Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine

We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 7; no. 20; pp. 10977 - 10987
Main Authors Xu, Shicai, Man, Baoyuan, Jiang, Shouzhen, Wang, Jihua, Wei, Jie, Xu, Shida, Liu, Hanping, Gao, Shoubao, Liu, Huilan, Li, Zhenhua, Li, Hongsheng, Qiu, Hengwei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based on the G/CuNPs system, the ultrasensitive SERS detection of adenosine in varied matrices was expected for the practical applications in medicine and biotechnology.
AbstractList We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based on the G/CuNPs system, the ultrasensitive SERS detection of adenosine in varied matrices was expected for the practical applications in medicine and biotechnology.
We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based on the G/CuNPs system, the ultrasensitive SERS detection of adenosine in varied matrices was expected for the practical applications in medicine and biotechnology.We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based on the G/CuNPs system, the ultrasensitive SERS detection of adenosine in varied matrices was expected for the practical applications in medicine and biotechnology.
Author Wang, Jihua
Qiu, Hengwei
Gao, Shoubao
Wei, Jie
Li, Zhenhua
Xu, Shicai
Liu, Hanping
Jiang, Shouzhen
Liu, Huilan
Man, Baoyuan
Xu, Shida
Li, Hongsheng
AuthorAffiliation Shandong Normal University
Dezhou People’s Hospital
College of Physics and Electronics
Department of Neurology
Department of Internal Medicine
Shandong Cancer Hospital and Institute
Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Shandong Province
College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics
Dezhou University
AuthorAffiliation_xml – name: Shandong Normal University
– name: Dezhou People’s Hospital
– name: Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Shandong Province
– name: College of Physics and Electronics
– name: College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics
– name: Department of Neurology
– name: Shandong Cancer Hospital and Institute
– name: Department of Internal Medicine
– name: Dezhou University
Author_xml – sequence: 1
  givenname: Shicai
  surname: Xu
  fullname: Xu, Shicai
  email: xushicai001@163.com, shicaixu@dzu.edu.cn
– sequence: 2
  givenname: Baoyuan
  surname: Man
  fullname: Man, Baoyuan
– sequence: 3
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
– sequence: 4
  givenname: Jihua
  surname: Wang
  fullname: Wang, Jihua
– sequence: 5
  givenname: Jie
  surname: Wei
  fullname: Wei, Jie
– sequence: 6
  givenname: Shida
  surname: Xu
  fullname: Xu, Shida
– sequence: 7
  givenname: Hanping
  surname: Liu
  fullname: Liu, Hanping
– sequence: 8
  givenname: Shoubao
  surname: Gao
  fullname: Gao, Shoubao
– sequence: 9
  givenname: Huilan
  surname: Liu
  fullname: Liu, Huilan
– sequence: 10
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
– sequence: 11
  givenname: Hongsheng
  surname: Li
  fullname: Li, Hongsheng
– sequence: 12
  givenname: Hengwei
  surname: Qiu
  fullname: Qiu, Hengwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25941901$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhH5iJCy9efGOa623bbSCiQKXKOxM2FdJU6wk8P-GP4rLrvtAaniNPboed7DO-fkJAwBCXnP2YIzwS_BJej9QlsmJJOvyBmvlCqM0OLk-a3UKTlP6YGxpRRMvyGnQleKV4yfkd83EcYdBrxcz_QzhGGEOHnXIb3d2-ibRDeQp4MJG2r3dL3DPv86-gPGIdIrHIfkJz8Eukr0fo4tOCyuww6Cy8JX6CHQ-2xPGH34mQmbppjDaJvtLVjsik1EzEETur85Q0tXDYYcG_Ated1Cl_DdcV6Q75vrb-vbYvvl5m692hagRDUVClSly8YYbqBVFQcnBSKr9NJaKEtVIhgurGEWNGe8KVGiYdKUjbauNEpekI-H3DEOv2ZMU9375LDrIOAwp1owxqQwS_1_lC-NLLWslMzohyM62x6beoy-h7ivn9rPwOIAuDikFLF9RjirH89bH85bH8-bBfWP4PwEj7XlUn33svbpoOV9_TDMMeQyX4L_AAPruSA
CitedBy_id crossref_primary_10_1021_acs_analchem_9b02186
crossref_primary_10_1002_advs_202202051
crossref_primary_10_1016_j_snb_2019_05_068
crossref_primary_10_1039_C9NA00625G
crossref_primary_10_1007_s00339_018_2300_3
crossref_primary_10_1016_j_apsusc_2016_06_161
crossref_primary_10_1007_s10853_017_1801_3
crossref_primary_10_1016_j_apsusc_2020_148374
crossref_primary_10_1016_j_bios_2018_01_054
crossref_primary_10_1016_j_supflu_2019_104597
crossref_primary_10_1007_s00604_018_2681_1
crossref_primary_10_1039_C7NR09276H
crossref_primary_10_1016_j_diamond_2018_11_012
crossref_primary_10_1016_j_talanta_2018_01_065
crossref_primary_10_1039_C9CC05228C
crossref_primary_10_1515_revac_2016_0027
crossref_primary_10_1016_j_snb_2018_02_149
crossref_primary_10_1039_C7RA08659H
crossref_primary_10_1002_smtd_202402056
crossref_primary_10_1016_j_apsusc_2017_07_015
crossref_primary_10_1039_C8AN01266K
crossref_primary_10_3390_nano11102770
crossref_primary_10_1002_ange_201709815
crossref_primary_10_1016_j_apsusc_2017_01_231
crossref_primary_10_1016_j_apsusc_2019_05_349
crossref_primary_10_1016_j_ceramint_2020_10_238
crossref_primary_10_1016_j_apsusc_2021_149748
crossref_primary_10_1016_j_snb_2020_128991
crossref_primary_10_1021_acsami_7b14820
crossref_primary_10_1039_C5RA18333B
crossref_primary_10_1142_S1793292020500393
crossref_primary_10_1016_j_apsusc_2016_03_053
crossref_primary_10_1016_j_microc_2024_110396
crossref_primary_10_1016_j_arabjc_2019_01_007
crossref_primary_10_1016_j_snb_2018_12_129
crossref_primary_10_3390_nano9040516
crossref_primary_10_1016_j_apsusc_2019_05_181
crossref_primary_10_1016_j_jcis_2017_07_028
crossref_primary_10_1016_j_snb_2023_134767
crossref_primary_10_3390_nano7100337
crossref_primary_10_1021_acs_jpcc_6b01005
crossref_primary_10_3390_nano9070984
crossref_primary_10_1016_j_talanta_2018_05_022
crossref_primary_10_1364_OE_24_024551
crossref_primary_10_1021_acsomega_4c01163
crossref_primary_10_1039_C5TC01759A
crossref_primary_10_1016_j_jcrysgro_2016_06_004
crossref_primary_10_1002_smll_201901555
crossref_primary_10_1016_j_cej_2020_124904
crossref_primary_10_1021_acs_jpcc_5b12372
crossref_primary_10_1039_C6RA26879J
crossref_primary_10_1039_C6CC09642E
crossref_primary_10_1016_j_saa_2022_121159
crossref_primary_10_1016_j_snb_2017_11_080
crossref_primary_10_1080_25740881_2022_2069040
crossref_primary_10_1016_j_aca_2021_339386
crossref_primary_10_1016_j_bios_2016_12_009
crossref_primary_10_1016_j_apsusc_2015_10_032
crossref_primary_10_1088_1361_6463_aa7b06
crossref_primary_10_1021_acsomega_0c00834
crossref_primary_10_1002_smll_201604240
crossref_primary_10_1016_j_apsusc_2019_03_004
crossref_primary_10_1016_j_cej_2025_159386
crossref_primary_10_1016_j_csite_2021_101598
crossref_primary_10_1016_j_ijleo_2018_07_088
crossref_primary_10_1002_admt_201800174
crossref_primary_10_1039_C6NR02022D
crossref_primary_10_3390_polym12020392
crossref_primary_10_1016_j_trac_2020_115983
crossref_primary_10_1021_acs_chemrev_5b00620
crossref_primary_10_1016_j_snb_2018_07_150
crossref_primary_10_1364_OE_25_020631
crossref_primary_10_1016_j_cplett_2016_08_027
crossref_primary_10_1016_j_mee_2020_111421
crossref_primary_10_1038_srep25243
crossref_primary_10_1039_C6CE01728B
crossref_primary_10_1016_j_snb_2017_02_177
crossref_primary_10_2166_wst_2023_129
crossref_primary_10_1021_acssensors_1c01172
crossref_primary_10_1007_s10008_021_04916_y
crossref_primary_10_3390_chemosensors11080461
crossref_primary_10_1021_acs_langmuir_8b01880
crossref_primary_10_3390_ijms20112817
crossref_primary_10_1038_srep19368
crossref_primary_10_3390_nano11102508
crossref_primary_10_1016_j_apsusc_2015_06_084
crossref_primary_10_1002_anie_201709815
crossref_primary_10_1016_j_snb_2017_08_082
crossref_primary_10_1016_j_snb_2019_127327
crossref_primary_10_1007_s10570_018_1806_3
crossref_primary_10_1016_j_jallcom_2016_01_126
crossref_primary_10_1016_j_matchar_2021_110887
crossref_primary_10_1007_s00604_023_05748_5
crossref_primary_10_1038_s41598_017_14369_x
crossref_primary_10_1016_j_mtcomm_2023_107444
crossref_primary_10_1021_acs_inorgchem_0c01056
crossref_primary_10_1039_C5RA16640C
crossref_primary_10_1039_D3CP00064H
crossref_primary_10_1088_1361_6463_ab550b
crossref_primary_10_1016_j_cap_2021_02_012
crossref_primary_10_1021_acs_jpcc_2c07972
crossref_primary_10_1021_acs_jpcc_8b06218
crossref_primary_10_1016_j_mtphys_2021_100378
crossref_primary_10_1364_OE_26_023831
crossref_primary_10_1021_acsami_6b08403
crossref_primary_10_1021_acsomega_4c04588
crossref_primary_10_1016_j_jiec_2019_11_029
crossref_primary_10_1021_acsami_0c08366
crossref_primary_10_3390_ijms20071731
crossref_primary_10_1021_acs_langmuir_7b03462
crossref_primary_10_1063_1_5078864
crossref_primary_10_1016_j_mtsust_2024_100714
crossref_primary_10_1016_j_surfcoat_2017_06_083
crossref_primary_10_1016_j_snb_2018_03_035
crossref_primary_10_1016_j_apsusc_2020_145331
crossref_primary_10_1016_j_engreg_2022_08_004
crossref_primary_10_1016_j_apsusc_2018_02_056
crossref_primary_10_1016_j_colsurfa_2018_09_059
crossref_primary_10_1039_C7RA08246K
crossref_primary_10_1088_2053_1591_ab057f
crossref_primary_10_3390_s24155049
crossref_primary_10_1364_OE_23_024811
crossref_primary_10_1016_j_carbon_2015_11_042
crossref_primary_10_1016_j_snb_2017_07_179
crossref_primary_10_1021_acsomega_9b01975
crossref_primary_10_1007_s40820_017_0174_0
crossref_primary_10_1088_1361_6528_abacf5
crossref_primary_10_1016_j_snb_2020_128968
crossref_primary_10_1002_adfm_202306680
crossref_primary_10_1016_j_bios_2019_01_032
crossref_primary_10_1021_acsami_7b06490
crossref_primary_10_1016_j_snb_2020_128563
crossref_primary_10_1016_j_jiec_2018_03_037
crossref_primary_10_3390_chemosensors10080317
crossref_primary_10_1016_j_clay_2022_106750
crossref_primary_10_1016_j_colsurfa_2017_09_025
crossref_primary_10_1016_j_matchemphys_2024_129281
crossref_primary_10_32628_IJSRSET25121162
crossref_primary_10_1021_acsaelm_0c00095
crossref_primary_10_1088_2053_1591_ad194a
crossref_primary_10_3390_mi10050282
crossref_primary_10_1088_2632_959X_ab85b4
crossref_primary_10_1016_j_apsusc_2017_04_043
crossref_primary_10_1002_admi_201800661
crossref_primary_10_1016_j_mtcomm_2018_12_008
crossref_primary_10_1021_acsami_2c18314
crossref_primary_10_1364_OME_8_000844
crossref_primary_10_3390_s18082696
crossref_primary_10_3390_cryst15030240
crossref_primary_10_1016_j_saa_2022_120950
crossref_primary_10_1016_j_apsusc_2018_07_132
crossref_primary_10_1007_s00604_019_3680_6
crossref_primary_10_1039_C7CC04218C
crossref_primary_10_1186_s11671_020_3245_y
crossref_primary_10_1364_OE_26_021546
crossref_primary_10_1016_j_jallcom_2016_10_317
Cites_doi 10.3748/wjg.v11.i25.3871
10.1016/j.talanta.2009.03.063
10.1016/j.vacuum.2012.06.015
10.1002/bip.20398
10.1088/0957-4484/24/39/395603
10.1021/jp010789f
10.1039/b709492b
10.1021/ac300577d
10.1039/c3ta11901g
10.1038/nmat1849
10.1038/nature05545
10.1002/jemt.20229
10.1039/c3tc30177j
10.1016/j.talanta.2012.07.080
10.1016/j.ssc.2007.03.052
10.1080/05704928.2014.923902
10.1021/nl0731872
10.1021/ja2063633
10.1063/1.4802079
10.1039/b710915f
10.1021/jp012083r
10.1039/c3ce27029g
10.1039/b707057h
10.1364/OL.39.002334
10.1016/j.carbon.2013.06.027
10.1016/j.jcis.2012.02.051
10.1016/j.bios.2013.01.073
10.1016/j.eururo.2010.10.027
10.1016/j.cca.2011.06.027
10.1088/1612-2011/11/9/096001
10.1016/j.carbon.2015.01.028
10.1021/ja9037593
10.1021/ja105678z
10.1002/adma.201300635
10.1021/jp111502n
10.1103/PhysRevLett.97.187401
10.1039/C4TC00353E
10.1016/j.carbon.2013.09.076
10.1016/j.bios.2008.03.013
10.1002/adfm.201102423
10.1021/la9815446
10.1021/ja301921k
10.1038/nature08907
10.1016/j.carbon.2010.12.022
10.1021/nn1030862
10.1126/science.1102896
10.1002/jrs.1107
10.1007/978-1-4614-3903-5_5
10.1016/j.aca.2011.03.002
10.1002/adma.201204355
10.1126/science.1171245
10.1038/ncomms3804
10.1038/nnano.2010.132
10.1016/j.saa.2006.05.012
10.1002/rcm.4034
10.1038/nature10136
10.1002/smll.201203097
10.1039/c1cc11125f
10.1126/science.1202793
10.1007/s00216-011-5631-x
10.1038/nnano.2008.215
10.1039/c3ce42656d
10.1016/j.vacuum.2008.10.003
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.5b02303
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Medicine
EISSN 1944-8252
EndPage 10987
ExternalDocumentID 25941901
10_1021_acsami_5b02303
d91037202
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-4a4957d8818af491ac32ee0956bba7747ea812b80ba5101d7e3e80387d5bc7843
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 04:56:49 EDT 2025
Fri Jul 11 07:06:03 EDT 2025
Thu Jan 02 22:18:45 EST 2025
Thu Apr 24 23:07:56 EDT 2025
Tue Jul 01 04:12:40 EDT 2025
Thu Aug 27 13:42:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords CVD
adenosine detection
Cu nanoparticles
SERS
graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-4a4957d8818af491ac32ee0956bba7747ea812b80ba5101d7e3e80387d5bc7843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25941901
PQID 1683753943
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000328654
proquest_miscellaneous_1683753943
pubmed_primary_25941901
crossref_primary_10_1021_acsami_5b02303
crossref_citationtrail_10_1021_acsami_5b02303
acs_journals_10_1021_acsami_5b02303
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-27
PublicationDateYYYYMMDD 2015-05-27
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lu R. (ref24/cit24) 2015; 86
Ferrari A. C. (ref37/cit37) 2006; 97
Medina H. (ref49/cit49) 2012; 22
Mcleod A. (ref36/cit36) 2014; 39
Chen J. (ref46/cit46) 2011; 133
He S. (ref19/cit19) 2012; 84
Tien H. W. (ref47/cit47) 2011; 49
Li J. (ref51/cit51) 2007; 66
Lee K. (ref2/cit2) 2011; 5
Xu F. (ref31/cit31) 2011; 332
Iliut M. (ref22/cit22) 2013; 1
Freebody M. (ref12/cit12) 2010; 44
Hernandez Y. (ref44/cit44) 2008; 3
Chen A. (ref54/cit54) 2009; 83
Wang Y. (ref3/cit3) 2007; 48
Zhang Z. (ref18/cit18) 2011; 47
Yang H. (ref14/cit14) 2013; 62
Xie L. (ref16/cit16) 2009; 131
Li B. (ref58/cit58) 2007; 36
Xu W. (ref15/cit15) 2013; 9
Jeng L. B. (ref35/cit35) 2009; 23
Li J. F. (ref7/cit7) 2010; 464
Xu S. C. (ref40/cit40) 2014; 16
Talari A. C. S. (ref53/cit53) 2015; 50
Ling X. (ref17/cit17) 2011; 115
Xu S. C. (ref39/cit39) 2013; 15
Yan X. (ref59/cit59) 2009; 79
Malini R. (ref61/cit61) 2006; 81
Xu S. C. (ref65/cit65) 2013; 102
Cheng W. T. (ref60/cit60) 2005; 68
Li X. (ref28/cit28) 2014; 66
Giese B. (ref50/cit50) 2002; 106
Kiraly B. (ref64/cit64) 2013; 4
Xie Y. (ref20/cit20) 2012; 100
Cialla D. (ref5/cit5) 2012; 403
Balandin A. A. (ref13/cit13) 2008; 8
Xu W. (ref25/cit25) 2013; 25
Ferrari A. C. (ref38/cit38) 2007; 143
Xu S. C. (ref43/cit43) 2014; 11
Ruiz-Chica A. J. (ref62/cit62) 2004; 35
Yao H. (ref8/cit8) 2013; 1
Meyer J. C. (ref42/cit42) 2007; 446
Fan M. (ref4/cit4) 2011; 693
Zheng J. (ref9/cit9) 2002; 106
Zhang C. (ref45/cit45) 2013; 24
Dulla C. G. (ref30/cit30) 2013
Hsu W. Y. (ref34/cit34) 2011; 412
Banholzer M. J. (ref6/cit6) 2008; 37
Zheng Y. F. (ref33/cit33) 2005; 11
Shapiro A. (ref63/cit63) 2011; 59
Novoselov K. S. (ref10/cit10) 2004; 306
Zhao H. (ref21/cit21) 2012; 375
Geim A. K. (ref11/cit11) 2007; 6
Singh A. K. (ref41/cit41) 2012; 134
Du Y. (ref27/cit27) 2014; 2
Bae S. (ref48/cit48) 2010; 5
Chusuei C. C. (ref55/cit55) 1999; 15
Wang P. (ref26/cit26) 2013; 25
Giese B. (ref52/cit52) 2002; 106
Zhang W. (ref57/cit57) 2013; 89
Barhoumi A. (ref1/cit1) 2010; 132
Lebon G. (ref32/cit32) 2011; 474
Chen J. W. (ref56/cit56) 2008; 24
Liu M. (ref23/cit23) 2013; 46
Li X. (ref29/cit29) 2009; 324
References_xml – volume: 11
  start-page: 3871
  year: 2005
  ident: ref33/cit33
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v11.i25.3871
– volume: 79
  start-page: 383
  year: 2009
  ident: ref59/cit59
  publication-title: Talanta
  doi: 10.1016/j.talanta.2009.03.063
– volume: 89
  start-page: 257
  year: 2013
  ident: ref57/cit57
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2012.06.015
– volume: 81
  start-page: 179
  year: 2006
  ident: ref61/cit61
  publication-title: Biopolymers
  doi: 10.1002/bip.20398
– volume: 24
  start-page: 395603
  year: 2013
  ident: ref45/cit45
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/39/395603
– volume: 106
  start-page: 101
  year: 2002
  ident: ref50/cit50
  publication-title: Phys. Chem. B
  doi: 10.1021/jp010789f
– volume: 48
  start-page: 5220
  year: 2007
  ident: ref3/cit3
  publication-title: Chem. Commun.
  doi: 10.1039/b709492b
– volume: 84
  start-page: 4622
  year: 2012
  ident: ref19/cit19
  publication-title: Anal. Chem.
  doi: 10.1021/ac300577d
– volume: 1
  start-page: 10783
  year: 2013
  ident: ref8/cit8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11901g
– volume: 6
  start-page: 183
  year: 2007
  ident: ref11/cit11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 446
  start-page: 60
  year: 2007
  ident: ref42/cit42
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 68
  start-page: 75
  year: 2005
  ident: ref60/cit60
  publication-title: Microsc. Res. Technol.
  doi: 10.1002/jemt.20229
– volume: 1
  start-page: 4094
  year: 2013
  ident: ref22/cit22
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc30177j
– volume: 100
  start-page: 32
  year: 2012
  ident: ref20/cit20
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.07.080
– volume: 143
  start-page: 47
  year: 2007
  ident: ref38/cit38
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.03.052
– volume: 50
  start-page: 46
  year: 2015
  ident: ref53/cit53
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2014.923902
– volume: 8
  start-page: 902
  year: 2008
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 133
  start-page: 17548
  year: 2011
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2063633
– volume: 102
  start-page: 151902
  year: 2013
  ident: ref65/cit65
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802079
– volume: 37
  start-page: 885
  year: 2008
  ident: ref6/cit6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b710915f
– volume: 106
  start-page: 1019
  year: 2002
  ident: ref9/cit9
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012083r
– volume: 15
  start-page: 1840
  year: 2013
  ident: ref39/cit39
  publication-title: CrystEngComm
  doi: 10.1039/c3ce27029g
– volume: 36
  start-page: 3780
  year: 2007
  ident: ref58/cit58
  publication-title: Chem. Commun.
  doi: 10.1039/b707057h
– volume: 39
  start-page: 2334
  year: 2014
  ident: ref36/cit36
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.002334
– volume: 62
  start-page: 422
  year: 2013
  ident: ref14/cit14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.06.027
– volume: 375
  start-page: 30
  year: 2012
  ident: ref21/cit21
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.02.051
– volume: 46
  start-page: 68
  year: 2013
  ident: ref23/cit23
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.01.073
– volume: 59
  start-page: 106
  year: 2011
  ident: ref63/cit63
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2010.10.027
– volume: 412
  start-page: 1861
  year: 2011
  ident: ref34/cit34
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2011.06.027
– volume: 11
  start-page: 096001
  year: 2014
  ident: ref43/cit43
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-2011/11/9/096001
– volume: 86
  start-page: 78
  year: 2015
  ident: ref24/cit24
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.01.028
– volume: 131
  start-page: 9890
  year: 2009
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9037593
– volume: 132
  start-page: 12792
  year: 2010
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105678z
– volume: 25
  start-page: 4918
  year: 2013
  ident: ref26/cit26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300635
– volume: 115
  start-page: 2835
  year: 2011
  ident: ref17/cit17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111502n
– volume: 97
  start-page: 187401
  year: 2006
  ident: ref37/cit37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 106
  start-page: 101
  year: 2002
  ident: ref52/cit52
  publication-title: Phys. Chem. B
  doi: 10.1021/jp010789f
– volume: 2
  start-page: 4683
  year: 2014
  ident: ref27/cit27
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00353E
– volume: 66
  start-page: 713
  year: 2014
  ident: ref28/cit28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.076
– volume: 24
  start-page: 66
  year: 2008
  ident: ref56/cit56
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2008.03.013
– volume: 22
  start-page: 2123
  year: 2012
  ident: ref49/cit49
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102423
– volume: 15
  start-page: 2806
  year: 1999
  ident: ref55/cit55
  publication-title: Langmuir
  doi: 10.1021/la9815446
– volume: 134
  start-page: 8662
  year: 2012
  ident: ref41/cit41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301921k
– volume: 464
  start-page: 392
  year: 2010
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 49
  start-page: 1550
  year: 2011
  ident: ref47/cit47
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.12.022
– volume: 44
  start-page: 25
  year: 2010
  ident: ref12/cit12
  publication-title: Photonics Spectra
– volume: 5
  start-page: 2109
  year: 2011
  ident: ref2/cit2
  publication-title: ACS Nano
  doi: 10.1021/nn1030862
– volume: 306
  start-page: 666
  year: 2004
  ident: ref10/cit10
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 35
  start-page: 93
  year: 2004
  ident: ref62/cit62
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1107
– start-page: 87
  volume-title: Adenosine
  year: 2013
  ident: ref30/cit30
  doi: 10.1007/978-1-4614-3903-5_5
– volume: 693
  start-page: 7
  year: 2011
  ident: ref4/cit4
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.03.002
– volume: 25
  start-page: 928
  year: 2013
  ident: ref25/cit25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204355
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref29/cit29
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 4
  start-page: 2804
  year: 2013
  ident: ref64/cit64
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3804
– volume: 5
  start-page: 574
  year: 2010
  ident: ref48/cit48
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 66
  start-page: 994
  year: 2007
  ident: ref51/cit51
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2006.05.012
– volume: 23
  start-page: 1543
  year: 2009
  ident: ref35/cit35
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.4034
– volume: 474
  start-page: 521
  year: 2011
  ident: ref32/cit32
  publication-title: Nature
  doi: 10.1038/nature10136
– volume: 9
  start-page: 1206
  year: 2013
  ident: ref15/cit15
  publication-title: Small
  doi: 10.1002/smll.201203097
– volume: 47
  start-page: 6440
  year: 2011
  ident: ref18/cit18
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11125f
– volume: 332
  start-page: 322
  year: 2011
  ident: ref31/cit31
  publication-title: Science
  doi: 10.1126/science.1202793
– volume: 403
  start-page: 27
  year: 2012
  ident: ref5/cit5
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-5631-x
– volume: 3
  start-page: 563
  year: 2008
  ident: ref44/cit44
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 16
  start-page: 3532
  year: 2014
  ident: ref40/cit40
  publication-title: CrystEngComm
  doi: 10.1039/c3ce42656d
– volume: 83
  start-page: 927
  year: 2009
  ident: ref54/cit54
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2008.10.003
SSID ssj0063205
Score 2.5229151
Snippet We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10977
SubjectTerms adenosine
Adenosine - analysis
Adenosine - chemistry
biotechnology
blood serum
copper
Copper - chemistry
Gases - chemistry
graphene
Graphite - chemistry
humans
hydrogen
Light
Materials Testing
medicine
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
methane
Nanoconjugates - chemistry
Nanoconjugates - ultrastructure
nanoparticles
quartz
Raman spectroscopy
Scattering, Radiation
Scattering, Small Angle
Spectrum Analysis, Raman - methods
Staining and Labeling
urine
vapors
Title Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine
URI http://dx.doi.org/10.1021/acsami.5b02303
https://www.ncbi.nlm.nih.gov/pubmed/25941901
https://www.proquest.com/docview/1683753943
https://www.proquest.com/docview/2000328654
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9QwDI5gucCB92N4yQgkTtmdNmmTOY6GHUYIODAs2lvlpKlWYumgaXtY_gv_FTttl8dqgLvbpIljf66dz0K80AlaF0wpsXK5JH87lU4pI3WV2NnU6rLf6Xfv89WRfnOcHf_83_FnBj9NDtA33Aonc4yW1WVxJc2t4TBrvliPNjdXaSxWpIhcS0sea6RnvPA8OyHf_O6EdiDL6GGWN3q6oyYSE3Jhyef9rnX7_ttF2sZ_Tv6muD7ATJj3enFLXAr1bXHtF_LBO-L7a-aqJlN3sOiAjCxFz700rM74GlcDS3SxiVAowZ3BSC0An5AwO7wKY70XzBtYd9sKfZCH9UksKYAP-AVrWPtI30njAVuoyIQLBJPhLbpwKpfbEOhFbSwHq2FTwbxk8nKa5F1xtDz8uFjJoVmDRHJprdRIoZYpLQEArPQsQa_SEJjm0DkkjGkCEpZwduqQzUBpggqWc-dl5ryxWt0Te_WmDg8EaAqznKlmBNW8zh2F-_QMaVRqGO8YOxHPaV2L4bA1Rcyjp0nRL3YxLPZEyHGPCz_wnXPbjdOd8i_P5b_2TB87JZ-NKlPQYeQMC9Zh09FMcor3MzXTf5Hhu1GK7wPribjf69v5eBSLakZoD__rCx-JqwTfMq5lSM1jsdduu_CEIFLrnsbT8QPOSAuK
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tywE48H6U5yCQOHnbxE6cHquypUB3hegu2ltkJ46QdjdFTXJY_gv_lRknKS8VwTWa2GN7PPONPP4M8FIFJrFO58IUNhYUb0fCSqmFKoJkPEpU3q70wWE8P1bvTqKTHRj2d2FIiYpaqvwh_g92gWBI3_hFnMgyaJaX4DIhkZCzrcl02bveWIa-ZpEScyUSClw9S-Mf_3MsyqpfY9EWgOkDzewGfNio6OtLTvea2u5lX39jb_yPMdyE6x3oxElrJbdgx5W34dpPVIR34NsbZq4mxzecNkgul3LpVhrnF3ypq8KZsf5JIZejvcCeaAA_GULw-Nr11V84qXDZrAuTObFffvYFBvjRnJsSl5kn86T-kP2V58VFAs24MNadidnaOWqo9sVhJa4KnORMZU5K3oXj2f7RdC66pxuEoQBXC2Uo8dJ5QnDAFGocmEyGzjHpobWGEKd2hpCFTUbWsFPItZMu4ZP0PLKZTpS8B7vlqnQPABUlXVYXYwJumYotJf_0D9lXqBn96GQAL2he027rVak_VQ-DtJ3stJvsAYh-qdOsYz_nRzjOtsq_2sh_aXk_tko-7y0npa3J5y2mdKuGNIkp-4_kWP1Fhm9KSb4drAZwvzW7TX-UmSrGaw__aYTP4Mr86GCRLt4evn8EVwnYRVzlEOrHsFuvG_eEwFNtn_oN8x0OxhPr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEN4gJEYeQFT0FGWMJj4tXLt73b3Hy0E5EInxwPDW7LbbmIA9cm0f4H_xf3Vm215UckZfm-n-3plvMjPfMvZeBkZbpzJuchtxtLd9boVQXOaBHva1zJqd_nQWTS7kyeXgsq3jploYHESJLZU-iE-3-ibLW4aBYB-_06s4A0vAWTxgaxSzI49rNJ526jcSoc9bROdcco3Gq2NqvPc_2aO0_N0eLQGZ3tjEm-x8MUyfY3K1V1d2L737g8HxP-fxmG204BNGzWnZYiuueMLWf6EkfMp-HBGDNSrA_XENqHrRp26kYXJLxV0lxMb6p4VcBvYWOsIB-GoQycOB67LAYFTCtJ7nJnX8sPjmEw3gi_luCpimntQT-wPSW54fFxA8w6mx7prHc-ewoconiRUwy2GUEaU5DvIZu4gPz8cT3j7hwA0auopLgw6YyjTCApPLYWBSETpH5IfWGkSeyhlEGFb3rSHlkCknnKaIejawqdJSbLPVYla4FwwkOl9W5UMEcKmMrLMC_8FzFipCQUr32Dtc16S9gmXio-thkDSLnbSL3WO82-4kbVnQ6TGO66XyHxbyNw3_x1LJt93pSfCKUtzFFG5W40giLdArHMq_yFDFlKAqYdljz5ujt-gPPVRJuO3lP81wlz38fBAnp8dnH1-xR4jvBpTsEKodtlrNa_caMVRl3_g78xPyQhZu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene%2FCu+Nanoparticle+Hybrids+Fabricated+by+Chemical+Vapor+Deposition+As+Surface-Enhanced+Raman+Scattering+Substrate+for+Label-Free+Detection+of+Adenosine&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Xu%2C+Shicai&rft.au=Man%2C+Baoyuan&rft.au=Jiang%2C+Shouzhen&rft.au=Wang%2C+Jihua&rft.date=2015-05-27&rft.issn=1944-8252&rft.volume=7&rft.issue=20+p.10977-10987&rft.spage=10977&rft.epage=10987&rft_id=info:doi/10.1021%2Facsami.5b02303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon