Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers

Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 35; pp. 32481 - 32488
Main Authors Huang, Dezhao, Zhang, Teng, Xiong, Guoping, Xu, Linji, Qu, Zhiguo, Lee, Eungkyu, Luo, Tengfei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications.
AbstractList Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications.Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications.
Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications.
Author Luo, Tengfei
Xu, Linji
Qu, Zhiguo
Lee, Eungkyu
Xiong, Guoping
Zhang, Teng
Huang, Dezhao
AuthorAffiliation Department of Aerospace and Mechanical Engineering
Department of Chemical and Biomolecular Engineering
Department of Mechanical Engineering
Chongqing Academy of Ecology and Environmental Sciences
Moe Key Laboratory of Thermo-Fluid Science and Engineering, Energy and Power Engineering School
Environmental Engineering Technology Research Center
AuthorAffiliation_xml – name: Moe Key Laboratory of Thermo-Fluid Science and Engineering, Energy and Power Engineering School
– name: Department of Mechanical Engineering
– name: Department of Chemical and Biomolecular Engineering
– name: Environmental Engineering Technology Research Center
– name: Department of Aerospace and Mechanical Engineering
– name: Chongqing Academy of Ecology and Environmental Sciences
Author_xml – sequence: 1
  givenname: Dezhao
  orcidid: 0000-0002-1413-5438
  surname: Huang
  fullname: Huang, Dezhao
– sequence: 2
  givenname: Teng
  surname: Zhang
  fullname: Zhang, Teng
– sequence: 3
  givenname: Guoping
  surname: Xiong
  fullname: Xiong, Guoping
  organization: Department of Mechanical Engineering
– sequence: 4
  givenname: Linji
  surname: Xu
  fullname: Xu, Linji
  organization: Chongqing Academy of Ecology and Environmental Sciences
– sequence: 5
  givenname: Zhiguo
  surname: Qu
  fullname: Qu, Zhiguo
  email: zgqu@mail.xjtu.edu.cn
  organization: Moe Key Laboratory of Thermo-Fluid Science and Engineering, Energy and Power Engineering School
– sequence: 6
  givenname: Eungkyu
  orcidid: 0000-0002-0211-0727
  surname: Lee
  fullname: Lee, Eungkyu
  email: elee18@nd.edu
– sequence: 7
  givenname: Tengfei
  orcidid: 0000-0003-3940-8786
  surname: Luo
  fullname: Luo, Tengfei
  email: tluo@nd.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31408315$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LHTEUxYMofm-7LLMshXnmc95kaaXaFj8WKi7DzeROjWSS12RG8L935D27KEhX93L5nQP3nAOyHVNEQj4xumCUsxPoCgx-oS3Viuotss-0lHXLFd_-u0u5Rw5KeaK0EZyqXbInmKStYGqf_Lqboo-_qwcYMVe3wa-qb_gIzz7lysfqGmLqHiFGDKW6L2_kLYa-Pi0FBxvQVVcppgAvmMsR2ekhFDzezENyf_797uxHfXlz8fPs9LIGyfVYgxWtpJa2Fp0E2zLgmnJqVa_7thei76VDq5x1rGtYi04510pGpdJULBsQh-TL2neV058Jy2gGXzoMASKmqRgu1PzyUmn-f5Qv50Rk07AZ_bxBJzugM6vsB8gv5j2qGZBroMuplIy96fwIo09xzOCDYdS8NWLWjZhNI7Ns8Y_s3flDwde1YL6bpzTlOIf5EfwKVKOcCA
CitedBy_id crossref_primary_10_1002_elps_202100040
crossref_primary_10_1016_j_apsusc_2022_155010
crossref_primary_10_1021_acsnano_0c07372
crossref_primary_10_1016_j_fuel_2021_120553
crossref_primary_10_1002_pol_20240105
crossref_primary_10_1007_s10118_021_2523_1
crossref_primary_10_2139_ssrn_4193475
crossref_primary_10_1021_acsami_2c16366
crossref_primary_10_1039_D2CP03619C
crossref_primary_10_1016_j_molliq_2022_118844
crossref_primary_10_1002_admi_202200078
crossref_primary_10_1039_D0NR02294B
crossref_primary_10_1002_wcms_1661
crossref_primary_10_1007_s11249_021_01516_9
crossref_primary_10_1007_s40544_023_0820_0
crossref_primary_10_3762_bjnano_12_91
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125407
crossref_primary_10_1016_j_progpolymsci_2024_101888
Cites_doi 10.1063/1.445869
10.1038/38686
10.1039/b907430a
10.1007/s11249-007-9231-z
10.1063/1.2397681
10.1038/nnano.2009.332
10.1116/1.2977751
10.1063/1.1537512
10.1021/jp973084f
10.1021/acsami.6b12073
10.1038/nmat3465
10.1063/1.4976319
10.1016/0021-9797(86)90376-0
10.1021/la503972m
10.1088/1742-6596/269/1/012011
10.1017/S0022112008000475
10.1021/acs.langmuir.8b00189
10.1007/s10404-012-1048-x
10.1063/1.3245303
10.1002/adma.201400954
10.1021/la704005v
10.1073/pnas.1612608114
10.1016/j.apsusc.2019.01.037
10.1029/2004WR003657
10.1021/jp411083g
10.1103/PhysRevLett.92.018302
10.1103/PhysRevE.83.021602
10.1039/C7CP01895A
10.1063/1.1503770
10.1103/PhysRevE.80.031608
10.1021/acs.langmuir.6b02204
10.1039/C6CP07755B
10.1103/PhysRevLett.93.086001
10.1021/acsami.8b03709
10.1063/1.3450302
10.1103/PhysRevLett.85.980
10.1063/1.2841127
10.1021/la404024v
10.1021/acsami.8b04190
10.1103/PhysRevB.49.755
10.1063/1.4986904
10.1021/j150643a008
10.1021/ja00051a040
10.1021/acs.langmuir.6b00586
10.1006/jcph.1995.1039
10.1021/jp980939v
10.1088/0953-8984/14/40/317
10.1038/s41565-017-0031-9
10.1103/PhysRevA.41.6830
10.1103/PhysRevE.82.051603
10.1103/PhysRevLett.31.206
10.1103/PhysRevE.92.053009
10.1103/PhysRevLett.100.206001
10.1029/2003WR002331
10.1021/acs.jpcc.6b09516
10.1016/0009-2614(89)87066-6
10.1103/PhysRevLett.87.096105
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b09509
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 32488
ExternalDocumentID 31408315
10_1021_acsami_9b09509
b93747633
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-ab3840b08bed4ab81a29020b5f9f8f33ff4deb5dbd1c618ed5dd84104590376a3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Jul 10 21:33:06 EDT 2025
Fri Jul 11 10:23:46 EDT 2025
Wed Feb 19 02:34:38 EST 2025
Thu Apr 24 22:56:24 EDT 2025
Tue Jul 01 04:06:35 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords nonequilibrium molecular dynamics
slip length
shear viscosity
self-assembled monolayer
hard−soft interface
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-ab3840b08bed4ab81a29020b5f9f8f33ff4deb5dbd1c618ed5dd84104590376a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1413-5438
0000-0003-3940-8786
0000-0002-0211-0727
PMID 31408315
PQID 2273204661
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2352447592
proquest_miscellaneous_2273204661
pubmed_primary_31408315
crossref_citationtrail_10_1021_acsami_9b09509
crossref_primary_10_1021_acsami_9b09509
acs_journals_10_1021_acsami_9b09509
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-04
PublicationDateYYYYMMDD 2019-09-04
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Karniadakis D. M. (ref3/cit3) 2005
ref63/cit63
ref56/cit56
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref48/cit48
ref60/cit60
ref10/cit10
ref35/cit35
ref53/cit53
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1063/1.445869
– ident: ref7/cit7
  doi: 10.1038/38686
– ident: ref4/cit4
  doi: 10.1039/b907430a
– ident: ref61/cit61
  doi: 10.1007/s11249-007-9231-z
– ident: ref64/cit64
  doi: 10.1063/1.2397681
– ident: ref1/cit1
  doi: 10.1038/nnano.2009.332
– ident: ref29/cit29
  doi: 10.1116/1.2977751
– ident: ref5/cit5
  doi: 10.1063/1.1537512
– ident: ref33/cit33
  doi: 10.1021/jp973084f
– ident: ref36/cit36
  doi: 10.1021/acsami.6b12073
– ident: ref28/cit28
  doi: 10.1038/nmat3465
– ident: ref58/cit58
  doi: 10.1063/1.4976319
– ident: ref56/cit56
  doi: 10.1016/0021-9797(86)90376-0
– ident: ref26/cit26
  doi: 10.1021/la503972m
– volume-title: Microflows and Nanoflows - Fundamentals and Simulation
  year: 2005
  ident: ref3/cit3
– ident: ref54/cit54
  doi: 10.1088/1742-6596/269/1/012011
– ident: ref10/cit10
  doi: 10.1017/S0022112008000475
– ident: ref13/cit13
  doi: 10.1021/acs.langmuir.8b00189
– ident: ref42/cit42
  doi: 10.1007/s10404-012-1048-x
– ident: ref52/cit52
  doi: 10.1063/1.3245303
– ident: ref37/cit37
  doi: 10.1002/adma.201400954
– ident: ref18/cit18
  doi: 10.1021/la704005v
– ident: ref49/cit49
  doi: 10.1073/pnas.1612608114
– ident: ref50/cit50
  doi: 10.1016/j.apsusc.2019.01.037
– ident: ref62/cit62
  doi: 10.1029/2004WR003657
– ident: ref24/cit24
  doi: 10.1021/jp411083g
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.92.018302
– ident: ref41/cit41
  doi: 10.1103/PhysRevE.83.021602
– ident: ref60/cit60
  doi: 10.1039/C7CP01895A
– ident: ref44/cit44
  doi: 10.1063/1.1503770
– ident: ref22/cit22
  doi: 10.1103/PhysRevE.80.031608
– ident: ref27/cit27
  doi: 10.1021/acs.langmuir.6b02204
– ident: ref9/cit9
  doi: 10.1039/C6CP07755B
– ident: ref59/cit59
  doi: 10.1103/PhysRevLett.93.086001
– ident: ref38/cit38
  doi: 10.1021/acsami.8b03709
– ident: ref48/cit48
  doi: 10.1063/1.3450302
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.85.980
– ident: ref34/cit34
  doi: 10.1063/1.2841127
– ident: ref31/cit31
  doi: 10.1021/la404024v
– ident: ref25/cit25
  doi: 10.1021/acsami.8b04190
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.49.755
– ident: ref45/cit45
  doi: 10.1063/1.4986904
– ident: ref65/cit65
  doi: 10.1021/j150643a008
– ident: ref39/cit39
  doi: 10.1021/ja00051a040
– ident: ref46/cit46
  doi: 10.1021/acs.langmuir.6b00586
– ident: ref40/cit40
  doi: 10.1006/jcph.1995.1039
– ident: ref35/cit35
  doi: 10.1021/jp980939v
– ident: ref55/cit55
  doi: 10.1088/0953-8984/14/40/317
– ident: ref2/cit2
  doi: 10.1038/s41565-017-0031-9
– ident: ref6/cit6
  doi: 10.1103/PhysRevA.41.6830
– ident: ref23/cit23
  doi: 10.1103/PhysRevE.82.051603
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.31.206
– ident: ref51/cit51
  doi: 10.1103/PhysRevE.92.053009
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.100.206001
– ident: ref63/cit63
  doi: 10.1029/2003WR002331
– ident: ref30/cit30
  doi: 10.1021/acs.jpcc.6b09516
– ident: ref57/cit57
  doi: 10.1016/0009-2614(89)87066-6
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.87.096105
SSID ssj0063205
Score 2.3877978
Snippet Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32481
SubjectTerms friction
gold
guidelines
hydrophilicity
hydrophobicity
mass transfer
moieties
molecular dynamics
simulation models
viscosity
Title Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers
URI http://dx.doi.org/10.1021/acsami.9b09509
https://www.ncbi.nlm.nih.gov/pubmed/31408315
https://www.proquest.com/docview/2273204661
https://www.proquest.com/docview/2352447592
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QuMCB92O8FAQSp4w2jy49oolpmgSXbWK3qmkSaWJ007pe-PU4bTce04C7q6ROYn-Onc8I3Xo2Zk2uEhIkzBIeSE0ktSERSrunjRDlWpfRfXoOOgPeHYrh533Hzww-9e_jJHOtcEIFYMC91NukAZxgB4JavYXNDRgtihUhIucwFucLesaV750TSrLvTmgNsiw8THu3pDvKCmJCV1jy2sjnqpG8r9I2_jn5PbRTwUz8UO6LfbRh0gO0_YV88BB1-7m7E8EvgDZnuDceTXFFljjDoxSD2Z24V8EpOE9cFBbgnhlb4rLEb2psNAZzAHGxg-xHaNB-7Lc6pOqsQGLwP3MSKwaBnfKkMprHSvoxDQE3KmFDKy1j1nJtlNBK-0ngS6OF1pJD5CZCDyxSzI5RLZ2k5hRhyrTVzQScofU4typkmlsaaM9IYYTQdXQDSoiqk5FFRdKb-lGpmajSTB2RxYJESUVO7npkjNfK3y3lpyUtx1rJ68X6RnByXDokTs0kzyIKyI16HADKLzKATwtKRFpHJ-XmWI7HIDaVzBdn__rDc7QFWKssT-MXqDaf5eYS8MxcXRVb-QPtNu-A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hONAeaOkDUihs1Uo9Ldj7cNZHFBWFNCCkBJWb5fXuShHGieLk0l_fWT9CSxUEV2vsfc9845n5FuBb4FLeFTqjUcYdFZEyVDEXU6mNL21EL9f5iO7lVdS_EYNbebsBp20tDHaixC-VVRD_gV0gPMVn_kacWCMm8AV7W4hEmN_SZ71Rq3ojzqqcRXTMBTYpRMvS-N_73hZl5b-2aA3ArAzN-Ru4XnWxyi-5O1ku9En2-xF74wvG8BZ2GtBJzupdsgsbtngHr_-iInwPg_HS_yEhvxB7zskon8xIQ504J5OCoBKe-hrhAk0pqdIMyMjmjvqY8b3OrSGoHNBL9gD-A9yc_xj3-rS5Z4GmaI0WNNUc3TwdKG2NSLUKUxYjitTSxU45zp0TxmpptAmzKFTWSGOUQD9OxgHqp5R_hM1iWth9IIwbZ7oZmkYXCOF0zI1wLDKBVdJKaTrwFSchac5JmVQhcBYm9cwkzcx0gLbrkmQNVbm_MSNfK_99JT-rSTrWSn5plznBc-SDI2lhp8syYYjjWCAQrjwhg2i1IkhkHdir98iqPY6equKh_PSsER7Ddn98OUyGF1c_D-AVorA6cU0cwuZivrSfEeks9FG1u_8AHaX34Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5EQfTB-6jnioJPq8ke6eaxqKVeRWiLvoVsdheKNS1N--KvdzZJiwcVfQ2T7D3zTWbmW4TOPBuzKlcJCRJmCQ-kJpLakAilXWkjeLnWRXQfm0Gjw-9exEtZx-1qYaATGXwpy4P47lQPtC0ZBvxLeO5uxQkV4AJXtLfgYnZuW9euWhP1GzCa5y2Cc86hWc4nTI0_3nf2KMm-2qMZIDM3NvVV1J52M88xeb0Yj9RF8v6NwfGf41hDKyX4xLVit6yjOZNuoOVPlISb6K49dn9K8DNg0CFu9boDXFIoDnE3xaCM-65WOAWTivN0A9wyPUtc7PhN9YzGoCTAW3ZAfgt16jftqwYp71sgMVilEYkVA3dPeVIZzWMl_ZiGgCaVsKGVljFruTZKaKX9JPCl0UJrycGfE6EHeipm22g-7admF2HKtNXVBEyk9Ti3KmSaWxpoz0hhhNAVdAqTEJXnJYvyUDj1o2JmonJmKohM1iZKSspyd3NGb6b8-VR-UJB1zJQ8mSx1BOfJBUni1PTHWUQBz1GPA2z5RQZQa06USCtop9gn0_YYeKyS-WLvTyM8RotP1_Xo4bZ5v4-WAIwV-Wv8AM2PhmNzCIBnpI7yDf4BMgb6ZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Water+Slip+Behavior+in+Nanochannels+Using+Self-Assembled+Monolayers&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Huang%2C+Dezhao&rft.au=Zhang%2C+Teng&rft.au=Xiong%2C+Guoping&rft.au=Xu%2C+Linji&rft.date=2019-09-04&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.9b09509&rft_id=info%3Apmid%2F31408315&rft.externalDocID=31408315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon