Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal techno...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 9; pp. 7963 - 7973 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic–inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between −NH2 of MNS and −SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm–1, which was much higher than those of the pristine membrane (0.145 S·cm–1) and recast Nafion (0.134 S·cm–1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane. |
---|---|
AbstractList | Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH₂-SO₃H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic–inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between −NH₂ of MNS and −SO₃H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm–¹, which was much higher than those of the pristine membrane (0.145 S·cm–¹) and recast Nafion (0.134 S·cm–¹) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm² at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane. Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH -SO H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH of MNS and -SO H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm , which was much higher than those of the pristine membrane (0.145 S·cm ) and recast Nafion (0.134 S·cm ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane. Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino–sulfo-bifunctionalized metal–organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic–inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between −NH2 of MNS and −SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm–1, which was much higher than those of the pristine membrane (0.145 S·cm–1) and recast Nafion (0.134 S·cm–1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane. Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH2 of MNS and -SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm-1, which was much higher than those of the pristine membrane (0.145 S·cm-1) and recast Nafion (0.134 S·cm-1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH2 of MNS and -SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm-1, which was much higher than those of the pristine membrane (0.145 S·cm-1) and recast Nafion (0.134 S·cm-1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane. |
Author | Na, Hui Li, Zhenhua Bu, Fanzhe Zhao, Chengji Zhuang, Zhuang Ru, Chunyu Duan, Yuting |
AuthorAffiliation | Jilin University Key Laboratory of Advanced Batteries Physics and Technology (Ministry of Education) State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Alan G. MacDiarmid Institute, College of Chemistry |
AuthorAffiliation_xml | – name: Alan G. MacDiarmid Institute, College of Chemistry – name: Key Laboratory of Advanced Batteries Physics and Technology (Ministry of Education) – name: Jilin University – name: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry |
Author_xml | – sequence: 1 givenname: Chunyu surname: Ru fullname: Ru, Chunyu – sequence: 2 givenname: Zhenhua surname: Li fullname: Li, Zhenhua – sequence: 3 givenname: Chengji orcidid: 0000-0003-3949-8638 surname: Zhao fullname: Zhao, Chengji – sequence: 4 givenname: Yuting surname: Duan fullname: Duan, Yuting – sequence: 5 givenname: Zhuang surname: Zhuang fullname: Zhuang, Zhuang – sequence: 6 givenname: Fanzhe surname: Bu fullname: Bu, Fanzhe – sequence: 7 givenname: Hui orcidid: 0000-0002-5709-2538 surname: Na fullname: Na, Hui email: huina@jlu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29439561$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URH9gyxJ5WZBmsB0nmSzL0KGVWhWJ7qMb57p169iD7YDCinfgjXgUngQPM2WBVAl5Ycv-zrF97j0ke847JOQlZ3POBH8LKsJg5nXHa9E0T8gBb6ScLUQp9v6updwnhzHeMVYVgpXPyL5oZNGUFT8gP0_dLTiFPf0YfPKOLr3rR5XMF5Mm6jX9NFrtHaRMnE1dMBn0djqGMFl0SDHdYqD3mKX4ml7i0AVwGGk30XOnfFj7AMm4GwqOngzG-V_ff_yxpO-MHl2-KJtb8y3bX2ICm4-vwg04o-gqwIBffbin2gf63gRUaQPl93pLVyNaukRr43PyVION-GI3H5Hr1en18mx2cfXhfHlyMQMpmjRTgouqxxq45AtdQFVpXVeaq5xSzov1ulCsRpBQ5VEuZAVM6wXXUPC-LIojcry1XQf_ecSY2sFElR-Q_-vH2ApW5RLIuuH_gTIh-KJmdUZf7dCxG7Bv18EMOdv2oUIZkFtABR9jQN0qk2ATWwpgbMtZu2mEdtsI7a4Rsmz-j-zB-VHBm60g77d3fgy5LPEx-DdPJcpe |
CitedBy_id | crossref_primary_10_1007_s42114_023_00637_0 crossref_primary_10_1016_j_memsci_2024_122409 crossref_primary_10_3390_polym12091861 crossref_primary_10_1002_advs_202304082 crossref_primary_10_1039_C9TC05475H crossref_primary_10_1002_smll_202312209 crossref_primary_10_1016_j_memsci_2021_120186 crossref_primary_10_1002_anie_202112922 crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1016_j_memsci_2021_120193 crossref_primary_10_1177_09540083221120928 crossref_primary_10_1016_j_jiec_2022_11_066 crossref_primary_10_1016_j_memsci_2018_12_030 crossref_primary_10_1016_j_jmst_2022_11_063 crossref_primary_10_3389_fchem_2020_00694 crossref_primary_10_1016_j_ccr_2022_214445 crossref_primary_10_1016_j_ssi_2020_115325 crossref_primary_10_1002_jccs_202000535 crossref_primary_10_1002_anie_202104106 crossref_primary_10_1039_D0DT02327B crossref_primary_10_1016_j_ijhydene_2021_12_087 crossref_primary_10_1016_j_ijhydene_2020_07_024 crossref_primary_10_1016_j_ccr_2020_213747 crossref_primary_10_1016_j_memsci_2020_117858 crossref_primary_10_1016_j_memsci_2019_117734 crossref_primary_10_1016_j_jpowsour_2020_227823 crossref_primary_10_1007_s10853_023_08903_8 crossref_primary_10_1016_j_rser_2020_110660 crossref_primary_10_1002_admi_201801146 crossref_primary_10_1021_acsami_9b18097 crossref_primary_10_1021_acs_energyfuels_1c02010 crossref_primary_10_1039_D1DT00782C crossref_primary_10_1007_s11581_021_03923_3 crossref_primary_10_1016_j_renene_2019_02_042 crossref_primary_10_1007_s10853_023_08552_x crossref_primary_10_3390_app12136659 crossref_primary_10_1002_adma_201907090 crossref_primary_10_1016_j_memsci_2024_123483 crossref_primary_10_1016_j_jiec_2023_03_051 crossref_primary_10_1021_acssuschemeng_3c00046 crossref_primary_10_1039_D0NJ02532A crossref_primary_10_1016_j_memsci_2021_119304 crossref_primary_10_1016_j_psep_2024_08_099 crossref_primary_10_1002_app_56141 crossref_primary_10_1016_j_memsci_2020_118972 crossref_primary_10_1021_acsami_9b13496 crossref_primary_10_1016_j_eurpolymj_2022_111601 crossref_primary_10_1016_j_memsci_2021_120098 crossref_primary_10_1016_j_memsci_2022_121001 crossref_primary_10_1016_j_memsci_2019_117711 crossref_primary_10_1016_j_jechem_2023_05_049 crossref_primary_10_3390_membranes11070539 crossref_primary_10_1016_j_memsci_2024_123193 crossref_primary_10_1021_acsaem_2c03721 crossref_primary_10_1007_s41061_019_0259_y crossref_primary_10_1016_j_ijhydene_2024_11_104 crossref_primary_10_1007_s40242_019_9066_9 crossref_primary_10_1016_j_jiec_2021_08_016 crossref_primary_10_1016_j_cej_2023_146955 crossref_primary_10_1039_D3NJ02504G crossref_primary_10_1016_j_ssi_2021_115777 crossref_primary_10_1016_j_jece_2023_110749 crossref_primary_10_3390_polym10091005 crossref_primary_10_1016_j_jpowsour_2022_231981 crossref_primary_10_1021_acsami_8b21081 crossref_primary_10_1016_j_ceja_2022_100372 crossref_primary_10_1016_j_cej_2019_122688 crossref_primary_10_1016_j_jpowsour_2021_229671 crossref_primary_10_1002_ceat_202300580 crossref_primary_10_3390_polym13183064 crossref_primary_10_1039_D0NJ04179C crossref_primary_10_1016_j_electacta_2023_143210 crossref_primary_10_1039_C8TA08013E crossref_primary_10_1021_acsami_4c04709 crossref_primary_10_1016_j_polymer_2019_01_039 crossref_primary_10_1002_pat_6420 crossref_primary_10_1016_j_memsci_2020_118194 crossref_primary_10_1016_j_ijhydene_2019_01_050 crossref_primary_10_1016_j_ijhydene_2021_09_110 crossref_primary_10_1016_j_ijhydene_2023_10_015 crossref_primary_10_1016_j_mtchem_2021_100653 crossref_primary_10_3390_nano8121042 crossref_primary_10_1021_acsaem_3c00220 crossref_primary_10_1016_j_est_2020_101754 crossref_primary_10_1016_j_jmrt_2022_12_118 crossref_primary_10_1016_j_jssc_2020_121570 crossref_primary_10_1016_j_memsci_2023_122154 crossref_primary_10_1002_ange_202112922 crossref_primary_10_1007_s10965_024_03894_9 crossref_primary_10_3390_molecules30050981 crossref_primary_10_1039_D3QI01941A crossref_primary_10_1016_j_ijhydene_2024_09_103 crossref_primary_10_1021_acssuschemeng_0c01137 crossref_primary_10_1002_ange_202104106 crossref_primary_10_1039_D2TA03166C crossref_primary_10_1039_D4CE00455H crossref_primary_10_1016_j_ijhydene_2022_10_085 crossref_primary_10_3390_polym13091386 crossref_primary_10_1016_j_jallcom_2024_175681 crossref_primary_10_1016_j_ijhydene_2023_06_260 crossref_primary_10_1021_acsami_9b09183 crossref_primary_10_1016_j_nanoen_2019_104048 crossref_primary_10_1016_j_memsci_2021_119906 crossref_primary_10_1039_C8DT04171G crossref_primary_10_1016_j_ijhydene_2021_05_167 crossref_primary_10_1016_j_ijhydene_2020_07_096 crossref_primary_10_1002_pen_26079 crossref_primary_10_1021_acsami_3c04153 crossref_primary_10_1016_j_memsci_2021_120214 crossref_primary_10_1016_j_ccr_2022_214740 crossref_primary_10_1039_C8NJ03459A crossref_primary_10_1016_j_rser_2022_112836 crossref_primary_10_1016_j_polymer_2018_07_009 crossref_primary_10_1016_j_jssc_2019_121020 crossref_primary_10_2139_ssrn_4098684 crossref_primary_10_1016_j_jcis_2023_04_116 crossref_primary_10_1016_j_electacta_2019_134873 |
Cites_doi | 10.1016/j.ijhydene.2013.02.129 10.1039/c2sc21927a 10.1039/c0jm04385k 10.1021/acsami.7b00198 10.1021/ja305587n 10.1016/j.memsci.2009.07.021 10.1039/c4ra12651c 10.1021/acsami.6b06983 10.1021/am500438a 10.1002/anie.201411703 10.1039/c5cc03462k 10.1016/j.memsci.2003.12.021 10.1016/j.jpowsour.2009.05.022 10.1039/c5ta03507d 10.1039/c4cc05526h 10.1002/smll.200900765 10.1021/cr0207123 10.1016/j.electacta.2017.08.058 10.1016/j.memsci.2015.08.017 10.1016/j.jpowsour.2008.10.070 10.1016/j.jpowsour.2010.10.003 10.1016/j.jpowsour.2016.11.066 10.1016/j.memsci.2004.12.051 10.1016/j.jallcom.2016.11.129 10.1016/j.jpowsour.2011.02.038 10.1021/acsami.7b00858 10.1016/j.polymer.2009.07.036 10.1002/pola.23621 10.1021/am900020w 10.1016/j.electacta.2017.10.002 10.1016/j.jpowsour.2006.03.029 10.1016/j.memsci.2008.05.003 10.1016/j.jpowsour.2016.12.018 10.1016/j.jpowsour.2011.03.021 10.1016/j.seppur.2013.07.044 10.1126/science.1116275 10.1021/nn2013113 10.1039/c7ta06258c 10.1021/cr020730k 10.1039/c2cc32384b 10.1021/cr020711a 10.1021/ja2110152 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.7b17299 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 7973 |
ExternalDocumentID | 29439561 10_1021_acsami_7b17299 a659769899 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-c2126de7a1418f3a66ff76f1c1948250df3c07ea4a6a6a5846a0ff81fa31d533 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 17:01:23 EDT 2025 Thu Jul 10 23:59:36 EDT 2025 Mon Jul 21 06:00:21 EDT 2025 Tue Jul 01 04:05:48 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 Thu Aug 27 13:50:42 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | direct methanol fuel cells proton conductivity sulfonated poly(arylene ether ketone) bifunctionalized metal−organic framework polymer electrolyte membranes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-c2126de7a1418f3a66ff76f1c1948250df3c07ea4a6a6a5846a0ff81fa31d533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3949-8638 0000-0002-5709-2538 |
PMID | 29439561 |
PQID | 2002218707 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2067294791 proquest_miscellaneous_2002218707 pubmed_primary_29439561 crossref_citationtrail_10_1021_acsami_7b17299 crossref_primary_10_1021_acsami_7b17299 acs_journals_10_1021_acsami_7b17299 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-07 |
PublicationDateYYYYMMDD | 2018-03-07 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1016/j.ijhydene.2013.02.129 – ident: ref24/cit24 doi: 10.1039/c2sc21927a – ident: ref13/cit13 doi: 10.1039/c0jm04385k – ident: ref36/cit36 doi: 10.1021/acsami.7b00198 – ident: ref22/cit22 doi: 10.1021/ja305587n – ident: ref4/cit4 doi: 10.1016/j.memsci.2009.07.021 – ident: ref30/cit30 doi: 10.1039/c4ra12651c – ident: ref27/cit27 doi: 10.1021/acsami.6b06983 – ident: ref23/cit23 doi: 10.1021/am500438a – ident: ref21/cit21 doi: 10.1002/anie.201411703 – ident: ref26/cit26 doi: 10.1039/c5cc03462k – ident: ref9/cit9 doi: 10.1016/j.memsci.2003.12.021 – ident: ref6/cit6 doi: 10.1016/j.jpowsour.2009.05.022 – ident: ref18/cit18 doi: 10.1039/c5ta03507d – ident: ref25/cit25 doi: 10.1039/c4cc05526h – ident: ref34/cit34 doi: 10.1002/smll.200900765 – ident: ref35/cit35 doi: 10.1021/cr0207123 – ident: ref38/cit38 doi: 10.1016/j.electacta.2017.08.058 – ident: ref41/cit41 doi: 10.1016/j.memsci.2015.08.017 – ident: ref16/cit16 doi: 10.1016/j.jpowsour.2008.10.070 – ident: ref5/cit5 doi: 10.1016/j.jpowsour.2010.10.003 – ident: ref3/cit3 doi: 10.1016/j.jpowsour.2016.11.066 – ident: ref7/cit7 doi: 10.1016/j.memsci.2004.12.051 – ident: ref29/cit29 doi: 10.1016/j.jallcom.2016.11.129 – ident: ref12/cit12 doi: 10.1016/j.jpowsour.2011.02.038 – ident: ref1/cit1 doi: 10.1021/acsami.7b00858 – ident: ref10/cit10 doi: 10.1016/j.polymer.2009.07.036 – ident: ref11/cit11 doi: 10.1002/pola.23621 – ident: ref17/cit17 doi: 10.1021/am900020w – ident: ref37/cit37 doi: 10.1016/j.electacta.2017.10.002 – ident: ref8/cit8 doi: 10.1016/j.jpowsour.2006.03.029 – ident: ref15/cit15 doi: 10.1016/j.memsci.2008.05.003 – ident: ref2/cit2 doi: 10.1016/j.jpowsour.2016.12.018 – ident: ref14/cit14 doi: 10.1016/j.jpowsour.2011.03.021 – ident: ref42/cit42 doi: 10.1016/j.seppur.2013.07.044 – ident: ref28/cit28 doi: 10.1126/science.1116275 – ident: ref19/cit19 doi: 10.1021/nn2013113 – ident: ref40/cit40 doi: 10.1039/c7ta06258c – ident: ref32/cit32 doi: 10.1021/cr020730k – ident: ref20/cit20 doi: 10.1039/c2cc32384b – ident: ref31/cit31 doi: 10.1021/cr020711a – ident: ref33/cit33 doi: 10.1021/ja2110152 |
SSID | ssj0063205 |
Score | 2.5592167 |
Snippet | Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this... Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7963 |
SubjectTerms | coordination polymers crosslinking electric power electrochemistry fluorine fuel cells methanol microstructure moieties naphthalene protons strength (mechanics) |
Title | Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells |
URI | http://dx.doi.org/10.1021/acsami.7b17299 https://www.ncbi.nlm.nih.gov/pubmed/29439561 https://www.proquest.com/docview/2002218707 https://www.proquest.com/docview/2067294791 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagXOAA5R0oaBBIwMFlH64dH0vUKCAFVWqRelt5HVuNut2tstlDeup_6D_ip_BLmPHulkcVQLklE-_DM_4-P-Ybxt44kToEfs8RPgwX3liutRFcp9YmXhkdRZSNPP0iJ1_F56Odo5_rHX_u4CfxB2NrKoWjcoRarW-yW4nECCYSNDrox1yZJuGwIs7IBR8iYvXyjNf-TyBk699BaA2zDAgzvtfKHdVBmJAOlpxsN8t8255fl238581vsrsdzYTd1i_usxuufMDu_CI--JB92yuPw_Y_7C8qZIAwqkoSfw3VJKDycNAUntbW0WKyosQu2K-K1TuzWCFSOQiZwnDiSM37PUzdKc67cdyEfAWfSBwzCCTjlcCUsHs6L6vvF5ehSfg4JzRtFyHn59j81OEUAH9uE0MtjPsTY4CUGtpRmYzwfqsCxo0rYOSKon7EDsd7h6MJ7yo6cIO4t-QWgVLOnDKxiIc-NVJ6r6SPLXYcTlWjmU9tpJwRRuKHuJGJvB_G3qTxDInpY7ZR4kM9ZSDyVHqhnVbIqUwijcqH5FuRyRFxXTJgr_HdZ11A1lnYa0_irO2QrOuQAeO9H2S200Sn0hzFWvu3V_ZnrRrIWstXvVtlGLC0C4N9UDU11f1MMDBUpP5mI7ERoXQ8YE9an7y6Hn6fUjbys_96wufsNlK8kEUZiS22sVw07gXSqGX-MkTQDw-QHbc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXS9ND20HSPu07RAm0OTLSwpHl0jRhOGwcG4gK5CRRNokYUKbCsg3PqP-SP8in9kgwpyd3gooVu0pgizSHfo8h5Q8hbw2KDwG8pwoeizCpNpVSMyljryAolg8BFI4-O-PAL-3Ty4WSD7LWxMFiJEksq_Sb-D3WBcA_vuYw4IkXElfIGuYlMJHIu3esft1MvjyN_ZhEX5ox2EbhalcY_fu-wSJe_YtEagumBZrBFxqsq-vMlp7vVIt3VF7-pN_5HG-6Ruw3phF7tJffJhskfkDs_SRE-JFf7-Vd_GADG8wL5IPSL3EnB-twSUFg4rjLrvrSjxXDpwrxgXGTL92q-RNwy4OOG4dQ4be8dGJkzXIXjLArpEg6cVKaXS8Y3gcqhdzbLi-_fLn2R8HHmsLX-JDm7wOJHBhcE-LgOE9UwaM-PARJsqOdoZ4T1LTIYVCaDvsmy8hGZDPYn_SFt8jtQhSi4oBphk0-NUCELuzZWnFsruA019h8uXIOpjXUgjGKK4-WYkgqs7YZWxeEUaepjspljo7YJsDTmlkkjBTIsFXEl0q7ztECliL8m6pA3-N8nzfAsE7_zHoVJ3SFJ0yEdQlt3SHSjkO4SdWRr7d-t7M9rbZC1lq9b70pw-Lo9GeyDoipdFtAIh4kIxN9sOBbChAw75Entmqv34f3YxSY__acWviK3hpPRYXJ4cPT5GbmN5M_HVwbiOdlczCvzAgnWIn3pB9U1-MEmGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOlDdLeQwCCXpIycPYm-OyNNoCW63UReotcry2WDVNqs3msD3xH_hH_JT-ks44yYqHFoFySyaOHc_4Gz_mG8ZeGR4ZBH7rIXwoj1ulvThW3IsjrUMrVez7FI08PhSjL_zj8bvjNo6bYmGwEhWWVLlNfLLqs5ltGQaCt3ifsuLIDFE3jq-ya7RnR2o9GB51w6-IQnduESfn3OsjeHVMjX-8T3ikq1_xaIOT6cAm2WbTdTXdGZOTvXqZ7enz3xgc_7Mdt9mt1vmEQaMtd9gVU9xlN3-iJLzHfuwXX92hAJgsSvQLYVgWRAnrckxAaeGozi2tuKPEaEXhXjAp89UbtVghfhlw8cNwYojjexfG5hRn4ziaQraCA6LMdLTJ-CVQBQxO50V58e27KxLezwljm6XJ-TkWPzY4McDHTbiohqQ7RwboaEMzVpMQ1rfMIalNDkOT59V9Nk32p8OR1-Z58BSi4dLTCJ9iZqQKeNC3kRLCWilsoLEPcQLrz2ykfWkUVwIv8piUb20_sCoKZuiuPmBbBTbqEQOeRcLy2MQSPS0VCiWzPmmcrzLEYRP22Ev892lrplXqduDDIG06JG07pMe8TiVS3TKlU8KOfKP867X8WcMRslHyRadhKZox7c1gH5R1RdlAQzQX6cu_yQgshMs46LGHjXquv4f3I4pRfvxPLXzOrk8-JOnng8NPO-wG-oAuzNKXT9jWclGbp-hnLbNnzq4uATbqKJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Proton+Conductivity+of+Sulfonated+Hybrid+Poly%28arylene+ether+ketone%29+Membranes+by+Incorporating+an+Amino-Sulfo+Bifunctionalized+Metal-Organic+Framework+for+Direct+Methanol+Fuel+Cells&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ru%2C+Chunyu&rft.au=Li%2C+Zhenhua&rft.au=Zhao%2C+Chengji&rft.au=Duan%2C+Yuting&rft.date=2018-03-07&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=10&rft.issue=9&rft.spage=7963&rft_id=info:doi/10.1021%2Facsami.7b17299&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |