Sheath–Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors
Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strai...
Saved in:
Published in | ACS applied materials & interfaces Vol. 8; no. 32; pp. 20894 - 20899 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath–core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors. |
---|---|
AbstractList | Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors. Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors. |
Author | Zhang, Mingchao Wang, Qi Wang, Chunya Zhang, Yingying Jian, Muqiang |
AuthorAffiliation | Department of Chemistry and Center for Nano and Micro Mechanics (CNMM) Tsinghua University |
AuthorAffiliation_xml | – name: Department of Chemistry and Center for Nano and Micro Mechanics (CNMM) – name: Tsinghua University |
Author_xml | – sequence: 1 givenname: Mingchao surname: Zhang fullname: Zhang, Mingchao – sequence: 2 givenname: Chunya surname: Wang fullname: Wang, Chunya – sequence: 3 givenname: Qi surname: Wang fullname: Wang, Qi – sequence: 4 givenname: Muqiang surname: Jian fullname: Jian, Muqiang – sequence: 5 givenname: Yingying surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27462991$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1Lw0AQhhdR_L56lD2KkHa_ss0epX5CRbCKBw9hkp3Y1TRbd9NDb_4H_6G_xEirB0G8zAzD8w7D--6Q9cY3SMgBZz3OBO9DGWHqerpg2mRqjWxzo1SSiVSs_8xKbZGdGJ8Z01KwdJNsiYHSwhi-TR7HE4R28vH2PvQB6UWA2cS12B-7-oWeuwIDvQaLtFjQ07BIrnGBIbn1Nhl6aF3zRCsf6ANCgKJGOm4DuIaOsYk-xD2yUUEdcX_Vd8n9-dnd8DIZ3VxcDU9GCShh2qT7Ay0HLY0aZIMy46jLQaqBMQmVNBnIglVaI0iZWs5UYY2RFVTWZpktsJK75Gh5dxb86xxjm09dLLGuoUE_j7lgjAnBNDf_ojzjQsmupB16uELnxRRtPgtuCmGRf3vXAb0lUAYfY8DqB-Es_wonX4aTr8LpBOqXoHRt56Jvvmyr_5YdL2XdPn_289B0Zv4FfwJos6JI |
CitedBy_id | crossref_primary_10_1002_jbm_a_37031 crossref_primary_10_1002_adma_201902532 crossref_primary_10_1021_acsanm_3c04386 crossref_primary_10_1007_s00170_023_12007_7 crossref_primary_10_1002_adma_202002640 crossref_primary_10_1021_acsnano_0c06063 crossref_primary_10_2174_1872212118666230519161338 crossref_primary_10_1016_j_nanoen_2017_08_003 crossref_primary_10_1002_adfm_202412307 crossref_primary_10_1002_smll_201601924 crossref_primary_10_1021_acsnano_8b00887 crossref_primary_10_1016_j_matdes_2018_02_006 crossref_primary_10_1021_acsomega_4c06328 crossref_primary_10_3365_KJMM_2023_61_7_500 crossref_primary_10_1021_acsaelm_1c00025 crossref_primary_10_1016_j_cej_2017_05_091 crossref_primary_10_1016_j_colsurfa_2023_131221 crossref_primary_10_1007_s42765_021_00101_y crossref_primary_10_1002_admi_202100137 crossref_primary_10_1016_j_measurement_2020_108107 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1002_mame_202100954 crossref_primary_10_1007_s10854_024_13347_0 crossref_primary_10_1088_1361_6528_aa5aaa crossref_primary_10_1177_0040517519842801 crossref_primary_10_1016_j_nanoen_2023_108723 crossref_primary_10_5604_01_3001_0015_6457 crossref_primary_10_3390_ma11020187 crossref_primary_10_1088_1755_1315_697_1_012020 crossref_primary_10_1007_s42765_022_00152_9 crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_1109_JSEN_2024_3425162 crossref_primary_10_1002_app_48785 crossref_primary_10_1039_C8NR02528B crossref_primary_10_3390_polym14112219 crossref_primary_10_3390_polym10060568 crossref_primary_10_3390_polym11030404 crossref_primary_10_1016_j_nanoen_2023_109148 crossref_primary_10_1016_j_sna_2023_114630 crossref_primary_10_1016_j_ijbiomac_2022_10_134 crossref_primary_10_1016_j_sna_2023_114750 crossref_primary_10_1039_C7TC04959E crossref_primary_10_1002_advs_202200560 crossref_primary_10_1002_admt_201800444 crossref_primary_10_1039_C9TC03065D crossref_primary_10_1007_s10853_019_04189_x crossref_primary_10_1021_acsanm_8b01926 crossref_primary_10_1088_1361_6528_ac28d8 crossref_primary_10_1557_mrs_2018_320 crossref_primary_10_1007_s42765_023_00338_9 crossref_primary_10_1039_C7RA02215H crossref_primary_10_1016_j_compscitech_2022_109565 crossref_primary_10_1016_j_sna_2023_114755 crossref_primary_10_1007_s10570_018_1821_4 crossref_primary_10_3390_nano11092333 crossref_primary_10_1016_j_carbon_2024_119201 crossref_primary_10_1016_j_sna_2021_113172 crossref_primary_10_1088_1361_665X_ab548b crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1039_D0RA03964K crossref_primary_10_1021_acsami_2c14847 crossref_primary_10_1177_1528083720957404 crossref_primary_10_1007_s10443_022_10084_7 crossref_primary_10_1002_admt_202000229 crossref_primary_10_1039_C8TC00238J crossref_primary_10_1039_C8TC01924J crossref_primary_10_1007_s42114_023_00648_x crossref_primary_10_1016_j_cej_2021_129949 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_1021_acs_accounts_9b00333 crossref_primary_10_1007_s42114_024_01168_y crossref_primary_10_1016_j_indcrop_2023_117724 crossref_primary_10_3390_textiles2010005 crossref_primary_10_1039_C9TB01733J crossref_primary_10_1039_D2NJ03297J crossref_primary_10_1039_C7TC01962A crossref_primary_10_3390_coatings10010088 crossref_primary_10_1002_admt_202201503 crossref_primary_10_3390_s23249911 crossref_primary_10_1002_eem2_12041 crossref_primary_10_1007_s12274_021_3291_5 crossref_primary_10_1039_C7NR05486F crossref_primary_10_1016_j_isci_2021_102525 crossref_primary_10_3390_polym13244281 crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1002_adsu_202000216 crossref_primary_10_1088_1674_4926_39_1_011012 crossref_primary_10_1016_j_cej_2018_12_025 crossref_primary_10_3390_bios13060579 crossref_primary_10_1002_adfm_201604795 crossref_primary_10_1016_j_coco_2024_101909 crossref_primary_10_1007_s10118_020_2483_x crossref_primary_10_1007_s42114_024_00962_y crossref_primary_10_1002_smm2_1178 crossref_primary_10_1007_s42765_025_00512_1 crossref_primary_10_1038_s41378_023_00634_9 crossref_primary_10_1080_15440478_2021_1993509 crossref_primary_10_1021_acsaelm_1c00884 crossref_primary_10_1021_acsami_8b17666 crossref_primary_10_1002_admt_202200082 crossref_primary_10_1177_08927057221095853 crossref_primary_10_1002_adfm_201802547 crossref_primary_10_1039_C7TC03434B crossref_primary_10_1016_j_sna_2024_116077 crossref_primary_10_1016_j_jcis_2020_09_035 crossref_primary_10_1016_j_carbon_2017_10_034 crossref_primary_10_1021_acsami_7b02985 crossref_primary_10_1007_s40820_021_00592_9 crossref_primary_10_1021_acsami_9b23083 crossref_primary_10_3390_polym13010151 crossref_primary_10_1007_s10118_021_2560_1 crossref_primary_10_3390_s22207784 crossref_primary_10_1002_mame_202200034 crossref_primary_10_1007_s11706_022_0586_8 crossref_primary_10_1021_acs_nanolett_8b03085 crossref_primary_10_1007_s40820_019_0323_8 crossref_primary_10_1002_adfm_201805305 crossref_primary_10_1016_j_nanoms_2021_12_005 crossref_primary_10_1002_marc_202400109 crossref_primary_10_1016_j_cej_2023_145534 crossref_primary_10_1016_j_nanoen_2020_105559 crossref_primary_10_1021_acsami_3c14327 crossref_primary_10_1016_j_compscitech_2021_109208 crossref_primary_10_3390_signals4010001 crossref_primary_10_1021_acsami_0c08840 crossref_primary_10_3390_polym11101536 crossref_primary_10_1002_adma_202406054 crossref_primary_10_1016_j_polymer_2020_122464 crossref_primary_10_1021_acsabm_0c00807 crossref_primary_10_1039_C8TC06565A crossref_primary_10_1126_sciadv_abn3365 crossref_primary_10_1016_j_cej_2022_135004 crossref_primary_10_1039_C7NR05903E crossref_primary_10_1021_acsaelm_3c00132 crossref_primary_10_3390_fib7060051 crossref_primary_10_1002_aelm_201900916 crossref_primary_10_1063_1_4994549 crossref_primary_10_1021_acsaelm_9b00564 crossref_primary_10_1007_s12200_022_00002_x crossref_primary_10_1039_C7NR01945A crossref_primary_10_1007_s42452_020_2641_3 crossref_primary_10_1063_5_0060344 crossref_primary_10_1002_aisy_202000039 crossref_primary_10_1021_acsami_1c17565 crossref_primary_10_1002_inf2_12527 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1016_j_carbon_2017_04_002 crossref_primary_10_1002_admt_202202057 crossref_primary_10_1002_aisy_202400124 crossref_primary_10_1039_D2TC04162F crossref_primary_10_1007_s10853_021_06365_4 crossref_primary_10_1021_acsami_9b08067 crossref_primary_10_1039_C7NR08077H crossref_primary_10_3390_bios13070715 crossref_primary_10_1016_j_compscitech_2020_108038 crossref_primary_10_1039_C9RA07466J crossref_primary_10_1007_s44290_024_00021_x crossref_primary_10_1016_j_cossms_2018_11_001 crossref_primary_10_3390_cryst12040555 crossref_primary_10_1515_ntrev_2021_0021 crossref_primary_10_1002_admt_202301983 crossref_primary_10_1002_adfm_202102923 crossref_primary_10_3390_nano12142458 crossref_primary_10_7498_aps_69_20200818 crossref_primary_10_1002_adma_201801072 crossref_primary_10_1021_acsnano_3c04120 crossref_primary_10_1016_j_jmst_2021_08_081 crossref_primary_10_1007_s10118_023_2924_4 crossref_primary_10_3390_polym13050813 crossref_primary_10_1039_C8TC02702A crossref_primary_10_1039_C8MH01062E crossref_primary_10_1021_acsami_1c01961 crossref_primary_10_1002_adma_202211202 crossref_primary_10_1016_j_ijbiomac_2024_136518 crossref_primary_10_1108_SR_02_2024_0080 crossref_primary_10_1016_j_ijoes_2023_100236 crossref_primary_10_1039_C8NR02196A crossref_primary_10_3390_chemosensors10090355 crossref_primary_10_1016_j_carbon_2018_08_028 crossref_primary_10_1021_acsami_6b13800 crossref_primary_10_1021_acsami_9b21068 crossref_primary_10_1002_adfm_201808369 crossref_primary_10_1016_j_compscitech_2023_110098 crossref_primary_10_1002_VIW_20220025 crossref_primary_10_1039_C8NR05404E crossref_primary_10_1016_j_sna_2018_03_003 crossref_primary_10_1021_acsaelm_3c01663 crossref_primary_10_3390_s20082383 crossref_primary_10_1016_j_nanoen_2023_108898 crossref_primary_10_1007_s11431_018_9508_3 crossref_primary_10_1016_j_nanoen_2022_107963 crossref_primary_10_1021_acsami_4c00868 crossref_primary_10_3390_coatings13061101 crossref_primary_10_1016_j_elstat_2025_104029 crossref_primary_10_1063_5_0010766 crossref_primary_10_1016_j_matdes_2019_107846 crossref_primary_10_1002_mame_202300318 crossref_primary_10_1016_j_matdes_2019_108384 crossref_primary_10_1002_admt_202201442 crossref_primary_10_1002_slct_201804034 crossref_primary_10_1007_s40843_017_9077_x crossref_primary_10_1039_C9RA05681E crossref_primary_10_1088_1361_6528_aab888 |
Cites_doi | 10.1002/aelm.201400063 10.1039/c3ra46807k 10.1039/c3nr06007a 10.1039/c3ra45027a 10.1088/0957-4484/15/3/026 10.1002/adma.201201886 10.1088/0964-1726/15/3/009 10.1002/adfm.201504755 10.1021/nn103523t 10.1038/nnano.2013.84 10.1021/am509087u 10.1038/ncomms3435 10.1088/0957-4484/21/30/305502 10.1002/adfm.201570020 10.1243/030932405X30894 10.1039/C3TC31680G 10.1007/978-3-662-06688-1 10.1016/j.carbon.2012.08.048 10.1002/adhm.201500097 10.1038/nature14002 10.1038/ncomms6747 10.1021/acsnano.5b00599 10.1063/1.3076103 10.1088/0964-1726/24/3/035020 10.1039/C5RA01519G 10.1002/adma.201300132 10.1016/j.progpolymsci.2015.02.001 10.1063/1.2841669 10.1002/adfm.201404087 10.1002/adma.200904426 10.1088/0957-4484/26/37/375501 10.1209/epl/i2006-10402-4 10.1002/aenm.201401286 10.1063/1.4826496 10.1039/C5NR04312C 10.1039/C5NR08618C 10.1063/1.3522885 10.1002/adma.201500009 10.1021/nl061702a 10.1021/acsnano.5b01613 10.1007/s12274-014-0652-3 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.6b06984 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 20899 |
ExternalDocumentID | 27462991 10_1021_acsami_6b06984 d146871857 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-991ed1a6394787c81e6c756a003af398a3b0f66ea335d104bd993fafdd88dbef3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 16:03:53 EDT 2025 Fri Jul 11 07:08:33 EDT 2025 Mon Jul 21 05:41:42 EDT 2025 Tue Jul 01 02:28:53 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Thu Aug 27 13:42:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | flexible electronics silk fiber strain sensor graphite flakes sheath-core structure dry-Meyer-rod-coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-991ed1a6394787c81e6c756a003af398a3b0f66ea335d104bd993fafdd88dbef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27462991 |
PQID | 1812438125 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000220619 proquest_miscellaneous_1812438125 pubmed_primary_27462991 crossref_primary_10_1021_acsami_6b06984 crossref_citationtrail_10_1021_acsami_6b06984 acs_journals_10_1021_acsami_6b06984 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-17 |
PublicationDateYYYYMMDD | 2016-08-17 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 Holm R. (ref41/cit41) 1967 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1002/aelm.201400063 – ident: ref35/cit35 doi: 10.1039/c3ra46807k – ident: ref23/cit23 doi: 10.1039/c3nr06007a – ident: ref16/cit16 doi: 10.1039/c3ra45027a – ident: ref27/cit27 doi: 10.1088/0957-4484/15/3/026 – ident: ref7/cit7 doi: 10.1002/adma.201201886 – ident: ref28/cit28 doi: 10.1088/0964-1726/15/3/009 – ident: ref1/cit1 doi: 10.1002/adfm.201504755 – ident: ref14/cit14 doi: 10.1021/nn103523t – ident: ref19/cit19 doi: 10.1038/nnano.2013.84 – ident: ref11/cit11 doi: 10.1021/am509087u – ident: ref36/cit36 doi: 10.1038/ncomms3435 – ident: ref33/cit33 doi: 10.1088/0957-4484/21/30/305502 – ident: ref5/cit5 doi: 10.1002/adfm.201570020 – ident: ref15/cit15 doi: 10.1243/030932405X30894 – ident: ref24/cit24 doi: 10.1039/C3TC31680G – volume-title: Electric Contacts: Theory and Applications year: 1967 ident: ref41/cit41 doi: 10.1007/978-3-662-06688-1 – ident: ref25/cit25 doi: 10.1016/j.carbon.2012.08.048 – ident: ref39/cit39 doi: 10.1002/adhm.201500097 – ident: ref20/cit20 doi: 10.1038/nature14002 – ident: ref38/cit38 doi: 10.1038/ncomms6747 – ident: ref13/cit13 doi: 10.1021/acsnano.5b00599 – ident: ref21/cit21 doi: 10.1063/1.3076103 – ident: ref10/cit10 doi: 10.1088/0964-1726/24/3/035020 – ident: ref18/cit18 doi: 10.1039/C5RA01519G – ident: ref6/cit6 doi: 10.1002/adma.201300132 – ident: ref34/cit34 doi: 10.1016/j.progpolymsci.2015.02.001 – ident: ref26/cit26 doi: 10.1063/1.2841669 – ident: ref8/cit8 doi: 10.1002/adfm.201404087 – ident: ref32/cit32 doi: 10.1002/adma.200904426 – ident: ref9/cit9 doi: 10.1088/0957-4484/26/37/375501 – ident: ref40/cit40 doi: 10.1209/epl/i2006-10402-4 – ident: ref3/cit3 doi: 10.1002/aenm.201401286 – ident: ref29/cit29 doi: 10.1063/1.4826496 – ident: ref31/cit31 doi: 10.1039/C5NR04312C – ident: ref22/cit22 doi: 10.1039/C5NR08618C – ident: ref17/cit17 doi: 10.1063/1.3522885 – ident: ref4/cit4 doi: 10.1002/adma.201500009 – ident: ref37/cit37 doi: 10.1021/nl061702a – ident: ref12/cit12 doi: 10.1021/acsnano.5b01613 – ident: ref30/cit30 doi: 10.1007/s12274-014-0652-3 |
SSID | ssj0063205 |
Score | 2.5907164 |
Snippet | Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20894 |
SubjectTerms | electrical conductivity graphene humans monitoring nanomaterials silk |
Title | Sheath–Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors |
URI | http://dx.doi.org/10.1021/acsami.6b06984 https://www.ncbi.nlm.nih.gov/pubmed/27462991 https://www.proquest.com/docview/1812438125 https://www.proquest.com/docview/2000220619 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRiBxMpA4cZ1jVSgIqRwoCCQOkbcIBGpQkx7gxD_wh3wJM0nKqgruk3ib8byxx28I2VEROAljOYtCaVigRcCklpj2J4wMtWw4iw-cO2fi5DI4vQ6vP887ft7g-96-MhmWwhH6QEQyGCcTvpANDLOare5wzxXcL5IVISKHtsBjDekZf32PTshk353QCGRZeJj2TEl3lBXEhJhYcr83yPWeef5N2_hn52fJdAUzabPUizky5nrzZOoL-eACucFi1vnt28trK-07eozM1YA_97t3D_e0jYkktKOso_qJHvafWMcBOGfnqWWtVGGuNAW4S6_AUPDxFe0WtSZoF6LitJ8tksv20UXrhFWlFpgCh5QzQInOegrgCpL1GOk5YRqhUGDzKuGRVFwfJEI4xXloIYLTFnBNohJrpbTaJXyJ1Hppz60Qiuw3iU4AtnABwRv8K1BJwA3gEq61COtkG2Ylrkwli4tbcN-Ly6mKq6mqEzZcodhUbOU4kIeR8rsf8o8lT8dIya3hgsdgSng_onouHUBPEOwAgvHD0TJ-wRgE-h3VyXKpLR_tQYAvwLt7q_8a4RqZBPAl8Hzaa6yTWt4fuA0AOLneLHT7Hd-09OQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROLQ98NMW2ALFqK16MpA48TqHHtDS7fKzHLqgIvWQ-i8qAiVok1W1nHgHHoBX6bPwJIyzyfZPK_WC1Gs0cjyZ8cw38fgzwBsZYZLQhtEoFJoGigdUKOHa_rgWoRJNa9wB5-4R75wE-6fh6RTc1mdhcBI5jpSXm_g_2QW8LXzmbsThaptHIqi6KA_s8DvWaPn7vV006Fvfb384bnVodY0AlRhsC4oIyBpPYip2RDRaeJbrZsgl-rNMWCQkU9sJ51YyFhqsTpTBnJ3IxBghjLIJw3EfwQwiH99VdzutXh3qOfPLHkkvClBFTJQ1K-Rf83W5T-e_574JgLZMbO05-DH-JGU_y_nmoFCb-uoPtsj_-JvNw2wFqsnOaBUswJRNn8HTX6gWn8MXd3V38e3u-qaV9S356Hi6EW1v9c4uzknbtc2QrjSWqCHZ7Q9p12IpQj9lhrYy6TrDCYJ78hlVc0fNSK-8WYP0bJpn_fwFnDyIdoswnWapXQbiuH4SlSBIYxxLVRwrkEnANKIwphQPG_AarRBXgSGPyz1_34tHpokr0zSA1o4R64qb3SlyMVH-3Vj-csRKMlFyo_azGAOH2w2Sqc0GOBMH7RCv-eFkGb_kR8LVHDVgaeSk4_f5zYAjlvFe_pOG6_C4c9w9jA_3jg5W4AnCTu7-zHvNVZgu-gO7htCuUK_K5UXg60P75j3N31iR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VVkL0wPsRymMRIE7b1l57sz5wqJKGlpIKEapW4mD2ZRW1sqvYURVO_Ad-An-FX8IvYcaxIx6KxKUSV2u13vHMznzjnf0G4JlOMEhYJ3gSK8sjIyOujKKyP2lVbFTXO7rgPNyXOwfR66P4aAm-tXdhcBElzlTWh_i0q89c1jAMBBv4nLriSLMpExU1lZR7fnqOeVr5crePSn0ehoPt970d3rQS4BodbsURBXkXaAzHREZjVeCl7cZSo03rTCRKC7OZSem1ELHDDMU4jNuZzpxTyhmfCZz3EqzQGSFleFu9UevupQjrOskgiVBMDJYtM-Rf66X4Z8vf498CUFsHt8E1-D7_LHVNy8n6pDLr9vMfjJH_-Xe7DlcbcM22ZrvhBiz5_Cas_kK5eAs-UAvv6vjHl6-9YuzZK-LrRtS9Mfp0esIGVD7Dhtp5ZqasP57yoceUhL8rHO8VmirEGYJ8doii0ZUzNqo7bLCRz8tiXN6GgwuR7g4s50Xu7wEjzp_MZAjWhMSUFeeKdBYJi2hMGCPjDjxFLaSNgyjT-uw_DNKZatJGNR3grXGktuFoJ0FOF45_MR9_NmMnWTjySWtrKToQOhXSuS8muBKCeIjbwnjxmLDmScJdnXTg7sxQ5-8Lu5FETBPc_ycJH8Plt_1B-mZ3f28NriD6lPSDPug-gOVqPPEPEeFV5lG9wxh8vGjT_AksLlsU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sheath-Core+Graphite%2FSilk+Fiber+Made+by+Dry-Meyer-Rod-Coating+for+Wearable+Strain+Sensors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Mingchao&rft.au=Wang%2C+Chunya&rft.au=Wang%2C+Qi&rft.au=Jian%2C+Muqiang&rft.date=2016-08-17&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=8&rft.issue=32&rft.spage=20894&rft_id=info:doi/10.1021%2Facsami.6b06984&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |