Sheath–Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors

Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strai...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 32; pp. 20894 - 20899
Main Authors Zhang, Mingchao, Wang, Chunya, Wang, Qi, Jian, Muqiang, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath–core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.
AbstractList Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.
Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.
Author Zhang, Mingchao
Wang, Qi
Wang, Chunya
Zhang, Yingying
Jian, Muqiang
AuthorAffiliation Department of Chemistry and Center for Nano and Micro Mechanics (CNMM)
Tsinghua University
AuthorAffiliation_xml – name: Department of Chemistry and Center for Nano and Micro Mechanics (CNMM)
– name: Tsinghua University
Author_xml – sequence: 1
  givenname: Mingchao
  surname: Zhang
  fullname: Zhang, Mingchao
– sequence: 2
  givenname: Chunya
  surname: Wang
  fullname: Wang, Chunya
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
– sequence: 4
  givenname: Muqiang
  surname: Jian
  fullname: Jian, Muqiang
– sequence: 5
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27462991$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1Lw0AQhhdR_L56lD2KkHa_ss0epX5CRbCKBw9hkp3Y1TRbd9NDb_4H_6G_xEirB0G8zAzD8w7D--6Q9cY3SMgBZz3OBO9DGWHqerpg2mRqjWxzo1SSiVSs_8xKbZGdGJ8Z01KwdJNsiYHSwhi-TR7HE4R28vH2PvQB6UWA2cS12B-7-oWeuwIDvQaLtFjQ07BIrnGBIbn1Nhl6aF3zRCsf6ANCgKJGOm4DuIaOsYk-xD2yUUEdcX_Vd8n9-dnd8DIZ3VxcDU9GCShh2qT7Ay0HLY0aZIMy46jLQaqBMQmVNBnIglVaI0iZWs5UYY2RFVTWZpktsJK75Gh5dxb86xxjm09dLLGuoUE_j7lgjAnBNDf_ojzjQsmupB16uELnxRRtPgtuCmGRf3vXAb0lUAYfY8DqB-Es_wonX4aTr8LpBOqXoHRt56Jvvmyr_5YdL2XdPn_289B0Zv4FfwJos6JI
CitedBy_id crossref_primary_10_1002_jbm_a_37031
crossref_primary_10_1002_adma_201902532
crossref_primary_10_1021_acsanm_3c04386
crossref_primary_10_1007_s00170_023_12007_7
crossref_primary_10_1002_adma_202002640
crossref_primary_10_1021_acsnano_0c06063
crossref_primary_10_2174_1872212118666230519161338
crossref_primary_10_1016_j_nanoen_2017_08_003
crossref_primary_10_1002_adfm_202412307
crossref_primary_10_1002_smll_201601924
crossref_primary_10_1021_acsnano_8b00887
crossref_primary_10_1016_j_matdes_2018_02_006
crossref_primary_10_1021_acsomega_4c06328
crossref_primary_10_3365_KJMM_2023_61_7_500
crossref_primary_10_1021_acsaelm_1c00025
crossref_primary_10_1016_j_cej_2017_05_091
crossref_primary_10_1016_j_colsurfa_2023_131221
crossref_primary_10_1007_s42765_021_00101_y
crossref_primary_10_1002_admi_202100137
crossref_primary_10_1016_j_measurement_2020_108107
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1002_mame_202100954
crossref_primary_10_1007_s10854_024_13347_0
crossref_primary_10_1088_1361_6528_aa5aaa
crossref_primary_10_1177_0040517519842801
crossref_primary_10_1016_j_nanoen_2023_108723
crossref_primary_10_5604_01_3001_0015_6457
crossref_primary_10_3390_ma11020187
crossref_primary_10_1088_1755_1315_697_1_012020
crossref_primary_10_1007_s42765_022_00152_9
crossref_primary_10_1007_s40820_022_00806_8
crossref_primary_10_1109_JSEN_2024_3425162
crossref_primary_10_1002_app_48785
crossref_primary_10_1039_C8NR02528B
crossref_primary_10_3390_polym14112219
crossref_primary_10_3390_polym10060568
crossref_primary_10_3390_polym11030404
crossref_primary_10_1016_j_nanoen_2023_109148
crossref_primary_10_1016_j_sna_2023_114630
crossref_primary_10_1016_j_ijbiomac_2022_10_134
crossref_primary_10_1016_j_sna_2023_114750
crossref_primary_10_1039_C7TC04959E
crossref_primary_10_1002_advs_202200560
crossref_primary_10_1002_admt_201800444
crossref_primary_10_1039_C9TC03065D
crossref_primary_10_1007_s10853_019_04189_x
crossref_primary_10_1021_acsanm_8b01926
crossref_primary_10_1088_1361_6528_ac28d8
crossref_primary_10_1557_mrs_2018_320
crossref_primary_10_1007_s42765_023_00338_9
crossref_primary_10_1039_C7RA02215H
crossref_primary_10_1016_j_compscitech_2022_109565
crossref_primary_10_1016_j_sna_2023_114755
crossref_primary_10_1007_s10570_018_1821_4
crossref_primary_10_3390_nano11092333
crossref_primary_10_1016_j_carbon_2024_119201
crossref_primary_10_1016_j_sna_2021_113172
crossref_primary_10_1088_1361_665X_ab548b
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1039_D0RA03964K
crossref_primary_10_1021_acsami_2c14847
crossref_primary_10_1177_1528083720957404
crossref_primary_10_1007_s10443_022_10084_7
crossref_primary_10_1002_admt_202000229
crossref_primary_10_1039_C8TC00238J
crossref_primary_10_1039_C8TC01924J
crossref_primary_10_1007_s42114_023_00648_x
crossref_primary_10_1016_j_cej_2021_129949
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1021_acs_accounts_9b00333
crossref_primary_10_1007_s42114_024_01168_y
crossref_primary_10_1016_j_indcrop_2023_117724
crossref_primary_10_3390_textiles2010005
crossref_primary_10_1039_C9TB01733J
crossref_primary_10_1039_D2NJ03297J
crossref_primary_10_1039_C7TC01962A
crossref_primary_10_3390_coatings10010088
crossref_primary_10_1002_admt_202201503
crossref_primary_10_3390_s23249911
crossref_primary_10_1002_eem2_12041
crossref_primary_10_1007_s12274_021_3291_5
crossref_primary_10_1039_C7NR05486F
crossref_primary_10_1016_j_isci_2021_102525
crossref_primary_10_3390_polym13244281
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1002_adsu_202000216
crossref_primary_10_1088_1674_4926_39_1_011012
crossref_primary_10_1016_j_cej_2018_12_025
crossref_primary_10_3390_bios13060579
crossref_primary_10_1002_adfm_201604795
crossref_primary_10_1016_j_coco_2024_101909
crossref_primary_10_1007_s10118_020_2483_x
crossref_primary_10_1007_s42114_024_00962_y
crossref_primary_10_1002_smm2_1178
crossref_primary_10_1007_s42765_025_00512_1
crossref_primary_10_1038_s41378_023_00634_9
crossref_primary_10_1080_15440478_2021_1993509
crossref_primary_10_1021_acsaelm_1c00884
crossref_primary_10_1021_acsami_8b17666
crossref_primary_10_1002_admt_202200082
crossref_primary_10_1177_08927057221095853
crossref_primary_10_1002_adfm_201802547
crossref_primary_10_1039_C7TC03434B
crossref_primary_10_1016_j_sna_2024_116077
crossref_primary_10_1016_j_jcis_2020_09_035
crossref_primary_10_1016_j_carbon_2017_10_034
crossref_primary_10_1021_acsami_7b02985
crossref_primary_10_1007_s40820_021_00592_9
crossref_primary_10_1021_acsami_9b23083
crossref_primary_10_3390_polym13010151
crossref_primary_10_1007_s10118_021_2560_1
crossref_primary_10_3390_s22207784
crossref_primary_10_1002_mame_202200034
crossref_primary_10_1007_s11706_022_0586_8
crossref_primary_10_1021_acs_nanolett_8b03085
crossref_primary_10_1007_s40820_019_0323_8
crossref_primary_10_1002_adfm_201805305
crossref_primary_10_1016_j_nanoms_2021_12_005
crossref_primary_10_1002_marc_202400109
crossref_primary_10_1016_j_cej_2023_145534
crossref_primary_10_1016_j_nanoen_2020_105559
crossref_primary_10_1021_acsami_3c14327
crossref_primary_10_1016_j_compscitech_2021_109208
crossref_primary_10_3390_signals4010001
crossref_primary_10_1021_acsami_0c08840
crossref_primary_10_3390_polym11101536
crossref_primary_10_1002_adma_202406054
crossref_primary_10_1016_j_polymer_2020_122464
crossref_primary_10_1021_acsabm_0c00807
crossref_primary_10_1039_C8TC06565A
crossref_primary_10_1126_sciadv_abn3365
crossref_primary_10_1016_j_cej_2022_135004
crossref_primary_10_1039_C7NR05903E
crossref_primary_10_1021_acsaelm_3c00132
crossref_primary_10_3390_fib7060051
crossref_primary_10_1002_aelm_201900916
crossref_primary_10_1063_1_4994549
crossref_primary_10_1021_acsaelm_9b00564
crossref_primary_10_1007_s12200_022_00002_x
crossref_primary_10_1039_C7NR01945A
crossref_primary_10_1007_s42452_020_2641_3
crossref_primary_10_1063_5_0060344
crossref_primary_10_1002_aisy_202000039
crossref_primary_10_1021_acsami_1c17565
crossref_primary_10_1002_inf2_12527
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1016_j_carbon_2017_04_002
crossref_primary_10_1002_admt_202202057
crossref_primary_10_1002_aisy_202400124
crossref_primary_10_1039_D2TC04162F
crossref_primary_10_1007_s10853_021_06365_4
crossref_primary_10_1021_acsami_9b08067
crossref_primary_10_1039_C7NR08077H
crossref_primary_10_3390_bios13070715
crossref_primary_10_1016_j_compscitech_2020_108038
crossref_primary_10_1039_C9RA07466J
crossref_primary_10_1007_s44290_024_00021_x
crossref_primary_10_1016_j_cossms_2018_11_001
crossref_primary_10_3390_cryst12040555
crossref_primary_10_1515_ntrev_2021_0021
crossref_primary_10_1002_admt_202301983
crossref_primary_10_1002_adfm_202102923
crossref_primary_10_3390_nano12142458
crossref_primary_10_7498_aps_69_20200818
crossref_primary_10_1002_adma_201801072
crossref_primary_10_1021_acsnano_3c04120
crossref_primary_10_1016_j_jmst_2021_08_081
crossref_primary_10_1007_s10118_023_2924_4
crossref_primary_10_3390_polym13050813
crossref_primary_10_1039_C8TC02702A
crossref_primary_10_1039_C8MH01062E
crossref_primary_10_1021_acsami_1c01961
crossref_primary_10_1002_adma_202211202
crossref_primary_10_1016_j_ijbiomac_2024_136518
crossref_primary_10_1108_SR_02_2024_0080
crossref_primary_10_1016_j_ijoes_2023_100236
crossref_primary_10_1039_C8NR02196A
crossref_primary_10_3390_chemosensors10090355
crossref_primary_10_1016_j_carbon_2018_08_028
crossref_primary_10_1021_acsami_6b13800
crossref_primary_10_1021_acsami_9b21068
crossref_primary_10_1002_adfm_201808369
crossref_primary_10_1016_j_compscitech_2023_110098
crossref_primary_10_1002_VIW_20220025
crossref_primary_10_1039_C8NR05404E
crossref_primary_10_1016_j_sna_2018_03_003
crossref_primary_10_1021_acsaelm_3c01663
crossref_primary_10_3390_s20082383
crossref_primary_10_1016_j_nanoen_2023_108898
crossref_primary_10_1007_s11431_018_9508_3
crossref_primary_10_1016_j_nanoen_2022_107963
crossref_primary_10_1021_acsami_4c00868
crossref_primary_10_3390_coatings13061101
crossref_primary_10_1016_j_elstat_2025_104029
crossref_primary_10_1063_5_0010766
crossref_primary_10_1016_j_matdes_2019_107846
crossref_primary_10_1002_mame_202300318
crossref_primary_10_1016_j_matdes_2019_108384
crossref_primary_10_1002_admt_202201442
crossref_primary_10_1002_slct_201804034
crossref_primary_10_1007_s40843_017_9077_x
crossref_primary_10_1039_C9RA05681E
crossref_primary_10_1088_1361_6528_aab888
Cites_doi 10.1002/aelm.201400063
10.1039/c3ra46807k
10.1039/c3nr06007a
10.1039/c3ra45027a
10.1088/0957-4484/15/3/026
10.1002/adma.201201886
10.1088/0964-1726/15/3/009
10.1002/adfm.201504755
10.1021/nn103523t
10.1038/nnano.2013.84
10.1021/am509087u
10.1038/ncomms3435
10.1088/0957-4484/21/30/305502
10.1002/adfm.201570020
10.1243/030932405X30894
10.1039/C3TC31680G
10.1007/978-3-662-06688-1
10.1016/j.carbon.2012.08.048
10.1002/adhm.201500097
10.1038/nature14002
10.1038/ncomms6747
10.1021/acsnano.5b00599
10.1063/1.3076103
10.1088/0964-1726/24/3/035020
10.1039/C5RA01519G
10.1002/adma.201300132
10.1016/j.progpolymsci.2015.02.001
10.1063/1.2841669
10.1002/adfm.201404087
10.1002/adma.200904426
10.1088/0957-4484/26/37/375501
10.1209/epl/i2006-10402-4
10.1002/aenm.201401286
10.1063/1.4826496
10.1039/C5NR04312C
10.1039/C5NR08618C
10.1063/1.3522885
10.1002/adma.201500009
10.1021/nl061702a
10.1021/acsnano.5b01613
10.1007/s12274-014-0652-3
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.6b06984
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 20899
ExternalDocumentID 27462991
10_1021_acsami_6b06984
d146871857
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-991ed1a6394787c81e6c756a003af398a3b0f66ea335d104bd993fafdd88dbef3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 16:03:53 EDT 2025
Fri Jul 11 07:08:33 EDT 2025
Mon Jul 21 05:41:42 EDT 2025
Tue Jul 01 02:28:53 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Thu Aug 27 13:42:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords flexible electronics
silk fiber
strain sensor
graphite flakes
sheath-core structure
dry-Meyer-rod-coating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-991ed1a6394787c81e6c756a003af398a3b0f66ea335d104bd993fafdd88dbef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27462991
PQID 1812438125
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000220619
proquest_miscellaneous_1812438125
pubmed_primary_27462991
crossref_primary_10_1021_acsami_6b06984
crossref_citationtrail_10_1021_acsami_6b06984
acs_journals_10_1021_acsami_6b06984
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-17
PublicationDateYYYYMMDD 2016-08-17
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
Holm R. (ref41/cit41) 1967
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1002/aelm.201400063
– ident: ref35/cit35
  doi: 10.1039/c3ra46807k
– ident: ref23/cit23
  doi: 10.1039/c3nr06007a
– ident: ref16/cit16
  doi: 10.1039/c3ra45027a
– ident: ref27/cit27
  doi: 10.1088/0957-4484/15/3/026
– ident: ref7/cit7
  doi: 10.1002/adma.201201886
– ident: ref28/cit28
  doi: 10.1088/0964-1726/15/3/009
– ident: ref1/cit1
  doi: 10.1002/adfm.201504755
– ident: ref14/cit14
  doi: 10.1021/nn103523t
– ident: ref19/cit19
  doi: 10.1038/nnano.2013.84
– ident: ref11/cit11
  doi: 10.1021/am509087u
– ident: ref36/cit36
  doi: 10.1038/ncomms3435
– ident: ref33/cit33
  doi: 10.1088/0957-4484/21/30/305502
– ident: ref5/cit5
  doi: 10.1002/adfm.201570020
– ident: ref15/cit15
  doi: 10.1243/030932405X30894
– ident: ref24/cit24
  doi: 10.1039/C3TC31680G
– volume-title: Electric Contacts: Theory and Applications
  year: 1967
  ident: ref41/cit41
  doi: 10.1007/978-3-662-06688-1
– ident: ref25/cit25
  doi: 10.1016/j.carbon.2012.08.048
– ident: ref39/cit39
  doi: 10.1002/adhm.201500097
– ident: ref20/cit20
  doi: 10.1038/nature14002
– ident: ref38/cit38
  doi: 10.1038/ncomms6747
– ident: ref13/cit13
  doi: 10.1021/acsnano.5b00599
– ident: ref21/cit21
  doi: 10.1063/1.3076103
– ident: ref10/cit10
  doi: 10.1088/0964-1726/24/3/035020
– ident: ref18/cit18
  doi: 10.1039/C5RA01519G
– ident: ref6/cit6
  doi: 10.1002/adma.201300132
– ident: ref34/cit34
  doi: 10.1016/j.progpolymsci.2015.02.001
– ident: ref26/cit26
  doi: 10.1063/1.2841669
– ident: ref8/cit8
  doi: 10.1002/adfm.201404087
– ident: ref32/cit32
  doi: 10.1002/adma.200904426
– ident: ref9/cit9
  doi: 10.1088/0957-4484/26/37/375501
– ident: ref40/cit40
  doi: 10.1209/epl/i2006-10402-4
– ident: ref3/cit3
  doi: 10.1002/aenm.201401286
– ident: ref29/cit29
  doi: 10.1063/1.4826496
– ident: ref31/cit31
  doi: 10.1039/C5NR04312C
– ident: ref22/cit22
  doi: 10.1039/C5NR08618C
– ident: ref17/cit17
  doi: 10.1063/1.3522885
– ident: ref4/cit4
  doi: 10.1002/adma.201500009
– ident: ref37/cit37
  doi: 10.1021/nl061702a
– ident: ref12/cit12
  doi: 10.1021/acsnano.5b01613
– ident: ref30/cit30
  doi: 10.1007/s12274-014-0652-3
SSID ssj0063205
Score 2.5907164
Snippet Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20894
SubjectTerms electrical conductivity
graphene
humans
monitoring
nanomaterials
silk
Title Sheath–Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors
URI http://dx.doi.org/10.1021/acsami.6b06984
https://www.ncbi.nlm.nih.gov/pubmed/27462991
https://www.proquest.com/docview/1812438125
https://www.proquest.com/docview/2000220619
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRiBxMpA4cZ1jVSgIqRwoCCQOkbcIBGpQkx7gxD_wh3wJM0nKqgruk3ib8byxx28I2VEROAljOYtCaVigRcCklpj2J4wMtWw4iw-cO2fi5DI4vQ6vP887ft7g-96-MhmWwhH6QEQyGCcTvpANDLOare5wzxXcL5IVISKHtsBjDekZf32PTshk353QCGRZeJj2TEl3lBXEhJhYcr83yPWeef5N2_hn52fJdAUzabPUizky5nrzZOoL-eACucFi1vnt28trK-07eozM1YA_97t3D_e0jYkktKOso_qJHvafWMcBOGfnqWWtVGGuNAW4S6_AUPDxFe0WtSZoF6LitJ8tksv20UXrhFWlFpgCh5QzQInOegrgCpL1GOk5YRqhUGDzKuGRVFwfJEI4xXloIYLTFnBNohJrpbTaJXyJ1Hppz60Qiuw3iU4AtnABwRv8K1BJwA3gEq61COtkG2Ylrkwli4tbcN-Ly6mKq6mqEzZcodhUbOU4kIeR8rsf8o8lT8dIya3hgsdgSng_onouHUBPEOwAgvHD0TJ-wRgE-h3VyXKpLR_tQYAvwLt7q_8a4RqZBPAl8Hzaa6yTWt4fuA0AOLneLHT7Hd-09OQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROLQ98NMW2ALFqK16MpA48TqHHtDS7fKzHLqgIvWQ-i8qAiVok1W1nHgHHoBX6bPwJIyzyfZPK_WC1Gs0cjyZ8cw38fgzwBsZYZLQhtEoFJoGigdUKOHa_rgWoRJNa9wB5-4R75wE-6fh6RTc1mdhcBI5jpSXm_g_2QW8LXzmbsThaptHIqi6KA_s8DvWaPn7vV006Fvfb384bnVodY0AlRhsC4oIyBpPYip2RDRaeJbrZsgl-rNMWCQkU9sJ51YyFhqsTpTBnJ3IxBghjLIJw3EfwQwiH99VdzutXh3qOfPLHkkvClBFTJQ1K-Rf83W5T-e_574JgLZMbO05-DH-JGU_y_nmoFCb-uoPtsj_-JvNw2wFqsnOaBUswJRNn8HTX6gWn8MXd3V38e3u-qaV9S356Hi6EW1v9c4uzknbtc2QrjSWqCHZ7Q9p12IpQj9lhrYy6TrDCYJ78hlVc0fNSK-8WYP0bJpn_fwFnDyIdoswnWapXQbiuH4SlSBIYxxLVRwrkEnANKIwphQPG_AarRBXgSGPyz1_34tHpokr0zSA1o4R64qb3SlyMVH-3Vj-csRKMlFyo_azGAOH2w2Sqc0GOBMH7RCv-eFkGb_kR8LVHDVgaeSk4_f5zYAjlvFe_pOG6_C4c9w9jA_3jg5W4AnCTu7-zHvNVZgu-gO7htCuUK_K5UXg60P75j3N31iR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VVkL0wPsRymMRIE7b1l57sz5wqJKGlpIKEapW4mD2ZRW1sqvYURVO_Ad-An-FX8IvYcaxIx6KxKUSV2u13vHMznzjnf0G4JlOMEhYJ3gSK8sjIyOujKKyP2lVbFTXO7rgPNyXOwfR66P4aAm-tXdhcBElzlTWh_i0q89c1jAMBBv4nLriSLMpExU1lZR7fnqOeVr5crePSn0ehoPt970d3rQS4BodbsURBXkXaAzHREZjVeCl7cZSo03rTCRKC7OZSem1ELHDDMU4jNuZzpxTyhmfCZz3EqzQGSFleFu9UevupQjrOskgiVBMDJYtM-Rf66X4Z8vf498CUFsHt8E1-D7_LHVNy8n6pDLr9vMfjJH_-Xe7DlcbcM22ZrvhBiz5_Cas_kK5eAs-UAvv6vjHl6-9YuzZK-LrRtS9Mfp0esIGVD7Dhtp5ZqasP57yoceUhL8rHO8VmirEGYJ8doii0ZUzNqo7bLCRz8tiXN6GgwuR7g4s50Xu7wEjzp_MZAjWhMSUFeeKdBYJi2hMGCPjDjxFLaSNgyjT-uw_DNKZatJGNR3grXGktuFoJ0FOF45_MR9_NmMnWTjySWtrKToQOhXSuS8muBKCeIjbwnjxmLDmScJdnXTg7sxQ5-8Lu5FETBPc_ycJH8Plt_1B-mZ3f28NriD6lPSDPug-gOVqPPEPEeFV5lG9wxh8vGjT_AksLlsU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sheath-Core+Graphite%2FSilk+Fiber+Made+by+Dry-Meyer-Rod-Coating+for+Wearable+Strain+Sensors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Mingchao&rft.au=Wang%2C+Chunya&rft.au=Wang%2C+Qi&rft.au=Jian%2C+Muqiang&rft.date=2016-08-17&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=8&rft.issue=32&rft.spage=20894&rft_id=info:doi/10.1021%2Facsami.6b06984&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon