Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function

The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-hea...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 9; pp. 9470 - 9477
Main Authors Li, Tianqi, Li, Yang, Wang, Xiaohan, Li, Xiang, Sun, Junqi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly­(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly­(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young’s modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.
AbstractList The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly­(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly­(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young’s modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.
The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young's modulus of ∼2.8 GPa. The PVA/PAA-GO films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.
The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO₃% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young’s modulus of ∼2.8 GPa. The PVA/PAA-GO₃% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO₃% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO₃% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.
The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young's modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young's modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.
Author Wang, Xiaohan
Li, Xiang
Li, Yang
Sun, Junqi
Li, Tianqi
AuthorAffiliation State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
AuthorAffiliation_xml – name: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
Author_xml – sequence: 1
  givenname: Tianqi
  surname: Li
  fullname: Li, Tianqi
– sequence: 2
  givenname: Yang
  orcidid: 0000-0003-4646-3695
  surname: Li
  fullname: Li, Yang
– sequence: 3
  givenname: Xiaohan
  surname: Wang
  fullname: Wang, Xiaohan
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 5
  givenname: Junqi
  orcidid: 0000-0002-7284-9826
  surname: Sun
  fullname: Sun, Junqi
  email: sun_junqi@jlu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30735026$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URB-wZYm8REgT_JrMzBIFQiuFh0RZj67tO4krjx3smUV-AX8bl4QuKlWs7kPfOYtzLslZiAEJec3ZgjPB34PJMLpFqwXvGvaMXPBOqaoVtTh72JU6J5c53zG2lILVL8i5ZI2smVhekN-3O0wjeH-gECz9ipCqmzAkSGjpxm13UzntbMr1Ywd7pF9wjOlAv0d_GDFluoI9aI80DvQawbuwLYjZQXAGPP0II2zxr_UaJredH_us52AmF8NL8nwAn_HVaV6Rn-tPt6vravPt883qw6YCJbqpMtZYCZwzrUVrtW2YXiLTjbJKc1NLANYh1IModAccOsWlHFrDByNB6aW8Im-PvvsUf82Yp3502aD3EDDOuRdCNrVsRdP8H-Vtca-7ThT0zQmd9Yi23yc3Qjr0_3IuwOIImBRzTjg8IJz190X2xyL7U5FFoB4JjJvgPqkpgfNPy94dZeXf38U5hRLmU_Af8Pqx7Q
CitedBy_id crossref_primary_10_1021_acsapm_2c01926
crossref_primary_10_3390_polym14040738
crossref_primary_10_1002_ange_202400989
crossref_primary_10_1016_j_ijmecsci_2020_106082
crossref_primary_10_1016_j_mtcomm_2025_111752
crossref_primary_10_1016_j_matdes_2022_111218
crossref_primary_10_1039_D1VA00043H
crossref_primary_10_1039_D2NJ00056C
crossref_primary_10_3390_polym15020423
crossref_primary_10_1039_D2TC00076H
crossref_primary_10_1039_D1PY01625C
crossref_primary_10_1515_nanoph_2021_0652
crossref_primary_10_1016_j_polymdegradstab_2023_110297
crossref_primary_10_1002_admt_202401281
crossref_primary_10_1002_adfm_202401005
crossref_primary_10_1016_j_polymer_2020_122673
crossref_primary_10_1002_pen_26616
crossref_primary_10_1016_j_polymer_2020_123004
crossref_primary_10_1021_acs_biomac_9b01074
crossref_primary_10_1002_macp_202300216
crossref_primary_10_1021_acsami_9b14202
crossref_primary_10_1016_j_porgcoat_2020_106000
crossref_primary_10_1557_s43578_021_00149_x
crossref_primary_10_1039_D3NA00647F
crossref_primary_10_1007_s40843_020_1538_6
crossref_primary_10_1039_D2NR01406H
crossref_primary_10_1088_1361_665X_aba53e
crossref_primary_10_1002_app_50827
crossref_primary_10_1038_s41528_025_00397_5
crossref_primary_10_1021_acsami_1c05166
crossref_primary_10_1039_D2QM00041E
crossref_primary_10_1021_acsami_1c09658
crossref_primary_10_1016_j_biomaterials_2024_122794
crossref_primary_10_1016_j_polymer_2020_122986
crossref_primary_10_1016_j_eurpolymj_2022_111314
crossref_primary_10_3390_polym12112591
crossref_primary_10_1016_j_porgcoat_2023_107886
crossref_primary_10_1007_s10118_022_2789_y
crossref_primary_10_1007_s12274_024_6559_8
crossref_primary_10_1016_j_polymer_2020_122972
crossref_primary_10_1021_acs_biomac_2c00662
crossref_primary_10_1016_j_porgcoat_2020_105943
crossref_primary_10_1109_LRA_2025_3544492
crossref_primary_10_1016_j_jallcom_2020_154399
crossref_primary_10_1002_pc_27385
crossref_primary_10_1016_j_reactfunctpolym_2022_105267
crossref_primary_10_1016_j_jmbbm_2021_104814
crossref_primary_10_1088_1361_665X_abb572
crossref_primary_10_1002_macp_202000401
crossref_primary_10_1002_app_53166
crossref_primary_10_1016_j_cej_2023_144932
crossref_primary_10_1021_acsami_5c00788
crossref_primary_10_1016_j_porgcoat_2022_107384
crossref_primary_10_1016_j_fpsl_2025_101460
crossref_primary_10_1007_s10965_022_03210_3
crossref_primary_10_1002_smll_202405950
crossref_primary_10_1016_j_jmps_2025_106029
crossref_primary_10_1002_app_49696
crossref_primary_10_1021_acs_langmuir_3c02324
crossref_primary_10_1016_j_sna_2023_114823
crossref_primary_10_1039_D0TB01237H
crossref_primary_10_1007_s10853_022_07594_x
crossref_primary_10_1016_j_jsamd_2022_100446
crossref_primary_10_1016_j_surfin_2022_102121
crossref_primary_10_1002_adma_202109198
crossref_primary_10_1039_D4NR00018H
crossref_primary_10_1007_s11431_020_1735_9
crossref_primary_10_1016_j_reactfunctpolym_2024_106095
crossref_primary_10_1016_j_mser_2022_100702
crossref_primary_10_1016_j_cej_2019_123143
crossref_primary_10_1021_acs_chemrev_2c00418
crossref_primary_10_1002_anie_202400989
crossref_primary_10_1002_smll_202206463
crossref_primary_10_1039_D3TC01991H
crossref_primary_10_1088_1748_3190_ad0b8c
crossref_primary_10_1021_acs_iecr_1c04812
crossref_primary_10_1016_j_addma_2023_103870
crossref_primary_10_1002_smll_202400567
crossref_primary_10_1002_cjce_24094
crossref_primary_10_1021_acssuschemeng_0c05501
crossref_primary_10_1002_smll_202409781
crossref_primary_10_1016_j_jcis_2025_01_126
crossref_primary_10_1016_j_compscitech_2020_108524
crossref_primary_10_1007_s12034_021_02361_1
crossref_primary_10_1021_acsmaterialslett_4c02552
crossref_primary_10_1039_C9BM00664H
crossref_primary_10_3389_fbioe_2023_1141631
crossref_primary_10_1002_adfm_202314854
crossref_primary_10_1016_j_mtchem_2025_102607
crossref_primary_10_1017_pma_2024_4
crossref_primary_10_1021_acsmaterialslett_1c00053
crossref_primary_10_1063_5_0005755
crossref_primary_10_1002_mame_202300158
crossref_primary_10_1002_cssc_202201361
crossref_primary_10_1016_j_polymertesting_2023_107966
crossref_primary_10_1016_j_snb_2022_131776
crossref_primary_10_1016_j_compositesb_2021_108927
crossref_primary_10_1016_j_progpolymsci_2023_101724
crossref_primary_10_1021_acs_langmuir_2c00167
Cites_doi 10.1126/science.aam7588
10.1039/B406727D
10.1126/science.1066102
10.1007/s11665-014-0983-y
10.1038/35057232
10.1039/C6TC03556F
10.1088/0964-1726/23/2/023001
10.1038/nature06669
10.1021/acsami.7b08636
10.1039/C7TA00458C
10.1021/acs.macromol.7b00195
10.1038/nature08863
10.1002/adfm.200901409
10.1021/ja01539a017
10.1021/acsmacrolett.6b00357
10.1002/adma.201605908
10.1021/acsnano.7b02970
10.1038/nchem.1802
10.1039/C5SM02781K
10.1021/acsami.7b14588
10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
10.1021/am404087q
10.1080/15583724.2012.756519
10.1021/acs.chemmater.6b02684
10.1021/acsami.7b06407
10.1021/jacs.5b12531
10.1002/adma.201501726
10.1002/adem.200800213
10.1002/anie.201204840
10.1002/adma.201001068
10.1021/am504829z
10.1021/nn101204d
10.1039/C3TA14340F
10.1073/pnas.0600079103
10.1016/j.progpolymsci.2015.04.002
10.1021/acs.chemrev.7b00168
10.1021/acsami.7b05713
10.1039/c2cs35091b
10.1002/anie.201001258
10.1038/nmat2614
10.1021/acsami.5b09676
10.1021/jp209077z
10.1126/science.1145593
10.1002/anie.201502957
10.1016/S1369-7021(10)70128-0
10.1002/anie.201105822
10.1039/C4TA06304J
10.1016/j.polymer.2013.02.023
10.1002/anie.201602847
10.1021/am100692n
10.1021/acsami.6b13531
10.1021/am101012c
10.1021/acsami.7b03624
10.1021/am508970k
10.1039/C4TC01097C
10.1016/j.compositesb.2015.08.019
10.1002/marc.201700149
10.1021/acs.chemmater.5b03705
10.1038/nmat3776
10.1002/adma.201503132
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b21970
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 9477
ExternalDocumentID 30735026
10_1021_acsami_8b21970
b743214588
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-cdcd3a110bb28dbd70b6e0b74d4b1c53aa09ea5f24299a1a94133f8c1fc3a4b63
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 07:08:56 EDT 2025
Fri Jul 11 01:26:28 EDT 2025
Thu Apr 03 07:03:12 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 04:06:18 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords shape memory polymers
nanofiller reinforcement
graphene oxides
materials science
self-healing materials
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-cdcd3a110bb28dbd70b6e0b74d4b1c53aa09ea5f24299a1a94133f8c1fc3a4b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7284-9826
0000-0003-4646-3695
PMID 30735026
PQID 2184135992
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2237538277
proquest_miscellaneous_2184135992
pubmed_primary_30735026
crossref_primary_10_1021_acsami_8b21970
crossref_citationtrail_10_1021_acsami_8b21970
acs_journals_10_1021_acsami_8b21970
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-06
PublicationDateYYYYMMDD 2019-03-06
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1126/science.aam7588
– ident: ref5/cit5
  doi: 10.1039/B406727D
– ident: ref19/cit19
  doi: 10.1126/science.1066102
– ident: ref25/cit25
  doi: 10.1007/s11665-014-0983-y
– ident: ref27/cit27
  doi: 10.1038/35057232
– ident: ref57/cit57
  doi: 10.1039/C6TC03556F
– ident: ref18/cit18
  doi: 10.1088/0964-1726/23/2/023001
– ident: ref30/cit30
  doi: 10.1038/nature06669
– ident: ref38/cit38
  doi: 10.1021/acsami.7b08636
– ident: ref15/cit15
  doi: 10.1039/C7TA00458C
– ident: ref50/cit50
  doi: 10.1021/acs.macromol.7b00195
– ident: ref8/cit8
  doi: 10.1038/nature08863
– ident: ref10/cit10
  doi: 10.1002/adfm.200901409
– ident: ref60/cit60
  doi: 10.1021/ja01539a017
– ident: ref11/cit11
  doi: 10.1021/acsmacrolett.6b00357
– ident: ref21/cit21
  doi: 10.1002/adma.201605908
– ident: ref53/cit53
  doi: 10.1021/acsnano.7b02970
– ident: ref29/cit29
  doi: 10.1038/nchem.1802
– ident: ref26/cit26
  doi: 10.1039/C5SM02781K
– ident: ref39/cit39
  doi: 10.1021/acsami.7b14588
– ident: ref12/cit12
  doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
– ident: ref42/cit42
  doi: 10.1021/am404087q
– ident: ref24/cit24
  doi: 10.1080/15583724.2012.756519
– ident: ref36/cit36
  doi: 10.1021/acs.chemmater.6b02684
– ident: ref44/cit44
  doi: 10.1021/acsami.7b06407
– ident: ref43/cit43
  doi: 10.1021/jacs.5b12531
– ident: ref35/cit35
  doi: 10.1002/adma.201501726
– ident: ref23/cit23
  doi: 10.1002/adem.200800213
– ident: ref31/cit31
  doi: 10.1002/anie.201204840
– ident: ref51/cit51
  doi: 10.1002/adma.201001068
– ident: ref34/cit34
  doi: 10.1021/am504829z
– ident: ref52/cit52
  doi: 10.1021/nn101204d
– ident: ref58/cit58
  doi: 10.1039/C3TA14340F
– ident: ref14/cit14
  doi: 10.1073/pnas.0600079103
– ident: ref17/cit17
  doi: 10.1016/j.progpolymsci.2015.04.002
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.7b00168
– ident: ref41/cit41
  doi: 10.1021/acsami.7b05713
– ident: ref3/cit3
  doi: 10.1039/c2cs35091b
– ident: ref37/cit37
  doi: 10.1002/anie.201001258
– ident: ref1/cit1
  doi: 10.1038/nmat2614
– ident: ref55/cit55
  doi: 10.1021/acsami.5b09676
– ident: ref59/cit59
  doi: 10.1021/jp209077z
– ident: ref49/cit49
  doi: 10.1126/science.1145593
– ident: ref40/cit40
  doi: 10.1002/anie.201502957
– ident: ref16/cit16
  doi: 10.1016/S1369-7021(10)70128-0
– ident: ref33/cit33
  doi: 10.1002/anie.201105822
– ident: ref47/cit47
  doi: 10.1039/C4TA06304J
– ident: ref6/cit6
  doi: 10.1016/j.polymer.2013.02.023
– ident: ref22/cit22
  doi: 10.1002/anie.201602847
– ident: ref13/cit13
  doi: 10.1021/am100692n
– ident: ref9/cit9
  doi: 10.1021/acsami.6b13531
– ident: ref48/cit48
  doi: 10.1021/am101012c
– ident: ref7/cit7
  doi: 10.1021/acsami.7b03624
– ident: ref56/cit56
  doi: 10.1021/am508970k
– ident: ref54/cit54
  doi: 10.1039/C4TC01097C
– ident: ref45/cit45
  doi: 10.1016/j.compositesb.2015.08.019
– ident: ref46/cit46
  doi: 10.1002/marc.201700149
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.5b03705
– ident: ref2/cit2
  doi: 10.1038/nmat3776
– ident: ref20/cit20
  doi: 10.1002/adma.201503132
SSID ssj0063205
Score 2.5636213
Snippet The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9470
SubjectTerms durability
graphene oxide
hydrogen bonding
irradiation
mechanical damage
modulus of elasticity
nanosheets
near infrared radiation
polyacrylic acid
polyvinyl alcohol
Title Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function
URI http://dx.doi.org/10.1021/acsami.8b21970
https://www.ncbi.nlm.nih.gov/pubmed/30735026
https://www.proquest.com/docview/2184135992
https://www.proquest.com/docview/2237538277
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYquJRDSx-ULRS5Aqmn0MR2Hj6ihRWtCqoESNyi8SNUasgisnvY_oH-bWacLOWhpRwjTZzEM55vxp58w9iO8-CppUNkikxhguJMBLG1ESgJNlUGo_xQbXGcHZ6p7-fp-b_9jocn-CL5CralVjiFwbWVY3K-LLIipzRrb3gy97mZFKFYETNyFRWIWHN6xkf3EwjZ9j4ILYgsA8KMXnd0R20gJqTCkt-704nZtX8e0zb-9-VX2as-zOR7nV28YS9885at3CEffMf-ooWgV67rGYfG8WM0-ehbU11TRTr_EfhFqK-HxauTX3Dl-REV5c74z3E9o81uPkScNbXn44rTz0w4KIrQj8Skd74Pl-iqwtAj1P7F9OE4I0RUsor37Gx0cDo8jPq2DKhAoSeRddZJwLDBoCadcXlsMh-bXDllEptKgFh7SCtBUAcJaMRJWRU2qawEZTK5xpaacePXGY-1SKzVeZUZj84ENKTCudQodMMxWDdg2ziDZb-s2jKcmIuk7Ka17Kd1wKK5NkvbM5tTg416ofyXW_mrjtNjoeTnuXGUuOzoLAUaP562JWXGiUy1Fk_ICInJYCHyfMA-dJZ1-zxyrSnmvx-f9YUb7CUGajrUvmWbbGlyPfWfMBiamK2wDm4AnwQFqQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5QAceD8WKBiBxCltYjsPH6stqy1sV5XaSr1F40eo1JCtmt3D8gf424y9yQJFi-CYaDKJ7Zn5ZuLxDMB769D5lg6RLjJJAYrVEcbGRCgFmlRq8vJDtsU0G5_JT-fp-Rbs9Wdh6CNa4tSGTfyf1QWSPbrnO-IUmlQspxj9Fnki3Edb-8OT3vRmgoecRQrMZVQQcPVVGv943mORaX_Hog0OZgCa0X04Xn9iyC-53F3M9a75dqN643-M4QHc65xOtr-Skoew5ZpHcPeXUoSP4TvJC9noul4ybCybkgJEh0117fPT2SRUG_FdPgxdnVzglWNHPkV3yY5n9dL_-mZDQl1dOzarmD_aREyJxB8r9lLADvArGa7AekSy8GVxk8-I8NXLyBM4G308HY6jrkkDLSdX88hYYwWSE6FpXa22eawzF-tcWqkTkwrEWDlMK-6BDxNUhJqiKkxSGYFSZ-IpbDezxj0HFiueGKPyKtOOTAsqTLm1qZZklGM0dgDvaAbLTsnaMuyf86RcTWvZTesAon5RS9PVOfftNuqN9B_W9FerCh8bKd_2MlKSEvqdFWzcbNGWPk5ORKoU_wsNFxQaFjzPB_BsJWDr93lDm1I0_OKfRvgGbo9Pjybl5HD6-SXcIRdOhay47BVsz68XbofcpLl-HVTjByrlDgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtNAcFUVqYIDUJ6h0C4CiZNbe3f92GOVYrVQokptpd6s2YdBwjhRnRzCD_Dbndk4ERQF0aOt8di7O0_Pi7H3zoOnkQ6RKTKFDoozEcTWRqAk2FQZtPJDtsUoO75Un67Sq76Om2ph8CM6xNSFID5x9cTVfYeB5ADv01ScwiCb5ein36OYHXlch8PzpfjNpAh5i-icq6hA5bXs1PjX86SPbPenPlpjZAZlUz5iF6vPDDkm3_dnU7Nvf97q4HjHdTxmD3vjkx8uqGWbbfj2CXvwW0vCp-wX0g3K6qaZc2gdHyEjRCdtfU156vw0dB2haR8Wr86_wcTzL5SqO-dn42ZOv8D5ELWvaTwf15xKnBApglB5MVEDP4IfKMAC6hJp4uvsNp4S9SzRyjN2WX68GB5H_bAGPFahp5F11klAY8Lg-Trj8thkPja5csokNpUAsfaQ1oIUICSgUXvKurBJbSUok8nnbLMdt_4l47EWibU6rzPjUcSAhlQ4lxqFwjkG6wbsHe5g1TNbV4U4ukiqxbZW_bYOWLQ82Mr2_c5p7EazFv7DCn6y6PSxFvLtkk4qZEaKsEDrx7OuIn85kanW4h8wQqKLWIg8H7AXCyJbvY8Ebope8av_WuEe2zo7KqvTk9HnHXYfLTkdkuOy12xzej3zb9BamprdwB032ucQjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+and+Near-Infrared+Light-Induced+Shape+Memory+Polymers+Capable+of+Healing+Mechanical+Damage+and+Fatigued+Shape+Memory+Function&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Tianqi&rft.au=Li%2C+Yang&rft.au=Wang%2C+Xiaohan&rft.au=Li%2C+Xiang&rft.date=2019-03-06&rft.eissn=1944-8252&rft.volume=11&rft.issue=9&rft.spage=9470&rft_id=info:doi/10.1021%2Facsami.8b21970&rft_id=info%3Apmid%2F30735026&rft.externalDocID=30735026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon