Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods

The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 15; pp. 13037 - 13048
Main Authors Ma, Ningning, Wu, Fu-Gen, Zhang, Xiaodong, Jiang, Yao-Wen, Jia, Hao-Ran, Wang, Hong-Yin, Li, Yan-Hong, Liu, Peidang, Gu, Ning, Chen, Zhan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly­(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.
AbstractList The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.
The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.
The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly­(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.
Author Ma, Ningning
Wang, Hong-Yin
Chen, Zhan
Zhang, Xiaodong
Wu, Fu-Gen
Li, Yan-Hong
Liu, Peidang
Jiang, Yao-Wen
Jia, Hao-Ran
Gu, Ning
AuthorAffiliation Department of Chemistry
University of Michigan
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering
Southeast University
Institute of Neurobiology, School of Medicine
AuthorAffiliation_xml – name: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering
– name: Department of Chemistry
– name: Institute of Neurobiology, School of Medicine
– name: Southeast University
– name: University of Michigan
Author_xml – sequence: 1
  givenname: Ningning
  surname: Ma
  fullname: Ma, Ningning
– sequence: 2
  givenname: Fu-Gen
  orcidid: 0000-0003-1773-2868
  surname: Wu
  fullname: Wu, Fu-Gen
  email: wufg@seu.edu.cn
– sequence: 3
  givenname: Xiaodong
  orcidid: 0000-0003-4137-3535
  surname: Zhang
  fullname: Zhang, Xiaodong
– sequence: 4
  givenname: Yao-Wen
  surname: Jiang
  fullname: Jiang, Yao-Wen
– sequence: 5
  givenname: Hao-Ran
  surname: Jia
  fullname: Jia, Hao-Ran
– sequence: 6
  givenname: Hong-Yin
  surname: Wang
  fullname: Wang, Hong-Yin
– sequence: 7
  givenname: Yan-Hong
  surname: Li
  fullname: Li, Yan-Hong
– sequence: 8
  givenname: Peidang
  surname: Liu
  fullname: Liu, Peidang
– sequence: 9
  givenname: Ning
  orcidid: 0000-0003-0047-337X
  surname: Gu
  fullname: Gu, Ning
– sequence: 10
  givenname: Zhan
  surname: Chen
  fullname: Chen, Zhan
  email: zhanc@umich.edu
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28338323$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi3Uin7AlSPKEaFm63G8tsOtWkpBqorEx9lynbHqktjBdg7lb_CHmyVbhCpVnDwaP897eOeI7IUYkJBXQFdAGZwam83gV_KaAgB7Rg6h5bxWbM32_s6cH5CjnG8pFQ2j6-fkgKmmUQ1rDsnvrzdmxPo9jhg6DKX6YjofM4bsi_9lio-hOncObamiqy5i31VXJsRc0mTLlDBXPlQbEyymRS03mMx4967axGE0yec54F9z3hVve8wnS9Dof2xnE5bvFLv8guw702d8uXuPyfcP5982H-vLzxefNmeXteGsLbWSyoJVoASXylFuhWw6lCDU2iEzHFu-bq0DFEK11DjeWGCdFBwkOCltc0zeLLljij8nzEUPPlvsexMwTlkzSiljYi7tvygoBTMpxBZ9vUOn6wE7PSY_mHSnHzqfAb4ANsWcEzptffnTdEnG9xqo3p5WL6fVu9PO2uqR9pD8pPB2Eea9vo1TCnOZT8H3TzW2Bw
CitedBy_id crossref_primary_10_1007_s10876_020_01955_9
crossref_primary_10_1016_j_radphyschem_2018_08_010
crossref_primary_10_1007_s12274_021_3337_8
crossref_primary_10_1016_j_jconrel_2025_02_026
crossref_primary_10_1039_D2TB00556E
crossref_primary_10_1002_adhm_202101682
crossref_primary_10_1039_C9BM00051H
crossref_primary_10_1088_2053_1591_ac4ebb
crossref_primary_10_1016_j_bbagen_2025_130793
crossref_primary_10_1021_acsomega_8b00419
crossref_primary_10_3390_catal12020167
crossref_primary_10_2217_nnm_2020_0448
crossref_primary_10_1007_s40843_020_1338_7
crossref_primary_10_1021_acsami_7b18975
crossref_primary_10_1016_j_inoche_2018_10_023
crossref_primary_10_1016_j_pmatsci_2022_100974
crossref_primary_10_1007_s00259_022_05830_9
crossref_primary_10_1088_2057_1976_aac73d
crossref_primary_10_1021_acsomega_4c06568
crossref_primary_10_1515_ract_2020_0098
crossref_primary_10_30699_jambs_30_142_388
crossref_primary_10_1002_adma_201802244
crossref_primary_10_1186_s12951_020_00629_y
crossref_primary_10_1021_acsomega_4c02125
crossref_primary_10_1039_D2BM00174H
crossref_primary_10_1134_S0006350919010032
crossref_primary_10_1186_s12951_024_02363_1
crossref_primary_10_1021_acsabm_8b00484
crossref_primary_10_3390_nano10030504
crossref_primary_10_1016_j_pbiomolbio_2022_08_006
crossref_primary_10_1021_acsami_8b00207
crossref_primary_10_1021_acs_chemmater_4c00078
crossref_primary_10_3390_ijms21020579
crossref_primary_10_3390_cancers12082021
crossref_primary_10_1039_D2BM01496C
crossref_primary_10_1186_s12989_020_00372_0
crossref_primary_10_1016_j_ceramint_2020_08_027
crossref_primary_10_1002_wnan_1715
crossref_primary_10_3390_nano9020295
crossref_primary_10_1021_acs_jpclett_0c00300
crossref_primary_10_1016_j_addr_2023_114710
crossref_primary_10_1016_j_nantod_2021_101279
crossref_primary_10_1021_jacs_7b13672
crossref_primary_10_1088_1742_6596_1906_1_012023
crossref_primary_10_1039_C9AN00792J
crossref_primary_10_3390_cancers9120173
crossref_primary_10_1039_C8TB02390E
crossref_primary_10_1039_D1BM00306B
crossref_primary_10_1016_j_colsurfb_2020_111451
crossref_primary_10_1021_acsami_7b09599
crossref_primary_10_1016_j_biomaterials_2019_119677
crossref_primary_10_1016_j_micron_2021_103152
crossref_primary_10_1016_j_radphyschem_2018_04_018
crossref_primary_10_1186_s12951_025_03256_7
crossref_primary_10_1021_acs_jpcc_8b10260
crossref_primary_10_1016_j_nimb_2022_06_009
crossref_primary_10_3390_cells12050787
crossref_primary_10_1016_j_msec_2021_112394
crossref_primary_10_1021_acsnano_1c08237
crossref_primary_10_1002_advs_201801806
crossref_primary_10_1021_acsnano_8b07982
crossref_primary_10_1177_18495435211053945
crossref_primary_10_3389_fbioe_2021_647905
crossref_primary_10_1016_j_colcom_2018_01_004
crossref_primary_10_1080_14737159_2021_1933447
crossref_primary_10_2147_IJN_S272902
crossref_primary_10_1007_s12013_018_0863_4
crossref_primary_10_1007_s11051_024_06178_x
crossref_primary_10_1007_s13404_019_00260_2
crossref_primary_10_2174_0929867326666181224143734
crossref_primary_10_1021_acs_nanolett_8b02819
crossref_primary_10_3390_pharmaceutics16070900
crossref_primary_10_1515_ntrev_2024_0134
crossref_primary_10_1002_adma_202203734
crossref_primary_10_1186_s12951_020_00678_3
crossref_primary_10_1016_j_nano_2019_01_006
crossref_primary_10_3389_fchem_2023_1124559
crossref_primary_10_1039_C9TB00716D
crossref_primary_10_1002_aoc_7265
crossref_primary_10_1088_1361_6560_ab314c
crossref_primary_10_3390_nano12101738
crossref_primary_10_1002_EXP_20220119
crossref_primary_10_1007_s12668_018_0524_5
crossref_primary_10_1039_D0CC05184E
crossref_primary_10_1088_2043_6254_abb8c7
crossref_primary_10_3389_fimmu_2024_1453753
crossref_primary_10_1186_s12951_019_0473_3
crossref_primary_10_1021_acsanm_4c03967
crossref_primary_10_3390_pharmaceutics14051013
crossref_primary_10_2217_nnm_2019_0015
crossref_primary_10_1080_16878507_2020_1828019
crossref_primary_10_1016_j_ceramint_2020_04_057
crossref_primary_10_1088_1361_6560_ad2380
crossref_primary_10_3390_nanomanufacturing2010001
crossref_primary_10_3390_ijms22136778
crossref_primary_10_1016_j_onano_2018_100027
crossref_primary_10_1021_acsami_8b09596
crossref_primary_10_1039_D1NR03869A
crossref_primary_10_1016_j_electacta_2019_134825
crossref_primary_10_1021_acsnano_9b03767
crossref_primary_10_1039_D1CS01145F
crossref_primary_10_1021_acsnano_2c06337
crossref_primary_10_1021_acsabm_9b00085
crossref_primary_10_1166_mex_2021_2112
crossref_primary_10_1021_acsabm_1c00998
crossref_primary_10_1007_s12274_020_2957_8
crossref_primary_10_1134_S0006350920040107
crossref_primary_10_1021_acs_langmuir_0c02316
crossref_primary_10_1007_s11468_024_02485_0
crossref_primary_10_1134_S0006350921060063
crossref_primary_10_1016_j_pdpdt_2018_10_016
crossref_primary_10_1002_smll_201804575
crossref_primary_10_1002_smll_202400954
crossref_primary_10_1007_s12274_017_1961_0
crossref_primary_10_1186_s12951_024_03057_4
crossref_primary_10_1039_D1TB02524D
crossref_primary_10_1002_advs_201903441
crossref_primary_10_1080_15567265_2022_2138803
crossref_primary_10_2200_S01031ED1V01Y202007BME060
crossref_primary_10_1039_D0CC00196A
crossref_primary_10_1038_s41598_019_53706_0
crossref_primary_10_1016_j_apmt_2021_101107
crossref_primary_10_1016_j_ejps_2020_105487
crossref_primary_10_3390_nano10010158
crossref_primary_10_1016_j_lfs_2023_121495
crossref_primary_10_3390_polym14224841
crossref_primary_10_3389_fbioe_2021_764531
crossref_primary_10_1007_s10103_017_2329_0
crossref_primary_10_1039_D0RA00164C
crossref_primary_10_1002_adhm_201800375
crossref_primary_10_1021_acsami_3c02361
crossref_primary_10_3938_jkps_73_1744
crossref_primary_10_1186_s12951_020_00684_5
crossref_primary_10_1021_acsbiomaterials_8b01181
crossref_primary_10_1016_j_colsurfb_2022_112330
crossref_primary_10_1002_adhm_202101190
crossref_primary_10_4236_jbnb_2018_91002
crossref_primary_10_1016_j_snb_2020_129373
crossref_primary_10_1021_acsomega_2c00727
crossref_primary_10_1039_D2MA00094F
crossref_primary_10_1038_s41392_022_01102_y
crossref_primary_10_1039_C7NR04684G
crossref_primary_10_3390_nano10050952
crossref_primary_10_1186_s12951_021_01209_4
crossref_primary_10_1002_wnan_1656
crossref_primary_10_1021_acsabm_1c00171
crossref_primary_10_1002_chem_201800804
crossref_primary_10_1016_j_radphyschem_2020_109294
crossref_primary_10_3390_ijms24044122
crossref_primary_10_1039_C9SC03355F
crossref_primary_10_1016_j_bioadv_2022_213153
crossref_primary_10_1039_D4DT02643H
crossref_primary_10_1002_smll_202410925
crossref_primary_10_1021_acsnano_3c01068
crossref_primary_10_1016_j_biomaterials_2019_119538
crossref_primary_10_2147_IJN_S436268
crossref_primary_10_1016_j_biomaterials_2018_08_014
crossref_primary_10_1021_acs_inorgchem_1c00001
crossref_primary_10_1007_s10238_023_01262_3
crossref_primary_10_1021_acsami_8b10901
crossref_primary_10_1080_17435889_2024_2395238
crossref_primary_10_1039_C7MH00451F
crossref_primary_10_2147_IJN_S329762
crossref_primary_10_1021_acsnano_9b08962
crossref_primary_10_3390_nano12244440
crossref_primary_10_1021_acsami_9b12879
crossref_primary_10_1186_s12951_021_01191_x
Cites_doi 10.1002/tox.22015
10.1039/c1nr10586h
10.1021/acsami.6b08391
10.1016/j.biomaterials.2015.05.033
10.1186/s12951-014-0054-4
10.1002/adma.201504617
10.1002/adhm.201300189
10.1038/physci241020a0
10.2217/nnm-2016-0203
10.2217/fon.12.96
10.1021/nn202797h
10.1016/j.apsusc.2014.05.136
10.1002/adma.201503006
10.1002/adma.201506428
10.1186/s11671-015-0923-2
10.1667/RR1984.1
10.1039/C5RA04013B
10.1158/0008-5472.CAN-09-3573
10.1016/j.jconrel.2015.08.008
10.1021/la3051093
10.1093/rb/rbv024
10.3109/09553002.2014.888104
10.1021/nl052396o
10.1039/C5NR01704A
10.1038/srep08669
10.1117/1.3147390
10.1021/la302799s
10.1002/cyto.a.22342
10.1016/j.biomaterials.2016.07.008
10.1186/s12645-016-0021-x
10.1016/j.biomaterials.2016.10.020
10.1002/ppsc.201400067
10.1021/acsami.6b15183
10.1021/acsnano.5b05825
10.1021/acsnano.6b06067
10.1186/s12951-015-0113-5
10.1016/j.biomaterials.2016.05.031
10.1039/c3nr01351k
10.1088/0031-9155/49/18/N03
10.1002/smll.201602869
10.1016/j.jcis.2015.05.029
10.1002/smll.201402233
10.1021/am506866a
10.1016/0009-2797(89)90016-1
10.1039/C5NR09102K
10.1021/jp5026224
10.1016/j.clon.2007.03.010
10.1021/cm020732l
10.1016/j.biomaterials.2012.05.047
10.1073/pnas.95.17.9738
10.1038/nrc2587
10.1186/s12645-014-0004-8
10.1088/0957-4484/21/8/085103
10.1088/0957-4484/19/02/025103
10.2147/IJN.S115473
10.2147/IJN.S82980
10.1211/jpp.60.8.0005
10.1088/0957-4484/20/37/375101
10.1039/C5NR08808A
10.1007/s13404-012-0052-y
10.1021/acsami.6b10132
10.1002/adma.201400866
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.7b01112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 13048
ExternalDocumentID 28338323
10_1021_acsami_7b01112
a606784845
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-878c1c8186478f04c673de71685fe2a4e9459cf1e66890af43c12d764171f77c3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 01:01:04 EDT 2025
Thu Jul 10 22:52:30 EDT 2025
Thu Apr 03 06:57:12 EDT 2025
Tue Jul 01 02:29:12 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Thu Aug 27 13:42:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords radiosensitizing effect
X-ray radiotherapy
shape-dependent
gold nanostructures
anticancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-878c1c8186478f04c673de71685fe2a4e9459cf1e66890af43c12d764171f77c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1773-2868
0000-0003-4137-3535
0000-0003-0047-337X
PMID 28338323
PQID 1881266662
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000226632
proquest_miscellaneous_1881266662
pubmed_primary_28338323
crossref_citationtrail_10_1021_acsami_7b01112
crossref_primary_10_1021_acsami_7b01112
acs_journals_10_1021_acsami_7b01112
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-19
PublicationDateYYYYMMDD 2017-04-19
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Kwatra D. (ref38/cit38) 2013; 2
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref63/cit63
  doi: 10.1002/tox.22015
– ident: ref29/cit29
  doi: 10.1039/c1nr10586h
– ident: ref30/cit30
  doi: 10.1021/acsami.6b08391
– ident: ref27/cit27
  doi: 10.1016/j.biomaterials.2015.05.033
– ident: ref60/cit60
  doi: 10.1186/s12951-014-0054-4
– ident: ref5/cit5
  doi: 10.1002/adma.201504617
– ident: ref11/cit11
  doi: 10.1002/adhm.201300189
– ident: ref47/cit47
  doi: 10.1038/physci241020a0
– ident: ref33/cit33
  doi: 10.2217/nnm-2016-0203
– ident: ref24/cit24
  doi: 10.2217/fon.12.96
– ident: ref36/cit36
  doi: 10.1021/nn202797h
– ident: ref58/cit58
  doi: 10.1016/j.apsusc.2014.05.136
– ident: ref4/cit4
  doi: 10.1002/adma.201503006
– ident: ref20/cit20
  doi: 10.1002/adma.201506428
– ident: ref42/cit42
  doi: 10.1186/s11671-015-0923-2
– ident: ref8/cit8
  doi: 10.1667/RR1984.1
– ident: ref14/cit14
  doi: 10.1039/C5RA04013B
– ident: ref43/cit43
  doi: 10.1158/0008-5472.CAN-09-3573
– ident: ref52/cit52
  doi: 10.1016/j.jconrel.2015.08.008
– ident: ref53/cit53
  doi: 10.1021/la3051093
– ident: ref61/cit61
  doi: 10.1093/rb/rbv024
– ident: ref32/cit32
  doi: 10.3109/09553002.2014.888104
– ident: ref45/cit45
  doi: 10.1021/nl052396o
– ident: ref57/cit57
  doi: 10.1039/C5NR01704A
– ident: ref12/cit12
  doi: 10.1038/srep08669
– ident: ref50/cit50
  doi: 10.1117/1.3147390
– ident: ref54/cit54
  doi: 10.1021/la302799s
– ident: ref51/cit51
  doi: 10.1002/cyto.a.22342
– ident: ref35/cit35
  doi: 10.1016/j.biomaterials.2016.07.008
– ident: ref6/cit6
  doi: 10.1186/s12645-016-0021-x
– ident: ref23/cit23
  doi: 10.1016/j.biomaterials.2016.10.020
– ident: ref56/cit56
  doi: 10.1002/ppsc.201400067
– volume: 2
  start-page: 330
  year: 2013
  ident: ref38/cit38
  publication-title: Transl. Cancer Res.
– ident: ref17/cit17
  doi: 10.1021/acsami.6b15183
– ident: ref21/cit21
  doi: 10.1021/acsnano.5b05825
– ident: ref3/cit3
  doi: 10.1021/acsnano.6b06067
– ident: ref13/cit13
  doi: 10.1186/s12951-015-0113-5
– ident: ref28/cit28
  doi: 10.1016/j.biomaterials.2016.05.031
– ident: ref26/cit26
  doi: 10.1039/c3nr01351k
– ident: ref7/cit7
  doi: 10.1088/0031-9155/49/18/N03
– ident: ref22/cit22
  doi: 10.1002/smll.201602869
– ident: ref55/cit55
  doi: 10.1016/j.jcis.2015.05.029
– ident: ref62/cit62
  doi: 10.1002/smll.201402233
– ident: ref15/cit15
  doi: 10.1021/am506866a
– ident: ref40/cit40
  doi: 10.1016/0009-2797(89)90016-1
– ident: ref19/cit19
  doi: 10.1039/C5NR09102K
– ident: ref31/cit31
  doi: 10.1021/jp5026224
– ident: ref2/cit2
  doi: 10.1016/j.clon.2007.03.010
– ident: ref49/cit49
  doi: 10.1021/cm020732l
– ident: ref9/cit9
  doi: 10.1016/j.biomaterials.2012.05.047
– ident: ref41/cit41
  doi: 10.1073/pnas.95.17.9738
– ident: ref1/cit1
  doi: 10.1038/nrc2587
– ident: ref34/cit34
  doi: 10.1186/s12645-014-0004-8
– ident: ref18/cit18
  doi: 10.1088/0957-4484/21/8/085103
– ident: ref59/cit59
  doi: 10.1088/0957-4484/19/02/025103
– ident: ref25/cit25
  doi: 10.2147/IJN.S115473
– ident: ref37/cit37
  doi: 10.2147/IJN.S82980
– ident: ref39/cit39
  doi: 10.1211/jpp.60.8.0005
– ident: ref44/cit44
  doi: 10.1088/0957-4484/20/37/375101
– ident: ref46/cit46
  doi: 10.1039/C5NR08808A
– ident: ref48/cit48
  doi: 10.1007/s13404-012-0052-y
– ident: ref16/cit16
  doi: 10.1021/acsami.6b10132
– ident: ref10/cit10
  doi: 10.1002/adma.201400866
SSID ssj0063205
Score 2.5757208
Snippet The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13037
SubjectTerms cell cycle
Gold
irradiation
Metal Nanoparticles
nanogold
nanorods
Nanostructures
Nanotubes
neoplasm cells
neoplasms
polyethylene glycol
radiotherapy
X-radiation
X-Rays
Title Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods
URI http://dx.doi.org/10.1021/acsami.7b01112
https://www.ncbi.nlm.nih.gov/pubmed/28338323
https://www.proquest.com/docview/1881266662
https://www.proquest.com/docview/2000226632
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbQcoFDy6vtloKMqNRLvY0dJ3Z6QwvLCokeSpH2FjmOra5YJasme2j_Rv8w4zhZ2KIt3CJlJnH8mPkmHn-D0EdqAsMNtwTAckK4MRlRkhqSZ5FlUqssUi5QvP4Wj2_51SSaPPzv-HcHn9EvSleuFI7IXFV0MLabLJbChVlnw5vO5sYha5IVISLnRILH6ugZn-g7J6SrVSe0Blk2Hmb02tMdVQ0xoUssuRss6myg_zylbXy28TvoVQsz8ZmfF7towxR7aPsR-eA--nvzU80NOW-r4Nb4u8qnZeUS2uv2cCb23Ma4tPiynOUYTHHpCWcXEKXjaYGHbtL88qr-KNfvr3i4rG24ojnvkvA--wfNp3fuWhX-Nljy6gDdji5-DMekLdFAFDiyGmyp1FQ7VjwupA24jkWYG4jBZGQNU9wkPEq0pSaOZRIoy0NNWS5iTgW1QujwDeoVZWHeIaxMACIaIjjQk0GWUCUsV5ozoamNVB-dQm-m7RKr0mb3nNHUd3HadnEfkW5kU92ynLtiG7O18p-W8nPP77FW8qSbKCksQbevogpTLqAlElAShIHxf2RYwzQE8A5k3vpZtnwfILwQDGv4_kVfeIi2mIMWjm8y-YB6MOrmCIBRnR03a-IezAIJ3Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAe-C-UXyNAXOoSO06cIHGotpQt_TnQVuotdRxbXbVKVk1WqLwGD9BX6aMxjpOFghZxqcQtSsaO4xl7vlHG3wC8ZiYwwghLESynVBiTU5UwQ4s8sjzRKo-UCxS3d-Lhvvh8EB3MwXl_FgYHUWNPdfsT_ye7AHuH91xFHJm74ui8y6LcNGdfMUarP2ysoULfcL7-cW8wpF0ZAapws21wvSeaacfcJmRiA6FjGRYG44QksoYrYVIRpdoyE8dJGigrQs14IWPBJLNS6hD7vQbXEflwF92tDnb7rT4OeZsjyVIhaIKOsmeF_GO8zvfp-rLvmwFoW8e2fhsuplPS5rMcr0yafEV_-40t8j-esztwqwPVZNWvgrswZ8p7sPAL1eJ9-L57pMaGrnU1fxvyRRWjqnbp-013FJV4JmdSWfKpOikIOp7K0-tOTk1NRiUZuCVy6pv6g2tn78lgWsnxUstxn3K47Dsaj47dtSr9Y_Rb9QPYv5JZWYT5sirNIyDKBCiiMV7FdkmQp0xJK5QWXGpmI7UEr1B7Wbeh1FmbK8BZ5lWadSpdAtobVKY7TndXWuRkpvzbqfzYs5nMlHzZ22eGG477i6RKU01wJAliQgx647_I8JZXCcEsyjz0xj19H-LZEN1I-PifvvAF3BjubW9lWxs7m0_gJnegyjFtpk9hHi3APENI2OTP22VJ4PCqbfoHQUZp0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKkRAseD9aXkaA2OASO07sILGoZhhaChWiVOouOI4tRq2SqMmoan-jn8Cv8GFcx86IggaxqcRulLl2HN-3fH0uQs-oiQw33BIIljPCjSmIktSQskgsk1oViXKJ4sftdGOXv99L9pbQ9-EuDCyihZna_hDfaXVT2oAwQF_Bc9cVRxSuQToLlZRb5vgI8rT2zeYYmPqcscnbL6MNEloJEAUGtwOdl5pqh97GhbQR16mISwO5gkysYYqbjCeZttSkqcwiZXmsKStFyqmgVggdw7wX0EV3RugyvPXRzmDu05j1dZI045xIcJYDMuQf63X-T7dn_d-CoLZ3bpNr6Md8W_qalv21WVes6ZPfECP_8327jq6G4Bqve224gZZMdRNd-QVy8RY63fmmGkPGofdvhz-rclq3roy_C1dSsUd0xrXF7-qDEoMDqj3M7uzQtHha4ZFTlUM_1F9gO36NR_OOjmdGNkPp4Us_UTPdd79V5f8G_9XeRrvnsit30HJVV-YewspEQKIhb4VxMioyqoTlSnMmNLWJWkFPgXt5MCxt3tcMMJp7luaBpSuIDEKV64Dt7lqMHCykfzGnbzyqyULKJ4OM5mB43GmSqkw9g5VIiA0h-U3_QsN6fCUIaoHmrhfw-fsgro3BncSr__SFj9GlT-NJ_mFze-s-usxcbOUAN7MHaBkEwDyEyLArHvWaidHX8xbpny76bFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-Dependent+Radiosensitization+Effect+of+Gold+Nanostructures+in+Cancer+Radiotherapy%3A+Comparison+of+Gold+Nanoparticles%2C+Nanospikes%2C+and+Nanorods&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ma%2C+Ningning&rft.au=Wu%2C+Fu-Gen&rft.au=Zhang%2C+Xiaodong&rft.au=Jiang%2C+Yao-Wen&rft.date=2017-04-19&rft.issn=1944-8252&rft.volume=9&rft.issue=15+p.13037-13048&rft.spage=13037&rft.epage=13048&rft_id=info:doi/10.1021%2Facsami.7b01112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon