Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA‑b‑PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells
The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition–fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self...
Saved in:
Published in | Molecular pharmaceutics Vol. 14; no. 12; pp. 4648 - 4660 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1543-8384 1543-8392 1543-8392 |
DOI | 10.1021/acs.molpharmaceut.7b00737 |
Cover
Loading…
Abstract | The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition–fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5–5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers. |
---|---|
AbstractList | The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers. The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition–fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5–5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers. The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers. |
Author | Hsu, Chun-Hua Wu, Jui-Yu Mi, Fwu-Long Lu, Kun-Ying Don, Trong-Ming Lin, Li-Jie |
AuthorAffiliation | Tamkang University National Taiwan University Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering Department of Agricultural Chemistry Department of Chemical and Materials Engineering Taipei Medical University Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering Department of Biochemistry and Molecular Cell Biology, School of Medicine Graduate Institute of Medical Sciences, College of Medicine |
AuthorAffiliation_xml | – name: Department of Chemical and Materials Engineering – name: National Taiwan University – name: Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering – name: Department of Biochemistry and Molecular Cell Biology, School of Medicine – name: Graduate Institute of Medical Sciences, College of Medicine – name: Taipei Medical University – name: Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering – name: Department of Agricultural Chemistry – name: Tamkang University |
Author_xml | – sequence: 1 givenname: Trong-Ming surname: Don fullname: Don, Trong-Ming organization: Tamkang University – sequence: 2 givenname: Kun-Ying surname: Lu fullname: Lu, Kun-Ying organization: Taipei Medical University – sequence: 3 givenname: Li-Jie surname: Lin fullname: Lin, Li-Jie organization: Tamkang University – sequence: 4 givenname: Chun-Hua orcidid: 0000-0002-0008-7383 surname: Hsu fullname: Hsu, Chun-Hua organization: National Taiwan University – sequence: 5 givenname: Jui-Yu surname: Wu fullname: Wu, Jui-Yu organization: Department of Biochemistry and Molecular Cell Biology, School of Medicine – sequence: 6 givenname: Fwu-Long orcidid: 0000-0001-8063-3358 surname: Mi fullname: Mi, Fwu-Long email: flmi530326@tmu.edu.tw organization: Taipei Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29061050$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQxi1URP_AKyBz45Jdx443yQktodBKpazQco4myWTryrGD7SBtT7xCn6jvwpPgZbdIcOrBsq35zTej7zslR8YaJORNymYp4-kcWj8brB5vwA3Q4hRmecNYLvJn5CSVmUgKUfKjv-8iOyan3t8yxjPJxQtyzEu2SJlkJ-RhjcOIDsLkcD5ezM_N3XZAunZq1Jh8RT9a49UPpBUEZY1q6crZgMrMV8vlr5_3TTyr68v4Geg1GLtB7WlvHa2sCc5qjR1dmqBaMC06-sFNGwqmo6sbG6zHqB3U3a6AOk5xWwobUMYH-nnSQXU7PC6hfAAT6HuHEEvVXqtCrf1L8rwH7fHV4T4j3z6er6uL5OrLp8tqeZVAxsuQiEKCYHkKUhZswTHtmIC8L0suWI9Z3qFoOXR9sxCAZSa6ModGlnmeoig4L8QZebvXHZ39PqEP9aB8GzcAg3bydVpKyRZFTCeirw_o1AzY1aNTA7ht_Wh6BN7tgdZZ7x32davCH3uDA6XrlNW7mOsYc_1PzPUh5qhQ_qfwOOQpvXLfu0Nu7eRM9O0Jfb8BOwfNAw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2018_07_098 crossref_primary_10_1016_j_carbpol_2018_11_050 crossref_primary_10_3390_polym15112463 crossref_primary_10_1039_D0NJ02345K crossref_primary_10_3390_nano8110952 crossref_primary_10_1016_j_polymdegradstab_2023_110349 crossref_primary_10_1021_acsami_1c13634 crossref_primary_10_1039_D2QM00469K crossref_primary_10_1039_D3RA00866E crossref_primary_10_1016_j_critrevonc_2023_103961 crossref_primary_10_1016_j_mtcomm_2023_105504 crossref_primary_10_1007_s10965_021_02534_w crossref_primary_10_1016_j_ejpb_2020_02_012 crossref_primary_10_1016_j_addr_2018_07_017 crossref_primary_10_1016_j_ejpb_2020_10_009 crossref_primary_10_1039_D3TB02650G crossref_primary_10_1080_10717544_2022_2105443 crossref_primary_10_1039_D3NJ04218A crossref_primary_10_3389_fchem_2022_952675 crossref_primary_10_3390_su17052331 crossref_primary_10_1007_s13346_024_01684_w crossref_primary_10_1039_D2PY01126C crossref_primary_10_3390_polym12091999 crossref_primary_10_3390_pharmaceutics14051075 crossref_primary_10_1557_jmr_2018_364 crossref_primary_10_1016_j_chemphyslip_2022_105194 crossref_primary_10_6023_cjoc202206026 crossref_primary_10_1016_j_pmatsci_2023_101070 crossref_primary_10_3389_fonc_2022_855019 crossref_primary_10_1002_wnan_1715 crossref_primary_10_1002_adfm_202103347 crossref_primary_10_1016_j_ajps_2023_100873 crossref_primary_10_3390_ma17091947 crossref_primary_10_3389_fmats_2018_00035 crossref_primary_10_1021_acsomega_0c05276 crossref_primary_10_1080_21691401_2018_1559176 crossref_primary_10_1016_j_eurpolymj_2018_11_033 crossref_primary_10_1016_j_nantod_2021_101134 crossref_primary_10_1016_j_reactfunctpolym_2020_104595 crossref_primary_10_1177_1550147719894544 crossref_primary_10_3390_ph12040148 crossref_primary_10_3390_polym10060592 crossref_primary_10_1016_j_ijbiomac_2023_126380 crossref_primary_10_1186_s12645_023_00176_9 crossref_primary_10_1016_j_jconrel_2020_09_036 crossref_primary_10_1016_j_eurpolymj_2019_06_031 crossref_primary_10_1016_j_biomaterials_2019_119299 |
Cites_doi | 10.1021/acs.molpharmaceut.6b01178 10.1016/j.jconrel.2016.05.015 10.1039/C5PY01742D 10.1021/acs.molpharmaceut.5b00977 10.1016/j.jconrel.2014.05.056 10.1093/oxfordjournals.jbchem.a022388 10.1021/acs.molpharmaceut.6b01051 10.1021/acs.molpharmaceut.5b00706 10.1021/mp400615n 10.1039/C4SM02896A 10.1021/acs.molpharmaceut.7b00184 10.1039/C7PY00161D 10.1016/j.carbpol.2017.02.065 10.1002/pola.27945 10.1021/nn101617n 10.1186/1472-6807-11-14 10.1002/chem.201303963 10.1039/C5TB00468C 10.1016/j.colsurfa.2015.11.029 10.1039/C6PY00177G 10.1016/j.carbpol.2010.01.053 10.1016/0039-9140(92)80227-5 10.1021/acs.molpharmaceut.5b00342 10.1021/acsami.6b01602 10.1039/C4CC08413F 10.1021/am503200p 10.1002/path.1277 10.1002/anie.201311047 10.1002/pola.27950 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.molpharmaceut.7b00737 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1543-8392 |
EndPage | 4660 |
ExternalDocumentID | 29061050 10_1021_acs_molpharmaceut_7b00737 b384993986 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 123 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL H~9 IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F X --- -~X 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a429t-385a3071a558062e1d03a7f99230fe47de3c2adfb63ae943d97ab59771e382283 |
IEDL.DBID | ACS |
ISSN | 1543-8384 1543-8392 |
IngestDate | Fri Jul 11 00:12:26 EDT 2025 Mon Jul 21 05:42:20 EDT 2025 Tue Jul 01 04:33:41 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Thu Aug 27 13:42:41 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | thermoresponsive N-isopropylacrylamide protamine enzymatic digestion nanogels pH-responsive |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-385a3071a558062e1d03a7f99230fe47de3c2adfb63ae943d97ab59771e382283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0008-7383 0000-0001-8063-3358 |
PMID | 29061050 |
PQID | 1955068021 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1955068021 pubmed_primary_29061050 crossref_citationtrail_10_1021_acs_molpharmaceut_7b00737 crossref_primary_10_1021_acs_molpharmaceut_7b00737 acs_journals_10_1021_acs_molpharmaceut_7b00737 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-04 |
PublicationDateYYYYMMDD | 2017-12-04 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular pharmaceutics |
PublicationTitleAlternate | Mol. Pharmaceutics |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1021/acs.molpharmaceut.6b01178 – ident: ref18/cit18 doi: 10.1016/j.jconrel.2016.05.015 – ident: ref10/cit10 doi: 10.1039/C5PY01742D – ident: ref28/cit28 doi: 10.1021/acs.molpharmaceut.5b00977 – ident: ref19/cit19 doi: 10.1016/j.jconrel.2014.05.056 – ident: ref21/cit21 doi: 10.1093/oxfordjournals.jbchem.a022388 – ident: ref5/cit5 doi: 10.1021/acs.molpharmaceut.6b01051 – ident: ref27/cit27 doi: 10.1021/acs.molpharmaceut.5b00706 – ident: ref22/cit22 doi: 10.1021/mp400615n – ident: ref26/cit26 doi: 10.1039/C4SM02896A – ident: ref4/cit4 doi: 10.1021/acs.molpharmaceut.7b00184 – ident: ref12/cit12 doi: 10.1039/C7PY00161D – ident: ref17/cit17 doi: 10.1016/j.carbpol.2017.02.065 – ident: ref16/cit16 doi: 10.1002/pola.27945 – ident: ref29/cit29 doi: 10.1021/nn101617n – ident: ref23/cit23 doi: 10.1186/1472-6807-11-14 – ident: ref25/cit25 doi: 10.1002/chem.201303963 – ident: ref9/cit9 doi: 10.1039/C5TB00468C – ident: ref8/cit8 doi: 10.1016/j.colsurfa.2015.11.029 – ident: ref2/cit2 doi: 10.1039/C6PY00177G – ident: ref14/cit14 doi: 10.1016/j.carbpol.2010.01.053 – ident: ref24/cit24 doi: 10.1016/0039-9140(92)80227-5 – ident: ref3/cit3 doi: 10.1021/acs.molpharmaceut.5b00342 – ident: ref1/cit1 doi: 10.1021/acsami.6b01602 – ident: ref7/cit7 doi: 10.1039/C4CC08413F – ident: ref11/cit11 doi: 10.1021/am503200p – ident: ref20/cit20 doi: 10.1002/path.1277 – ident: ref13/cit13 doi: 10.1002/anie.201311047 – ident: ref15/cit15 doi: 10.1002/pola.27950 |
SSID | ssj0024523 |
Score | 2.4223554 |
Snippet | The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm)... The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4648 |
SubjectTerms | Acrylic Resins - chemistry Antineoplastic Agents - administration & dosage Breast Neoplasms - drug therapy Breast Neoplasms - pathology Cell Membrane Permeability Doxorubicin - administration & dosage Drug Carriers - chemistry Drug Resistance, Multiple - drug effects Drug Resistance, Neoplasm - drug effects Gels - chemistry Humans Hydrogen-Ion Concentration MCF-7 Cells Nanoparticles - chemistry Photochemotherapy - methods Photosensitizing Agents - administration & dosage Protamines - chemistry Temperature Tumor Microenvironment - drug effects |
Title | Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA‑b‑PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells |
URI | http://dx.doi.org/10.1021/acs.molpharmaceut.7b00737 https://www.ncbi.nlm.nih.gov/pubmed/29061050 https://www.proquest.com/docview/1955068021 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSIgLlP-FglwJ9dTsJnZ-nOM2tFo4VCtIpd4i_2VVkU2qTRZp98Qr8ES8C0_SmSTbVUGI9pBDEo81lseez_bMZ0I-BJKZWIbIb6eZ44MPcJQrcscVOoqREN3P22iL03By5n8-D863edx_nuAzbyR1PZxXmHjab_EOI4XnS9F98oCFALcRDyVftwR7QXunG0AD7ggu_Idk_79VoWvS9U3X9A-82fqdkyck3WTvdOEm34bLRg31-m8yx7s0aZc87nEoHXeG85Tcs-UzcjDtyq4OabrNy6oP6QGdbimuV8_Jr9QC3O7omEeXk9FxuV7NLU0XuG3vfOnjbr9bmnQbvppOkQ8CF-Hj8e8fPxU809NP8DKnML9XM_DQFOAzTbrI-cIaOi5xmx1sckE_LpYzKksDWlRNVWPMfXOxxh-2wLiSFZUzeQFAl7b5xAaLgxIIjcuGHmHcfQOqtHUltijqF-Ts5DhNJk5_FYQjwWE2DheBhNnIk0Eg3JBZz7hcRnkM8NTNrR8ZC6YmTa5CLm3scxNHUiG1nme5QIafl2SnrEr7mtBISKu4ClwJtuJprmLLQmk8xuJcaT8cELDkOuuHcp21p_TMy_DjjU7L-k4bELExm0z3xOp4v0dxG1F2LXrZsYvcRmh_Y5sZzAV4wCNLWy1B1RjWm6EA6QF51RntdbVI6w9Y2n1z1-a9JY8YQhkM4fH3yE6zWNp3AMQa9b4deFedfTiJ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgSLCbjb-N8utJaFdLmzh_zmUImzoYVQWZNImLyI6daiJNpiad1F7xCjzR3oUn4ZwkazUkxOAiF0ls61g-9vlsf_5MyFtXMBUID_XtUmY4EAMMafLMMHnqByiI7mQN22LkDU-dD2fuWceqxLMwYEQFJVXNJv5aXcAa4LdpiedPu5Xevi9xm8m_S-4BKGFI5wujL2udPbe52g0Qgm1wmzv3yd5fi8IIlVY3I9QfYGcTfo62ydeV4Q3r5Ft_Xst-uvxN0_H_avaQbHWolIatGz0id3TxmOyP27SLAxqvT2lVB3SfjteC14sn5CrWAL5bcebBxXBwWCwXU03jGS7iG587Fu6lplG7_JvSMapD4JQ8DH9-_yHhGY-O4WVKYbQvJxCvKYBpGrU8-lwrGha46A4eOqPvZ_MJFYUCK8q6rJCBX58v8YfOkWWyoGIizgH20uZ0scLkYAQC5aKm75CFX4MpTVmRzvPqKTk9OoyjodFdDGEICJ-1YXNXwNhkCdflpse0pUxb-FkAYNXMtOMrDY4nVCY9W-jAsVXgC4lCe5a2Oer97JCNoiz0M0J9LrS0pWsKcBkrtWWgmSeUxViQydTxegTbLOk6dpU0e_bMSvDjjUZLukbrEX7tPUnayazjbR_5bbKyVdaLVmvkNpn2rl00gZEBt3tEocs5mBrA7NPjkLtHdlvfXRWLIv-ArM3n_1q9N-TBMP50kpwcjz6-IJsMQQ6Se5yXZKOezfUrgGi1fN30xV8l5EDq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgSBM3wPgZBTY8Ce1qafMf5zLLVnWAqgg6aXeRHTvVRJpUTYrUXvEKPBHvwpNwTuK1GhJicNGLJrF1Ih_7fDnn82dC3nncliH3Ud8usw0XYoAhTJYbJsuCEAXR3bxlW4z90aX7_sq70gk33AsDRtTQU90W8XFWz2WuFQasAV6fVbgHVWd7-4HAUlNwnzzA8h1S-qL481Zrz2uPdwOU4BjMYe4uOfprVxilsvp2lPoD9GxD0PAxSTfGt8yTL_1lI_rZ-jddx_9_uyfkkUanNOrcaY_cU-VTcpx0z65O6GS7W6s-occ02Qpfr56RHxMFILwTaR7MR4Pzcr2aKTpZYDLf-KTZuF8Vjbs0cEYTVInAT_Mo-vntu4BfMr6APzMKq341hbhNAVTTuOPTF0rSqMTkO3jqgp4tllPKSwlWVE1VIxO_uV7jDVUg22RF-ZRfA_yl7S5jiY-DEQiYy4aeIhu_AVPavmJVFPVzcjk8n8QjQx8QYXAIo43hMI_DGmVxz2OmbytLmg4P8hBAq5krN5AKHJDLXPgOV6HryDDgAgX3LOUw1P15QXbKqlQvCQ0YV8IRnsnBbazMEaGyfS4t2w5zkbl-j-C4pXqC12lbu7etFC_eGrRUD1qPsBsPSjMtt46nfhR3aWpvms47zZG7NDq6cdMUVggs-_BSVUswNYSvUJ9B6x7Z7_x30y2K_QPCNl_96-u9JbvJ2TD9eDH-8Jo8tBHrIMfHfUN2msVSHQBSa8RhOx1_AQL_Q20 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature%2FpH%2FEnzyme+Triple-Responsive+Cationic+Protein%2FPAA-b-PNIPAAm+Nanogels+for+Controlled+Anticancer+Drug+and+Photosensitizer+Delivery+against+Multidrug+Resistant+Breast+Cancer+Cells&rft.jtitle=Molecular+pharmaceutics&rft.au=Don%2C+Trong-Ming&rft.au=Lu%2C+Kun-Ying&rft.au=Lin%2C+Li-Jie&rft.au=Hsu%2C+Chun-Hua&rft.date=2017-12-04&rft.eissn=1543-8392&rft.volume=14&rft.issue=12&rft.spage=4648&rft_id=info:doi/10.1021%2Facs.molpharmaceut.7b00737&rft_id=info%3Apmid%2F29061050&rft.externalDocID=29061050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon |