Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy

Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregati...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 37; pp. 33697 - 33705
Main Authors Zhong, Sheng, Chen, Chao, Yang, Guoliang, Zhu, Yucheng, Cao, Hongliang, Xu, Beijian, Luo, Yaoqin, Gao, Yun, Zhang, Weian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an “acid-triggered nanoexpansion” method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (1O2) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
AbstractList Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an “acid-triggered nanoexpansion” method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (¹O₂) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an “acid-triggered nanoexpansion” method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (1O2) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an "acid-triggered nanoexpansion" method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA- -[PTTMA- -PTPPC6MA] was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen ( O ) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an "acid-triggered nanoexpansion" method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (1O2) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an "acid-triggered nanoexpansion" method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (1O2) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
Author Zhang, Weian
Yang, Guoliang
Cao, Hongliang
Xu, Beijian
Chen, Chao
Zhu, Yucheng
Gao, Yun
Zhong, Sheng
Luo, Yaoqin
AuthorAffiliation State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology
Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology
– name: Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Sheng
  surname: Zhong
  fullname: Zhong, Sheng
– sequence: 2
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
– sequence: 3
  givenname: Guoliang
  surname: Yang
  fullname: Yang, Guoliang
– sequence: 4
  givenname: Yucheng
  surname: Zhu
  fullname: Zhu, Yucheng
– sequence: 5
  givenname: Hongliang
  orcidid: 0000-0002-9342-7980
  surname: Cao
  fullname: Cao, Hongliang
  email: caohl@ecust.edu.cn
– sequence: 6
  givenname: Beijian
  surname: Xu
  fullname: Xu, Beijian
– sequence: 7
  givenname: Yaoqin
  surname: Luo
  fullname: Luo, Yaoqin
– sequence: 8
  givenname: Yun
  surname: Gao
  fullname: Gao, Yun
– sequence: 9
  givenname: Weian
  orcidid: 0000-0002-1717-597X
  surname: Zhang
  fullname: Zhang, Weian
  email: wazhang@ecust.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31487149$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLw0AQxhdR7EOvHiVHEVL3lWT3WEp9QNUK9Rw2m027JdmNuymY_96U1B6E4mmG4fcNM983AufGGgXADYITBDF6ENKLSk94hnCM4RkYIk5pyHCEz489pQMw8n4LYUwwjC7BgCDKEkT5EHxMpc7DldPrtXIqD96Eseq7FsZra4KlLdtKOS2DVy1VWSofFNYFc7MRRnb0cmMbm7emO0EGq41yom6vwEUhSq-uD3UMPh_nq9lzuHh_eplNF6GgmDdhUjDBUQKzOKMq54RRxiSDtKAJUjzC3UeMZITlRMWREJhlMIaMQiExZTihZAzu-r21s1875Zu00n5_pDDK7nyKSYRpBCFk_6OYxZxAHu-33h7QXVapPK2droRr01_HOmDSA9JZ750qjgiC6T6StI8kPUTSCegfgdSNaDp7Gyd0eVp238u6ebq1O2c6M0_BP0r2nYk
CitedBy_id crossref_primary_10_1039_D0NA00990C
crossref_primary_10_1016_j_ccr_2024_215863
crossref_primary_10_1016_j_jphotochem_2023_114735
crossref_primary_10_1002_bio_3724
crossref_primary_10_1002_VIW_20200042
crossref_primary_10_1021_acsbiomaterials_1c01131
crossref_primary_10_1039_C9PY01576K
crossref_primary_10_1016_j_addr_2022_114344
crossref_primary_10_1016_j_pmatsci_2022_100974
crossref_primary_10_1016_j_jconrel_2021_02_016
crossref_primary_10_1016_j_cis_2024_103356
crossref_primary_10_1021_acsami_0c06311
crossref_primary_10_1039_D1BM00117E
crossref_primary_10_1007_s10853_022_07020_2
crossref_primary_10_1039_D2NR06621A
crossref_primary_10_1002_adhm_202203386
crossref_primary_10_1002_admi_202201823
crossref_primary_10_1039_D1QM00141H
crossref_primary_10_1007_s00604_023_06022_4
crossref_primary_10_1016_j_fuel_2023_128547
crossref_primary_10_3390_polym15091990
crossref_primary_10_1021_acsabm_0c01564
crossref_primary_10_1016_j_jcis_2021_04_056
crossref_primary_10_1007_s12274_022_4599_5
crossref_primary_10_1039_D0CS01370F
crossref_primary_10_1016_j_dyepig_2020_108615
crossref_primary_10_1016_j_biomaterials_2021_120959
crossref_primary_10_1021_acsami_3c10200
crossref_primary_10_1021_acs_chemrev_1c00381
crossref_primary_10_1016_j_ccr_2023_215560
crossref_primary_10_1021_acsami_1c10160
crossref_primary_10_1007_s11706_021_0568_2
crossref_primary_10_1016_j_mtcomm_2021_102616
crossref_primary_10_1016_j_ijbiomac_2020_12_019
crossref_primary_10_1016_j_jconrel_2021_09_023
crossref_primary_10_1016_j_jconrel_2021_09_024
crossref_primary_10_1021_acsami_1c01259
crossref_primary_10_1016_j_snb_2021_130451
crossref_primary_10_1007_s40005_022_00583_x
crossref_primary_10_1002_adma_202312939
crossref_primary_10_1039_D3NJ03882C
crossref_primary_10_1021_acsanm_3c02098
crossref_primary_10_3390_cancers13122992
crossref_primary_10_1016_j_polymer_2020_122257
crossref_primary_10_1039_C9TB02400J
crossref_primary_10_2174_1874471014999210128183231
crossref_primary_10_1039_D1NA00610J
crossref_primary_10_1016_j_ccr_2021_213945
crossref_primary_10_1016_j_jconrel_2025_01_058
crossref_primary_10_3389_fphar_2023_1101320
crossref_primary_10_1021_jacsau_3c00364
crossref_primary_10_1021_acsami_4c04138
crossref_primary_10_1016_j_apmt_2020_100931
crossref_primary_10_1021_acsami_2c21280
Cites_doi 10.1016/j.jphotobiol.2003.10.002
10.1021/ml400082b
10.1002/mabi.201300160
10.1021/acs.biomac.6b01715
10.1039/C4CC00746H
10.1021/acsnano.8b01893
10.1039/C8NR05548C
10.1021/acsami.8b03238
10.1021/ja511420n
10.1021/bm5003569
10.1021/ja404491r
10.1039/c0jm00506a
10.1021/acs.biomac.5b00244
10.1038/nmat3776
10.1039/C3TB21344G
10.1002/adbi.201800074
10.1021/acs.macromol.5b01709
10.1002/anie.201000162
10.1021/acsami.9b07979
10.1021/nn5004088
10.1021/acsami.8b06758
10.1038/nnano.2009.83
10.1021/acsnano.8b04371
10.1021/jacs.8b00122
10.1021/acsnano.5b07706
10.1021/acsami.9b08394
10.1021/acsnano.9b01087
10.1021/acsami.8b01522
10.1021/acsami.8b15818
10.1021/bm501729h
10.1021/acsami.9b04557
10.1021/ja508679h
10.1002/adfm.201602963
10.1039/C5PY00039D
10.1002/advs.201700847
10.1016/j.jconrel.2009.09.023
10.1021/acs.biomac.5b00193
10.1021/ja807416t
10.1002/adma.201602111
10.1021/bm200956u
10.1021/acs.nanolett.8b03936
10.1021/acsnano.9b00300
10.1002/adma.201806331
10.1021/bm401087n
10.1007/s11095-014-1398-z
10.1021/acsami.6b09425
10.1021/acsnano.6b06450
10.1021/bm070085x
10.1038/nrc1070
10.1002/ange.201808811
10.1021/acs.nanolett.7b02031
10.1021/nn101670k
10.1016/S0168-3659(03)00231-1
10.1002/marc.201200029
10.1021/acs.nanolett.6b01994
10.1039/c2cs35103j
10.1002/anie.200603182
10.1039/C9SC00985J
10.1016/j.ccr.2004.02.004
10.1038/s41467-018-04222-8
10.1016/S1572-1000(04)00007-9
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b12620
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 33705
ExternalDocumentID 31487149
10_1021_acsami_9b12620
b836993148
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-7f8a9170b6b4ed938488c804f471e9529b183b38d3e65aa28b060840ac2482743
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Jul 10 19:19:24 EDT 2025
Fri Jul 11 06:47:59 EDT 2025
Thu Jan 02 22:59:37 EST 2025
Thu Apr 24 22:52:00 EDT 2025
Tue Jul 01 04:06:36 EDT 2025
Thu Aug 27 13:43:30 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords acid-triggered nanoexpansion
porphyrin
aggregation caused quenching (ACQ)
RAFT polymerization
photodynamic therapy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-7f8a9170b6b4ed938488c804f471e9529b183b38d3e65aa28b060840ac2482743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9342-7980
0000-0002-1717-597X
PMID 31487149
PQID 2286930964
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2352450008
proquest_miscellaneous_2286930964
pubmed_primary_31487149
crossref_primary_10_1021_acsami_9b12620
crossref_citationtrail_10_1021_acsami_9b12620
acs_journals_10_1021_acsami_9b12620
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-18
PublicationDateYYYYMMDD 2019-09-18
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
31815410 - ACS Appl Mater Interfaces. 2019 Dec 18;11(50):47658
References_xml – ident: ref4/cit4
  doi: 10.1016/j.jphotobiol.2003.10.002
– ident: ref52/cit52
  doi: 10.1021/ml400082b
– ident: ref58/cit58
  doi: 10.1002/mabi.201300160
– ident: ref62/cit62
  doi: 10.1021/acs.biomac.6b01715
– ident: ref14/cit14
  doi: 10.1039/C4CC00746H
– ident: ref13/cit13
  doi: 10.1021/acsnano.8b01893
– ident: ref23/cit23
  doi: 10.1039/C8NR05548C
– ident: ref22/cit22
  doi: 10.1021/acsami.8b03238
– ident: ref34/cit34
  doi: 10.1021/ja511420n
– ident: ref30/cit30
  doi: 10.1021/bm5003569
– ident: ref55/cit55
  doi: 10.1021/ja404491r
– ident: ref61/cit61
  doi: 10.1039/c0jm00506a
– ident: ref27/cit27
  doi: 10.1021/acs.biomac.5b00244
– ident: ref40/cit40
  doi: 10.1038/nmat3776
– ident: ref39/cit39
  doi: 10.1039/C3TB21344G
– ident: ref19/cit19
  doi: 10.1002/adbi.201800074
– ident: ref49/cit49
  doi: 10.1021/acs.macromol.5b01709
– ident: ref21/cit21
  doi: 10.1002/anie.201000162
– ident: ref7/cit7
  doi: 10.1021/acsami.9b07979
– ident: ref36/cit36
  doi: 10.1021/nn5004088
– ident: ref47/cit47
  doi: 10.1021/acsami.8b06758
– ident: ref37/cit37
  doi: 10.1038/nnano.2009.83
– ident: ref5/cit5
  doi: 10.1021/acsnano.8b04371
– ident: ref15/cit15
  doi: 10.1021/jacs.8b00122
– ident: ref43/cit43
  doi: 10.1021/acsnano.5b07706
– ident: ref8/cit8
  doi: 10.1021/acsami.9b08394
– ident: ref31/cit31
  doi: 10.1021/acsnano.9b01087
– ident: ref6/cit6
  doi: 10.1021/acsami.8b01522
– ident: ref9/cit9
  doi: 10.1021/acsami.8b15818
– ident: ref33/cit33
  doi: 10.1021/bm501729h
– ident: ref10/cit10
  doi: 10.1021/acsami.9b04557
– ident: ref24/cit24
  doi: 10.1021/ja508679h
– ident: ref44/cit44
  doi: 10.1002/adfm.201602963
– ident: ref59/cit59
  doi: 10.1039/C5PY00039D
– ident: ref26/cit26
  doi: 10.1002/advs.201700847
– ident: ref54/cit54
  doi: 10.1016/j.jconrel.2009.09.023
– ident: ref50/cit50
  doi: 10.1021/acs.biomac.5b00193
– ident: ref60/cit60
  doi: 10.1021/ja807416t
– ident: ref32/cit32
  doi: 10.1002/adma.201602111
– ident: ref56/cit56
  doi: 10.1021/bm200956u
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.8b03936
– ident: ref28/cit28
  doi: 10.1021/acsnano.9b00300
– ident: ref18/cit18
  doi: 10.1002/adma.201806331
– ident: ref48/cit48
  doi: 10.1021/bm401087n
– ident: ref45/cit45
  doi: 10.1007/s11095-014-1398-z
– ident: ref46/cit46
  doi: 10.1021/acsami.6b09425
– ident: ref12/cit12
  doi: 10.1021/acsnano.6b06450
– ident: ref29/cit29
  doi: 10.1021/bm070085x
– ident: ref38/cit38
  doi: 10.1021/ja807416t
– ident: ref1/cit1
  doi: 10.1038/nrc1070
– ident: ref25/cit25
  doi: 10.1002/ange.201808811
– ident: ref42/cit42
  doi: 10.1021/acs.nanolett.7b02031
– ident: ref53/cit53
  doi: 10.1021/nn101670k
– ident: ref57/cit57
  doi: 10.1016/S0168-3659(03)00231-1
– ident: ref51/cit51
  doi: 10.1002/marc.201200029
– ident: ref41/cit41
  doi: 10.1021/acs.nanolett.6b01994
– ident: ref35/cit35
  doi: 10.1039/c2cs35103j
– ident: ref16/cit16
  doi: 10.1002/anie.200603182
– ident: ref11/cit11
  doi: 10.1039/C9SC00985J
– ident: ref3/cit3
  doi: 10.1016/j.ccr.2004.02.004
– ident: ref20/cit20
  doi: 10.1038/s41467-018-04222-8
– ident: ref2/cit2
  doi: 10.1016/S1572-1000(04)00007-9
– reference: 31815410 - ACS Appl Mater Interfaces. 2019 Dec 18;11(50):47658
SSID ssj0063205
Score 2.50794
Snippet Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33697
SubjectTerms Animals
biocompatibility
composite polymers
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - pharmacokinetics
Delayed-Action Preparations - pharmacology
Hep G2 Cells
Humans
Hydrogen-Ion Concentration
hydrolysis
hydrophilicity
hydrophobicity
in vivo studies
irradiation
Mice
Micelles
moieties
Nanoparticles - chemistry
Nanoparticles - therapeutic use
neoplasms
Neoplasms, Experimental - drug therapy
Neoplasms, Experimental - metabolism
Neoplasms, Experimental - pathology
oxygen
Photochemotherapy
photosensitizing agents
Photosensitizing Agents - chemistry
Photosensitizing Agents - pharmacology
polymerization
precision medicine
singlet oxygen
Tumor Microenvironment
Xenograft Model Antitumor Assays
Title Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy
URI http://dx.doi.org/10.1021/acsami.9b12620
https://www.ncbi.nlm.nih.gov/pubmed/31487149
https://www.proquest.com/docview/2286930964
https://www.proquest.com/docview/2352450008
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRBQ8RdskzabHRVZEUBR3YW8lSbOuKK3YLqi_3kna9bWsep_SZJLMN5MM34fQYRQEpinTyDEfG8KtMESGkSV9QK_AKiWt76q8vBLnXX7Ri3qf9x0_X_BpeKJM4aRwYh067vRpNEuFbLoyq3V6O4q5glHfrAgVOScSEGtEzzj2vQMhU3wHoQmZpUeYs8WK7qjwxISuseTheFjqY_M2Ttv45-CX0EKdZuJWtS-W0ZTNVtD8F_LBVXTTMvcp6UB1fuf0OjHE2dy-QHBw92f4On989Y85-PLeX-4XGNJb3M4GvmUAXw_yMk8rOXvcqagJ1lD3rN05PSe1wAJRAEMlafalgnIt0EJzm8ZMwmk2MuB9QCwbRxSGLZlmMmVWREpRqQMRQEWoDHXsoZyto5ksz-wmwjSFUMG4EAYMDFM6ZUKaiAqtuDQxbaAD8EVSH5Ai8W_fNEwqByW1gxqIjNYlMTVHuZPKeJxof_Rh_1Sxc0y03B8tcwIHyDlOZTYfFgml0slBxoL_YgNpKnfSEbKBNqo98vE_BgVlE-rMrX_NcBvNQcrlu9RCuYNmyueh3YW0ptR7fke_A6UY8Ck
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvKHL0wgQJ5fEdrzOgcOqtNrSblXEVuottR1vu2qVoCYrWP4Mf4WfxthJlpcWcanENRo59sx4HpnJNwAvkiiyfZUnHvnYUuGkpSpOHJ2g94qc1sqFrsrRnhweiHeHyeEKfO3-hcFNVLhSFYr4P9AF4tf4zE_ESU3sIdTbLsodN_-EOVr1ZvstCvQlY1ub440hbccIUI3Gtqb9idKYlERGGuHylCvUWasiMUG77NKE4ZKKG65y7mSiNVMmkhHmPdoyj5EpOK57CS5j5MN8djfY-NCZeslZ6JGMUyGoQkfZoUL-sV_v-2z1q-9bEtAGx7Z1A74tWBL6WU7XZ7VZt19-Q4v8j3l2E663QTUZNLfgFqy44jZc-wlq8Q68H9hpTsfn0-NjP52UoFcp3Wc0hf5rIdkvz-ahdEVG01DKqAgG82SzOAkNEmT_pKzLfF7gOS0ZN0AMd-HgQs50D1aLsnBrQFiOhpELKS0SWK5NzqWyCZNGC2VT1oPnyPusNQdVFir9LM4agWStQHpAO3XIbIvI7geDnC2lf7Wg_9hgkSylfNZpV4bmwjNOF66cVRljyg-_TKX4Cw0G5cIPylA9uN-o5uJ9HNPnPmbVD_7phE_hynA82s12t_d2HsJVDDZDf16sHsFqfT5zjzGgq82TcKkIHF20Rn4H4ztPUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48IYuTyNAnFwS2_E6Bw6rtquW0moRW6m31Ha87apVUjVZwfJ3-Cv8MMZOsuKhRVwqcY1Gjj0znkdm8g3AqySKbF_liUc-tlQ4aamKE0cn6L0ip7Vyoatyb19uH4j3h8nhCnzr_oXBTVS4UhWK-P5Wn-eTFmEgfovP_VSc1MQeRr3tpNx188-Yp1XvdjZRqK8ZG26NN7ZpO0qAajS4Ne1PlMbEJDLSCJenXKHeWhWJCdpmlyYMl1TccJVzJxOtmTKRjDD30ZZ5nEzBcd0rcNXXCH2GN9j41Jl7yVnok4xTIahCZ9khQ_6xX-__bPWr_1sS1AbnNrwF3xdsCT0tp-uz2qzbr78hRv7nfLsNN9vgmgya23AHVlxxF278BLl4Dz4O7DSn44vp8bGfUkrQu5TuC5pE_9WQjMqzeShhkb1pKGlUBIN6slWchEYJMjop6zKfF3hOS8YNIMN9OLiUMz2A1aIs3BoQlqOB5EJKiwSWa5NzqWzCpNFC2ZT14CXyPmvNQpWFij-Ls0YgWSuQHtBOJTLbIrP7ASFnS-nfLOjPG0ySpZQvOg3L0Gx4xunClbMqY0z5IZipFH-hweBc-IEZqgcPG_VcvI9jGt3H7PrRP53wOVwbbQ6zDzv7u4_hOsacoU0vVk9gtb6YuacY19XmWbhXBI4uWyF_ACWoUdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acid-Triggered+Nanoexpansion+Polymeric+Micelles+for+Enhanced+Photodynamic+Therapy&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhong%2C+Sheng&rft.au=Chen%2C+Chao&rft.au=Yang%2C+Guoliang&rft.au=Zhu%2C+Yucheng&rft.date=2019-09-18&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=37&rft.spage=33697&rft.epage=33705&rft_id=info:doi/10.1021%2Facsami.9b12620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_9b12620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon