Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function
The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-hea...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 9; pp. 9470 - 9477 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young’s modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life. |
---|---|
AbstractList | The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young’s modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life. The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young's modulus of ∼2.8 GPa. The PVA/PAA-GO films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life. The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO₃% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young’s modulus of ∼2.8 GPa. The PVA/PAA-GO₃% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO₃% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO₃% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life. The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young's modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life.The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage and the fatigued shape memory function remains a challenge. In this study, thermally and NIR-light-induced shape memory polymers with self-healing ability and satisfactory mechanical robustness are fabricated by dispersing poly(acrylic acid) (PAA)-grafted graphene oxide (GO) (PAA-GO) into poly(vinyl alcohol) (PVA) matrix. The PVA/PAA-GO3% films with a PAA-GO content of 3.0 wt % have a fracture stress of ∼70.4 MPa and a Young's modulus of ∼2.8 GPa. The PVA/PAA-GO3% films exhibit an excellent shape memory performance because PVA and PAA-GO form a stable network through hydrogen-bonding interaction between them. Meanwhile, the PVA/PAA-GO3% films are capable of recovering from temporary shape to permanent shape under NIR light irradiation because of excellent photothermal conversion property of the GO nanosheets. More importantly, benefiting from the reversibility of hydrogen-bonding interactions between PVA and PAA-GO nanosheets, the shape memory PVA/PAA-GO3% films are capable of healing physical damage and the fatigued shape memory function with the assistance of water, which greatly enhance their reliability as shape memory materials and prolong their service life. |
Author | Wang, Xiaohan Li, Xiang Li, Yang Sun, Junqi Li, Tianqi |
AuthorAffiliation | State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry |
AuthorAffiliation_xml | – name: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry |
Author_xml | – sequence: 1 givenname: Tianqi surname: Li fullname: Li, Tianqi – sequence: 2 givenname: Yang orcidid: 0000-0003-4646-3695 surname: Li fullname: Li, Yang – sequence: 3 givenname: Xiaohan surname: Wang fullname: Wang, Xiaohan – sequence: 4 givenname: Xiang surname: Li fullname: Li, Xiang – sequence: 5 givenname: Junqi orcidid: 0000-0002-7284-9826 surname: Sun fullname: Sun, Junqi email: sun_junqi@jlu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30735026$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URB-wZYm8REgT_JrMzBIFQiuFh0RZj67tO4krjx3smUV-AX8bl4QuKlWs7kPfOYtzLslZiAEJec3ZgjPB34PJMLpFqwXvGvaMXPBOqaoVtTh72JU6J5c53zG2lILVL8i5ZI2smVhekN-3O0wjeH-gECz9ipCqmzAkSGjpxm13UzntbMr1Ywd7pF9wjOlAv0d_GDFluoI9aI80DvQawbuwLYjZQXAGPP0II2zxr_UaJredH_us52AmF8NL8nwAn_HVaV6Rn-tPt6vravPt883qw6YCJbqpMtZYCZwzrUVrtW2YXiLTjbJKc1NLANYh1IModAccOsWlHFrDByNB6aW8Im-PvvsUf82Yp3502aD3EDDOuRdCNrVsRdP8H-Vtca-7ThT0zQmd9Yi23yc3Qjr0_3IuwOIImBRzTjg8IJz190X2xyL7U5FFoB4JjJvgPqkpgfNPy94dZeXf38U5hRLmU_Af8Pqx7Q |
CitedBy_id | crossref_primary_10_1021_acsapm_2c01926 crossref_primary_10_3390_polym14040738 crossref_primary_10_1002_ange_202400989 crossref_primary_10_1016_j_ijmecsci_2020_106082 crossref_primary_10_1016_j_mtcomm_2025_111752 crossref_primary_10_1016_j_matdes_2022_111218 crossref_primary_10_1039_D1VA00043H crossref_primary_10_1039_D2NJ00056C crossref_primary_10_3390_polym15020423 crossref_primary_10_1039_D2TC00076H crossref_primary_10_1039_D1PY01625C crossref_primary_10_1515_nanoph_2021_0652 crossref_primary_10_1016_j_polymdegradstab_2023_110297 crossref_primary_10_1002_admt_202401281 crossref_primary_10_1002_adfm_202401005 crossref_primary_10_1016_j_polymer_2020_122673 crossref_primary_10_1002_pen_26616 crossref_primary_10_1016_j_polymer_2020_123004 crossref_primary_10_1021_acs_biomac_9b01074 crossref_primary_10_1002_macp_202300216 crossref_primary_10_1021_acsami_9b14202 crossref_primary_10_1016_j_porgcoat_2020_106000 crossref_primary_10_1557_s43578_021_00149_x crossref_primary_10_1039_D3NA00647F crossref_primary_10_1007_s40843_020_1538_6 crossref_primary_10_1039_D2NR01406H crossref_primary_10_1088_1361_665X_aba53e crossref_primary_10_1002_app_50827 crossref_primary_10_1038_s41528_025_00397_5 crossref_primary_10_1021_acsami_1c05166 crossref_primary_10_1039_D2QM00041E crossref_primary_10_1021_acsami_1c09658 crossref_primary_10_1016_j_biomaterials_2024_122794 crossref_primary_10_1016_j_polymer_2020_122986 crossref_primary_10_1016_j_eurpolymj_2022_111314 crossref_primary_10_3390_polym12112591 crossref_primary_10_1016_j_porgcoat_2023_107886 crossref_primary_10_1007_s10118_022_2789_y crossref_primary_10_1007_s12274_024_6559_8 crossref_primary_10_1016_j_polymer_2020_122972 crossref_primary_10_1021_acs_biomac_2c00662 crossref_primary_10_1016_j_porgcoat_2020_105943 crossref_primary_10_1109_LRA_2025_3544492 crossref_primary_10_1016_j_jallcom_2020_154399 crossref_primary_10_1002_pc_27385 crossref_primary_10_1016_j_reactfunctpolym_2022_105267 crossref_primary_10_1016_j_jmbbm_2021_104814 crossref_primary_10_1088_1361_665X_abb572 crossref_primary_10_1002_macp_202000401 crossref_primary_10_1002_app_53166 crossref_primary_10_1016_j_cej_2023_144932 crossref_primary_10_1021_acsami_5c00788 crossref_primary_10_1016_j_porgcoat_2022_107384 crossref_primary_10_1016_j_fpsl_2025_101460 crossref_primary_10_1007_s10965_022_03210_3 crossref_primary_10_1002_smll_202405950 crossref_primary_10_1016_j_jmps_2025_106029 crossref_primary_10_1002_app_49696 crossref_primary_10_1021_acs_langmuir_3c02324 crossref_primary_10_1016_j_sna_2023_114823 crossref_primary_10_1039_D0TB01237H crossref_primary_10_1007_s10853_022_07594_x crossref_primary_10_1016_j_jsamd_2022_100446 crossref_primary_10_1016_j_surfin_2022_102121 crossref_primary_10_1002_adma_202109198 crossref_primary_10_1039_D4NR00018H crossref_primary_10_1007_s11431_020_1735_9 crossref_primary_10_1016_j_reactfunctpolym_2024_106095 crossref_primary_10_1016_j_mser_2022_100702 crossref_primary_10_1016_j_cej_2019_123143 crossref_primary_10_1021_acs_chemrev_2c00418 crossref_primary_10_1002_anie_202400989 crossref_primary_10_1002_smll_202206463 crossref_primary_10_1039_D3TC01991H crossref_primary_10_1088_1748_3190_ad0b8c crossref_primary_10_1021_acs_iecr_1c04812 crossref_primary_10_1016_j_addma_2023_103870 crossref_primary_10_1002_smll_202400567 crossref_primary_10_1002_cjce_24094 crossref_primary_10_1021_acssuschemeng_0c05501 crossref_primary_10_1002_smll_202409781 crossref_primary_10_1016_j_jcis_2025_01_126 crossref_primary_10_1016_j_compscitech_2020_108524 crossref_primary_10_1007_s12034_021_02361_1 crossref_primary_10_1021_acsmaterialslett_4c02552 crossref_primary_10_1039_C9BM00664H crossref_primary_10_3389_fbioe_2023_1141631 crossref_primary_10_1002_adfm_202314854 crossref_primary_10_1016_j_mtchem_2025_102607 crossref_primary_10_1017_pma_2024_4 crossref_primary_10_1021_acsmaterialslett_1c00053 crossref_primary_10_1063_5_0005755 crossref_primary_10_1002_mame_202300158 crossref_primary_10_1002_cssc_202201361 crossref_primary_10_1016_j_polymertesting_2023_107966 crossref_primary_10_1016_j_snb_2022_131776 crossref_primary_10_1016_j_compositesb_2021_108927 crossref_primary_10_1016_j_progpolymsci_2023_101724 crossref_primary_10_1021_acs_langmuir_2c00167 |
Cites_doi | 10.1126/science.aam7588 10.1039/B406727D 10.1126/science.1066102 10.1007/s11665-014-0983-y 10.1038/35057232 10.1039/C6TC03556F 10.1088/0964-1726/23/2/023001 10.1038/nature06669 10.1021/acsami.7b08636 10.1039/C7TA00458C 10.1021/acs.macromol.7b00195 10.1038/nature08863 10.1002/adfm.200901409 10.1021/ja01539a017 10.1021/acsmacrolett.6b00357 10.1002/adma.201605908 10.1021/acsnano.7b02970 10.1038/nchem.1802 10.1039/C5SM02781K 10.1021/acsami.7b14588 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M 10.1021/am404087q 10.1080/15583724.2012.756519 10.1021/acs.chemmater.6b02684 10.1021/acsami.7b06407 10.1021/jacs.5b12531 10.1002/adma.201501726 10.1002/adem.200800213 10.1002/anie.201204840 10.1002/adma.201001068 10.1021/am504829z 10.1021/nn101204d 10.1039/C3TA14340F 10.1073/pnas.0600079103 10.1016/j.progpolymsci.2015.04.002 10.1021/acs.chemrev.7b00168 10.1021/acsami.7b05713 10.1039/c2cs35091b 10.1002/anie.201001258 10.1038/nmat2614 10.1021/acsami.5b09676 10.1021/jp209077z 10.1126/science.1145593 10.1002/anie.201502957 10.1016/S1369-7021(10)70128-0 10.1002/anie.201105822 10.1039/C4TA06304J 10.1016/j.polymer.2013.02.023 10.1002/anie.201602847 10.1021/am100692n 10.1021/acsami.6b13531 10.1021/am101012c 10.1021/acsami.7b03624 10.1021/am508970k 10.1039/C4TC01097C 10.1016/j.compositesb.2015.08.019 10.1002/marc.201700149 10.1021/acs.chemmater.5b03705 10.1038/nmat3776 10.1002/adma.201503132 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.8b21970 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 9477 |
ExternalDocumentID | 30735026 10_1021_acsami_8b21970 b743214588 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-cdcd3a110bb28dbd70b6e0b74d4b1c53aa09ea5f24299a1a94133f8c1fc3a4b63 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 07:08:56 EDT 2025 Fri Jul 11 01:26:28 EDT 2025 Thu Apr 03 07:03:12 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 04:06:18 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | shape memory polymers nanofiller reinforcement graphene oxides materials science self-healing materials |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-cdcd3a110bb28dbd70b6e0b74d4b1c53aa09ea5f24299a1a94133f8c1fc3a4b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7284-9826 0000-0003-4646-3695 |
PMID | 30735026 |
PQID | 2184135992 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2237538277 proquest_miscellaneous_2184135992 pubmed_primary_30735026 crossref_primary_10_1021_acsami_8b21970 crossref_citationtrail_10_1021_acsami_8b21970 acs_journals_10_1021_acsami_8b21970 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-06 |
PublicationDateYYYYMMDD | 2019-03-06 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1126/science.aam7588 – ident: ref5/cit5 doi: 10.1039/B406727D – ident: ref19/cit19 doi: 10.1126/science.1066102 – ident: ref25/cit25 doi: 10.1007/s11665-014-0983-y – ident: ref27/cit27 doi: 10.1038/35057232 – ident: ref57/cit57 doi: 10.1039/C6TC03556F – ident: ref18/cit18 doi: 10.1088/0964-1726/23/2/023001 – ident: ref30/cit30 doi: 10.1038/nature06669 – ident: ref38/cit38 doi: 10.1021/acsami.7b08636 – ident: ref15/cit15 doi: 10.1039/C7TA00458C – ident: ref50/cit50 doi: 10.1021/acs.macromol.7b00195 – ident: ref8/cit8 doi: 10.1038/nature08863 – ident: ref10/cit10 doi: 10.1002/adfm.200901409 – ident: ref60/cit60 doi: 10.1021/ja01539a017 – ident: ref11/cit11 doi: 10.1021/acsmacrolett.6b00357 – ident: ref21/cit21 doi: 10.1002/adma.201605908 – ident: ref53/cit53 doi: 10.1021/acsnano.7b02970 – ident: ref29/cit29 doi: 10.1038/nchem.1802 – ident: ref26/cit26 doi: 10.1039/C5SM02781K – ident: ref39/cit39 doi: 10.1021/acsami.7b14588 – ident: ref12/cit12 doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M – ident: ref42/cit42 doi: 10.1021/am404087q – ident: ref24/cit24 doi: 10.1080/15583724.2012.756519 – ident: ref36/cit36 doi: 10.1021/acs.chemmater.6b02684 – ident: ref44/cit44 doi: 10.1021/acsami.7b06407 – ident: ref43/cit43 doi: 10.1021/jacs.5b12531 – ident: ref35/cit35 doi: 10.1002/adma.201501726 – ident: ref23/cit23 doi: 10.1002/adem.200800213 – ident: ref31/cit31 doi: 10.1002/anie.201204840 – ident: ref51/cit51 doi: 10.1002/adma.201001068 – ident: ref34/cit34 doi: 10.1021/am504829z – ident: ref52/cit52 doi: 10.1021/nn101204d – ident: ref58/cit58 doi: 10.1039/C3TA14340F – ident: ref14/cit14 doi: 10.1073/pnas.0600079103 – ident: ref17/cit17 doi: 10.1016/j.progpolymsci.2015.04.002 – ident: ref4/cit4 doi: 10.1021/acs.chemrev.7b00168 – ident: ref41/cit41 doi: 10.1021/acsami.7b05713 – ident: ref3/cit3 doi: 10.1039/c2cs35091b – ident: ref37/cit37 doi: 10.1002/anie.201001258 – ident: ref1/cit1 doi: 10.1038/nmat2614 – ident: ref55/cit55 doi: 10.1021/acsami.5b09676 – ident: ref59/cit59 doi: 10.1021/jp209077z – ident: ref49/cit49 doi: 10.1126/science.1145593 – ident: ref40/cit40 doi: 10.1002/anie.201502957 – ident: ref16/cit16 doi: 10.1016/S1369-7021(10)70128-0 – ident: ref33/cit33 doi: 10.1002/anie.201105822 – ident: ref47/cit47 doi: 10.1039/C4TA06304J – ident: ref6/cit6 doi: 10.1016/j.polymer.2013.02.023 – ident: ref22/cit22 doi: 10.1002/anie.201602847 – ident: ref13/cit13 doi: 10.1021/am100692n – ident: ref9/cit9 doi: 10.1021/acsami.6b13531 – ident: ref48/cit48 doi: 10.1021/am101012c – ident: ref7/cit7 doi: 10.1021/acsami.7b03624 – ident: ref56/cit56 doi: 10.1021/am508970k – ident: ref54/cit54 doi: 10.1039/C4TC01097C – ident: ref45/cit45 doi: 10.1016/j.compositesb.2015.08.019 – ident: ref46/cit46 doi: 10.1002/marc.201700149 – ident: ref32/cit32 doi: 10.1021/acs.chemmater.5b03705 – ident: ref2/cit2 doi: 10.1038/nmat3776 – ident: ref20/cit20 doi: 10.1002/adma.201503132 |
SSID | ssj0063205 |
Score | 2.5636213 |
Snippet | The fabrication of shape memory polymers that are mechanically robust and capable of being induced by near-infrared (NIR) light and healing mechanical damage... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9470 |
SubjectTerms | durability graphene oxide hydrogen bonding irradiation mechanical damage modulus of elasticity nanosheets near infrared radiation polyacrylic acid polyvinyl alcohol |
Title | Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function |
URI | http://dx.doi.org/10.1021/acsami.8b21970 https://www.ncbi.nlm.nih.gov/pubmed/30735026 https://www.proquest.com/docview/2184135992 https://www.proquest.com/docview/2237538277 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYquJRDSx-ULRS5Aqmn0MR2Hj6ihRWtCqoESNyi8SNUasgisnvY_oH-bWacLOWhpRwjTZzEM55vxp58w9iO8-CppUNkikxhguJMBLG1ESgJNlUGo_xQbXGcHZ6p7-fp-b_9jocn-CL5CralVjiFwbWVY3K-LLIipzRrb3gy97mZFKFYETNyFRWIWHN6xkf3EwjZ9j4ILYgsA8KMXnd0R20gJqTCkt-704nZtX8e0zb-9-VX2as-zOR7nV28YS9885at3CEffMf-ooWgV67rGYfG8WM0-ehbU11TRTr_EfhFqK-HxauTX3Dl-REV5c74z3E9o81uPkScNbXn44rTz0w4KIrQj8Skd74Pl-iqwtAj1P7F9OE4I0RUsor37Gx0cDo8jPq2DKhAoSeRddZJwLDBoCadcXlsMh-bXDllEptKgFh7SCtBUAcJaMRJWRU2qawEZTK5xpaacePXGY-1SKzVeZUZj84ENKTCudQodMMxWDdg2ziDZb-s2jKcmIuk7Ka17Kd1wKK5NkvbM5tTg416ofyXW_mrjtNjoeTnuXGUuOzoLAUaP562JWXGiUy1Fk_ICInJYCHyfMA-dJZ1-zxyrSnmvx-f9YUb7CUGajrUvmWbbGlyPfWfMBiamK2wDm4AnwQFqQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5QAceD8WKBiBxCltYjsPH6stqy1sV5XaSr1F40eo1JCtmt3D8gf424y9yQJFi-CYaDKJ7Zn5ZuLxDMB769D5lg6RLjJJAYrVEcbGRCgFmlRq8vJDtsU0G5_JT-fp-Rbs9Wdh6CNa4tSGTfyf1QWSPbrnO-IUmlQspxj9Fnki3Edb-8OT3vRmgoecRQrMZVQQcPVVGv943mORaX_Hog0OZgCa0X04Xn9iyC-53F3M9a75dqN643-M4QHc65xOtr-Skoew5ZpHcPeXUoSP4TvJC9noul4ybCybkgJEh0117fPT2SRUG_FdPgxdnVzglWNHPkV3yY5n9dL_-mZDQl1dOzarmD_aREyJxB8r9lLADvArGa7AekSy8GVxk8-I8NXLyBM4G308HY6jrkkDLSdX88hYYwWSE6FpXa22eawzF-tcWqkTkwrEWDlMK-6BDxNUhJqiKkxSGYFSZ-IpbDezxj0HFiueGKPyKtOOTAsqTLm1qZZklGM0dgDvaAbLTsnaMuyf86RcTWvZTesAon5RS9PVOfftNuqN9B_W9FerCh8bKd_2MlKSEvqdFWzcbNGWPk5ORKoU_wsNFxQaFjzPB_BsJWDr93lDm1I0_OKfRvgGbo9Pjybl5HD6-SXcIRdOhay47BVsz68XbofcpLl-HVTjByrlDgo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtNAcFUVqYIDUJ6h0C4CiZNbe3f92GOVYrVQokptpd6s2YdBwjhRnRzCD_Dbndk4ERQF0aOt8di7O0_Pi7H3zoOnkQ6RKTKFDoozEcTWRqAk2FQZtPJDtsUoO75Un67Sq76Om2ph8CM6xNSFID5x9cTVfYeB5ADv01ScwiCb5ein36OYHXlch8PzpfjNpAh5i-icq6hA5bXs1PjX86SPbPenPlpjZAZlUz5iF6vPDDkm3_dnU7Nvf97q4HjHdTxmD3vjkx8uqGWbbfj2CXvwW0vCp-wX0g3K6qaZc2gdHyEjRCdtfU156vw0dB2haR8Wr86_wcTzL5SqO-dn42ZOv8D5ELWvaTwf15xKnBApglB5MVEDP4IfKMAC6hJp4uvsNp4S9SzRyjN2WX68GB5H_bAGPFahp5F11klAY8Lg-Trj8thkPja5csokNpUAsfaQ1oIUICSgUXvKurBJbSUok8nnbLMdt_4l47EWibU6rzPjUcSAhlQ4lxqFwjkG6wbsHe5g1TNbV4U4ukiqxbZW_bYOWLQ82Mr2_c5p7EazFv7DCn6y6PSxFvLtkk4qZEaKsEDrx7OuIn85kanW4h8wQqKLWIg8H7AXCyJbvY8Ebope8av_WuEe2zo7KqvTk9HnHXYfLTkdkuOy12xzej3zb9BamprdwB032ucQjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+and+Near-Infrared+Light-Induced+Shape+Memory+Polymers+Capable+of+Healing+Mechanical+Damage+and+Fatigued+Shape+Memory+Function&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Tianqi&rft.au=Li%2C+Yang&rft.au=Wang%2C+Xiaohan&rft.au=Li%2C+Xiang&rft.date=2019-03-06&rft.eissn=1944-8252&rft.volume=11&rft.issue=9&rft.spage=9470&rft_id=info:doi/10.1021%2Facsami.8b21970&rft_id=info%3Apmid%2F30735026&rft.externalDocID=30735026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |