016_j_bioactmat_2017_02_001 crossref_primary_10_1111_ijac_14083 crossref_primary_10_1016_j_surfcoat_2019_06_007 crossref_primary_10_1039_C8BM00353J crossref_primary_10_1142_S2251237317400019 crossref_primary_10_1016_j_ceramint_2020_03_004 crossref_primary_10_1007_s12598_019_01225_2 crossref_primary_10_1016_j_jmbbm_2020_103934 crossref_primary_10_1016_j_mtbio_2023_100784 crossref_primary_10_1021_acsami_3c17400 crossref_primary_10_1021_acsami_8b22136 crossref_primary_10_1021_acsami_6b09457 crossref_primary_10_1021_acsami_7b04950 crossref_primary_10_1021_acsami_7b10818 crossref_primary_10_1016_j_mtcomm_2022_104229 crossref_primary_10_1002_jbm_b_34108 crossref_primary_10_1016_j_msec_2017_03_259 crossref_primary_10_3390_ma17235710 crossref_primary_10_1016_j_mtchem_2021_100539 crossref_primary_10_1016_j_cej_2018_04_023 crossref_primary_10_3390_ijms24010272 crossref_primary_10_1016_j_bioactmat_2020_08_001 crossref_primary_10_1021_acsabm_2c00014 crossref_primary_10_1021_acsbiomaterials_9b01695 crossref_primary_10_1016_j_carbpol_2021_117639 crossref_primary_10_1021_acsami_6b15448 crossref_primary_10_1021_acsomega_7b00442 crossref_primary_10_1016_j_apsb_2021_03_019 crossref_primary_10_1039_D1AN01370J crossref_primary_10_1088_1361_6528_aca2b2 crossref_primary_10_1002_admi_202000057 crossref_primary_10_1016_j_micpath_2020_104134 crossref_primary_10_1016_j_molstruc_2022_134810 crossref_primary_10_1002_jbm_b_35403 crossref_primary_10_1021_acsbiomaterials_8b00857 crossref_primary_10_3390_biology10020137 crossref_primary_10_1016_j_msec_2019_110154 crossref_primary_10_1016_j_apsusc_2019_07_224 crossref_primary_10_1016_j_matchemphys_2023_128228 crossref_primary_10_1039_C9BM01507H crossref_primary_10_1016_j_surfcoat_2021_127739 crossref_primary_10_1021_acsami_6b09343 crossref_primary_10_1016_j_matpr_2021_01_831 crossref_primary_10_1021_acsami_0c00871 crossref_primary_10_1016_j_cattod_2021_08_016 crossref_primary_10_1039_D2SC02980D crossref_primary_10_1002_admi_202400164 crossref_primary_10_2174_1573413715666191126093258 crossref_primary_10_1021_acsami_7b04810 crossref_primary_10_1021_acscentsci_8b00177 crossref_primary_10_1021_acsami_8b02527 crossref_primary_10_1039_D3RA00908D crossref_primary_10_1080_21870764_2021_2006877 crossref_primary_10_1016_j_cej_2020_125783 crossref_primary_10_1016_j_ceramint_2023_07_081 crossref_primary_10_1016_j_surfcoat_2018_02_100 crossref_primary_10_1016_j_matchemphys_2021_125483 crossref_primary_10_1002_smll_201704347 crossref_primary_10_1016_j_biomaterials_2025_123136 crossref_primary_10_3390_ma11081403 crossref_primary_10_1002_jbm_b_34725 crossref_primary_10_1002_adem_202200077 crossref_primary_10_1016_j_jiec_2020_08_008 crossref_primary_10_1016_j_ceramint_2020_02_195 crossref_primary_10_1021_acsami_8b09640 crossref_primary_10_1080_21663831_2023_2250110 crossref_primary_10_1016_S1003_6326_22_66011_4 crossref_primary_10_1016_j_mtcomm_2022_104246 crossref_primary_10_1016_j_matdes_2017_11_018 crossref_primary_10_1039_D1TB01830B crossref_primary_10_1016_j_ijbiomac_2022_05_015 crossref_primary_10_1021_acsami_7b17351 crossref_primary_10_1021_acsami_1c25014 crossref_primary_10_1116_6_0000625 crossref_primary_10_1016_j_colsurfb_2018_11_003 crossref_primary_10_1021_acsami_7b06702 |
Cites_doi | 10.1002/jps.24001 10.1021/am5045604 10.1533/9781845699246 10.1016/j.actbio.2012.10.017 10.1016/0168-3659(87)90035-6 10.2147/IJN.S45742 10.1021/es201918f 10.1021/cm070845a 10.2147/IJN.S28450 10.1016/j.vacuum.2011.06.011 10.1002/(SICI)1522-9505(19991101)271:1<24::AID-APMC24>3.0.CO;2-L 10.1016/j.biomaterials.2010.08.035 10.1016/j.apsusc.2013.02.130 10.1002/jbm.a.31648 10.1016/j.msec.2015.12.062 10.1016/j.biomaterials.2015.10.035 10.1021/acsami.5b06639 10.1016/j.biomaterials.2008.08.043 10.1016/j.burns.2006.06.020 10.1016/j.apsusc.2009.02.076 10.1016/j.biomaterials.2010.09.066 10.1016/0142-9612(96)83289-3 10.1021/nl802145n 10.1021/es202417t 10.1021/bm100755x 10.1016/j.biomaterials.2006.01.017 10.1002/anie.201205923 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K 10.1016/j.tsf.2013.03.093 10.1016/j.biomaterials.2013.01.074 10.1016/j.biomaterials.2014.02.005 10.1016/j.chembiol.2005.06.013 10.1016/j.bmcl.2007.03.005 10.1021/nl301934w 10.1016/j.actbio.2010.09.034 10.1007/s10856-012-4596-4 10.1016/j.mser.2004.11.001 10.1088/0957-4484/22/11/115603 10.2147/IJN.S2709 10.1039/C5RA04077A 10.1142/S0218625X09013244 10.1016/j.mser.2014.04.001 10.1016/S0040-6090(98)01102-X 10.1016/j.jdent.2012.01.008 10.1088/0957-4484/18/29/295608 10.1039/c1sm05412k 10.1179/1753555713Y.0000000113 10.1016/j.biomaterials.2003.11.033 10.1002/jbm.b.31463 10.1016/j.actbio.2012.04.004 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 10.1016/j.carbon.2015.05.084 10.1002/adma.201203370 10.1021/jp903037f 10.2147/IJN.S75999 10.1016/j.electacta.2010.10.099 10.1016/j.actbio.2011.02.037 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.6b04161 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 16594 |
ExternalDocumentID | 27336202 10_1021_acsami_6b04161 b195742855 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-e9e925751a4faa577633d384a56f83b908df2367b81c7c99d1b87f3864a032063 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Jul 10 22:11:13 EDT 2025 Fri Jul 11 01:13:28 EDT 2025 Thu Apr 03 07:00:08 EDT 2025 Tue Jul 01 02:28:49 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Thu Aug 27 13:43:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | Ag nanoparticle antibacterial nanostructured film implant titanium nanowire |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-e9e925751a4faa577633d384a56f83b908df2367b81c7c99d1b87f3864a032063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27336202 |
PQID | 1802476229 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000335410 proquest_miscellaneous_1802476229 pubmed_primary_27336202 crossref_primary_10_1021_acsami_6b04161 crossref_citationtrail_10_1021_acsami_6b04161 acs_journals_10_1021_acsami_6b04161 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-06 |
PublicationDateYYYYMMDD | 2016-07-06 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 Niinomi M. (ref1/cit1) 2010 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1002/jps.24001 – ident: ref18/cit18 doi: 10.1021/am5045604 – volume-title: Metals for Biomedical Devices year: 2010 ident: ref1/cit1 doi: 10.1533/9781845699246 – ident: ref40/cit40 doi: 10.1016/j.actbio.2012.10.017 – ident: ref53/cit53 doi: 10.1016/0168-3659(87)90035-6 – ident: ref24/cit24 doi: 10.2147/IJN.S45742 – ident: ref55/cit55 doi: 10.1021/es201918f – ident: ref6/cit6 doi: 10.1021/cm070845a – ident: ref32/cit32 doi: 10.2147/IJN.S28450 – ident: ref54/cit54 doi: 10.1016/j.vacuum.2011.06.011 – ident: ref27/cit27 doi: 10.1002/(SICI)1522-9505(19991101)271:1<24::AID-APMC24>3.0.CO;2-L – ident: ref29/cit29 doi: 10.1016/j.biomaterials.2010.08.035 – ident: ref33/cit33 doi: 10.1016/j.apsusc.2013.02.130 – ident: ref28/cit28 doi: 10.1002/jbm.a.31648 – ident: ref39/cit39 doi: 10.1016/j.msec.2015.12.062 – ident: ref57/cit57 doi: 10.1016/j.biomaterials.2015.10.035 – ident: ref10/cit10 doi: 10.1021/acsami.5b06639 – ident: ref31/cit31 doi: 10.1016/j.biomaterials.2008.08.043 – ident: ref37/cit37 doi: 10.1016/j.burns.2006.06.020 – ident: ref43/cit43 doi: 10.1016/j.apsusc.2009.02.076 – ident: ref38/cit38 doi: 10.1016/j.biomaterials.2010.09.066 – ident: ref2/cit2 doi: 10.1016/0142-9612(96)83289-3 – ident: ref12/cit12 doi: 10.1021/nl802145n – ident: ref45/cit45 doi: 10.1021/es202417t – ident: ref56/cit56 doi: 10.1021/bm100755x – ident: ref51/cit51 doi: 10.1016/j.biomaterials.2006.01.017 – ident: ref36/cit36 doi: 10.1002/anie.201205923 – ident: ref48/cit48 doi: 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K – ident: ref8/cit8 doi: 10.1016/j.tsf.2013.03.093 – ident: ref21/cit21 doi: 10.1016/j.biomaterials.2013.01.074 – ident: ref26/cit26 doi: 10.1016/j.biomaterials.2014.02.005 – ident: ref23/cit23 doi: 10.1016/j.chembiol.2005.06.013 – ident: ref22/cit22 doi: 10.1016/j.bmcl.2007.03.005 – ident: ref46/cit46 doi: 10.1021/nl301934w – ident: ref3/cit3 doi: 10.1016/j.actbio.2010.09.034 – ident: ref49/cit49 doi: 10.1007/s10856-012-4596-4 – ident: ref4/cit4 doi: 10.1016/j.mser.2004.11.001 – ident: ref42/cit42 doi: 10.1088/0957-4484/22/11/115603 – ident: ref16/cit16 doi: 10.2147/IJN.S2709 – ident: ref17/cit17 doi: 10.1039/C5RA04077A – ident: ref50/cit50 doi: 10.1142/S0218625X09013244 – ident: ref5/cit5 doi: 10.1016/j.mser.2014.04.001 – ident: ref7/cit7 doi: 10.1016/S0040-6090(98)01102-X – ident: ref30/cit30 doi: 10.1016/j.jdent.2012.01.008 – ident: ref13/cit13 doi: 10.1088/0957-4484/18/29/295608 – ident: ref14/cit14 doi: 10.1039/c1sm05412k – ident: ref25/cit25 doi: 10.1179/1753555713Y.0000000113 – ident: ref19/cit19 doi: 10.1016/j.biomaterials.2003.11.033 – ident: ref20/cit20 doi: 10.1002/jbm.b.31463 – ident: ref44/cit44 doi: 10.1016/j.actbio.2012.04.004 – ident: ref52/cit52 doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 – ident: ref34/cit34 doi: 10.1016/j.carbon.2015.05.084 – ident: ref47/cit47 doi: 10.1002/adma.201203370 – ident: ref11/cit11 doi: 10.1021/jp903037f – ident: ref15/cit15 doi: 10.2147/IJN.S75999 – ident: ref9/cit9 doi: 10.1016/j.electacta.2010.10.099 – ident: ref41/cit41 doi: 10.1016/j.actbio.2011.02.037 |
SSID | ssj0063205 |
Score | 2.4973688 |
Snippet | A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16584 |
SubjectTerms | Animals Anti-Bacterial Agents - pharmacology antibacterial properties Bacteria - drug effects biocompatibility Cell Line Cell Survival - drug effects cell viability chemical reduction chitosan Chitosan - chemistry Mice nanosilver nanowires Nanowires - chemistry Nanowires - toxicity Prostheses and Implants - microbiology silver Silver - pharmacology silver nitrate titanium Titanium - pharmacology ultraviolet radiation |
Title | Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants |
URI | http://dx.doi.org/10.1021/acsami.6b04161 https://www.ncbi.nlm.nih.gov/pubmed/27336202 https://www.proquest.com/docview/1802476229 https://www.proquest.com/docview/2000335410 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz247wsRBU8Z26RNk6OMyiDoRQfmVtI0gUFpxXYu_nrfazuuDHotr2R7y9e-l-8RcuYTy6XljnllAhblXjKVa81yrazBaz82xovCd_dyMIxuR_Ho83_Hzww-Dy-MrbAVjswCxOLzZJFLsGAEQf2Hqc-VgjfFivBFHjEFEWtKz_jrfQxCtvoehGYgyybC3Ky2dEdVQ0yIhSVPvUmd9ezbb9rGPye_RlY6mEkvW71YJ3Ou2CDLX8gHN8ngsqjHWUvWjKK27SNBS08fxlgvTa_KF5fTxzHgR0CkFBxxiczGFS0LeEqRWBiraLbI8Ob6sT9gXV8FZiD61MxppznmW0zkjYkTcDEiFyoysfRKZDpQuUdit0yFNrFa52GmEi-UjAy2W5dimywUZeF2CTVC6DjzYeBiG4XcmEQmiQNU4oWLAx_skVPYgrSziyptUt48TNt9Sbt92SNsehyp7ajJsUPG80z58w_5l5aUY6bkyfR0U7AbTIaYwpUTmIkCdAKRgOvZMniNSYg4CmEdO61qfIzHkUeSB3z_Xys8IEuAtGRT5ysPyUL9OnFHgGbq7LhR5HfG5e18 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9lA4QCkUSnkYgcTJbWInjn1ctVQLtFWlbqXeIsexpVWrpCLZC7-emTy2ULQSvVqTxB6PPV80M98AfA6ZE8oJz4O2EU_KoLgujeGl0c5S2Y9LqVD49ExNL5PvV-nVGhyMtTA4iQbf1HRB_Dt2gfgAx6gjjioiguSPYAORiCCTnhxejFevkqLLWcQf84RrdFwjS-M_z5Mvcs3fvmgFwOwczfEzOF9Oscsvud5ftMW--3WPvfEBa9iCpwPoZJPeSp7Dmq-24ckfVIQvYDqp2nnRUzeTqOu7SrA6sIs5ZU-zo_rWl2w2RzSJ-JThtVwTz3HD6gpHGdEMU07NS7g8_jo7nPKhywK36Ita7o03gqIvNgnWphleOLKUOrGpCloWJtJlIJq3Qscuc8aUcaGzILVKLDVfV3IH1qu68q-BWSlNWoQ48qlLYmFtprLMI0YJ0qdRiHbhE6ogH05Jk3cBcBHnvV7yQS-7wMddyd1AVE79Mm5Wyn9Zyt_2FB0rJT-Om5zjKaLQiK18vcCZaMQq6BeEWS1DRU1SpkmM63jVW8jye4JYJUUk3vzXCj_A5nR2epKffDv7sQePEYOpLgNYvYX19ufCv0Oc0xbvO9v-DeDD9d0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddCmN92LqPdt3WTmWDPSm1JVuWHkPTkK0fDJJA3owsSxBa7FA7L_vrd-ePsA8C26s429LppPuZu_sdIZ99Yrm03DGvTMCi3Eumcq1ZrpU1WPZjYywUvr2T00X0bRkvuzpurIWBSVTwpqoJ4uOpXue-YxgIL2Acu-LILEBY_oTsY8wOzXp0OeuvXyl4k7cIP-cRU-C8eqbGv55Hf2Sr3_3RDpDZOJvJCzLfTrPJMbkfbupsaH_8weD4n-s4JM878ElHrbW8JHuueEUOfqEkfE2mo6JeZS2FM4ratrsELT2drTCLmo7LtcvpfAWoEnAqheu5RL7jipYFjFKkG8bcmjdkMbmaX05Z122BGfBJNXPaaY5RGBN5Y-IELh6RCxWZWHolMh2o3CPdW6ZCm1it8zBTiRdKRgabsEtxRAZFWbi3hBohdJz5MHCxjUJuTCKTxAFW8cLFgQ9OyCdQQdqdliptAuE8TFu9pJ1eTgjrdya1HWE59s142Cn_ZSu_bqk6dkqe9xudwmnCEIkpXLmBmSjALOAfuN4tg8VNQsRRCOs4bq1k-z2O7JI84O_-aYUfydPv40l68_Xu-j15BlBMNonA8gMZ1I8bdwpwp87OGvP-CfiH-GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+Activity+of+Silver+Doped+Titanate+Nanowires+on+Ti+Implants&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Xu%2C+Ziqiang&rft.au=Li%2C+Man&rft.au=Li%2C+Xia&rft.au=Liu%2C+Xiangmei&rft.date=2016-07-06&rft.eissn=1944-8252&rft.volume=8&rft.issue=26&rft.spage=16584&rft_id=info:doi/10.1021%2Facsami.6b04161&rft_id=info%3Apmid%2F27336202&rft.externalDocID=27336202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |