Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells

Novel side-chain-type sulfonated poly­(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal techno...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 9; pp. 7963 - 7973
Main Authors Ru, Chunyu, Li, Zhenhua, Zhao, Chengji, Duan, Yuting, Zhuang, Zhuang, Bu, Fanzhe, Na, Hui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Novel side-chain-type sulfonated poly­(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic–inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between −NH2 of MNS and −SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm–1, which was much higher than those of the pristine membrane (0.145 S·cm–1) and recast Nafion (0.134 S·cm–1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
AbstractList Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH₂-SO₃H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic–inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between −NH₂ of MNS and −SO₃H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm–¹, which was much higher than those of the pristine membrane (0.145 S·cm–¹) and recast Nafion (0.134 S·cm–¹) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm² at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH -SO H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH of MNS and -SO H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm , which was much higher than those of the pristine membrane (0.145 S·cm ) and recast Nafion (0.134 S·cm ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Novel side-chain-type sulfonated poly­(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic–inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between −NH2 of MNS and −SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm–1, which was much higher than those of the pristine membrane (0.145 S·cm–1) and recast Nafion (0.134 S·cm–1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH2 of MNS and -SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm-1, which was much higher than those of the pristine membrane (0.145 S·cm-1) and recast Nafion (0.134 S·cm-1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH2 of MNS and -SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm-1, which was much higher than those of the pristine membrane (0.145 S·cm-1) and recast Nafion (0.134 S·cm-1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Author Na, Hui
Li, Zhenhua
Bu, Fanzhe
Zhao, Chengji
Zhuang, Zhuang
Ru, Chunyu
Duan, Yuting
AuthorAffiliation Jilin University
Key Laboratory of Advanced Batteries Physics and Technology (Ministry of Education)
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
Alan G. MacDiarmid Institute, College of Chemistry
AuthorAffiliation_xml – name: Alan G. MacDiarmid Institute, College of Chemistry
– name: Key Laboratory of Advanced Batteries Physics and Technology (Ministry of Education)
– name: Jilin University
– name: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
Author_xml – sequence: 1
  givenname: Chunyu
  surname: Ru
  fullname: Ru, Chunyu
– sequence: 2
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
– sequence: 3
  givenname: Chengji
  orcidid: 0000-0003-3949-8638
  surname: Zhao
  fullname: Zhao, Chengji
– sequence: 4
  givenname: Yuting
  surname: Duan
  fullname: Duan, Yuting
– sequence: 5
  givenname: Zhuang
  surname: Zhuang
  fullname: Zhuang, Zhuang
– sequence: 6
  givenname: Fanzhe
  surname: Bu
  fullname: Bu, Fanzhe
– sequence: 7
  givenname: Hui
  orcidid: 0000-0002-5709-2538
  surname: Na
  fullname: Na, Hui
  email: huina@jlu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29439561$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URH9gyxJ5WZBmsB0nmSzL0KGVWhWJ7qMb57p169iD7YDCinfgjXgUngQPM2WBVAl5Ycv-zrF97j0ke847JOQlZ3POBH8LKsJg5nXHa9E0T8gBb6ScLUQp9v6updwnhzHeMVYVgpXPyL5oZNGUFT8gP0_dLTiFPf0YfPKOLr3rR5XMF5Mm6jX9NFrtHaRMnE1dMBn0djqGMFl0SDHdYqD3mKX4ml7i0AVwGGk30XOnfFj7AMm4GwqOngzG-V_ff_yxpO-MHl2-KJtb8y3bX2ICm4-vwg04o-gqwIBffbin2gf63gRUaQPl93pLVyNaukRr43PyVION-GI3H5Hr1en18mx2cfXhfHlyMQMpmjRTgouqxxq45AtdQFVpXVeaq5xSzov1ulCsRpBQ5VEuZAVM6wXXUPC-LIojcry1XQf_ecSY2sFElR-Q_-vH2ApW5RLIuuH_gTIh-KJmdUZf7dCxG7Bv18EMOdv2oUIZkFtABR9jQN0qk2ATWwpgbMtZu2mEdtsI7a4Rsmz-j-zB-VHBm60g77d3fgy5LPEx-DdPJcpe
CitedBy_id crossref_primary_10_1007_s42114_023_00637_0
crossref_primary_10_1016_j_memsci_2024_122409
crossref_primary_10_3390_polym12091861
crossref_primary_10_1002_advs_202304082
crossref_primary_10_1039_C9TC05475H
crossref_primary_10_1002_smll_202312209
crossref_primary_10_1016_j_memsci_2021_120186
crossref_primary_10_1002_anie_202112922
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1016_j_memsci_2021_120193
crossref_primary_10_1177_09540083221120928
crossref_primary_10_1016_j_jiec_2022_11_066
crossref_primary_10_1016_j_memsci_2018_12_030
crossref_primary_10_1016_j_jmst_2022_11_063
crossref_primary_10_3389_fchem_2020_00694
crossref_primary_10_1016_j_ccr_2022_214445
crossref_primary_10_1016_j_ssi_2020_115325
crossref_primary_10_1002_jccs_202000535
crossref_primary_10_1002_anie_202104106
crossref_primary_10_1039_D0DT02327B
crossref_primary_10_1016_j_ijhydene_2021_12_087
crossref_primary_10_1016_j_ijhydene_2020_07_024
crossref_primary_10_1016_j_ccr_2020_213747
crossref_primary_10_1016_j_memsci_2020_117858
crossref_primary_10_1016_j_memsci_2019_117734
crossref_primary_10_1016_j_jpowsour_2020_227823
crossref_primary_10_1007_s10853_023_08903_8
crossref_primary_10_1016_j_rser_2020_110660
crossref_primary_10_1002_admi_201801146
crossref_primary_10_1021_acsami_9b18097
crossref_primary_10_1021_acs_energyfuels_1c02010
crossref_primary_10_1039_D1DT00782C
crossref_primary_10_1007_s11581_021_03923_3
crossref_primary_10_1016_j_renene_2019_02_042
crossref_primary_10_1007_s10853_023_08552_x
crossref_primary_10_3390_app12136659
crossref_primary_10_1002_adma_201907090
crossref_primary_10_1016_j_memsci_2024_123483
crossref_primary_10_1016_j_jiec_2023_03_051
crossref_primary_10_1021_acssuschemeng_3c00046
crossref_primary_10_1039_D0NJ02532A
crossref_primary_10_1016_j_memsci_2021_119304
crossref_primary_10_1016_j_psep_2024_08_099
crossref_primary_10_1002_app_56141
crossref_primary_10_1016_j_memsci_2020_118972
crossref_primary_10_1021_acsami_9b13496
crossref_primary_10_1016_j_eurpolymj_2022_111601
crossref_primary_10_1016_j_memsci_2021_120098
crossref_primary_10_1016_j_memsci_2022_121001
crossref_primary_10_1016_j_memsci_2019_117711
crossref_primary_10_1016_j_jechem_2023_05_049
crossref_primary_10_3390_membranes11070539
crossref_primary_10_1016_j_memsci_2024_123193
crossref_primary_10_1021_acsaem_2c03721
crossref_primary_10_1007_s41061_019_0259_y
crossref_primary_10_1016_j_ijhydene_2024_11_104
crossref_primary_10_1007_s40242_019_9066_9
crossref_primary_10_1016_j_jiec_2021_08_016
crossref_primary_10_1016_j_cej_2023_146955
crossref_primary_10_1039_D3NJ02504G
crossref_primary_10_1016_j_ssi_2021_115777
crossref_primary_10_1016_j_jece_2023_110749
crossref_primary_10_3390_polym10091005
crossref_primary_10_1016_j_jpowsour_2022_231981
crossref_primary_10_1021_acsami_8b21081
crossref_primary_10_1016_j_ceja_2022_100372
crossref_primary_10_1016_j_cej_2019_122688
crossref_primary_10_1016_j_jpowsour_2021_229671
crossref_primary_10_1002_ceat_202300580
crossref_primary_10_3390_polym13183064
crossref_primary_10_1039_D0NJ04179C
crossref_primary_10_1016_j_electacta_2023_143210
crossref_primary_10_1039_C8TA08013E
crossref_primary_10_1021_acsami_4c04709
crossref_primary_10_1016_j_polymer_2019_01_039
crossref_primary_10_1002_pat_6420
crossref_primary_10_1016_j_memsci_2020_118194
crossref_primary_10_1016_j_ijhydene_2019_01_050
crossref_primary_10_1016_j_ijhydene_2021_09_110
crossref_primary_10_1016_j_ijhydene_2023_10_015
crossref_primary_10_1016_j_mtchem_2021_100653
crossref_primary_10_3390_nano8121042
crossref_primary_10_1021_acsaem_3c00220
crossref_primary_10_1016_j_est_2020_101754
crossref_primary_10_1016_j_jmrt_2022_12_118
crossref_primary_10_1016_j_jssc_2020_121570
crossref_primary_10_1016_j_memsci_2023_122154
crossref_primary_10_1002_ange_202112922
crossref_primary_10_1007_s10965_024_03894_9
crossref_primary_10_3390_molecules30050981
crossref_primary_10_1039_D3QI01941A
crossref_primary_10_1016_j_ijhydene_2024_09_103
crossref_primary_10_1021_acssuschemeng_0c01137
crossref_primary_10_1002_ange_202104106
crossref_primary_10_1039_D2TA03166C
crossref_primary_10_1039_D4CE00455H
crossref_primary_10_1016_j_ijhydene_2022_10_085
crossref_primary_10_3390_polym13091386
crossref_primary_10_1016_j_jallcom_2024_175681
crossref_primary_10_1016_j_ijhydene_2023_06_260
crossref_primary_10_1021_acsami_9b09183
crossref_primary_10_1016_j_nanoen_2019_104048
crossref_primary_10_1016_j_memsci_2021_119906
crossref_primary_10_1039_C8DT04171G
crossref_primary_10_1016_j_ijhydene_2021_05_167
crossref_primary_10_1016_j_ijhydene_2020_07_096
crossref_primary_10_1002_pen_26079
crossref_primary_10_1021_acsami_3c04153
crossref_primary_10_1016_j_memsci_2021_120214
crossref_primary_10_1016_j_ccr_2022_214740
crossref_primary_10_1039_C8NJ03459A
crossref_primary_10_1016_j_rser_2022_112836
crossref_primary_10_1016_j_polymer_2018_07_009
crossref_primary_10_1016_j_jssc_2019_121020
crossref_primary_10_2139_ssrn_4098684
crossref_primary_10_1016_j_jcis_2023_04_116
crossref_primary_10_1016_j_electacta_2019_134873
Cites_doi 10.1016/j.ijhydene.2013.02.129
10.1039/c2sc21927a
10.1039/c0jm04385k
10.1021/acsami.7b00198
10.1021/ja305587n
10.1016/j.memsci.2009.07.021
10.1039/c4ra12651c
10.1021/acsami.6b06983
10.1021/am500438a
10.1002/anie.201411703
10.1039/c5cc03462k
10.1016/j.memsci.2003.12.021
10.1016/j.jpowsour.2009.05.022
10.1039/c5ta03507d
10.1039/c4cc05526h
10.1002/smll.200900765
10.1021/cr0207123
10.1016/j.electacta.2017.08.058
10.1016/j.memsci.2015.08.017
10.1016/j.jpowsour.2008.10.070
10.1016/j.jpowsour.2010.10.003
10.1016/j.jpowsour.2016.11.066
10.1016/j.memsci.2004.12.051
10.1016/j.jallcom.2016.11.129
10.1016/j.jpowsour.2011.02.038
10.1021/acsami.7b00858
10.1016/j.polymer.2009.07.036
10.1002/pola.23621
10.1021/am900020w
10.1016/j.electacta.2017.10.002
10.1016/j.jpowsour.2006.03.029
10.1016/j.memsci.2008.05.003
10.1016/j.jpowsour.2016.12.018
10.1016/j.jpowsour.2011.03.021
10.1016/j.seppur.2013.07.044
10.1126/science.1116275
10.1021/nn2013113
10.1039/c7ta06258c
10.1021/cr020730k
10.1039/c2cc32384b
10.1021/cr020711a
10.1021/ja2110152
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.7b17299
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 7973
ExternalDocumentID 29439561
10_1021_acsami_7b17299
a659769899
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-c2126de7a1418f3a66ff76f1c1948250df3c07ea4a6a6a5846a0ff81fa31d533
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 17:01:23 EDT 2025
Thu Jul 10 23:59:36 EDT 2025
Mon Jul 21 06:00:21 EDT 2025
Tue Jul 01 04:05:48 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
Thu Aug 27 13:50:42 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords direct methanol fuel cells
proton conductivity
sulfonated poly(arylene ether ketone)
bifunctionalized metal−organic framework
polymer electrolyte membranes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-c2126de7a1418f3a66ff76f1c1948250df3c07ea4a6a6a5846a0ff81fa31d533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3949-8638
0000-0002-5709-2538
PMID 29439561
PQID 2002218707
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2067294791
proquest_miscellaneous_2002218707
pubmed_primary_29439561
crossref_citationtrail_10_1021_acsami_7b17299
crossref_primary_10_1021_acsami_7b17299
acs_journals_10_1021_acsami_7b17299
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-07
PublicationDateYYYYMMDD 2018-03-07
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1016/j.ijhydene.2013.02.129
– ident: ref24/cit24
  doi: 10.1039/c2sc21927a
– ident: ref13/cit13
  doi: 10.1039/c0jm04385k
– ident: ref36/cit36
  doi: 10.1021/acsami.7b00198
– ident: ref22/cit22
  doi: 10.1021/ja305587n
– ident: ref4/cit4
  doi: 10.1016/j.memsci.2009.07.021
– ident: ref30/cit30
  doi: 10.1039/c4ra12651c
– ident: ref27/cit27
  doi: 10.1021/acsami.6b06983
– ident: ref23/cit23
  doi: 10.1021/am500438a
– ident: ref21/cit21
  doi: 10.1002/anie.201411703
– ident: ref26/cit26
  doi: 10.1039/c5cc03462k
– ident: ref9/cit9
  doi: 10.1016/j.memsci.2003.12.021
– ident: ref6/cit6
  doi: 10.1016/j.jpowsour.2009.05.022
– ident: ref18/cit18
  doi: 10.1039/c5ta03507d
– ident: ref25/cit25
  doi: 10.1039/c4cc05526h
– ident: ref34/cit34
  doi: 10.1002/smll.200900765
– ident: ref35/cit35
  doi: 10.1021/cr0207123
– ident: ref38/cit38
  doi: 10.1016/j.electacta.2017.08.058
– ident: ref41/cit41
  doi: 10.1016/j.memsci.2015.08.017
– ident: ref16/cit16
  doi: 10.1016/j.jpowsour.2008.10.070
– ident: ref5/cit5
  doi: 10.1016/j.jpowsour.2010.10.003
– ident: ref3/cit3
  doi: 10.1016/j.jpowsour.2016.11.066
– ident: ref7/cit7
  doi: 10.1016/j.memsci.2004.12.051
– ident: ref29/cit29
  doi: 10.1016/j.jallcom.2016.11.129
– ident: ref12/cit12
  doi: 10.1016/j.jpowsour.2011.02.038
– ident: ref1/cit1
  doi: 10.1021/acsami.7b00858
– ident: ref10/cit10
  doi: 10.1016/j.polymer.2009.07.036
– ident: ref11/cit11
  doi: 10.1002/pola.23621
– ident: ref17/cit17
  doi: 10.1021/am900020w
– ident: ref37/cit37
  doi: 10.1016/j.electacta.2017.10.002
– ident: ref8/cit8
  doi: 10.1016/j.jpowsour.2006.03.029
– ident: ref15/cit15
  doi: 10.1016/j.memsci.2008.05.003
– ident: ref2/cit2
  doi: 10.1016/j.jpowsour.2016.12.018
– ident: ref14/cit14
  doi: 10.1016/j.jpowsour.2011.03.021
– ident: ref42/cit42
  doi: 10.1016/j.seppur.2013.07.044
– ident: ref28/cit28
  doi: 10.1126/science.1116275
– ident: ref19/cit19
  doi: 10.1021/nn2013113
– ident: ref40/cit40
  doi: 10.1039/c7ta06258c
– ident: ref32/cit32
  doi: 10.1021/cr020730k
– ident: ref20/cit20
  doi: 10.1039/c2cc32384b
– ident: ref31/cit31
  doi: 10.1021/cr020711a
– ident: ref33/cit33
  doi: 10.1021/ja2110152
SSID ssj0063205
Score 2.5592167
Snippet Novel side-chain-type sulfonated poly­(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this...
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7963
SubjectTerms coordination polymers
crosslinking
electric power
electrochemistry
fluorine
fuel cells
methanol
microstructure
moieties
naphthalene
protons
strength (mechanics)
Title Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells
URI http://dx.doi.org/10.1021/acsami.7b17299
https://www.ncbi.nlm.nih.gov/pubmed/29439561
https://www.proquest.com/docview/2002218707
https://www.proquest.com/docview/2067294791
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagXOAA5R0oaBBIwMFlH64dH0vUKCAFVWqRelt5HVuNut2tstlDeup_6D_ip_BLmPHulkcVQLklE-_DM_4-P-Ybxt44kToEfs8RPgwX3liutRFcp9YmXhkdRZSNPP0iJ1_F56Odo5_rHX_u4CfxB2NrKoWjcoRarW-yW4nECCYSNDrox1yZJuGwIs7IBR8iYvXyjNf-TyBk699BaA2zDAgzvtfKHdVBmJAOlpxsN8t8255fl238581vsrsdzYTd1i_usxuufMDu_CI--JB92yuPw_Y_7C8qZIAwqkoSfw3VJKDycNAUntbW0WKyosQu2K-K1TuzWCFSOQiZwnDiSM37PUzdKc67cdyEfAWfSBwzCCTjlcCUsHs6L6vvF5ehSfg4JzRtFyHn59j81OEUAH9uE0MtjPsTY4CUGtpRmYzwfqsCxo0rYOSKon7EDsd7h6MJ7yo6cIO4t-QWgVLOnDKxiIc-NVJ6r6SPLXYcTlWjmU9tpJwRRuKHuJGJvB_G3qTxDInpY7ZR4kM9ZSDyVHqhnVbIqUwijcqH5FuRyRFxXTJgr_HdZ11A1lnYa0_irO2QrOuQAeO9H2S200Sn0hzFWvu3V_ZnrRrIWstXvVtlGLC0C4N9UDU11f1MMDBUpP5mI7ERoXQ8YE9an7y6Hn6fUjbys_96wufsNlK8kEUZiS22sVw07gXSqGX-MkTQDw-QHbc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXS9ND20HSPu07RAm0OTLSwpHl0jRhOGwcG4gK5CRRNokYUKbCsg3PqP-SP8in9kgwpyd3gooVu0pgizSHfo8h5Q8hbw2KDwG8pwoeizCpNpVSMyljryAolg8BFI4-O-PAL-3Ty4WSD7LWxMFiJEksq_Sb-D3WBcA_vuYw4IkXElfIGuYlMJHIu3esft1MvjyN_ZhEX5ox2EbhalcY_fu-wSJe_YtEagumBZrBFxqsq-vMlp7vVIt3VF7-pN_5HG-6Ruw3phF7tJffJhskfkDs_SRE-JFf7-Vd_GADG8wL5IPSL3EnB-twSUFg4rjLrvrSjxXDpwrxgXGTL92q-RNwy4OOG4dQ4be8dGJkzXIXjLArpEg6cVKaXS8Y3gcqhdzbLi-_fLn2R8HHmsLX-JDm7wOJHBhcE-LgOE9UwaM-PARJsqOdoZ4T1LTIYVCaDvsmy8hGZDPYn_SFt8jtQhSi4oBphk0-NUCELuzZWnFsruA019h8uXIOpjXUgjGKK4-WYkgqs7YZWxeEUaepjspljo7YJsDTmlkkjBTIsFXEl0q7ztECliL8m6pA3-N8nzfAsE7_zHoVJ3SFJ0yEdQlt3SHSjkO4SdWRr7d-t7M9rbZC1lq9b70pw-Lo9GeyDoipdFtAIh4kIxN9sOBbChAw75Entmqv34f3YxSY__acWviK3hpPRYXJ4cPT5GbmN5M_HVwbiOdlczCvzAgnWIn3pB9U1-MEmGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOlDdLeQwCCXpIycPYm-OyNNoCW63UReotcry2WDVNqs3msD3xH_hH_JT-ks44yYqHFoFySyaOHc_4Gz_mG8ZeGR4ZBH7rIXwoj1ulvThW3IsjrUMrVez7FI08PhSjL_zj8bvjNo6bYmGwEhWWVLlNfLLqs5ltGQaCt3ifsuLIDFE3jq-ya7RnR2o9GB51w6-IQnduESfn3OsjeHVMjX-8T3ikq1_xaIOT6cAm2WbTdTXdGZOTvXqZ7enz3xgc_7Mdt9mt1vmEQaMtd9gVU9xlN3-iJLzHfuwXX92hAJgsSvQLYVgWRAnrckxAaeGozi2tuKPEaEXhXjAp89UbtVghfhlw8cNwYojjexfG5hRn4ziaQraCA6LMdLTJ-CVQBQxO50V58e27KxLezwljm6XJ-TkWPzY4McDHTbiohqQ7RwboaEMzVpMQ1rfMIalNDkOT59V9Nk32p8OR1-Z58BSi4dLTCJ9iZqQKeNC3kRLCWilsoLEPcQLrz2ykfWkUVwIv8piUb20_sCoKZuiuPmBbBTbqEQOeRcLy2MQSPS0VCiWzPmmcrzLEYRP22Ev892lrplXqduDDIG06JG07pMe8TiVS3TKlU8KOfKP867X8WcMRslHyRadhKZox7c1gH5R1RdlAQzQX6cu_yQgshMs46LGHjXquv4f3I4pRfvxPLXzOrk8-JOnng8NPO-wG-oAuzNKXT9jWclGbp-hnLbNnzq4uATbqKJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Proton+Conductivity+of+Sulfonated+Hybrid+Poly%28arylene+ether+ketone%29+Membranes+by+Incorporating+an+Amino-Sulfo+Bifunctionalized+Metal-Organic+Framework+for+Direct+Methanol+Fuel+Cells&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ru%2C+Chunyu&rft.au=Li%2C+Zhenhua&rft.au=Zhao%2C+Chengji&rft.au=Duan%2C+Yuting&rft.date=2018-03-07&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=10&rft.issue=9&rft.spage=7963&rft_id=info:doi/10.1021%2Facsami.7b17299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon