Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods
The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 15; pp. 13037 - 13048 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy. |
---|---|
AbstractList | The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy. The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy. The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy. |
Author | Ma, Ningning Wang, Hong-Yin Chen, Zhan Zhang, Xiaodong Wu, Fu-Gen Li, Yan-Hong Liu, Peidang Jiang, Yao-Wen Jia, Hao-Ran Gu, Ning |
AuthorAffiliation | Department of Chemistry University of Michigan State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Institute of Neurobiology, School of Medicine |
AuthorAffiliation_xml | – name: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering – name: Department of Chemistry – name: Institute of Neurobiology, School of Medicine – name: Southeast University – name: University of Michigan |
Author_xml | – sequence: 1 givenname: Ningning surname: Ma fullname: Ma, Ningning – sequence: 2 givenname: Fu-Gen orcidid: 0000-0003-1773-2868 surname: Wu fullname: Wu, Fu-Gen email: wufg@seu.edu.cn – sequence: 3 givenname: Xiaodong orcidid: 0000-0003-4137-3535 surname: Zhang fullname: Zhang, Xiaodong – sequence: 4 givenname: Yao-Wen surname: Jiang fullname: Jiang, Yao-Wen – sequence: 5 givenname: Hao-Ran surname: Jia fullname: Jia, Hao-Ran – sequence: 6 givenname: Hong-Yin surname: Wang fullname: Wang, Hong-Yin – sequence: 7 givenname: Yan-Hong surname: Li fullname: Li, Yan-Hong – sequence: 8 givenname: Peidang surname: Liu fullname: Liu, Peidang – sequence: 9 givenname: Ning orcidid: 0000-0003-0047-337X surname: Gu fullname: Gu, Ning – sequence: 10 givenname: Zhan surname: Chen fullname: Chen, Zhan email: zhanc@umich.edu organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28338323$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi3Uin7AlSPKEaFm63G8tsOtWkpBqorEx9lynbHqktjBdg7lb_CHmyVbhCpVnDwaP897eOeI7IUYkJBXQFdAGZwam83gV_KaAgB7Rg6h5bxWbM32_s6cH5CjnG8pFQ2j6-fkgKmmUQ1rDsnvrzdmxPo9jhg6DKX6YjofM4bsi_9lio-hOncObamiqy5i31VXJsRc0mTLlDBXPlQbEyymRS03mMx4967axGE0yec54F9z3hVve8wnS9Dof2xnE5bvFLv8guw702d8uXuPyfcP5982H-vLzxefNmeXteGsLbWSyoJVoASXylFuhWw6lCDU2iEzHFu-bq0DFEK11DjeWGCdFBwkOCltc0zeLLljij8nzEUPPlvsexMwTlkzSiljYi7tvygoBTMpxBZ9vUOn6wE7PSY_mHSnHzqfAb4ANsWcEzptffnTdEnG9xqo3p5WL6fVu9PO2uqR9pD8pPB2Eea9vo1TCnOZT8H3TzW2Bw |
CitedBy_id | crossref_primary_10_1007_s10876_020_01955_9 crossref_primary_10_1016_j_radphyschem_2018_08_010 crossref_primary_10_1007_s12274_021_3337_8 crossref_primary_10_1016_j_jconrel_2025_02_026 crossref_primary_10_1039_D2TB00556E crossref_primary_10_1002_adhm_202101682 crossref_primary_10_1039_C9BM00051H crossref_primary_10_1088_2053_1591_ac4ebb crossref_primary_10_1016_j_bbagen_2025_130793 crossref_primary_10_1021_acsomega_8b00419 crossref_primary_10_3390_catal12020167 crossref_primary_10_2217_nnm_2020_0448 crossref_primary_10_1007_s40843_020_1338_7 crossref_primary_10_1021_acsami_7b18975 crossref_primary_10_1016_j_inoche_2018_10_023 crossref_primary_10_1016_j_pmatsci_2022_100974 crossref_primary_10_1007_s00259_022_05830_9 crossref_primary_10_1088_2057_1976_aac73d crossref_primary_10_1021_acsomega_4c06568 crossref_primary_10_1515_ract_2020_0098 crossref_primary_10_30699_jambs_30_142_388 crossref_primary_10_1002_adma_201802244 crossref_primary_10_1186_s12951_020_00629_y crossref_primary_10_1021_acsomega_4c02125 crossref_primary_10_1039_D2BM00174H crossref_primary_10_1134_S0006350919010032 crossref_primary_10_1186_s12951_024_02363_1 crossref_primary_10_1021_acsabm_8b00484 crossref_primary_10_3390_nano10030504 crossref_primary_10_1016_j_pbiomolbio_2022_08_006 crossref_primary_10_1021_acsami_8b00207 crossref_primary_10_1021_acs_chemmater_4c00078 crossref_primary_10_3390_ijms21020579 crossref_primary_10_3390_cancers12082021 crossref_primary_10_1039_D2BM01496C crossref_primary_10_1186_s12989_020_00372_0 crossref_primary_10_1016_j_ceramint_2020_08_027 crossref_primary_10_1002_wnan_1715 crossref_primary_10_3390_nano9020295 crossref_primary_10_1021_acs_jpclett_0c00300 crossref_primary_10_1016_j_addr_2023_114710 crossref_primary_10_1016_j_nantod_2021_101279 crossref_primary_10_1021_jacs_7b13672 crossref_primary_10_1088_1742_6596_1906_1_012023 crossref_primary_10_1039_C9AN00792J crossref_primary_10_3390_cancers9120173 crossref_primary_10_1039_C8TB02390E crossref_primary_10_1039_D1BM00306B crossref_primary_10_1016_j_colsurfb_2020_111451 crossref_primary_10_1021_acsami_7b09599 crossref_primary_10_1016_j_biomaterials_2019_119677 crossref_primary_10_1016_j_micron_2021_103152 crossref_primary_10_1016_j_radphyschem_2018_04_018 crossref_primary_10_1186_s12951_025_03256_7 crossref_primary_10_1021_acs_jpcc_8b10260 crossref_primary_10_1016_j_nimb_2022_06_009 crossref_primary_10_3390_cells12050787 crossref_primary_10_1016_j_msec_2021_112394 crossref_primary_10_1021_acsnano_1c08237 crossref_primary_10_1002_advs_201801806 crossref_primary_10_1021_acsnano_8b07982 crossref_primary_10_1177_18495435211053945 crossref_primary_10_3389_fbioe_2021_647905 crossref_primary_10_1016_j_colcom_2018_01_004 crossref_primary_10_1080_14737159_2021_1933447 crossref_primary_10_2147_IJN_S272902 crossref_primary_10_1007_s12013_018_0863_4 crossref_primary_10_1007_s11051_024_06178_x crossref_primary_10_1007_s13404_019_00260_2 crossref_primary_10_2174_0929867326666181224143734 crossref_primary_10_1021_acs_nanolett_8b02819 crossref_primary_10_3390_pharmaceutics16070900 crossref_primary_10_1515_ntrev_2024_0134 crossref_primary_10_1002_adma_202203734 crossref_primary_10_1186_s12951_020_00678_3 crossref_primary_10_1016_j_nano_2019_01_006 crossref_primary_10_3389_fchem_2023_1124559 crossref_primary_10_1039_C9TB00716D crossref_primary_10_1002_aoc_7265 crossref_primary_10_1088_1361_6560_ab314c crossref_primary_10_3390_nano12101738 crossref_primary_10_1002_EXP_20220119 crossref_primary_10_1007_s12668_018_0524_5 crossref_primary_10_1039_D0CC05184E crossref_primary_10_1088_2043_6254_abb8c7 crossref_primary_10_3389_fimmu_2024_1453753 crossref_primary_10_1186_s12951_019_0473_3 crossref_primary_10_1021_acsanm_4c03967 crossref_primary_10_3390_pharmaceutics14051013 crossref_primary_10_2217_nnm_2019_0015 crossref_primary_10_1080_16878507_2020_1828019 crossref_primary_10_1016_j_ceramint_2020_04_057 crossref_primary_10_1088_1361_6560_ad2380 crossref_primary_10_3390_nanomanufacturing2010001 crossref_primary_10_3390_ijms22136778 crossref_primary_10_1016_j_onano_2018_100027 crossref_primary_10_1021_acsami_8b09596 crossref_primary_10_1039_D1NR03869A crossref_primary_10_1016_j_electacta_2019_134825 crossref_primary_10_1021_acsnano_9b03767 crossref_primary_10_1039_D1CS01145F crossref_primary_10_1021_acsnano_2c06337 crossref_primary_10_1021_acsabm_9b00085 crossref_primary_10_1166_mex_2021_2112 crossref_primary_10_1021_acsabm_1c00998 crossref_primary_10_1007_s12274_020_2957_8 crossref_primary_10_1134_S0006350920040107 crossref_primary_10_1021_acs_langmuir_0c02316 crossref_primary_10_1007_s11468_024_02485_0 crossref_primary_10_1134_S0006350921060063 crossref_primary_10_1016_j_pdpdt_2018_10_016 crossref_primary_10_1002_smll_201804575 crossref_primary_10_1002_smll_202400954 crossref_primary_10_1007_s12274_017_1961_0 crossref_primary_10_1186_s12951_024_03057_4 crossref_primary_10_1039_D1TB02524D crossref_primary_10_1002_advs_201903441 crossref_primary_10_1080_15567265_2022_2138803 crossref_primary_10_2200_S01031ED1V01Y202007BME060 crossref_primary_10_1039_D0CC00196A crossref_primary_10_1038_s41598_019_53706_0 crossref_primary_10_1016_j_apmt_2021_101107 crossref_primary_10_1016_j_ejps_2020_105487 crossref_primary_10_3390_nano10010158 crossref_primary_10_1016_j_lfs_2023_121495 crossref_primary_10_3390_polym14224841 crossref_primary_10_3389_fbioe_2021_764531 crossref_primary_10_1007_s10103_017_2329_0 crossref_primary_10_1039_D0RA00164C crossref_primary_10_1002_adhm_201800375 crossref_primary_10_1021_acsami_3c02361 crossref_primary_10_3938_jkps_73_1744 crossref_primary_10_1186_s12951_020_00684_5 crossref_primary_10_1021_acsbiomaterials_8b01181 crossref_primary_10_1016_j_colsurfb_2022_112330 crossref_primary_10_1002_adhm_202101190 crossref_primary_10_4236_jbnb_2018_91002 crossref_primary_10_1016_j_snb_2020_129373 crossref_primary_10_1021_acsomega_2c00727 crossref_primary_10_1039_D2MA00094F crossref_primary_10_1038_s41392_022_01102_y crossref_primary_10_1039_C7NR04684G crossref_primary_10_3390_nano10050952 crossref_primary_10_1186_s12951_021_01209_4 crossref_primary_10_1002_wnan_1656 crossref_primary_10_1021_acsabm_1c00171 crossref_primary_10_1002_chem_201800804 crossref_primary_10_1016_j_radphyschem_2020_109294 crossref_primary_10_3390_ijms24044122 crossref_primary_10_1039_C9SC03355F crossref_primary_10_1016_j_bioadv_2022_213153 crossref_primary_10_1039_D4DT02643H crossref_primary_10_1002_smll_202410925 crossref_primary_10_1021_acsnano_3c01068 crossref_primary_10_1016_j_biomaterials_2019_119538 crossref_primary_10_2147_IJN_S436268 crossref_primary_10_1016_j_biomaterials_2018_08_014 crossref_primary_10_1021_acs_inorgchem_1c00001 crossref_primary_10_1007_s10238_023_01262_3 crossref_primary_10_1021_acsami_8b10901 crossref_primary_10_1080_17435889_2024_2395238 crossref_primary_10_1039_C7MH00451F crossref_primary_10_2147_IJN_S329762 crossref_primary_10_1021_acsnano_9b08962 crossref_primary_10_3390_nano12244440 crossref_primary_10_1021_acsami_9b12879 crossref_primary_10_1186_s12951_021_01191_x |
Cites_doi | 10.1002/tox.22015 10.1039/c1nr10586h 10.1021/acsami.6b08391 10.1016/j.biomaterials.2015.05.033 10.1186/s12951-014-0054-4 10.1002/adma.201504617 10.1002/adhm.201300189 10.1038/physci241020a0 10.2217/nnm-2016-0203 10.2217/fon.12.96 10.1021/nn202797h 10.1016/j.apsusc.2014.05.136 10.1002/adma.201503006 10.1002/adma.201506428 10.1186/s11671-015-0923-2 10.1667/RR1984.1 10.1039/C5RA04013B 10.1158/0008-5472.CAN-09-3573 10.1016/j.jconrel.2015.08.008 10.1021/la3051093 10.1093/rb/rbv024 10.3109/09553002.2014.888104 10.1021/nl052396o 10.1039/C5NR01704A 10.1038/srep08669 10.1117/1.3147390 10.1021/la302799s 10.1002/cyto.a.22342 10.1016/j.biomaterials.2016.07.008 10.1186/s12645-016-0021-x 10.1016/j.biomaterials.2016.10.020 10.1002/ppsc.201400067 10.1021/acsami.6b15183 10.1021/acsnano.5b05825 10.1021/acsnano.6b06067 10.1186/s12951-015-0113-5 10.1016/j.biomaterials.2016.05.031 10.1039/c3nr01351k 10.1088/0031-9155/49/18/N03 10.1002/smll.201602869 10.1016/j.jcis.2015.05.029 10.1002/smll.201402233 10.1021/am506866a 10.1016/0009-2797(89)90016-1 10.1039/C5NR09102K 10.1021/jp5026224 10.1016/j.clon.2007.03.010 10.1021/cm020732l 10.1016/j.biomaterials.2012.05.047 10.1073/pnas.95.17.9738 10.1038/nrc2587 10.1186/s12645-014-0004-8 10.1088/0957-4484/21/8/085103 10.1088/0957-4484/19/02/025103 10.2147/IJN.S115473 10.2147/IJN.S82980 10.1211/jpp.60.8.0005 10.1088/0957-4484/20/37/375101 10.1039/C5NR08808A 10.1007/s13404-012-0052-y 10.1021/acsami.6b10132 10.1002/adma.201400866 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.7b01112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 13048 |
ExternalDocumentID | 28338323 10_1021_acsami_7b01112 a606784845 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-878c1c8186478f04c673de71685fe2a4e9459cf1e66890af43c12d764171f77c3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 01:01:04 EDT 2025 Thu Jul 10 22:52:30 EDT 2025 Thu Apr 03 06:57:12 EDT 2025 Tue Jul 01 02:29:12 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Thu Aug 27 13:42:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | radiosensitizing effect X-ray radiotherapy shape-dependent gold nanostructures anticancer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-878c1c8186478f04c673de71685fe2a4e9459cf1e66890af43c12d764171f77c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1773-2868 0000-0003-4137-3535 0000-0003-0047-337X |
PMID | 28338323 |
PQID | 1881266662 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000226632 proquest_miscellaneous_1881266662 pubmed_primary_28338323 crossref_citationtrail_10_1021_acsami_7b01112 crossref_primary_10_1021_acsami_7b01112 acs_journals_10_1021_acsami_7b01112 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-19 |
PublicationDateYYYYMMDD | 2017-04-19 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 Kwatra D. (ref38/cit38) 2013; 2 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref63/cit63 doi: 10.1002/tox.22015 – ident: ref29/cit29 doi: 10.1039/c1nr10586h – ident: ref30/cit30 doi: 10.1021/acsami.6b08391 – ident: ref27/cit27 doi: 10.1016/j.biomaterials.2015.05.033 – ident: ref60/cit60 doi: 10.1186/s12951-014-0054-4 – ident: ref5/cit5 doi: 10.1002/adma.201504617 – ident: ref11/cit11 doi: 10.1002/adhm.201300189 – ident: ref47/cit47 doi: 10.1038/physci241020a0 – ident: ref33/cit33 doi: 10.2217/nnm-2016-0203 – ident: ref24/cit24 doi: 10.2217/fon.12.96 – ident: ref36/cit36 doi: 10.1021/nn202797h – ident: ref58/cit58 doi: 10.1016/j.apsusc.2014.05.136 – ident: ref4/cit4 doi: 10.1002/adma.201503006 – ident: ref20/cit20 doi: 10.1002/adma.201506428 – ident: ref42/cit42 doi: 10.1186/s11671-015-0923-2 – ident: ref8/cit8 doi: 10.1667/RR1984.1 – ident: ref14/cit14 doi: 10.1039/C5RA04013B – ident: ref43/cit43 doi: 10.1158/0008-5472.CAN-09-3573 – ident: ref52/cit52 doi: 10.1016/j.jconrel.2015.08.008 – ident: ref53/cit53 doi: 10.1021/la3051093 – ident: ref61/cit61 doi: 10.1093/rb/rbv024 – ident: ref32/cit32 doi: 10.3109/09553002.2014.888104 – ident: ref45/cit45 doi: 10.1021/nl052396o – ident: ref57/cit57 doi: 10.1039/C5NR01704A – ident: ref12/cit12 doi: 10.1038/srep08669 – ident: ref50/cit50 doi: 10.1117/1.3147390 – ident: ref54/cit54 doi: 10.1021/la302799s – ident: ref51/cit51 doi: 10.1002/cyto.a.22342 – ident: ref35/cit35 doi: 10.1016/j.biomaterials.2016.07.008 – ident: ref6/cit6 doi: 10.1186/s12645-016-0021-x – ident: ref23/cit23 doi: 10.1016/j.biomaterials.2016.10.020 – ident: ref56/cit56 doi: 10.1002/ppsc.201400067 – volume: 2 start-page: 330 year: 2013 ident: ref38/cit38 publication-title: Transl. Cancer Res. – ident: ref17/cit17 doi: 10.1021/acsami.6b15183 – ident: ref21/cit21 doi: 10.1021/acsnano.5b05825 – ident: ref3/cit3 doi: 10.1021/acsnano.6b06067 – ident: ref13/cit13 doi: 10.1186/s12951-015-0113-5 – ident: ref28/cit28 doi: 10.1016/j.biomaterials.2016.05.031 – ident: ref26/cit26 doi: 10.1039/c3nr01351k – ident: ref7/cit7 doi: 10.1088/0031-9155/49/18/N03 – ident: ref22/cit22 doi: 10.1002/smll.201602869 – ident: ref55/cit55 doi: 10.1016/j.jcis.2015.05.029 – ident: ref62/cit62 doi: 10.1002/smll.201402233 – ident: ref15/cit15 doi: 10.1021/am506866a – ident: ref40/cit40 doi: 10.1016/0009-2797(89)90016-1 – ident: ref19/cit19 doi: 10.1039/C5NR09102K – ident: ref31/cit31 doi: 10.1021/jp5026224 – ident: ref2/cit2 doi: 10.1016/j.clon.2007.03.010 – ident: ref49/cit49 doi: 10.1021/cm020732l – ident: ref9/cit9 doi: 10.1016/j.biomaterials.2012.05.047 – ident: ref41/cit41 doi: 10.1073/pnas.95.17.9738 – ident: ref1/cit1 doi: 10.1038/nrc2587 – ident: ref34/cit34 doi: 10.1186/s12645-014-0004-8 – ident: ref18/cit18 doi: 10.1088/0957-4484/21/8/085103 – ident: ref59/cit59 doi: 10.1088/0957-4484/19/02/025103 – ident: ref25/cit25 doi: 10.2147/IJN.S115473 – ident: ref37/cit37 doi: 10.2147/IJN.S82980 – ident: ref39/cit39 doi: 10.1211/jpp.60.8.0005 – ident: ref44/cit44 doi: 10.1088/0957-4484/20/37/375101 – ident: ref46/cit46 doi: 10.1039/C5NR08808A – ident: ref48/cit48 doi: 10.1007/s13404-012-0052-y – ident: ref16/cit16 doi: 10.1021/acsami.6b10132 – ident: ref10/cit10 doi: 10.1002/adma.201400866 |
SSID | ssj0063205 |
Score | 2.5757208 |
Snippet | The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13037 |
SubjectTerms | cell cycle Gold irradiation Metal Nanoparticles nanogold nanorods Nanostructures Nanotubes neoplasm cells neoplasms polyethylene glycol radiotherapy X-radiation X-Rays |
Title | Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods |
URI | http://dx.doi.org/10.1021/acsami.7b01112 https://www.ncbi.nlm.nih.gov/pubmed/28338323 https://www.proquest.com/docview/1881266662 https://www.proquest.com/docview/2000226632 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbQcoFDy6vtloKMqNRLvY0dJ3Z6QwvLCokeSpH2FjmOra5YJasme2j_Rv8w4zhZ2KIt3CJlJnH8mPkmHn-D0EdqAsMNtwTAckK4MRlRkhqSZ5FlUqssUi5QvP4Wj2_51SSaPPzv-HcHn9EvSleuFI7IXFV0MLabLJbChVlnw5vO5sYha5IVISLnRILH6ugZn-g7J6SrVSe0Blk2Hmb02tMdVQ0xoUssuRss6myg_zylbXy28TvoVQsz8ZmfF7towxR7aPsR-eA--nvzU80NOW-r4Nb4u8qnZeUS2uv2cCb23Ma4tPiynOUYTHHpCWcXEKXjaYGHbtL88qr-KNfvr3i4rG24ojnvkvA--wfNp3fuWhX-Nljy6gDdji5-DMekLdFAFDiyGmyp1FQ7VjwupA24jkWYG4jBZGQNU9wkPEq0pSaOZRIoy0NNWS5iTgW1QujwDeoVZWHeIaxMACIaIjjQk0GWUCUsV5ozoamNVB-dQm-m7RKr0mb3nNHUd3HadnEfkW5kU92ynLtiG7O18p-W8nPP77FW8qSbKCksQbevogpTLqAlElAShIHxf2RYwzQE8A5k3vpZtnwfILwQDGv4_kVfeIi2mIMWjm8y-YB6MOrmCIBRnR03a-IezAIJ3Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAe-C-UXyNAXOoSO06cIHGotpQt_TnQVuotdRxbXbVKVk1WqLwGD9BX6aMxjpOFghZxqcQtSsaO4xl7vlHG3wC8ZiYwwghLESynVBiTU5UwQ4s8sjzRKo-UCxS3d-Lhvvh8EB3MwXl_FgYHUWNPdfsT_ye7AHuH91xFHJm74ui8y6LcNGdfMUarP2ysoULfcL7-cW8wpF0ZAapws21wvSeaacfcJmRiA6FjGRYG44QksoYrYVIRpdoyE8dJGigrQs14IWPBJLNS6hD7vQbXEflwF92tDnb7rT4OeZsjyVIhaIKOsmeF_GO8zvfp-rLvmwFoW8e2fhsuplPS5rMcr0yafEV_-40t8j-esztwqwPVZNWvgrswZ8p7sPAL1eJ9-L57pMaGrnU1fxvyRRWjqnbp-013FJV4JmdSWfKpOikIOp7K0-tOTk1NRiUZuCVy6pv6g2tn78lgWsnxUstxn3K47Dsaj47dtSr9Y_Rb9QPYv5JZWYT5sirNIyDKBCiiMV7FdkmQp0xJK5QWXGpmI7UEr1B7Wbeh1FmbK8BZ5lWadSpdAtobVKY7TndXWuRkpvzbqfzYs5nMlHzZ22eGG477i6RKU01wJAliQgx647_I8JZXCcEsyjz0xj19H-LZEN1I-PifvvAF3BjubW9lWxs7m0_gJnegyjFtpk9hHi3APENI2OTP22VJ4PCqbfoHQUZp0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKkRAseD9aXkaA2OASO07sILGoZhhaChWiVOouOI4tRq2SqMmoan-jn8Cv8GFcx86IggaxqcRulLl2HN-3fH0uQs-oiQw33BIIljPCjSmIktSQskgsk1oViXKJ4sftdGOXv99L9pbQ9-EuDCyihZna_hDfaXVT2oAwQF_Bc9cVRxSuQToLlZRb5vgI8rT2zeYYmPqcscnbL6MNEloJEAUGtwOdl5pqh97GhbQR16mISwO5gkysYYqbjCeZttSkqcwiZXmsKStFyqmgVggdw7wX0EV3RugyvPXRzmDu05j1dZI045xIcJYDMuQf63X-T7dn_d-CoLZ3bpNr6Md8W_qalv21WVes6ZPfECP_8327jq6G4Bqve224gZZMdRNd-QVy8RY63fmmGkPGofdvhz-rclq3roy_C1dSsUd0xrXF7-qDEoMDqj3M7uzQtHha4ZFTlUM_1F9gO36NR_OOjmdGNkPp4Us_UTPdd79V5f8G_9XeRrvnsit30HJVV-YewspEQKIhb4VxMioyqoTlSnMmNLWJWkFPgXt5MCxt3tcMMJp7luaBpSuIDEKV64Dt7lqMHCykfzGnbzyqyULKJ4OM5mB43GmSqkw9g5VIiA0h-U3_QsN6fCUIaoHmrhfw-fsgro3BncSr__SFj9GlT-NJ_mFze-s-usxcbOUAN7MHaBkEwDyEyLArHvWaidHX8xbpny76bFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-Dependent+Radiosensitization+Effect+of+Gold+Nanostructures+in+Cancer+Radiotherapy%3A+Comparison+of+Gold+Nanoparticles%2C+Nanospikes%2C+and+Nanorods&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ma%2C+Ningning&rft.au=Wu%2C+Fu-Gen&rft.au=Zhang%2C+Xiaodong&rft.au=Jiang%2C+Yao-Wen&rft.date=2017-04-19&rft.issn=1944-8252&rft.volume=9&rft.issue=15+p.13037-13048&rft.spage=13037&rft.epage=13048&rft_id=info:doi/10.1021%2Facsami.7b01112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |