Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers
Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 35; pp. 32481 - 32488 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications. |
---|---|
AbstractList | Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications.Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications. Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications. |
Author | Luo, Tengfei Xu, Linji Qu, Zhiguo Lee, Eungkyu Xiong, Guoping Zhang, Teng Huang, Dezhao |
AuthorAffiliation | Department of Aerospace and Mechanical Engineering Department of Chemical and Biomolecular Engineering Department of Mechanical Engineering Chongqing Academy of Ecology and Environmental Sciences Moe Key Laboratory of Thermo-Fluid Science and Engineering, Energy and Power Engineering School Environmental Engineering Technology Research Center |
AuthorAffiliation_xml | – name: Moe Key Laboratory of Thermo-Fluid Science and Engineering, Energy and Power Engineering School – name: Department of Mechanical Engineering – name: Department of Chemical and Biomolecular Engineering – name: Environmental Engineering Technology Research Center – name: Department of Aerospace and Mechanical Engineering – name: Chongqing Academy of Ecology and Environmental Sciences |
Author_xml | – sequence: 1 givenname: Dezhao orcidid: 0000-0002-1413-5438 surname: Huang fullname: Huang, Dezhao – sequence: 2 givenname: Teng surname: Zhang fullname: Zhang, Teng – sequence: 3 givenname: Guoping surname: Xiong fullname: Xiong, Guoping organization: Department of Mechanical Engineering – sequence: 4 givenname: Linji surname: Xu fullname: Xu, Linji organization: Chongqing Academy of Ecology and Environmental Sciences – sequence: 5 givenname: Zhiguo surname: Qu fullname: Qu, Zhiguo email: zgqu@mail.xjtu.edu.cn organization: Moe Key Laboratory of Thermo-Fluid Science and Engineering, Energy and Power Engineering School – sequence: 6 givenname: Eungkyu orcidid: 0000-0002-0211-0727 surname: Lee fullname: Lee, Eungkyu email: elee18@nd.edu – sequence: 7 givenname: Tengfei orcidid: 0000-0003-3940-8786 surname: Luo fullname: Luo, Tengfei email: tluo@nd.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31408315$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LHTEUxYMofm-7LLMshXnmc95kaaXaFj8WKi7DzeROjWSS12RG8L935D27KEhX93L5nQP3nAOyHVNEQj4xumCUsxPoCgx-oS3Viuotss-0lHXLFd_-u0u5Rw5KeaK0EZyqXbInmKStYGqf_Lqboo-_qwcYMVe3wa-qb_gIzz7lysfqGmLqHiFGDKW6L2_kLYa-Pi0FBxvQVVcppgAvmMsR2ekhFDzezENyf_797uxHfXlz8fPs9LIGyfVYgxWtpJa2Fp0E2zLgmnJqVa_7thei76VDq5x1rGtYi04510pGpdJULBsQh-TL2neV058Jy2gGXzoMASKmqRgu1PzyUmn-f5Qv50Rk07AZ_bxBJzugM6vsB8gv5j2qGZBroMuplIy96fwIo09xzOCDYdS8NWLWjZhNI7Ns8Y_s3flDwde1YL6bpzTlOIf5EfwKVKOcCA |
CitedBy_id | crossref_primary_10_1002_elps_202100040 crossref_primary_10_1016_j_apsusc_2022_155010 crossref_primary_10_1021_acsnano_0c07372 crossref_primary_10_1016_j_fuel_2021_120553 crossref_primary_10_1002_pol_20240105 crossref_primary_10_1007_s10118_021_2523_1 crossref_primary_10_2139_ssrn_4193475 crossref_primary_10_1021_acsami_2c16366 crossref_primary_10_1039_D2CP03619C crossref_primary_10_1016_j_molliq_2022_118844 crossref_primary_10_1002_admi_202200078 crossref_primary_10_1039_D0NR02294B crossref_primary_10_1002_wcms_1661 crossref_primary_10_1007_s11249_021_01516_9 crossref_primary_10_1007_s40544_023_0820_0 crossref_primary_10_3762_bjnano_12_91 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125407 crossref_primary_10_1016_j_progpolymsci_2024_101888 |
Cites_doi | 10.1063/1.445869 10.1038/38686 10.1039/b907430a 10.1007/s11249-007-9231-z 10.1063/1.2397681 10.1038/nnano.2009.332 10.1116/1.2977751 10.1063/1.1537512 10.1021/jp973084f 10.1021/acsami.6b12073 10.1038/nmat3465 10.1063/1.4976319 10.1016/0021-9797(86)90376-0 10.1021/la503972m 10.1088/1742-6596/269/1/012011 10.1017/S0022112008000475 10.1021/acs.langmuir.8b00189 10.1007/s10404-012-1048-x 10.1063/1.3245303 10.1002/adma.201400954 10.1021/la704005v 10.1073/pnas.1612608114 10.1016/j.apsusc.2019.01.037 10.1029/2004WR003657 10.1021/jp411083g 10.1103/PhysRevLett.92.018302 10.1103/PhysRevE.83.021602 10.1039/C7CP01895A 10.1063/1.1503770 10.1103/PhysRevE.80.031608 10.1021/acs.langmuir.6b02204 10.1039/C6CP07755B 10.1103/PhysRevLett.93.086001 10.1021/acsami.8b03709 10.1063/1.3450302 10.1103/PhysRevLett.85.980 10.1063/1.2841127 10.1021/la404024v 10.1021/acsami.8b04190 10.1103/PhysRevB.49.755 10.1063/1.4986904 10.1021/j150643a008 10.1021/ja00051a040 10.1021/acs.langmuir.6b00586 10.1006/jcph.1995.1039 10.1021/jp980939v 10.1088/0953-8984/14/40/317 10.1038/s41565-017-0031-9 10.1103/PhysRevA.41.6830 10.1103/PhysRevE.82.051603 10.1103/PhysRevLett.31.206 10.1103/PhysRevE.92.053009 10.1103/PhysRevLett.100.206001 10.1029/2003WR002331 10.1021/acs.jpcc.6b09516 10.1016/0009-2614(89)87066-6 10.1103/PhysRevLett.87.096105 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b09509 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 32488 |
ExternalDocumentID | 31408315 10_1021_acsami_9b09509 b93747633 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-ab3840b08bed4ab81a29020b5f9f8f33ff4deb5dbd1c618ed5dd84104590376a3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Jul 10 21:33:06 EDT 2025 Fri Jul 11 10:23:46 EDT 2025 Wed Feb 19 02:34:38 EST 2025 Thu Apr 24 22:56:24 EDT 2025 Tue Jul 01 04:06:35 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | nonequilibrium molecular dynamics slip length shear viscosity self-assembled monolayer hard−soft interface |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-ab3840b08bed4ab81a29020b5f9f8f33ff4deb5dbd1c618ed5dd84104590376a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1413-5438 0000-0003-3940-8786 0000-0002-0211-0727 |
PMID | 31408315 |
PQID | 2273204661 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2352447592 proquest_miscellaneous_2273204661 pubmed_primary_31408315 crossref_citationtrail_10_1021_acsami_9b09509 crossref_primary_10_1021_acsami_9b09509 acs_journals_10_1021_acsami_9b09509 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-04 |
PublicationDateYYYYMMDD | 2019-09-04 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 Karniadakis D. M. (ref3/cit3) 2005 ref63/cit63 ref56/cit56 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref48/cit48 ref60/cit60 ref10/cit10 ref35/cit35 ref53/cit53 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1063/1.445869 – ident: ref7/cit7 doi: 10.1038/38686 – ident: ref4/cit4 doi: 10.1039/b907430a – ident: ref61/cit61 doi: 10.1007/s11249-007-9231-z – ident: ref64/cit64 doi: 10.1063/1.2397681 – ident: ref1/cit1 doi: 10.1038/nnano.2009.332 – ident: ref29/cit29 doi: 10.1116/1.2977751 – ident: ref5/cit5 doi: 10.1063/1.1537512 – ident: ref33/cit33 doi: 10.1021/jp973084f – ident: ref36/cit36 doi: 10.1021/acsami.6b12073 – ident: ref28/cit28 doi: 10.1038/nmat3465 – ident: ref58/cit58 doi: 10.1063/1.4976319 – ident: ref56/cit56 doi: 10.1016/0021-9797(86)90376-0 – ident: ref26/cit26 doi: 10.1021/la503972m – volume-title: Microflows and Nanoflows - Fundamentals and Simulation year: 2005 ident: ref3/cit3 – ident: ref54/cit54 doi: 10.1088/1742-6596/269/1/012011 – ident: ref10/cit10 doi: 10.1017/S0022112008000475 – ident: ref13/cit13 doi: 10.1021/acs.langmuir.8b00189 – ident: ref42/cit42 doi: 10.1007/s10404-012-1048-x – ident: ref52/cit52 doi: 10.1063/1.3245303 – ident: ref37/cit37 doi: 10.1002/adma.201400954 – ident: ref18/cit18 doi: 10.1021/la704005v – ident: ref49/cit49 doi: 10.1073/pnas.1612608114 – ident: ref50/cit50 doi: 10.1016/j.apsusc.2019.01.037 – ident: ref62/cit62 doi: 10.1029/2004WR003657 – ident: ref24/cit24 doi: 10.1021/jp411083g – ident: ref47/cit47 doi: 10.1103/PhysRevLett.92.018302 – ident: ref41/cit41 doi: 10.1103/PhysRevE.83.021602 – ident: ref60/cit60 doi: 10.1039/C7CP01895A – ident: ref44/cit44 doi: 10.1063/1.1503770 – ident: ref22/cit22 doi: 10.1103/PhysRevE.80.031608 – ident: ref27/cit27 doi: 10.1021/acs.langmuir.6b02204 – ident: ref9/cit9 doi: 10.1039/C6CP07755B – ident: ref59/cit59 doi: 10.1103/PhysRevLett.93.086001 – ident: ref38/cit38 doi: 10.1021/acsami.8b03709 – ident: ref48/cit48 doi: 10.1063/1.3450302 – ident: ref11/cit11 doi: 10.1103/PhysRevLett.85.980 – ident: ref34/cit34 doi: 10.1063/1.2841127 – ident: ref31/cit31 doi: 10.1021/la404024v – ident: ref25/cit25 doi: 10.1021/acsami.8b04190 – ident: ref53/cit53 doi: 10.1103/PhysRevB.49.755 – ident: ref45/cit45 doi: 10.1063/1.4986904 – ident: ref65/cit65 doi: 10.1021/j150643a008 – ident: ref39/cit39 doi: 10.1021/ja00051a040 – ident: ref46/cit46 doi: 10.1021/acs.langmuir.6b00586 – ident: ref40/cit40 doi: 10.1006/jcph.1995.1039 – ident: ref35/cit35 doi: 10.1021/jp980939v – ident: ref55/cit55 doi: 10.1088/0953-8984/14/40/317 – ident: ref2/cit2 doi: 10.1038/s41565-017-0031-9 – ident: ref6/cit6 doi: 10.1103/PhysRevA.41.6830 – ident: ref23/cit23 doi: 10.1103/PhysRevE.82.051603 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.31.206 – ident: ref51/cit51 doi: 10.1103/PhysRevE.92.053009 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.100.206001 – ident: ref63/cit63 doi: 10.1029/2003WR002331 – ident: ref30/cit30 doi: 10.1021/acs.jpcc.6b09516 – ident: ref57/cit57 doi: 10.1016/0009-2614(89)87066-6 – ident: ref12/cit12 doi: 10.1103/PhysRevLett.87.096105 |
SSID | ssj0063205 |
Score | 2.3877978 |
Snippet | Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 32481 |
SubjectTerms | friction gold guidelines hydrophilicity hydrophobicity mass transfer moieties molecular dynamics simulation models viscosity |
Title | Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers |
URI | http://dx.doi.org/10.1021/acsami.9b09509 https://www.ncbi.nlm.nih.gov/pubmed/31408315 https://www.proquest.com/docview/2273204661 https://www.proquest.com/docview/2352447592 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QuMCB92O8FAQSp4w2jy49oolpmgSXbWK3qmkSaWJ007pe-PU4bTce04C7q6ROYn-Onc8I3Xo2Zk2uEhIkzBIeSE0ktSERSrunjRDlWpfRfXoOOgPeHYrh533Hzww-9e_jJHOtcEIFYMC91NukAZxgB4JavYXNDRgtihUhIucwFucLesaV750TSrLvTmgNsiw8THu3pDvKCmJCV1jy2sjnqpG8r9I2_jn5PbRTwUz8UO6LfbRh0gO0_YV88BB1-7m7E8EvgDZnuDceTXFFljjDoxSD2Z24V8EpOE9cFBbgnhlb4rLEb2psNAZzAHGxg-xHaNB-7Lc6pOqsQGLwP3MSKwaBnfKkMprHSvoxDQE3KmFDKy1j1nJtlNBK-0ngS6OF1pJD5CZCDyxSzI5RLZ2k5hRhyrTVzQScofU4typkmlsaaM9IYYTQdXQDSoiqk5FFRdKb-lGpmajSTB2RxYJESUVO7npkjNfK3y3lpyUtx1rJ68X6RnByXDokTs0kzyIKyI16HADKLzKATwtKRFpHJ-XmWI7HIDaVzBdn__rDc7QFWKssT-MXqDaf5eYS8MxcXRVb-QPtNu-A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hONAeaOkDUihs1Uo9Ldj7cNZHFBWFNCCkBJWb5fXuShHGieLk0l_fWT9CSxUEV2vsfc9845n5FuBb4FLeFTqjUcYdFZEyVDEXU6mNL21EL9f5iO7lVdS_EYNbebsBp20tDHaixC-VVRD_gV0gPMVn_kacWCMm8AV7W4hEmN_SZ71Rq3ojzqqcRXTMBTYpRMvS-N_73hZl5b-2aA3ArAzN-Ru4XnWxyi-5O1ku9En2-xF74wvG8BZ2GtBJzupdsgsbtngHr_-iInwPg_HS_yEhvxB7zskon8xIQ504J5OCoBKe-hrhAk0pqdIMyMjmjvqY8b3OrSGoHNBL9gD-A9yc_xj3-rS5Z4GmaI0WNNUc3TwdKG2NSLUKUxYjitTSxU45zp0TxmpptAmzKFTWSGOUQD9OxgHqp5R_hM1iWth9IIwbZ7oZmkYXCOF0zI1wLDKBVdJKaTrwFSchac5JmVQhcBYm9cwkzcx0gLbrkmQNVbm_MSNfK_99JT-rSTrWSn5plznBc-SDI2lhp8syYYjjWCAQrjwhg2i1IkhkHdir98iqPY6equKh_PSsER7Ddn98OUyGF1c_D-AVorA6cU0cwuZivrSfEeks9FG1u_8AHaX34Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5EQfTB-6jnioJPq8ke6eaxqKVeRWiLvoVsdheKNS1N--KvdzZJiwcVfQ2T7D3zTWbmW4TOPBuzKlcJCRJmCQ-kJpLakAilXWkjeLnWRXQfm0Gjw-9exEtZx-1qYaATGXwpy4P47lQPtC0ZBvxLeO5uxQkV4AJXtLfgYnZuW9euWhP1GzCa5y2Cc86hWc4nTI0_3nf2KMm-2qMZIDM3NvVV1J52M88xeb0Yj9RF8v6NwfGf41hDKyX4xLVit6yjOZNuoOVPlISb6K49dn9K8DNg0CFu9boDXFIoDnE3xaCM-65WOAWTivN0A9wyPUtc7PhN9YzGoCTAW3ZAfgt16jftqwYp71sgMVilEYkVA3dPeVIZzWMl_ZiGgCaVsKGVljFruTZKaKX9JPCl0UJrycGfE6EHeipm22g-7admF2HKtNXVBEyk9Ti3KmSaWxpoz0hhhNAVdAqTEJXnJYvyUDj1o2JmonJmKohM1iZKSspyd3NGb6b8-VR-UJB1zJQ8mSx1BOfJBUni1PTHWUQBz1GPA2z5RQZQa06USCtop9gn0_YYeKyS-WLvTyM8RotP1_Xo4bZ5v4-WAIwV-Wv8AM2PhmNzCIBnpI7yDf4BMgb6ZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Water+Slip+Behavior+in+Nanochannels+Using+Self-Assembled+Monolayers&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Huang%2C+Dezhao&rft.au=Zhang%2C+Teng&rft.au=Xiong%2C+Guoping&rft.au=Xu%2C+Linji&rft.date=2019-09-04&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.9b09509&rft_id=info%3Apmid%2F31408315&rft.externalDocID=31408315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |