Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads

Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 7; no. 25; pp. 13987 - 13995
Main Authors Chen, Huawei, Zhang, Liwen, Zhang, Deyuan, Zhang, Pengfei, Han, Zhiwu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.
AbstractList Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.
Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.
Author Han, Zhiwu
Zhang, Pengfei
Zhang, Liwen
Zhang, Deyuan
Chen, Huawei
AuthorAffiliation Jilin University
School of Mechanical Engineering and Automation
Key Laboratory for Bionic Engineering, Ministry of Education
Beihang University
AuthorAffiliation_xml – name: School of Mechanical Engineering and Automation
– name: Jilin University
– name: Key Laboratory for Bionic Engineering, Ministry of Education
– name: Beihang University
Author_xml – sequence: 1
  givenname: Huawei
  surname: Chen
  fullname: Chen, Huawei
  email: chenhw75@buaa.edu.cn
– sequence: 2
  givenname: Liwen
  surname: Zhang
  fullname: Zhang, Liwen
– sequence: 3
  givenname: Deyuan
  surname: Zhang
  fullname: Zhang, Deyuan
  email: zhangdy@buaa.edu.cn
– sequence: 4
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
– sequence: 5
  givenname: Zhiwu
  surname: Han
  fullname: Han, Zhiwu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26053597$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMoPqpbl5KlCK15zUyyVPEFgkIrLmOSuVMj00lNZhb-e1NaXQji6h4O37mLcw7Qdhc6QOiYkgkljJ4bl8zCTwpLOOFqC-1TJcRYsoJt_2gh9tBBSu-ElJyRYhftsZIUvFDVPnq99MF3aekj1Hg6xMY4wE2IKz33zrT4Npq0hJjwpUmZCR3u3wBP-xi6OX6BHt9E73qf_dDgWQTIRpjjWQD8ZOp0iHYa0yY42twRer65nl3djR8eb--vLh7GRjDVjzlIS1jharDUiVI4a5VwijveSFWXXAjZEFNJWTUCqOV1XalSAWfWVoQ6w0fodP13GcPHAKnXC58ctK3pIAxJM0JyX7Lk5b8oLRWnUjLFMnqyQQe7gFovo1-Y-Km_C8yAWAMuhpQiNNr53qzq6KPxraZEr3bS6530Zqccm_yKfX_-M3C2DmRfv4chdrnMv-Avrwmi_w
CitedBy_id crossref_primary_10_1108_ILT_02_2024_0049
crossref_primary_10_1016_j_triboint_2020_106162
crossref_primary_10_1021_acsaenm_3c00466
crossref_primary_10_1016_j_triboint_2021_107411
crossref_primary_10_1242_jeb_168179
crossref_primary_10_1088_1361_665X_aad6d2
crossref_primary_10_1002_admt_202301387
crossref_primary_10_1039_D3SM00154G
crossref_primary_10_1108_ILT_07_2021_0247
crossref_primary_10_3390_polym14235312
crossref_primary_10_1021_acsnano_7b04994
crossref_primary_10_1002_adfm_201905287
crossref_primary_10_1039_C7TA01609C
crossref_primary_10_1016_j_jmapro_2024_09_058
crossref_primary_10_1186_s12983_018_0273_x
crossref_primary_10_1002_admi_202000987
crossref_primary_10_1111_1749_4877_12821
crossref_primary_10_1016_j_mssp_2023_107731
crossref_primary_10_1007_s42235_017_0002_8
crossref_primary_10_1016_j_triboint_2023_108992
crossref_primary_10_1002_smll_202103423
crossref_primary_10_3389_fmech_2021_668262
crossref_primary_10_1002_admi_202100528
crossref_primary_10_1039_D3CS00764B
crossref_primary_10_1016_j_triboint_2025_110556
crossref_primary_10_1039_D4MH00331D
crossref_primary_10_1109_LRA_2021_3067277
crossref_primary_10_1007_s42235_018_0074_0
crossref_primary_10_1126_sciadv_abn2728
crossref_primary_10_1109_TBME_2020_2982242
crossref_primary_10_1016_j_triboint_2022_107808
crossref_primary_10_1088_1748_3190_aaeb09
crossref_primary_10_1002_advs_202001125
crossref_primary_10_1002_admi_201901980
crossref_primary_10_1002_smll_202401859
crossref_primary_10_1016_j_eml_2023_102092
crossref_primary_10_1021_acs_langmuir_9b03773
crossref_primary_10_1126_sciadv_adi4843
crossref_primary_10_1049_bsbt_2019_0003
crossref_primary_10_1016_j_triboint_2023_109178
crossref_primary_10_3390_ma14247910
crossref_primary_10_1007_s44251_023_00022_5
crossref_primary_10_1002_admi_202101038
crossref_primary_10_1002_adfm_202313728
crossref_primary_10_1063_5_0102883
crossref_primary_10_1177_0954411920971400
crossref_primary_10_26599_FRICT_2025_9441000
crossref_primary_10_1016_j_mtbio_2025_101615
crossref_primary_10_1088_1748_3190_ac9878
crossref_primary_10_1016_j_jmatprotec_2020_116915
crossref_primary_10_1002_smtd_202301726
crossref_primary_10_1103_PhysRevE_99_022802
crossref_primary_10_1007_s42235_019_0005_8
crossref_primary_10_1098_rsif_2017_0629
crossref_primary_10_3390_app112311287
crossref_primary_10_3390_biomimetics2030010
crossref_primary_10_1007_s42235_021_00128_2
crossref_primary_10_1016_j_cej_2021_130194
crossref_primary_10_1088_1748_3190_ab1d11
crossref_primary_10_1039_C5TB02634B
crossref_primary_10_1021_acsami_2c13984
crossref_primary_10_1016_j_triboint_2022_107823
crossref_primary_10_1016_j_matdes_2023_112505
crossref_primary_10_1002_admi_201900283
crossref_primary_10_1007_s42235_022_00184_2
crossref_primary_10_1021_acsami_9b22532
crossref_primary_10_1002_admt_201700353
crossref_primary_10_1039_C7SM01493G
crossref_primary_10_1016_j_porgcoat_2022_107303
crossref_primary_10_1021_acsapm_4c00147
crossref_primary_10_34133_2022_9825656
crossref_primary_10_1021_acsami_3c05095
crossref_primary_10_1186_s10033_022_00708_1
crossref_primary_10_1109_TBME_2017_2664668
crossref_primary_10_1109_LRA_2022_3149306
crossref_primary_10_1016_j_cis_2023_102862
crossref_primary_10_1063_5_0160377
crossref_primary_10_3762_bjnano_12_57
crossref_primary_10_1039_D2TA01960D
crossref_primary_10_1007_s11465_022_0699_x
crossref_primary_10_1021_acsnano_0c08713
crossref_primary_10_1021_acsami_0c08121
crossref_primary_10_1007_s00339_022_05921_2
crossref_primary_10_1016_j_triboint_2023_108394
crossref_primary_10_1093_icb_icaa037
crossref_primary_10_1002_pola_28721
crossref_primary_10_1002_wnan_1914
crossref_primary_10_1016_j_eml_2018_12_003
crossref_primary_10_1016_j_cej_2023_141927
crossref_primary_10_1002_smll_201601676
crossref_primary_10_1088_1748_3190_11_3_035003
crossref_primary_10_1109_LRA_2019_2893401
crossref_primary_10_1016_j_colsurfb_2020_111531
crossref_primary_10_3390_mi8040125
crossref_primary_10_3390_biomimetics2020007
crossref_primary_10_3762_bjnano_7_201
crossref_primary_10_1002_adma_201902278
crossref_primary_10_1021_acsanm_2c05161
crossref_primary_10_1088_1361_6463_aab58d
crossref_primary_10_1088_2051_672X_adad8b
crossref_primary_10_1021_acsnano_4c17864
crossref_primary_10_1021_acsami_0c21847
crossref_primary_10_3390_biomimetics7040209
crossref_primary_10_1109_TBME_2020_2996965
crossref_primary_10_1088_1748_3190_aafc37
crossref_primary_10_1007_s40544_022_0617_6
crossref_primary_10_1038_s41598_019_53027_2
crossref_primary_10_1111_joa_12860
crossref_primary_10_1038_s43586_023_00251_w
crossref_primary_10_1002_pol_20210521
crossref_primary_10_1007_s42235_021_0009_z
crossref_primary_10_1021_acsami_0c10749
crossref_primary_10_1002_adem_202402613
crossref_primary_10_1002_adma_201900933
crossref_primary_10_1007_s11665_022_07277_3
crossref_primary_10_1016_j_triboint_2023_108692
crossref_primary_10_1021_acsami_2c22378
crossref_primary_10_1049_bsb2_12049
crossref_primary_10_1021_acsapm_1c01285
crossref_primary_10_1007_s00170_022_10631_3
crossref_primary_10_1002_adfm_202205804
crossref_primary_10_1098_rsta_2019_0131
crossref_primary_10_1049_bsbt_2018_0004
crossref_primary_10_1116_6_0000747
Cites_doi 10.1016/S0016-5107(96)70193-1
10.1006/jsre.2000.5906
10.1155/1997/57313
10.1007/s00464-010-0967-4
10.1155/2011/940867
10.1557/mrs2007.81
10.1002/adfm.201403751
10.1098/rsif.2006.0135
10.1073/pnas.0506328102
10.1115/1.2898712
10.1021/am4044135
10.1016/0002-9610(94)90108-2
10.1007/s00359-006-0151-4
10.1007/s00464-003-9153-2
10.1016/0002-9610(91)90605-D
10.1109/84.870059
10.1016/S0025-6196(12)60390-5
10.1155/1997/14698
10.1098/rsif.2014.0113
10.1016/S0022-5347(01)61797-X
10.1016/j.actbio.2011.06.045
10.1088/0960-1317/17/6/R01
10.1002/jmor.20186
10.1039/c1sm06269g
10.1021/ma4018718
10.1371/journal.pone.0073810
10.1529/biophysj.105.065268
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.5b03039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 13995
ExternalDocumentID 26053597
10_1021_acsami_5b03039
g88028672
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-3e8b025cdeb1c464cbb94c93c3f89d63448f0a7887f4e1b3dd7969e32bb701ca3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Jul 10 23:53:31 EDT 2025
Fri Jul 11 05:51:35 EDT 2025
Thu Jan 02 22:19:35 EST 2025
Tue Jul 01 04:12:42 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords biomimetic surface
low damage
surgical grasper
wet friction
tree frog
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-3e8b025cdeb1c464cbb94c93c3f89d63448f0a7887f4e1b3dd7969e32bb701ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26053597
PQID 1693188292
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000218636
proquest_miscellaneous_1693188292
pubmed_primary_26053597
crossref_citationtrail_10_1021_acsami_5b03039
crossref_primary_10_1021_acsami_5b03039
acs_journals_10_1021_acsami_5b03039
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Chin P. T. (ref6/cit6) 1997; 10
Shahsavan H. (ref24/cit24) 2014; 47
Iturri J. (ref30/cit30) 2015; 25
Barnes W. J. (ref22/cit22) 2013; 274
Federle W. (ref19/cit19) 2006; 3
Dargahi J. (ref11/cit11) 2000; 9
Sun W. X. (ref17/cit17) 2005; 89
Bishoff J. T. (ref10/cit10) 1999; 161
Dirks J. H. (ref18/cit18) 2011; 7
Johnston S. (ref5/cit5) 1994; 167
Soper N. J. (ref3/cit3) 1991; 1
Seo S. (ref28/cit28) 2014; 6
Patterson E. J. (ref8/cit8) 1997; 40
Schrenk P. (ref9/cit9) 1996; 43
Ponsky J. L. (ref2/cit2) 1991; 161
Tsipenyuk A. (ref29/cit29) 2014; 11
Graham M. D. (ref7/cit7) 1997; 10
Roan P. R. (ref12/cit12) 2011; 8
Vonck D. (ref13/cit13) 2010; 24
Huber G. (ref16/cit16) 2005; 102
Endlein T. (ref23/cit23) 2013; 8
Smith J. M. (ref20/cit20) 2006; 192
Peters J. H. (ref1/cit1) 1991; 110
Barnes W. J. (ref21/cit21) 2007; 32
Roshan R. (ref25/cit25) 2011; 7
ref4/cit4
Rosen J. (ref27/cit27) 2008; 130
Marucci D. D. (ref14/cit14) 2000; 93
Heijnsdijk E. A. M. (ref15/cit15) 2004; 18
del Campo A. (ref26/cit26) 2007; 17
References_xml – volume: 40
  start-page: 300
  year: 1997
  ident: ref8/cit8
  publication-title: Can. J. Surg.
– volume: 43
  start-page: 572
  year: 1996
  ident: ref9/cit9
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/S0016-5107(96)70193-1
– volume: 110
  start-page: 769
  year: 1991
  ident: ref1/cit1
  publication-title: Surgery
– volume: 93
  start-page: 16
  year: 2000
  ident: ref14/cit14
  publication-title: J. Surg. Res.
  doi: 10.1006/jsre.2000.5906
– volume: 10
  start-page: 163
  year: 1997
  ident: ref7/cit7
  publication-title: HPB Surg.
  doi: 10.1155/1997/57313
– volume: 24
  start-page: 2418
  year: 2010
  ident: ref13/cit13
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-010-0967-4
– volume: 8
  start-page: 173
  year: 2011
  ident: ref12/cit12
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2011/940867
– volume: 32
  start-page: 479
  year: 2007
  ident: ref21/cit21
  publication-title: MRS Bull.
  doi: 10.1557/mrs2007.81
– volume: 25
  start-page: 1499
  year: 2015
  ident: ref30/cit30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403751
– volume: 3
  start-page: 689
  year: 2006
  ident: ref19/cit19
  publication-title: J. R. Soc., Interface
  doi: 10.1098/rsif.2006.0135
– volume: 102
  start-page: 16293
  year: 2005
  ident: ref16/cit16
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506328102
– volume: 130
  start-page: 021020
  year: 2008
  ident: ref27/cit27
  publication-title: J. Biomech. Eng.—Trans. ASME
  doi: 10.1115/1.2898712
– volume: 6
  start-page: 1345
  year: 2014
  ident: ref28/cit28
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4044135
– volume: 167
  start-page: 608
  year: 1994
  ident: ref5/cit5
  publication-title: Am. J. Surg.
  doi: 10.1016/0002-9610(94)90108-2
– volume: 1
  start-page: 156
  year: 1991
  ident: ref3/cit3
  publication-title: Surg. Laparosc. Endosc. Percutaneous Tech.
– volume: 192
  start-page: 1193
  year: 2006
  ident: ref20/cit20
  publication-title: J. Comput. Physiol., A
  doi: 10.1007/s00359-006-0151-4
– volume: 18
  start-page: 974
  year: 2004
  ident: ref15/cit15
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-003-9153-2
– volume: 161
  start-page: 393
  year: 1991
  ident: ref2/cit2
  publication-title: Am. J. Surg.
  doi: 10.1016/0002-9610(91)90605-D
– volume: 9
  start-page: 329
  year: 2000
  ident: ref11/cit11
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.870059
– ident: ref4/cit4
  doi: 10.1016/S0025-6196(12)60390-5
– volume: 10
  start-page: 165
  year: 1997
  ident: ref6/cit6
  publication-title: HPB Surg.
  doi: 10.1155/1997/14698
– volume: 11
  start-page: 20140113
  year: 2014
  ident: ref29/cit29
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0113
– volume: 161
  start-page: 887
  year: 1999
  ident: ref10/cit10
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(01)61797-X
– volume: 7
  start-page: 4007
  year: 2011
  ident: ref25/cit25
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.06.045
– volume: 17
  start-page: R81
  year: 2007
  ident: ref26/cit26
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/6/R01
– volume: 274
  start-page: 1384
  year: 2013
  ident: ref22/cit22
  publication-title: J. Morphol.
  doi: 10.1002/jmor.20186
– volume: 7
  start-page: 11047
  year: 2011
  ident: ref18/cit18
  publication-title: Soft Matter
  doi: 10.1039/c1sm06269g
– volume: 47
  start-page: 353
  year: 2014
  ident: ref24/cit24
  publication-title: Macromolecules
  doi: 10.1021/ma4018718
– volume: 8
  start-page: e73810
  year: 2013
  ident: ref23/cit23
  publication-title: PloS One
  doi: 10.1371/journal.pone.0073810
– volume: 89
  start-page: L14
  year: 2005
  ident: ref17/cit17
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.065268
SSID ssj0063205
Score 2.5049424
Snippet Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13987
SubjectTerms Animals
Anura - physiology
Biomimetic Materials
biomimetics
cell structures
deformation
epithelial cells
Epithelial Cells - cytology
Epithelial Cells - physiology
friction
Friction - physiology
Hylidae
risk
Surface Properties
Surgical Instruments
teeth
tissues
Toes - physiology
Title Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads
URI http://dx.doi.org/10.1021/acsami.5b03039
https://www.ncbi.nlm.nih.gov/pubmed/26053597
https://www.proquest.com/docview/1693188292
https://www.proquest.com/docview/2000218636
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQ3u3ykhFInFI2sePER1qxVEggpN2K3oI9HlcrUIKS7IVfz0ySLY9qBbcomih-jGc-e8bfCPGy9CE6gspJAaFMtI8lF3KPCSDMA9oCzHDr_cNHc3qm35_n57_OO_6O4Gfpawcdl8LJPamjstfFjczQCmYQdLLc2lyjsiFZkXbkOinJY23pGa98z04Iuj-d0A5kOXiYxe2R7qgbiAk5seTr0ab3R_DjKm3jPxt_R-xPMFO-GfXirriG9T1x6zfywfviy_G6WdccaMcgl5s2OkBJEJafB3Mo37WOecQ7eUyuLsimloQW5ZIPzy_kZ-zlol0P1yJkE-WqRaQXzYVcNSg_udA9EGeLt6uT02Sqt5A48kp9orD0BIEgkP0GbTR4bzVYBSqWNhhFO7k4d5x-GDWmXoVQWGNRZd4X8xSceij26qbGQyHzNHIx0UBzrzXMC59jhorZAoMpDaQz8YKGpprWS1cNofAsrcbxqqbxmolkO00VTJTlXDnj2075V5fy30eyjp2Sz7ezXtF64iCJq7HZUEuMJTNXZjbbLcPXm7iWlzIzcTCqzOX_eH9I_Swe_VcPH4ubhMDyMf_3idjr2w0-JZTT-2eDgv8EDBf2fQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvB_L0wgkTmk3sePEx7ZiWaCtKu1W9BZie1ytQAlKshd-PWMnWV5aCW6RNUn8mMx8zoy_AXida-tKgspRZmweCe1yX8jdRQbN1KLKjAyn3k9O5fxcfLhIL3ZgfzwLQ51o6UltCOL_ZBeI96nNV8RJNWklV1fgKiGRxKv0wdFiNL2SJyFnkTbmIsrJcY0sjX_d732RaX_3RVsAZnA0s1twtuliyC_5srfu9J75_gd743-M4TbcHEAnO-i15A7sYHUXbvxCRXgPPh-u6lXlw-5o2WLduNIgI0Drr4NxZO-a0rOKt-yQHJ9ldcUIO7KF_5V-yT5hx2bNKhySYLVjywaRGupLtqyRnZW2vQ_ns7fLo3k0VF-ISvJRXcQx1wSIjCVrboQURmsljOKGu1xZyWlf56alT0Z0AmPNrc2UVMgTrbNpbEr-AHarusJHwNLY-dKiljRBCDPNdIoJcs8daGUuTTyBVzQ1xfD1tEUIjCdx0c9XMczXBKJxtQozEJj7Ohpft8q_2ch_66k7tkq-HBe_oK_Lh0zKCus19UQqMnp5opLtMv6wk6_sxeUEHvaas3mf3y3SOLPH_zTCF3Btvjw5Lo7fn358AtcJm6V9ZvBT2O2aNT4j_NPp50HnfwAS_P7e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwgPJeSsEIJE4pm9hx4mNbupRXVWm3orc0flUrUFIl2Qu_vjNOdsVDK9FbZE0S2xl7PmdmvgF4m2vrS4TKUWZsHgntcyrk7iPjzNg6lRkZst6_ncjjM_H5PD0f8rgpFwY70eKT2uDEp1V9Zf3AMBC_x3aqipNq1EyubsEW-exIrfcPp8vtV_IkxC3i4VxEORqvJVPjP_eTPTLtn_ZoDcgMxmZyH2arboYYkx97i07vmV9_MTjecBzbcG8An2y_15YHsOGqh3D3N0rCR3BxMK_nFbnfnWXTReNL4xgCW7oOmyT72JTELt6yAzSAltUVQwzJpvRL_ZJ9dx2bNPOQLMFqz2aNc9hQX7JZ7dhpadvHcDY5mh0eR0MVhqhEW9VF3OUagZGxuKsbIYXRWgmjuOE-V1ZyPN_5cUlBiV64WHNrMyWV44nW2Tg2JX8Cm1VduWfA0thTiVGLGiGEGWc6dYnjxCFoZS5NPII3ODXFsIraIjjIk7jo56sY5msE0fKLFWYgMqd6Gj_Xyr9byV_1FB5rJV8vFaDAVUauk7Jy9QJ7IhVufnmikvUylPREFb64HMHTXntW76NTI44ze_5fI3wFt08_TIqvn06-7MAdhGhpHyD8Aja7ZuF2EQZ1-mVQ-2tlMQFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Surface+for+Surgical+Graspers+Based+on+the+Strong+Wet+Friction+of+Tree+Frog+Toe+Pads&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Huawei&rft.au=Zhang%2C+Liwen&rft.au=Zhang%2C+Deyuan&rft.au=Zhang%2C+Pengfei&rft.date=2015-07-01&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=7&rft.issue=25&rft.spage=13987&rft_id=info:doi/10.1021%2Facsami.5b03039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon