Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads
Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly...
Saved in:
Published in | ACS applied materials & interfaces Vol. 7; no. 25; pp. 13987 - 13995 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper. |
---|---|
AbstractList | Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper. Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper. |
Author | Han, Zhiwu Zhang, Pengfei Zhang, Liwen Zhang, Deyuan Chen, Huawei |
AuthorAffiliation | Jilin University School of Mechanical Engineering and Automation Key Laboratory for Bionic Engineering, Ministry of Education Beihang University |
AuthorAffiliation_xml | – name: School of Mechanical Engineering and Automation – name: Jilin University – name: Key Laboratory for Bionic Engineering, Ministry of Education – name: Beihang University |
Author_xml | – sequence: 1 givenname: Huawei surname: Chen fullname: Chen, Huawei email: chenhw75@buaa.edu.cn – sequence: 2 givenname: Liwen surname: Zhang fullname: Zhang, Liwen – sequence: 3 givenname: Deyuan surname: Zhang fullname: Zhang, Deyuan email: zhangdy@buaa.edu.cn – sequence: 4 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei – sequence: 5 givenname: Zhiwu surname: Han fullname: Han, Zhiwu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26053597$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMoPqpbl5KlCK15zUyyVPEFgkIrLmOSuVMj00lNZhb-e1NaXQji6h4O37mLcw7Qdhc6QOiYkgkljJ4bl8zCTwpLOOFqC-1TJcRYsoJt_2gh9tBBSu-ElJyRYhftsZIUvFDVPnq99MF3aekj1Hg6xMY4wE2IKz33zrT4Npq0hJjwpUmZCR3u3wBP-xi6OX6BHt9E73qf_dDgWQTIRpjjWQD8ZOp0iHYa0yY42twRer65nl3djR8eb--vLh7GRjDVjzlIS1jharDUiVI4a5VwijveSFWXXAjZEFNJWTUCqOV1XalSAWfWVoQ6w0fodP13GcPHAKnXC58ctK3pIAxJM0JyX7Lk5b8oLRWnUjLFMnqyQQe7gFovo1-Y-Km_C8yAWAMuhpQiNNr53qzq6KPxraZEr3bS6530Zqccm_yKfX_-M3C2DmRfv4chdrnMv-Avrwmi_w |
CitedBy_id | crossref_primary_10_1108_ILT_02_2024_0049 crossref_primary_10_1016_j_triboint_2020_106162 crossref_primary_10_1021_acsaenm_3c00466 crossref_primary_10_1016_j_triboint_2021_107411 crossref_primary_10_1242_jeb_168179 crossref_primary_10_1088_1361_665X_aad6d2 crossref_primary_10_1002_admt_202301387 crossref_primary_10_1039_D3SM00154G crossref_primary_10_1108_ILT_07_2021_0247 crossref_primary_10_3390_polym14235312 crossref_primary_10_1021_acsnano_7b04994 crossref_primary_10_1002_adfm_201905287 crossref_primary_10_1039_C7TA01609C crossref_primary_10_1016_j_jmapro_2024_09_058 crossref_primary_10_1186_s12983_018_0273_x crossref_primary_10_1002_admi_202000987 crossref_primary_10_1111_1749_4877_12821 crossref_primary_10_1016_j_mssp_2023_107731 crossref_primary_10_1007_s42235_017_0002_8 crossref_primary_10_1016_j_triboint_2023_108992 crossref_primary_10_1002_smll_202103423 crossref_primary_10_3389_fmech_2021_668262 crossref_primary_10_1002_admi_202100528 crossref_primary_10_1039_D3CS00764B crossref_primary_10_1016_j_triboint_2025_110556 crossref_primary_10_1039_D4MH00331D crossref_primary_10_1109_LRA_2021_3067277 crossref_primary_10_1007_s42235_018_0074_0 crossref_primary_10_1126_sciadv_abn2728 crossref_primary_10_1109_TBME_2020_2982242 crossref_primary_10_1016_j_triboint_2022_107808 crossref_primary_10_1088_1748_3190_aaeb09 crossref_primary_10_1002_advs_202001125 crossref_primary_10_1002_admi_201901980 crossref_primary_10_1002_smll_202401859 crossref_primary_10_1016_j_eml_2023_102092 crossref_primary_10_1021_acs_langmuir_9b03773 crossref_primary_10_1126_sciadv_adi4843 crossref_primary_10_1049_bsbt_2019_0003 crossref_primary_10_1016_j_triboint_2023_109178 crossref_primary_10_3390_ma14247910 crossref_primary_10_1007_s44251_023_00022_5 crossref_primary_10_1002_admi_202101038 crossref_primary_10_1002_adfm_202313728 crossref_primary_10_1063_5_0102883 crossref_primary_10_1177_0954411920971400 crossref_primary_10_26599_FRICT_2025_9441000 crossref_primary_10_1016_j_mtbio_2025_101615 crossref_primary_10_1088_1748_3190_ac9878 crossref_primary_10_1016_j_jmatprotec_2020_116915 crossref_primary_10_1002_smtd_202301726 crossref_primary_10_1103_PhysRevE_99_022802 crossref_primary_10_1007_s42235_019_0005_8 crossref_primary_10_1098_rsif_2017_0629 crossref_primary_10_3390_app112311287 crossref_primary_10_3390_biomimetics2030010 crossref_primary_10_1007_s42235_021_00128_2 crossref_primary_10_1016_j_cej_2021_130194 crossref_primary_10_1088_1748_3190_ab1d11 crossref_primary_10_1039_C5TB02634B crossref_primary_10_1021_acsami_2c13984 crossref_primary_10_1016_j_triboint_2022_107823 crossref_primary_10_1016_j_matdes_2023_112505 crossref_primary_10_1002_admi_201900283 crossref_primary_10_1007_s42235_022_00184_2 crossref_primary_10_1021_acsami_9b22532 crossref_primary_10_1002_admt_201700353 crossref_primary_10_1039_C7SM01493G crossref_primary_10_1016_j_porgcoat_2022_107303 crossref_primary_10_1021_acsapm_4c00147 crossref_primary_10_34133_2022_9825656 crossref_primary_10_1021_acsami_3c05095 crossref_primary_10_1186_s10033_022_00708_1 crossref_primary_10_1109_TBME_2017_2664668 crossref_primary_10_1109_LRA_2022_3149306 crossref_primary_10_1016_j_cis_2023_102862 crossref_primary_10_1063_5_0160377 crossref_primary_10_3762_bjnano_12_57 crossref_primary_10_1039_D2TA01960D crossref_primary_10_1007_s11465_022_0699_x crossref_primary_10_1021_acsnano_0c08713 crossref_primary_10_1021_acsami_0c08121 crossref_primary_10_1007_s00339_022_05921_2 crossref_primary_10_1016_j_triboint_2023_108394 crossref_primary_10_1093_icb_icaa037 crossref_primary_10_1002_pola_28721 crossref_primary_10_1002_wnan_1914 crossref_primary_10_1016_j_eml_2018_12_003 crossref_primary_10_1016_j_cej_2023_141927 crossref_primary_10_1002_smll_201601676 crossref_primary_10_1088_1748_3190_11_3_035003 crossref_primary_10_1109_LRA_2019_2893401 crossref_primary_10_1016_j_colsurfb_2020_111531 crossref_primary_10_3390_mi8040125 crossref_primary_10_3390_biomimetics2020007 crossref_primary_10_3762_bjnano_7_201 crossref_primary_10_1002_adma_201902278 crossref_primary_10_1021_acsanm_2c05161 crossref_primary_10_1088_1361_6463_aab58d crossref_primary_10_1088_2051_672X_adad8b crossref_primary_10_1021_acsnano_4c17864 crossref_primary_10_1021_acsami_0c21847 crossref_primary_10_3390_biomimetics7040209 crossref_primary_10_1109_TBME_2020_2996965 crossref_primary_10_1088_1748_3190_aafc37 crossref_primary_10_1007_s40544_022_0617_6 crossref_primary_10_1038_s41598_019_53027_2 crossref_primary_10_1111_joa_12860 crossref_primary_10_1038_s43586_023_00251_w crossref_primary_10_1002_pol_20210521 crossref_primary_10_1007_s42235_021_0009_z crossref_primary_10_1021_acsami_0c10749 crossref_primary_10_1002_adem_202402613 crossref_primary_10_1002_adma_201900933 crossref_primary_10_1007_s11665_022_07277_3 crossref_primary_10_1016_j_triboint_2023_108692 crossref_primary_10_1021_acsami_2c22378 crossref_primary_10_1049_bsb2_12049 crossref_primary_10_1021_acsapm_1c01285 crossref_primary_10_1007_s00170_022_10631_3 crossref_primary_10_1002_adfm_202205804 crossref_primary_10_1098_rsta_2019_0131 crossref_primary_10_1049_bsbt_2018_0004 crossref_primary_10_1116_6_0000747 |
Cites_doi | 10.1016/S0016-5107(96)70193-1 10.1006/jsre.2000.5906 10.1155/1997/57313 10.1007/s00464-010-0967-4 10.1155/2011/940867 10.1557/mrs2007.81 10.1002/adfm.201403751 10.1098/rsif.2006.0135 10.1073/pnas.0506328102 10.1115/1.2898712 10.1021/am4044135 10.1016/0002-9610(94)90108-2 10.1007/s00359-006-0151-4 10.1007/s00464-003-9153-2 10.1016/0002-9610(91)90605-D 10.1109/84.870059 10.1016/S0025-6196(12)60390-5 10.1155/1997/14698 10.1098/rsif.2014.0113 10.1016/S0022-5347(01)61797-X 10.1016/j.actbio.2011.06.045 10.1088/0960-1317/17/6/R01 10.1002/jmor.20186 10.1039/c1sm06269g 10.1021/ma4018718 10.1371/journal.pone.0073810 10.1529/biophysj.105.065268 |
ContentType | Journal Article |
Copyright | Copyright © American
Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.5b03039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 13995 |
ExternalDocumentID | 26053597 10_1021_acsami_5b03039 g88028672 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-3e8b025cdeb1c464cbb94c93c3f89d63448f0a7887f4e1b3dd7969e32bb701ca3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Jul 10 23:53:31 EDT 2025 Fri Jul 11 05:51:35 EDT 2025 Thu Jan 02 22:19:35 EST 2025 Tue Jul 01 04:12:42 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Thu Aug 27 13:43:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | biomimetic surface low damage surgical grasper wet friction tree frog |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-3e8b025cdeb1c464cbb94c93c3f89d63448f0a7887f4e1b3dd7969e32bb701ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26053597 |
PQID | 1693188292 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000218636 proquest_miscellaneous_1693188292 pubmed_primary_26053597 crossref_citationtrail_10_1021_acsami_5b03039 crossref_primary_10_1021_acsami_5b03039 acs_journals_10_1021_acsami_5b03039 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Chin P. T. (ref6/cit6) 1997; 10 Shahsavan H. (ref24/cit24) 2014; 47 Iturri J. (ref30/cit30) 2015; 25 Barnes W. J. (ref22/cit22) 2013; 274 Federle W. (ref19/cit19) 2006; 3 Dargahi J. (ref11/cit11) 2000; 9 Sun W. X. (ref17/cit17) 2005; 89 Bishoff J. T. (ref10/cit10) 1999; 161 Dirks J. H. (ref18/cit18) 2011; 7 Johnston S. (ref5/cit5) 1994; 167 Soper N. J. (ref3/cit3) 1991; 1 Seo S. (ref28/cit28) 2014; 6 Patterson E. J. (ref8/cit8) 1997; 40 Schrenk P. (ref9/cit9) 1996; 43 Ponsky J. L. (ref2/cit2) 1991; 161 Tsipenyuk A. (ref29/cit29) 2014; 11 Graham M. D. (ref7/cit7) 1997; 10 Roan P. R. (ref12/cit12) 2011; 8 Vonck D. (ref13/cit13) 2010; 24 Huber G. (ref16/cit16) 2005; 102 Endlein T. (ref23/cit23) 2013; 8 Smith J. M. (ref20/cit20) 2006; 192 Peters J. H. (ref1/cit1) 1991; 110 Barnes W. J. (ref21/cit21) 2007; 32 Roshan R. (ref25/cit25) 2011; 7 ref4/cit4 Rosen J. (ref27/cit27) 2008; 130 Marucci D. D. (ref14/cit14) 2000; 93 Heijnsdijk E. A. M. (ref15/cit15) 2004; 18 del Campo A. (ref26/cit26) 2007; 17 |
References_xml | – volume: 40 start-page: 300 year: 1997 ident: ref8/cit8 publication-title: Can. J. Surg. – volume: 43 start-page: 572 year: 1996 ident: ref9/cit9 publication-title: Gastrointest. Endosc. doi: 10.1016/S0016-5107(96)70193-1 – volume: 110 start-page: 769 year: 1991 ident: ref1/cit1 publication-title: Surgery – volume: 93 start-page: 16 year: 2000 ident: ref14/cit14 publication-title: J. Surg. Res. doi: 10.1006/jsre.2000.5906 – volume: 10 start-page: 163 year: 1997 ident: ref7/cit7 publication-title: HPB Surg. doi: 10.1155/1997/57313 – volume: 24 start-page: 2418 year: 2010 ident: ref13/cit13 publication-title: Surg. Endosc. doi: 10.1007/s00464-010-0967-4 – volume: 8 start-page: 173 year: 2011 ident: ref12/cit12 publication-title: Appl. Bionics Biomech. doi: 10.1155/2011/940867 – volume: 32 start-page: 479 year: 2007 ident: ref21/cit21 publication-title: MRS Bull. doi: 10.1557/mrs2007.81 – volume: 25 start-page: 1499 year: 2015 ident: ref30/cit30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403751 – volume: 3 start-page: 689 year: 2006 ident: ref19/cit19 publication-title: J. R. Soc., Interface doi: 10.1098/rsif.2006.0135 – volume: 102 start-page: 16293 year: 2005 ident: ref16/cit16 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506328102 – volume: 130 start-page: 021020 year: 2008 ident: ref27/cit27 publication-title: J. Biomech. Eng.—Trans. ASME doi: 10.1115/1.2898712 – volume: 6 start-page: 1345 year: 2014 ident: ref28/cit28 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4044135 – volume: 167 start-page: 608 year: 1994 ident: ref5/cit5 publication-title: Am. J. Surg. doi: 10.1016/0002-9610(94)90108-2 – volume: 1 start-page: 156 year: 1991 ident: ref3/cit3 publication-title: Surg. Laparosc. Endosc. Percutaneous Tech. – volume: 192 start-page: 1193 year: 2006 ident: ref20/cit20 publication-title: J. Comput. Physiol., A doi: 10.1007/s00359-006-0151-4 – volume: 18 start-page: 974 year: 2004 ident: ref15/cit15 publication-title: Surg. Endosc. doi: 10.1007/s00464-003-9153-2 – volume: 161 start-page: 393 year: 1991 ident: ref2/cit2 publication-title: Am. J. Surg. doi: 10.1016/0002-9610(91)90605-D – volume: 9 start-page: 329 year: 2000 ident: ref11/cit11 publication-title: J. Microelectromech. Syst. doi: 10.1109/84.870059 – ident: ref4/cit4 doi: 10.1016/S0025-6196(12)60390-5 – volume: 10 start-page: 165 year: 1997 ident: ref6/cit6 publication-title: HPB Surg. doi: 10.1155/1997/14698 – volume: 11 start-page: 20140113 year: 2014 ident: ref29/cit29 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0113 – volume: 161 start-page: 887 year: 1999 ident: ref10/cit10 publication-title: J. Urol. doi: 10.1016/S0022-5347(01)61797-X – volume: 7 start-page: 4007 year: 2011 ident: ref25/cit25 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.06.045 – volume: 17 start-page: R81 year: 2007 ident: ref26/cit26 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/6/R01 – volume: 274 start-page: 1384 year: 2013 ident: ref22/cit22 publication-title: J. Morphol. doi: 10.1002/jmor.20186 – volume: 7 start-page: 11047 year: 2011 ident: ref18/cit18 publication-title: Soft Matter doi: 10.1039/c1sm06269g – volume: 47 start-page: 353 year: 2014 ident: ref24/cit24 publication-title: Macromolecules doi: 10.1021/ma4018718 – volume: 8 start-page: e73810 year: 2013 ident: ref23/cit23 publication-title: PloS One doi: 10.1371/journal.pone.0073810 – volume: 89 start-page: L14 year: 2005 ident: ref17/cit17 publication-title: Biophys. J. doi: 10.1529/biophysj.105.065268 |
SSID | ssj0063205 |
Score | 2.5049424 |
Snippet | Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13987 |
SubjectTerms | Animals Anura - physiology Biomimetic Materials biomimetics cell structures deformation epithelial cells Epithelial Cells - cytology Epithelial Cells - physiology friction Friction - physiology Hylidae risk Surface Properties Surgical Instruments teeth tissues Toes - physiology |
Title | Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads |
URI | http://dx.doi.org/10.1021/acsami.5b03039 https://www.ncbi.nlm.nih.gov/pubmed/26053597 https://www.proquest.com/docview/1693188292 https://www.proquest.com/docview/2000218636 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQ3u3ykhFInFI2sePER1qxVEggpN2K3oI9HlcrUIKS7IVfz0ySLY9qBbcomih-jGc-e8bfCPGy9CE6gspJAaFMtI8lF3KPCSDMA9oCzHDr_cNHc3qm35_n57_OO_6O4Gfpawcdl8LJPamjstfFjczQCmYQdLLc2lyjsiFZkXbkOinJY23pGa98z04Iuj-d0A5kOXiYxe2R7qgbiAk5seTr0ab3R_DjKm3jPxt_R-xPMFO-GfXirriG9T1x6zfywfviy_G6WdccaMcgl5s2OkBJEJafB3Mo37WOecQ7eUyuLsimloQW5ZIPzy_kZ-zlol0P1yJkE-WqRaQXzYVcNSg_udA9EGeLt6uT02Sqt5A48kp9orD0BIEgkP0GbTR4bzVYBSqWNhhFO7k4d5x-GDWmXoVQWGNRZd4X8xSceij26qbGQyHzNHIx0UBzrzXMC59jhorZAoMpDaQz8YKGpprWS1cNofAsrcbxqqbxmolkO00VTJTlXDnj2075V5fy30eyjp2Sz7ezXtF64iCJq7HZUEuMJTNXZjbbLcPXm7iWlzIzcTCqzOX_eH9I_Swe_VcPH4ubhMDyMf_3idjr2w0-JZTT-2eDgv8EDBf2fQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvB_L0wgkTmk3sePEx7ZiWaCtKu1W9BZie1ytQAlKshd-PWMnWV5aCW6RNUn8mMx8zoy_AXida-tKgspRZmweCe1yX8jdRQbN1KLKjAyn3k9O5fxcfLhIL3ZgfzwLQ51o6UltCOL_ZBeI96nNV8RJNWklV1fgKiGRxKv0wdFiNL2SJyFnkTbmIsrJcY0sjX_d732RaX_3RVsAZnA0s1twtuliyC_5srfu9J75_gd743-M4TbcHEAnO-i15A7sYHUXbvxCRXgPPh-u6lXlw-5o2WLduNIgI0Drr4NxZO-a0rOKt-yQHJ9ldcUIO7KF_5V-yT5hx2bNKhySYLVjywaRGupLtqyRnZW2vQ_ns7fLo3k0VF-ISvJRXcQx1wSIjCVrboQURmsljOKGu1xZyWlf56alT0Z0AmPNrc2UVMgTrbNpbEr-AHarusJHwNLY-dKiljRBCDPNdIoJcs8daGUuTTyBVzQ1xfD1tEUIjCdx0c9XMczXBKJxtQozEJj7Ohpft8q_2ch_66k7tkq-HBe_oK_Lh0zKCus19UQqMnp5opLtMv6wk6_sxeUEHvaas3mf3y3SOLPH_zTCF3Btvjw5Lo7fn358AtcJm6V9ZvBT2O2aNT4j_NPp50HnfwAS_P7e |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwgPJeSsEIJE4pm9hx4mNbupRXVWm3orc0flUrUFIl2Qu_vjNOdsVDK9FbZE0S2xl7PmdmvgF4m2vrS4TKUWZsHgntcyrk7iPjzNg6lRkZst6_ncjjM_H5PD0f8rgpFwY70eKT2uDEp1V9Zf3AMBC_x3aqipNq1EyubsEW-exIrfcPp8vtV_IkxC3i4VxEORqvJVPjP_eTPTLtn_ZoDcgMxmZyH2arboYYkx97i07vmV9_MTjecBzbcG8An2y_15YHsOGqh3D3N0rCR3BxMK_nFbnfnWXTReNL4xgCW7oOmyT72JTELt6yAzSAltUVQwzJpvRL_ZJ9dx2bNPOQLMFqz2aNc9hQX7JZ7dhpadvHcDY5mh0eR0MVhqhEW9VF3OUagZGxuKsbIYXRWgmjuOE-V1ZyPN_5cUlBiV64WHNrMyWV44nW2Tg2JX8Cm1VduWfA0thTiVGLGiGEGWc6dYnjxCFoZS5NPII3ODXFsIraIjjIk7jo56sY5msE0fKLFWYgMqd6Gj_Xyr9byV_1FB5rJV8vFaDAVUauk7Jy9QJ7IhVufnmikvUylPREFb64HMHTXntW76NTI44ze_5fI3wFt08_TIqvn06-7MAdhGhpHyD8Aja7ZuF2EQZ1-mVQ-2tlMQFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Surface+for+Surgical+Graspers+Based+on+the+Strong+Wet+Friction+of+Tree+Frog+Toe+Pads&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Huawei&rft.au=Zhang%2C+Liwen&rft.au=Zhang%2C+Deyuan&rft.au=Zhang%2C+Pengfei&rft.date=2015-07-01&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=7&rft.issue=25&rft.spage=13987&rft_id=info:doi/10.1021%2Facsami.5b03039&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |