Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels
Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer–clay hydrogels to accomplish the comprehensive actuation of “extension–grasp...
Saved in:
Published in | ACS applied materials & interfaces Vol. 7; no. 42; pp. 23423 - 23430 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer–clay hydrogels to accomplish the comprehensive actuation of “extension–grasp–retraction” like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the “hook” of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus. |
---|---|
AbstractList | Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer–clay hydrogels to accomplish the comprehensive actuation of “extension–grasp–retraction” like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the “hook” of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus. Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus. |
Author | Zhang, Enzhong Wang, Tao Tong, Zhen Huang, Jiahe Sun, Weixiang Yang, Yiqing |
AuthorAffiliation | South China University of Technology Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices |
AuthorAffiliation_xml | – name: South China University of Technology – name: Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices |
Author_xml | – sequence: 1 givenname: Tao surname: Wang fullname: Wang, Tao – sequence: 2 givenname: Jiahe surname: Huang fullname: Huang, Jiahe – sequence: 3 givenname: Yiqing surname: Yang fullname: Yang, Yiqing – sequence: 4 givenname: Enzhong surname: Zhang fullname: Zhang, Enzhong – sequence: 5 givenname: Weixiang surname: Sun fullname: Sun, Weixiang – sequence: 6 givenname: Zhen surname: Tong fullname: Tong, Zhen email: mcztong@scut.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26448049$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1Lw0AUxBdR7IdePUqOIqS-3WzazbEt2oqFCuo5bPZDtyTZupuA_e9dSe1BKJ7mMfzmHWYG6LS2tULoCsMIA8F3XHhemVFaACOUnaA-ziiNGUnJ6eGmtIcG3m8AxgmB9Bz1yJhSBjTro6eZsab2W-OUjF4q7ppoKpqWN9ZFM-6Daeto4fj2Q9UqWn8ZqeJnW-4q5aLlrnBGBpHOvqvSX6AzzUuvLvc6RG8P96_zZbxaLx7n01XMKcmaWOiCEDwZCy0LqRPGVaGBagqYjzNFsFZ6koKmWAqis0mRAgMouCQJpjpjIhmim-7v1tnPVvkmr4wXqix5rWzrcwIACWCcsn9RPCGhq4ylENDrPdoWlZL51plQxy7_7SoAow4QznrvlD4gGPKfMfJujHw_RgjQPwFhGt4YWzeOm_J47LaLBT_f2NbVocxj8Dd_MZzH |
CitedBy_id | crossref_primary_10_1002_aoc_6827 crossref_primary_10_1039_C7TB02853A crossref_primary_10_3390_polym9070270 crossref_primary_10_1002_macp_201600398 crossref_primary_10_1021_acsami_8b20061 crossref_primary_10_1039_C7CP07915J crossref_primary_10_1016_j_jhazmat_2021_126554 crossref_primary_10_1039_D1TB01198G crossref_primary_10_1515_ipp_2020_3904 crossref_primary_10_1039_C6TB00583G crossref_primary_10_1002_adom_201700442 crossref_primary_10_1039_D0QM01099E crossref_primary_10_1039_D0TB02524K crossref_primary_10_1016_j_cej_2018_09_213 crossref_primary_10_1016_j_matdes_2018_11_045 crossref_primary_10_1002_adom_201900069 crossref_primary_10_1002_mame_201700184 crossref_primary_10_1021_acsami_0c17085 crossref_primary_10_1021_acsami_6b00867 crossref_primary_10_1016_j_cej_2021_134258 crossref_primary_10_1364_OME_399874 crossref_primary_10_1063_5_0098621 crossref_primary_10_1002_adfm_201702946 crossref_primary_10_1021_acsami_0c04970 crossref_primary_10_1016_j_colsurfa_2018_03_012 crossref_primary_10_1016_j_cej_2023_142193 crossref_primary_10_1109_LRA_2021_3067622 crossref_primary_10_3390_polym9090446 crossref_primary_10_1002_adfm_201800939 crossref_primary_10_1002_polb_24728 crossref_primary_10_1016_j_cej_2022_140054 crossref_primary_10_3390_polym14193987 crossref_primary_10_2174_0929867325666180831151055 crossref_primary_10_1021_acsami_0c06342 crossref_primary_10_1016_j_cej_2018_01_037 crossref_primary_10_1039_D4TA00544A crossref_primary_10_1016_j_matdes_2017_01_067 crossref_primary_10_1021_acsapm_0c00504 crossref_primary_10_1063_5_0020596 crossref_primary_10_1039_C8TB02242A crossref_primary_10_1021_acsmaterialslett_3c00435 crossref_primary_10_1039_C6RA01074A crossref_primary_10_1016_j_eurpolymj_2017_08_044 crossref_primary_10_1002_adfm_202007458 crossref_primary_10_1002_mame_201600359 crossref_primary_10_1021_acsami_7b08661 crossref_primary_10_1039_C8QM00190A crossref_primary_10_1002_marc_201900270 crossref_primary_10_1007_s10118_017_1979_5 crossref_primary_10_1016_j_clay_2018_01_026 crossref_primary_10_1021_acsami_0c07956 crossref_primary_10_3390_polym14245454 crossref_primary_10_3390_gels9060438 crossref_primary_10_1002_marc_201700421 crossref_primary_10_1016_j_nanoms_2019_02_004 crossref_primary_10_1039_C7SM01253E crossref_primary_10_3390_macromol4020010 crossref_primary_10_1007_s11164_020_04266_w crossref_primary_10_1016_j_jcis_2025_01_126 crossref_primary_10_1002_pat_5680 crossref_primary_10_1021_acsami_4c15018 crossref_primary_10_1016_j_eurpolymj_2021_110306 crossref_primary_10_1021_acssuschemeng_8b04055 crossref_primary_10_1007_s10853_020_04542_5 crossref_primary_10_1021_acsami_1c03999 crossref_primary_10_1002_app_54634 crossref_primary_10_1016_j_jmbbm_2017_11_043 crossref_primary_10_1080_03602559_2018_1542729 crossref_primary_10_1021_acsami_7b04417 crossref_primary_10_1016_j_compscitech_2018_07_018 crossref_primary_10_1016_j_eurpolymj_2019_109448 crossref_primary_10_1002_adma_202004754 crossref_primary_10_1021_acs_langmuir_4c03291 crossref_primary_10_1080_23312009_2017_1328770 crossref_primary_10_1039_C7NJ04178K crossref_primary_10_1021_acsami_7b17907 crossref_primary_10_1021_acsami_0c17532 crossref_primary_10_1016_j_cej_2022_139373 crossref_primary_10_1021_acs_macromol_6b00584 crossref_primary_10_3390_polym9060237 crossref_primary_10_1016_j_cej_2021_133496 crossref_primary_10_1002_adfm_201908028 crossref_primary_10_1002_adfm_202007437 crossref_primary_10_1039_C6RA10745A crossref_primary_10_1039_D0BM01528H crossref_primary_10_1016_j_cej_2023_146160 crossref_primary_10_1021_acs_chemmater_7b03953 crossref_primary_10_1088_1361_6528_ac1bdb crossref_primary_10_1016_j_carbpol_2017_09_030 crossref_primary_10_1021_acsami_2c16658 |
Cites_doi | 10.1038/nmat2858 10.1021/ja01539a017 10.1039/C4TA02866J 10.1002/pen.24076 10.1016/j.jconrel.2015.05.172 10.1007/s10853-015-8905-4 10.1016/j.carbpol.2014.10.011 10.1038/ncomms6124 10.1016/j.tibtech.2013.03.002 10.1039/c3cs60031a 10.1021/acs.macromol.5b00142 10.1002/smll.201401651 10.1002/adma.201203229 10.1016/j.carbon.2013.06.003 10.1021/acsami.5b00184 10.1016/j.colsurfb.2015.03.002 10.1002/adma.201302810 10.1021/ja2010175 10.1002/anie.201006464 10.1039/C1SM06484C 10.1002/mame.201400110 10.1038/nmat3713 10.1002/anie.201400775 10.1038/nature11409 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 10.1021/cm401919c 10.1021/ma034366i 10.1016/j.polymer.2009.02.020 10.1039/c3bm60288e 10.1071/CH11156 10.1016/j.polymer.2013.02.008 10.1021/jp901284d 10.1021/am507100m 10.1021/ma300859b |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.5b08248 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 23430 |
ExternalDocumentID | 26448049 10_1021_acsami_5b08248 b917695227 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-cfb22176cfdbdf38aebf04f401a69e21fef750f41dc2f97b50800bad2314f98c3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 11:39:54 EDT 2025 Fri Jul 11 12:38:05 EDT 2025 Mon Jul 21 05:51:37 EDT 2025 Tue Jul 01 02:28:31 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | hybrid hydrogel response hydrogel combination graphene oxide actuator bioinspired material |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-cfb22176cfdbdf38aebf04f401a69e21fef750f41dc2f97b50800bad2314f98c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26448049 |
PQID | 1728259850 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000301158 proquest_miscellaneous_1728259850 pubmed_primary_26448049 crossref_primary_10_1021_acsami_5b08248 crossref_citationtrail_10_1021_acsami_5b08248 acs_journals_10_1021_acsami_5b08248 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-28 |
PublicationDateYYYYMMDD | 2015-10-28 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 Yu Y. (ref20/cit20) 2015; 50 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 Okuzaki H. (ref1/cit1) 2014 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1038/nmat2858 – ident: ref27/cit27 doi: 10.1021/ja01539a017 – ident: ref7/cit7 doi: 10.1039/C4TA02866J – ident: ref15/cit15 doi: 10.1002/pen.24076 – ident: ref31/cit31 doi: 10.1016/j.jconrel.2015.05.172 – volume: 50 start-page: 3457 year: 2015 ident: ref20/cit20 publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-8905-4 – ident: ref22/cit22 doi: 10.1016/j.carbpol.2014.10.011 – ident: ref10/cit10 doi: 10.1038/ncomms6124 – ident: ref25/cit25 doi: 10.1016/j.tibtech.2013.03.002 – ident: ref3/cit3 doi: 10.1039/c3cs60031a – ident: ref17/cit17 doi: 10.1021/acs.macromol.5b00142 – ident: ref23/cit23 doi: 10.1002/smll.201401651 – ident: ref13/cit13 doi: 10.1002/adma.201203229 – ident: ref6/cit6 doi: 10.1016/j.carbon.2013.06.003 – ident: ref19/cit19 doi: 10.1021/acsami.5b00184 – ident: ref21/cit21 doi: 10.1016/j.colsurfb.2015.03.002 – ident: ref14/cit14 doi: 10.1002/adma.201302810 – ident: ref12/cit12 doi: 10.1021/ja2010175 – ident: ref26/cit26 doi: 10.1002/anie.201006464 – ident: ref30/cit30 doi: 10.1039/C1SM06484C – ident: ref35/cit35 doi: 10.1002/mame.201400110 – ident: ref9/cit9 doi: 10.1038/nmat3713 – ident: ref32/cit32 doi: 10.1002/anie.201400775 – volume-title: Soft Actuators year: 2014 ident: ref1/cit1 – ident: ref8/cit8 doi: 10.1038/nature11409 – ident: ref5/cit5 doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 – ident: ref16/cit16 doi: 10.1021/cm401919c – ident: ref29/cit29 doi: 10.1021/ma034366i – ident: ref34/cit34 doi: 10.1016/j.polymer.2009.02.020 – ident: ref2/cit2 doi: 10.1039/c3bm60288e – ident: ref4/cit4 doi: 10.1071/CH11156 – ident: ref33/cit33 doi: 10.1016/j.polymer.2013.02.008 – ident: ref24/cit24 doi: 10.1021/jp901284d – ident: ref18/cit18 doi: 10.1021/am507100m – ident: ref28/cit28 doi: 10.1021/ma300859b |
SSID | ssj0063205 |
Score | 2.4628406 |
Snippet | Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23423 |
SubjectTerms | actuators adhesion Aluminum Silicates - chemistry Biocompatible Materials - chemistry Cell Adhesion - drug effects energy graphene Graphite - chemistry Humans hydrogels Hydrogels - chemistry Magnetics mechanical properties Oxides - chemistry Polymers - chemistry |
Title | Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels |
URI | http://dx.doi.org/10.1021/acsami.5b08248 https://www.ncbi.nlm.nih.gov/pubmed/26448049 https://www.proquest.com/docview/1728259850 https://www.proquest.com/docview/2000301158 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBg3xcZgcTJEDvOdiwVUIFYpFKJW-QVVbQJ6iIBX884ScumCk65TJzEHnvey3ieETqKeCi0osBNokgQTqUiSUQ5MQEVnvI1YHJX73xzGzZa_OoxePz83_Ezg8_oqVB9dxROICFY8XgazbIwjhzNqtWbozU39FmxWREYOSdgxkfyjL_ud0FI9b8HoQnIsogwF4ul3FG_ECZ0G0ueT4YDeaLef8s2_vnyS2ihgpm4VvrFMpoy2Qqa_yI-uIquz9p5O3OJdqNxswsuhGuumgRIOD6D2KZxnuFLp2cNyyG-e21rQ-7zzlvX9HDjzRV6wUX38ieIrmuodXH-UG-Q6mgFIiAADYiykgEZCZXVUls_FkZaj1sgWyJMDKPWWIASllOtmE0iGThgKYUGNMhtEit_Hc1keWY2EbbKelZRp53lA7bSCTQDsACgom-Z1GwLHUIvpNXU6KdF1pvRtOyatOqaLURGI5KqSp3cHZLRmWh_PLZ_KXU5JloejAY4hanj8iEiM_kQ3iRyhbtJHHiTbVhFGgNoZ6P0jvHzCm4LDGv7X1-4g-YAbBWyryzeRTOD3tDsAaAZyP3Clz8ARRrvYQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxRBEK4gHtQDDxXlJW3UeGrY7ul5HTgsKCwuoAmQcBumX2YDzJCd2cD6Z_wr_DSqZ2dWxWzihcTTJJNOTU13ddVX6aqvAd6HIki1YpibhGFKBZOKxiET1PgsbSlPIyZ3_c4Hh0HnRHw59U-n4GfTC4NKFCipqA7xf7ELsA18527E8SXGLBHVVZRdM7zGHK3Y3PuEC_qB853Px9sdWl8jQFN0tiVVVnIE3oGyWmrrRamRtiUsJhZpEBvOrLEYNq1gWnEbh9J3IEqmGpGPsHGkPJT7CB4j8uEuu2tvHzWuPvB4VSPJYiEoqiUaVsi_9HWxTxV_xr4JgLYKbDuzcDuekqqe5Xx9UMp19eMeW-R_PGdzMFODatIe7YJ5mDLZc3j2G9XiC-hu9fJe5soKjCZHl7hhSNv1zpR5n2xhJNckz8iuY-9G50--3vS0od_yi-Gl6ZPO0LW14UP38--IJV7CyYP8zQJMZ3lmXgOxyrasYo4pzEMkqWMUgyAIgbFnudR8Ed7hrCe1IyiS6oyfs2S0FEm9FItAG0NIVM3F7q4EuZg4_uN4_NWIhWTiyLeNXSXoKNzpT5qZfICahK5NOY781uQxvE6RfZTzamSU4-9VmTzmk0v_9Idr8KRzfLCf7O8ddpfhKcLMivCWRyswXfYHZhWhXCnfVNuJwNlD2-IdwDlUWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlXtAfqgFOjDqK04GdaO8zpwWKDLwhaKRJG4pfGrWhUStMkKlr_DX-GHdZxNVi3VSr0gcYoUWRPHnsc38sxngE-hCFKtGOYmYZhSwaSiccgENT5LW8rTiMldv_PBYdA9Efun_ukM3DS9MDiJAiUV1SG-s-oLbWuGAbaB792tOL7EuCWiupKyZ0aXmKcVm3s7uKmfOe98-b7dpfVVAjRFh1tSZSVH8B0oq6W2XpQaaVvCYnKRBrHhzBqLodMKphW3cSh9B6RkqhH9CBtHykO5j-CxOyN0GV57-7hx94HHqzpJFgtBcVqiYYb8Z74u_qni7_g3BdRWwa0zD7eTZalqWn6tD0u5rq7vMEY-8HV7DnM1uCbtsTW8gBmTvYRnf1AuvoLeVj_vZ668wGhyfI6GQ9quh6bMB2QLI7omeUZ2HYs3BgHy7aqvDT3Kz0bnZkC6I9fehg89yH8ipliAk3v5m9cwm-WZeQPEKtuyijnGMA8RpY5RDIIhBMie5VLzJfiIq57UDqFIqrN-zpLxViT1ViwBbZQhUTUnu7sa5Gzq-LXJ-IsxG8nUkauNbiXoMNwpUJqZfIgzCV27chz5reljeJ0q-yhncayYk-9VGT3mlcv_9Ycf4MnRTif5unfYW4GniDYr3lsevYXZcjA07xDRlfJ9ZVEEfty3Kv4G9bxW3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Smart+Actuator+Based+on+Graphene+Oxide-Polymer+Hybrid+Hydrogels&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Tao&rft.au=Huang%2C+Jiahe&rft.au=Yang%2C+Yiqing&rft.au=Zhang%2C+Enzhong&rft.date=2015-10-28&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=7&rft.issue=42&rft.spage=23423&rft.epage=23430&rft_id=info:doi/10.1021%2Facsami.5b08248&rft.externalDocID=b917695227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |