Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering
Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based o...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 15; pp. 12862 - 12869 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.8b01469 |
Cover
Loading…
Abstract | Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based on a ferroelectric tunnel memristor, where its synaptic plasticity learning property can be controlled by nanoscale interface engineering. The effect of the interface engineering on the device performance was studied. Different memristor interfaces lead to an opposite virgin resistance state of the devices. More importantly, nanoscale interface engineering could tune the intrinsic band alignment of the ferroelectric/metal–semiconductor heterostructure over a large range of 1.28 eV, which eventually results in different memristive and spike-timing-dependent plasticity (STDP) properties of the devices. Bidirectional and unidirectional gradual resistance modulation of the devices could therefore be controlled by tuning the band alignment. This study gives useful insights on tuning device functionalities through nanoscale interface engineering. The diverse STDP forms of the memristors with different interfaces may play different specific roles in various spike neural networks. |
---|---|
AbstractList | Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based on a ferroelectric tunnel memristor, where its synaptic plasticity learning property can be controlled by nanoscale interface engineering. The effect of the interface engineering on the device performance was studied. Different memristor interfaces lead to an opposite virgin resistance state of the devices. More importantly, nanoscale interface engineering could tune the intrinsic band alignment of the ferroelectric/metal-semiconductor heterostructure over a large range of 1.28 eV, which eventually results in different memristive and spike-timing-dependent plasticity (STDP) properties of the devices. Bidirectional and unidirectional gradual resistance modulation of the devices could therefore be controlled by tuning the band alignment. This study gives useful insights on tuning device functionalities through nanoscale interface engineering. The diverse STDP forms of the memristors with different interfaces may play different specific roles in various spike neural networks.Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based on a ferroelectric tunnel memristor, where its synaptic plasticity learning property can be controlled by nanoscale interface engineering. The effect of the interface engineering on the device performance was studied. Different memristor interfaces lead to an opposite virgin resistance state of the devices. More importantly, nanoscale interface engineering could tune the intrinsic band alignment of the ferroelectric/metal-semiconductor heterostructure over a large range of 1.28 eV, which eventually results in different memristive and spike-timing-dependent plasticity (STDP) properties of the devices. Bidirectional and unidirectional gradual resistance modulation of the devices could therefore be controlled by tuning the band alignment. This study gives useful insights on tuning device functionalities through nanoscale interface engineering. The diverse STDP forms of the memristors with different interfaces may play different specific roles in various spike neural networks. Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based on a ferroelectric tunnel memristor, where its synaptic plasticity learning property can be controlled by nanoscale interface engineering. The effect of the interface engineering on the device performance was studied. Different memristor interfaces lead to an opposite virgin resistance state of the devices. More importantly, nanoscale interface engineering could tune the intrinsic band alignment of the ferroelectric/metal-semiconductor heterostructure over a large range of 1.28 eV, which eventually results in different memristive and spike-timing-dependent plasticity (STDP) properties of the devices. Bidirectional and unidirectional gradual resistance modulation of the devices could therefore be controlled by tuning the band alignment. This study gives useful insights on tuning device functionalities through nanoscale interface engineering. The diverse STDP forms of the memristors with different interfaces may play different specific roles in various spike neural networks. |
Author | Wang, John Miao, Xiangshui Ariando Venkatesan, Thirumalai Guo, Rui Lim, Zhishiuh Chen, Shaohai Yoong, Herng Yau Zhu, Yimei Wu, Lijun Yan, Xiaobing Chen, Jingsheng Chow, Gan Moog Gruverman, Alexei Lin, Weinan Wang, Zhuorui Zhou, Yaxiong Wang, Han |
AuthorAffiliation | University of Nebraska−Lincoln Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information Department of Electrical and Computer Engineering NUSNNI-Nanocore Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory Department of Physics and Astronomy Department of Materials Science and Engineering Department of Physics |
AuthorAffiliation_xml | – name: NUSNNI-Nanocore – name: University of Nebraska−Lincoln – name: Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory – name: Department of Physics and Astronomy – name: Department of Electrical and Computer Engineering – name: Department of Physics – name: Department of Materials Science and Engineering – name: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-3733-8908 surname: Guo fullname: Guo, Rui organization: NUSNNI-Nanocore – sequence: 2 givenname: Yaxiong orcidid: 0000-0002-1445-5626 surname: Zhou fullname: Zhou, Yaxiong organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information – sequence: 3 givenname: Lijun surname: Wu fullname: Wu, Lijun organization: Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory – sequence: 4 givenname: Zhuorui surname: Wang fullname: Wang, Zhuorui organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information – sequence: 5 givenname: Zhishiuh surname: Lim fullname: Lim, Zhishiuh organization: NUSNNI-Nanocore – sequence: 6 givenname: Xiaobing surname: Yan fullname: Yan, Xiaobing organization: Department of Materials Science and Engineering – sequence: 7 givenname: Weinan surname: Lin fullname: Lin, Weinan organization: Department of Materials Science and Engineering – sequence: 8 givenname: Han surname: Wang fullname: Wang, Han organization: Department of Materials Science and Engineering – sequence: 9 givenname: Herng Yau surname: Yoong fullname: Yoong, Herng Yau organization: Department of Materials Science and Engineering – sequence: 10 givenname: Shaohai surname: Chen fullname: Chen, Shaohai organization: Department of Materials Science and Engineering – sequence: 11 surname: Ariando fullname: Ariando organization: Department of Physics – sequence: 12 givenname: Thirumalai surname: Venkatesan fullname: Venkatesan, Thirumalai organization: Department of Electrical and Computer Engineering – sequence: 13 givenname: John surname: Wang fullname: Wang, John organization: Department of Materials Science and Engineering – sequence: 14 givenname: Gan Moog orcidid: 0000-0001-7634-4553 surname: Chow fullname: Chow, Gan Moog organization: Department of Materials Science and Engineering – sequence: 15 givenname: Alexei surname: Gruverman fullname: Gruverman, Alexei organization: University of Nebraska−Lincoln – sequence: 16 givenname: Xiangshui surname: Miao fullname: Miao, Xiangshui email: miaoxs@hust.edu.cn organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information – sequence: 17 givenname: Yimei surname: Zhu fullname: Zhu, Yimei email: zhu@bnl.gov organization: Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory – sequence: 18 givenname: Jingsheng orcidid: 0000-0003-3188-2803 surname: Chen fullname: Chen, Jingsheng email: msecj@nus.edu.sg organization: NUSNNI-Nanocore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29617112$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrHDEQhIVxiF-5-mh0NIHdqDWah45msRPD5gF2zkKj6TEyGmktaQ7776Nl1zkYjE_ddH9Vh6ozcuyDR0IugS2BcfimTdKTXXY9A9HII3IKUohFx2t-_H8X4oScpfTMWFNxVn8mJ1w20ALwU-JWwecYHA0jfdh6vcnW0D9OpzJt3tI16uitf9r97zDGgA5NjgV6nL1HR3_iFG3KIdJ-S39pH5LRDum9zxhHbZDe-ifrEWMxuSCfRu0SfjnMc_L37vZx9WOx_v39fnWzXmjBZV50UNdM1IgcDMqxG_gAXTX2LVYSpWgbkKYFOXRY63oA2YmxR81qNIKNg-HVObne-25ieJkxZTXZZNA57THMSXFgUAloJfsYZZwDl8Cbgl4d0LmfcFCbaCcdt-o1zAKIPWBiSCniqEqEOttdwto6BUztOlP7ztShsyJbvpG9Or8r-LoXlLt6DnP0Jcz34H8boqkH |
CitedBy_id | crossref_primary_10_1038_s41598_019_54215_w crossref_primary_10_1002_adma_201905764 crossref_primary_10_7498_aps_71_20221424 crossref_primary_10_1063_5_0131063 crossref_primary_10_1002_advs_202402582 crossref_primary_10_1002_EXP_20220162 crossref_primary_10_1002_aisy_202000124 crossref_primary_10_1109_JFLEX_2023_3321256 crossref_primary_10_1063_1_5085126 crossref_primary_10_2139_ssrn_4191237 crossref_primary_10_1002_pssr_202000224 crossref_primary_10_1016_j_nanoen_2023_108398 crossref_primary_10_1103_PhysRevLett_124_217202 crossref_primary_10_1002_aelm_202000760 crossref_primary_10_1007_s12274_021_3782_4 crossref_primary_10_1109_LED_2019_2902609 crossref_primary_10_1016_j_fmre_2023_04_013 crossref_primary_10_1088_2634_4386_ac8a6a crossref_primary_10_1016_j_jallcom_2022_164735 crossref_primary_10_1063_1_5108562 crossref_primary_10_1007_s40843_022_2318_9 crossref_primary_10_1002_adma_202004659 crossref_primary_10_1021_acs_nanolett_9b04390 crossref_primary_10_1002_admt_201800544 crossref_primary_10_1016_j_chip_2022_100031 crossref_primary_10_1063_5_0001770 crossref_primary_10_1063_5_0028798 crossref_primary_10_1002_advs_202201502 crossref_primary_10_1002_aisy_202000137 crossref_primary_10_3389_femat_2022_849879 crossref_primary_10_1016_j_nanoen_2020_105156 crossref_primary_10_3390_nano11102684 crossref_primary_10_1021_acsaelm_3c00654 crossref_primary_10_1109_MCAS_2022_3166331 crossref_primary_10_1088_1361_6641_abc2e8 crossref_primary_10_1016_j_mee_2022_111908 crossref_primary_10_1021_acsaelm_8b00111 crossref_primary_10_1002_aisy_201900034 crossref_primary_10_1002_admi_202200392 crossref_primary_10_1021_acsami_0c18276 crossref_primary_10_1002_aelm_202000988 crossref_primary_10_1002_aelm_202100558 crossref_primary_10_1002_admi_202201005 crossref_primary_10_1016_j_isci_2019_05_043 crossref_primary_10_1039_D0RA06389D crossref_primary_10_1002_aelm_202200877 crossref_primary_10_1177_09506608251318108 crossref_primary_10_1109_LED_2022_3162639 crossref_primary_10_1021_acsami_9b19510 crossref_primary_10_1063_5_0137339 crossref_primary_10_1038_s41467_020_15249_1 crossref_primary_10_1002_adfm_201806037 crossref_primary_10_1016_j_mattod_2022_11_022 crossref_primary_10_1016_j_aeue_2019_01_003 crossref_primary_10_1002_aisy_201900167 crossref_primary_10_1038_s41427_019_0120_3 crossref_primary_10_1002_aisy_202100244 crossref_primary_10_1007_s12274_022_4604_z crossref_primary_10_1021_acsami_1c15836 crossref_primary_10_7567_1347_4065_ab4b69 crossref_primary_10_1002_aelm_202300591 crossref_primary_10_1109_ACCESS_2019_2935123 crossref_primary_10_1016_j_mtnano_2023_100343 crossref_primary_10_1002_aelm_202200909 crossref_primary_10_1002_aic_17266 crossref_primary_10_1007_s40843_022_2275_7 crossref_primary_10_1002_adfm_202202366 crossref_primary_10_1007_s12274_021_3452_6 crossref_primary_10_1063_5_0165029 crossref_primary_10_1016_j_mtphys_2024_101607 crossref_primary_10_1016_j_apsusc_2022_155411 crossref_primary_10_1039_D2TC03800E crossref_primary_10_1021_acsami_9b22925 crossref_primary_10_1002_inf2_12429 crossref_primary_10_1021_acs_jpcc_3c07774 crossref_primary_10_1021_acsaelm_4c01434 crossref_primary_10_1063_1_5054040 crossref_primary_10_1103_PhysRevApplied_19_014054 crossref_primary_10_1021_acsami_0c16385 crossref_primary_10_1063_1_5141903 crossref_primary_10_1021_acsami_1c05366 crossref_primary_10_3390_nano12152516 crossref_primary_10_1002_aelm_201901012 crossref_primary_10_1002_admi_202001146 crossref_primary_10_1063_5_0021395 crossref_primary_10_1103_PhysRevMaterials_5_024603 crossref_primary_10_1016_j_isci_2020_101874 crossref_primary_10_1002_aelm_201900439 crossref_primary_10_1021_acs_nanolett_4c01924 crossref_primary_10_1002_pssr_201900029 crossref_primary_10_1002_adfm_202205933 crossref_primary_10_1142_S2010135X22500059 crossref_primary_10_1021_acsami_9b13434 crossref_primary_10_1557_mrc_2018_212 crossref_primary_10_1039_C9TC04880D crossref_primary_10_1002_admi_201900471 crossref_primary_10_1016_j_chaos_2021_111587 crossref_primary_10_1039_D0TC01500H crossref_primary_10_1021_acsami_1c11661 crossref_primary_10_1016_j_chip_2023_100074 crossref_primary_10_1016_j_jmat_2022_03_006 crossref_primary_10_1063_1_5120565 crossref_primary_10_1002_adma_201805284 crossref_primary_10_1039_D3TC02137H crossref_primary_10_1016_j_mtchem_2022_101268 crossref_primary_10_3389_fnano_2022_940825 crossref_primary_10_1016_j_mtnano_2023_100439 crossref_primary_10_1007_s40843_020_1444_1 |
Cites_doi | 10.1002/adma.200900375 10.1038/ncomms15217 10.1038/srep12576 10.1038/nmat3669 10.1063/1.4817656 10.1073/pnas.1117990109 10.1038/nmat2429 10.1038/nmat3054 10.1038/ncomms10808 10.1038/srep01619 10.1021/am301769f 10.1021/acsami.6b15564 10.1038/nnano.2008.160 10.1038/ncomms4990 10.1038/nmat4756 10.1038/ncomms7759 10.1103/physrevx.3.041027 10.1038/nnano.2011.213 10.1038/nmat3649 10.1038/416433a 10.1038/nmat2023 10.1007/s00339-011-6264-9 10.1038/nature08128 10.1038/ncomms14736 10.1021/nl901754t 10.1038/nmat3415 10.1021/nn401378t 10.1002/adma.201103723 10.1002/admi.201600737 10.1002/adfm.201500371 10.1038/nature14441 10.1021/nl203687n 10.1002/aelm.201700321 10.1002/adfm.201103148 10.1126/science.1126230 10.1038/ncomms15199 10.1038/nmat3564 10.3389/fncom.2010.00019 10.1063/1.3151822 10.1002/adfm.201101935 10.1063/1.4892846 10.1021/nl904092h 10.1021/acsami.7b18206 10.1063/1.1640472 10.1021/nl302912t 10.1103/physrevb.84.115456 10.1038/nnano.2012.240 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.8b01469 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 12869 |
ExternalDocumentID | 29617112 10_1021_acsami_8b01469 a78639318 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-8155045ee21ce9f8d2d183fb7e39e947619c719d8e5a5d1984fbea05ec40fdc23 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 09:11:24 EDT 2025 Thu Jul 10 23:43:43 EDT 2025 Mon Jul 21 05:36:58 EDT 2025 Tue Jul 01 04:05:50 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Thu Aug 27 13:42:13 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | nanoscale interface engineering synapse spike-timing-dependent plasticity ferroelectric tunnel junctions memristor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-8155045ee21ce9f8d2d183fb7e39e947619c719d8e5a5d1984fbea05ec40fdc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3188-2803 0000-0001-7634-4553 0000-0002-3733-8908 0000-0002-1445-5626 |
PMID | 29617112 |
PQID | 2022129126 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101341790 proquest_miscellaneous_2022129126 pubmed_primary_29617112 crossref_citationtrail_10_1021_acsami_8b01469 crossref_primary_10_1021_acsami_8b01469 acs_journals_10_1021_acsami_8b01469 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-18 |
PublicationDateYYYYMMDD | 2018-04-18 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1002/adma.200900375 – ident: ref39/cit39 doi: 10.1038/ncomms15217 – ident: ref7/cit7 doi: 10.1038/srep12576 – ident: ref1/cit1 doi: 10.1038/nmat3669 – ident: ref44/cit44 doi: 10.1063/1.4817656 – ident: ref36/cit36 doi: 10.1073/pnas.1117990109 – ident: ref43/cit43 doi: 10.1038/nmat2429 – ident: ref20/cit20 doi: 10.1038/nmat3054 – ident: ref12/cit12 doi: 10.1038/ncomms10808 – ident: ref22/cit22 doi: 10.1038/srep01619 – ident: ref42/cit42 doi: 10.1021/am301769f – ident: ref8/cit8 doi: 10.1021/acsami.6b15564 – ident: ref28/cit28 doi: 10.1038/nnano.2008.160 – ident: ref45/cit45 doi: 10.1038/ncomms4990 – ident: ref16/cit16 doi: 10.1038/nmat4756 – ident: ref33/cit33 doi: 10.1038/ncomms7759 – ident: ref41/cit41 doi: 10.1103/physrevx.3.041027 – ident: ref4/cit4 doi: 10.1038/nnano.2011.213 – ident: ref35/cit35 doi: 10.1038/nmat3649 – ident: ref47/cit47 doi: 10.1038/416433a – ident: ref26/cit26 doi: 10.1038/nmat2023 – ident: ref18/cit18 doi: 10.1007/s00339-011-6264-9 – ident: ref5/cit5 doi: 10.1038/nature08128 – ident: ref30/cit30 doi: 10.1038/ncomms14736 – ident: ref3/cit3 doi: 10.1021/nl901754t – ident: ref9/cit9 doi: 10.1038/nmat3415 – ident: ref10/cit10 doi: 10.1021/nn401378t – ident: ref24/cit24 doi: 10.1002/adma.201103723 – ident: ref38/cit38 doi: 10.1002/admi.201600737 – ident: ref34/cit34 doi: 10.1002/adfm.201500371 – ident: ref15/cit15 doi: 10.1038/nature14441 – ident: ref17/cit17 doi: 10.1021/nl203687n – ident: ref40/cit40 doi: 10.1002/aelm.201700321 – ident: ref25/cit25 doi: 10.1002/adfm.201103148 – ident: ref2/cit2 doi: 10.1126/science.1126230 – ident: ref46/cit46 doi: 10.1038/ncomms15199 – ident: ref6/cit6 doi: 10.1038/nmat3564 – ident: ref19/cit19 doi: 10.3389/fncom.2010.00019 – ident: ref27/cit27 doi: 10.1063/1.3151822 – ident: ref23/cit23 doi: 10.1002/adfm.201101935 – ident: ref11/cit11 doi: 10.1063/1.4892846 – ident: ref21/cit21 doi: 10.1021/nl904092h – ident: ref31/cit31 doi: 10.1021/acsami.7b18206 – ident: ref37/cit37 doi: 10.1063/1.1640472 – ident: ref13/cit13 doi: 10.1021/nl302912t – ident: ref32/cit32 doi: 10.1103/physrevb.84.115456 – ident: ref14/cit14 doi: 10.1038/nnano.2012.240 |
SSID | ssj0063205 |
Score | 2.5436087 |
Snippet | Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12862 |
SubjectTerms | Brain computer analysis computer hardware information technology materials science Neural Networks (Computer) Neuronal Plasticity Semiconductors Synapses |
Title | Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering |
URI | http://dx.doi.org/10.1021/acsami.8b01469 https://www.ncbi.nlm.nih.gov/pubmed/29617112 https://www.proquest.com/docview/2022129126 https://www.proquest.com/docview/2101341790 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEG58XPTg-7G-UqOJpyothS1Hs3FjTDQmauKNtGXqQQWzsIf11zsF1mdWPTMEaOfxTWf4hpBDZ5UOA-WYQDDEpHaOaWcDxqXrCh1rbjL_g_PlVXx-Jy_uo_uP847vFXzBT7Qt_SgcZTzNSTJNZkWMFuxBUO9m7HPjUNTNipiRS6YwYo3pGX_c74OQLb8GoQnIso4w_cWG7qisiQl9Y8nj8bAyx_b1J23jny-_RBZamElPG71YJlOQr5D5T-SDq-Sp13Sp08LRm1Gu0XdYeo1g2vdZVyPaMq8--Ot9GAyKZmIOCt0OfXMMvYTnmphgQM2IopcuStxvoPUZo9MW6KfHrZG7_tlt75y1sxeYxghVMeVTFxkBCG4hcSoTGRq_M10IE0ikP_ywXZ5kCiIdZTxR0hnQQQRWBi6zIlwnM3mRwyahgCkMaGUzHYB0WaRNbIQBTF-NRW8gO-QAlyltbadM67K44Gmzdmm7dh3CxluW2pa-3E_ReJoof_Qu_9IQd0yU3B9rQIq25QsmOodiWKYCAQ7iIS7iX2TQp4V-jFvQIRuN-rw_TySIDxHQbv3rC7fJHKIx5UtVXO2QmWowhF1EPJXZq5X9DVnj_fg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvB_L0wgkTm5jx8k6x2rFaoFuValbqbfIdsYc2iZokz0sv55xHttStAiuySR-jWc-2-NvAD56p00cac8lgSGujPfceBdxofxYmtQIW4QLzvOjdHaqvp4lZzuwP9yFoUrU9Ke6PcS_YhcQ-_QsZMTRNrCdZLfgNiERGVT6YHIymN40lm3MIi3MFdfkuAaWxj--D77I1b_7oi0As3U00wdwvKliG19yvrdq7J77eYO98T_a8BDu96CTHXRa8gh2sHwM965RET6Bi0kXs84qz07WpSFL4tgxQesQdd2sWc_D-j28n-JyWXX5c0hosQqhMmyOly1NwZLZNSObXdU0-sjaHUdvHLJrxT2F0-nnxWTG-0wM3JC_argOCxmVIErhMPO6kAWZAm_HGGeYqbAV4sYiKzQmJilEppW3aKIEnYp84WT8DHbLqsQXwJAWNGi0K0yEyheJsamVFmkxax3ZBjWCD9RNeT-T6rw9JJci7_ou7_tuBHwYudz1ZOYhp8bFVvlPG_kfHY3HVsn3gyLkNNPC8YkpsVrVuSS4Q-hIyPQvMmTh4pDULRrB806LNuXJjNAiwduX_9TCd3Bntpgf5odfjr69gruE03Q4xBL6New2yxW-ISzU2Let_v8C_zIGaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAceFMWChiBxMkldpysc6y2XZVHq0rdSr1Ffow50CbVJntYfj3jJLsqRYvgmkzi2BnPfPaMvwH4EJw2aaIDlwSGuDIhcBNcwoUKY2lyI6yPB5yPjvPDM_XlPDsfznHHszD0EQ29qemC-HFWX_kwMAyIT3Q9VsXRNjKeFLfhTozZRbXem5yuzG-eyi5vkRbnimtyXiumxj-ej_7INb_7ow0gs3M204cwW39ml2PyY3fR2l338waD43_24xE8GMAn2-u15THcwuoJ3L9GSfgULiZ97jqrAztdVoYsimMnBLFj9nW7ZAMf6_d4f4rzed3X0SGh2SKmzLAjvOzoCubMLhnZ7rohLUDW7TwG45Bda-4ZnE0PZpNDPlRk4Ib8Vst1XNCoDFEKh0XQXnoyCcGOMS2wUHFLxI1F4TVmJvOi0CpYNEmGTiXBO5k-h62qrvAFMKSFDRrtvElQBZ8Zm1tpkRa11pGNUCN4T8NUDjOqKbtguRRlP3blMHYj4Ku_V7qB1DzW1rjYKP9xLX_V03lslHy3UoaSZlwMo5gK60VTSoI9hJKEzP8iQ5YujcXdkhFs95q0bk8WhBoJ5r78px6-hbsn-9Py2-fjr6_gHsE1HWNZQu_AVjtf4GuCRK19002BX25vCOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Synaptic+Plasticity+Learning+of+Ferroelectric+Tunnel+Memristor+by+Nanoscale+Interface+Engineering&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Guo%2C+Rui&rft.au=Zhou%2C+Yaxiong&rft.au=Wu%2C+Lijun&rft.au=Wang%2C+Zhuorui&rft.date=2018-04-18&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=10&rft.issue=15&rft.spage=12862&rft.epage=12869&rft_id=info:doi/10.1021%2Facsami.8b01469&rft.externalDocID=a78639318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |