Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA‑b‑PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells

The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly­(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition–fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmaceutics Vol. 14; no. 12; pp. 4648 - 4660
Main Authors Don, Trong-Ming, Lu, Kun-Ying, Lin, Li-Jie, Hsu, Chun-Hua, Wu, Jui-Yu, Mi, Fwu-Long
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.12.2017
Subjects
Online AccessGet full text
ISSN1543-8384
1543-8392
1543-8392
DOI10.1021/acs.molpharmaceut.7b00737

Cover

Loading…
Abstract The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly­(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition–fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5–5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.
AbstractList The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.
The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly­(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition–fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5–5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.
The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.
Author Hsu, Chun-Hua
Wu, Jui-Yu
Mi, Fwu-Long
Lu, Kun-Ying
Don, Trong-Ming
Lin, Li-Jie
AuthorAffiliation Tamkang University
National Taiwan University
Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering
Department of Agricultural Chemistry
Department of Chemical and Materials Engineering
Taipei Medical University
Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering
Department of Biochemistry and Molecular Cell Biology, School of Medicine
Graduate Institute of Medical Sciences, College of Medicine
AuthorAffiliation_xml – name: Department of Chemical and Materials Engineering
– name: National Taiwan University
– name: Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering
– name: Department of Biochemistry and Molecular Cell Biology, School of Medicine
– name: Graduate Institute of Medical Sciences, College of Medicine
– name: Taipei Medical University
– name: Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering
– name: Department of Agricultural Chemistry
– name: Tamkang University
Author_xml – sequence: 1
  givenname: Trong-Ming
  surname: Don
  fullname: Don, Trong-Ming
  organization: Tamkang University
– sequence: 2
  givenname: Kun-Ying
  surname: Lu
  fullname: Lu, Kun-Ying
  organization: Taipei Medical University
– sequence: 3
  givenname: Li-Jie
  surname: Lin
  fullname: Lin, Li-Jie
  organization: Tamkang University
– sequence: 4
  givenname: Chun-Hua
  orcidid: 0000-0002-0008-7383
  surname: Hsu
  fullname: Hsu, Chun-Hua
  organization: National Taiwan University
– sequence: 5
  givenname: Jui-Yu
  surname: Wu
  fullname: Wu, Jui-Yu
  organization: Department of Biochemistry and Molecular Cell Biology, School of Medicine
– sequence: 6
  givenname: Fwu-Long
  orcidid: 0000-0001-8063-3358
  surname: Mi
  fullname: Mi, Fwu-Long
  email: flmi530326@tmu.edu.tw
  organization: Taipei Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29061050$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi1URP_AKyBz45Jdx443yQktodBKpazQco4myWTryrGD7SBtT7xCn6jvwpPgZbdIcOrBsq35zTej7zslR8YaJORNymYp4-kcWj8brB5vwA3Q4hRmecNYLvJn5CSVmUgKUfKjv-8iOyan3t8yxjPJxQtyzEu2SJlkJ-RhjcOIDsLkcD5ezM_N3XZAunZq1Jh8RT9a49UPpBUEZY1q6crZgMrMV8vlr5_3TTyr68v4Geg1GLtB7WlvHa2sCc5qjR1dmqBaMC06-sFNGwqmo6sbG6zHqB3U3a6AOk5xWwobUMYH-nnSQXU7PC6hfAAT6HuHEEvVXqtCrf1L8rwH7fHV4T4j3z6er6uL5OrLp8tqeZVAxsuQiEKCYHkKUhZswTHtmIC8L0suWI9Z3qFoOXR9sxCAZSa6ModGlnmeoig4L8QZebvXHZ39PqEP9aB8GzcAg3bydVpKyRZFTCeirw_o1AzY1aNTA7ht_Wh6BN7tgdZZ7x32davCH3uDA6XrlNW7mOsYc_1PzPUh5qhQ_qfwOOQpvXLfu0Nu7eRM9O0Jfb8BOwfNAw
CitedBy_id crossref_primary_10_1016_j_jcis_2018_07_098
crossref_primary_10_1016_j_carbpol_2018_11_050
crossref_primary_10_3390_polym15112463
crossref_primary_10_1039_D0NJ02345K
crossref_primary_10_3390_nano8110952
crossref_primary_10_1016_j_polymdegradstab_2023_110349
crossref_primary_10_1021_acsami_1c13634
crossref_primary_10_1039_D2QM00469K
crossref_primary_10_1039_D3RA00866E
crossref_primary_10_1016_j_critrevonc_2023_103961
crossref_primary_10_1016_j_mtcomm_2023_105504
crossref_primary_10_1007_s10965_021_02534_w
crossref_primary_10_1016_j_ejpb_2020_02_012
crossref_primary_10_1016_j_addr_2018_07_017
crossref_primary_10_1016_j_ejpb_2020_10_009
crossref_primary_10_1039_D3TB02650G
crossref_primary_10_1080_10717544_2022_2105443
crossref_primary_10_1039_D3NJ04218A
crossref_primary_10_3389_fchem_2022_952675
crossref_primary_10_3390_su17052331
crossref_primary_10_1007_s13346_024_01684_w
crossref_primary_10_1039_D2PY01126C
crossref_primary_10_3390_polym12091999
crossref_primary_10_3390_pharmaceutics14051075
crossref_primary_10_1557_jmr_2018_364
crossref_primary_10_1016_j_chemphyslip_2022_105194
crossref_primary_10_6023_cjoc202206026
crossref_primary_10_1016_j_pmatsci_2023_101070
crossref_primary_10_3389_fonc_2022_855019
crossref_primary_10_1002_wnan_1715
crossref_primary_10_1002_adfm_202103347
crossref_primary_10_1016_j_ajps_2023_100873
crossref_primary_10_3390_ma17091947
crossref_primary_10_3389_fmats_2018_00035
crossref_primary_10_1021_acsomega_0c05276
crossref_primary_10_1080_21691401_2018_1559176
crossref_primary_10_1016_j_eurpolymj_2018_11_033
crossref_primary_10_1016_j_nantod_2021_101134
crossref_primary_10_1016_j_reactfunctpolym_2020_104595
crossref_primary_10_1177_1550147719894544
crossref_primary_10_3390_ph12040148
crossref_primary_10_3390_polym10060592
crossref_primary_10_1016_j_ijbiomac_2023_126380
crossref_primary_10_1186_s12645_023_00176_9
crossref_primary_10_1016_j_jconrel_2020_09_036
crossref_primary_10_1016_j_eurpolymj_2019_06_031
crossref_primary_10_1016_j_biomaterials_2019_119299
Cites_doi 10.1021/acs.molpharmaceut.6b01178
10.1016/j.jconrel.2016.05.015
10.1039/C5PY01742D
10.1021/acs.molpharmaceut.5b00977
10.1016/j.jconrel.2014.05.056
10.1093/oxfordjournals.jbchem.a022388
10.1021/acs.molpharmaceut.6b01051
10.1021/acs.molpharmaceut.5b00706
10.1021/mp400615n
10.1039/C4SM02896A
10.1021/acs.molpharmaceut.7b00184
10.1039/C7PY00161D
10.1016/j.carbpol.2017.02.065
10.1002/pola.27945
10.1021/nn101617n
10.1186/1472-6807-11-14
10.1002/chem.201303963
10.1039/C5TB00468C
10.1016/j.colsurfa.2015.11.029
10.1039/C6PY00177G
10.1016/j.carbpol.2010.01.053
10.1016/0039-9140(92)80227-5
10.1021/acs.molpharmaceut.5b00342
10.1021/acsami.6b01602
10.1039/C4CC08413F
10.1021/am503200p
10.1002/path.1277
10.1002/anie.201311047
10.1002/pola.27950
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.molpharmaceut.7b00737
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
EndPage 4660
ExternalDocumentID 29061050
10_1021_acs_molpharmaceut_7b00737
b384993986
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
123
53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
H~9
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a429t-385a3071a558062e1d03a7f99230fe47de3c2adfb63ae943d97ab59771e382283
IEDL.DBID ACS
ISSN 1543-8384
1543-8392
IngestDate Fri Jul 11 00:12:26 EDT 2025
Mon Jul 21 05:42:20 EDT 2025
Tue Jul 01 04:33:41 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Thu Aug 27 13:42:41 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords thermoresponsive
N-isopropylacrylamide
protamine
enzymatic digestion
nanogels
pH-responsive
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-385a3071a558062e1d03a7f99230fe47de3c2adfb63ae943d97ab59771e382283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0008-7383
0000-0001-8063-3358
PMID 29061050
PQID 1955068021
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1955068021
pubmed_primary_29061050
crossref_citationtrail_10_1021_acs_molpharmaceut_7b00737
crossref_primary_10_1021_acs_molpharmaceut_7b00737
acs_journals_10_1021_acs_molpharmaceut_7b00737
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-04
PublicationDateYYYYMMDD 2017-12-04
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol. Pharmaceutics
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/acs.molpharmaceut.6b01178
– ident: ref18/cit18
  doi: 10.1016/j.jconrel.2016.05.015
– ident: ref10/cit10
  doi: 10.1039/C5PY01742D
– ident: ref28/cit28
  doi: 10.1021/acs.molpharmaceut.5b00977
– ident: ref19/cit19
  doi: 10.1016/j.jconrel.2014.05.056
– ident: ref21/cit21
  doi: 10.1093/oxfordjournals.jbchem.a022388
– ident: ref5/cit5
  doi: 10.1021/acs.molpharmaceut.6b01051
– ident: ref27/cit27
  doi: 10.1021/acs.molpharmaceut.5b00706
– ident: ref22/cit22
  doi: 10.1021/mp400615n
– ident: ref26/cit26
  doi: 10.1039/C4SM02896A
– ident: ref4/cit4
  doi: 10.1021/acs.molpharmaceut.7b00184
– ident: ref12/cit12
  doi: 10.1039/C7PY00161D
– ident: ref17/cit17
  doi: 10.1016/j.carbpol.2017.02.065
– ident: ref16/cit16
  doi: 10.1002/pola.27945
– ident: ref29/cit29
  doi: 10.1021/nn101617n
– ident: ref23/cit23
  doi: 10.1186/1472-6807-11-14
– ident: ref25/cit25
  doi: 10.1002/chem.201303963
– ident: ref9/cit9
  doi: 10.1039/C5TB00468C
– ident: ref8/cit8
  doi: 10.1016/j.colsurfa.2015.11.029
– ident: ref2/cit2
  doi: 10.1039/C6PY00177G
– ident: ref14/cit14
  doi: 10.1016/j.carbpol.2010.01.053
– ident: ref24/cit24
  doi: 10.1016/0039-9140(92)80227-5
– ident: ref3/cit3
  doi: 10.1021/acs.molpharmaceut.5b00342
– ident: ref1/cit1
  doi: 10.1021/acsami.6b01602
– ident: ref7/cit7
  doi: 10.1039/C4CC08413F
– ident: ref11/cit11
  doi: 10.1021/am503200p
– ident: ref20/cit20
  doi: 10.1002/path.1277
– ident: ref13/cit13
  doi: 10.1002/anie.201311047
– ident: ref15/cit15
  doi: 10.1002/pola.27950
SSID ssj0024523
Score 2.4223554
Snippet The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly­(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm)...
The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4648
SubjectTerms Acrylic Resins - chemistry
Antineoplastic Agents - administration & dosage
Breast Neoplasms - drug therapy
Breast Neoplasms - pathology
Cell Membrane Permeability
Doxorubicin - administration & dosage
Drug Carriers - chemistry
Drug Resistance, Multiple - drug effects
Drug Resistance, Neoplasm - drug effects
Gels - chemistry
Humans
Hydrogen-Ion Concentration
MCF-7 Cells
Nanoparticles - chemistry
Photochemotherapy - methods
Photosensitizing Agents - administration & dosage
Protamines - chemistry
Temperature
Tumor Microenvironment - drug effects
Title Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA‑b‑PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells
URI http://dx.doi.org/10.1021/acs.molpharmaceut.7b00737
https://www.ncbi.nlm.nih.gov/pubmed/29061050
https://www.proquest.com/docview/1955068021
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSIgLlP-FglwJ9dTsJnZ-nOM2tFo4VCtIpd4i_2VVkU2qTRZp98Qr8ES8C0_SmSTbVUGI9pBDEo81lseez_bMZ0I-BJKZWIbIb6eZ44MPcJQrcscVOoqREN3P22iL03By5n8-D863edx_nuAzbyR1PZxXmHjab_EOI4XnS9F98oCFALcRDyVftwR7QXunG0AD7ggu_Idk_79VoWvS9U3X9A-82fqdkyck3WTvdOEm34bLRg31-m8yx7s0aZc87nEoHXeG85Tcs-UzcjDtyq4OabrNy6oP6QGdbimuV8_Jr9QC3O7omEeXk9FxuV7NLU0XuG3vfOnjbr9bmnQbvppOkQ8CF-Hj8e8fPxU809NP8DKnML9XM_DQFOAzTbrI-cIaOi5xmx1sckE_LpYzKksDWlRNVWPMfXOxxh-2wLiSFZUzeQFAl7b5xAaLgxIIjcuGHmHcfQOqtHUltijqF-Ts5DhNJk5_FYQjwWE2DheBhNnIk0Eg3JBZz7hcRnkM8NTNrR8ZC6YmTa5CLm3scxNHUiG1nme5QIafl2SnrEr7mtBISKu4ClwJtuJprmLLQmk8xuJcaT8cELDkOuuHcp21p_TMy_DjjU7L-k4bELExm0z3xOp4v0dxG1F2LXrZsYvcRmh_Y5sZzAV4wCNLWy1B1RjWm6EA6QF51RntdbVI6w9Y2n1z1-a9JY8YQhkM4fH3yE6zWNp3AMQa9b4deFedfTiJ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgSLCbjb-N8utJaFdLmzh_zmUImzoYVQWZNImLyI6daiJNpiad1F7xCjzR3oUn4ZwkazUkxOAiF0ls61g-9vlsf_5MyFtXMBUID_XtUmY4EAMMafLMMHnqByiI7mQN22LkDU-dD2fuWceqxLMwYEQFJVXNJv5aXcAa4LdpiedPu5Xevi9xm8m_S-4BKGFI5wujL2udPbe52g0Qgm1wmzv3yd5fi8IIlVY3I9QfYGcTfo62ydeV4Q3r5Ft_Xst-uvxN0_H_avaQbHWolIatGz0id3TxmOyP27SLAxqvT2lVB3SfjteC14sn5CrWAL5bcebBxXBwWCwXU03jGS7iG587Fu6lplG7_JvSMapD4JQ8DH9-_yHhGY-O4WVKYbQvJxCvKYBpGrU8-lwrGha46A4eOqPvZ_MJFYUCK8q6rJCBX58v8YfOkWWyoGIizgH20uZ0scLkYAQC5aKm75CFX4MpTVmRzvPqKTk9OoyjodFdDGEICJ-1YXNXwNhkCdflpse0pUxb-FkAYNXMtOMrDY4nVCY9W-jAsVXgC4lCe5a2Oer97JCNoiz0M0J9LrS0pWsKcBkrtWWgmSeUxViQydTxegTbLOk6dpU0e_bMSvDjjUZLukbrEX7tPUnayazjbR_5bbKyVdaLVmvkNpn2rl00gZEBt3tEocs5mBrA7NPjkLtHdlvfXRWLIv-ArM3n_1q9N-TBMP50kpwcjz6-IJsMQQ6Se5yXZKOezfUrgGi1fN30xV8l5EDq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgSBM3wPgZBTY8Ce1qafMf5zLLVnWAqgg6aXeRHTvVRJpUTYrUXvEKPBHvwpNwTuK1GhJicNGLJrF1Ih_7fDnn82dC3nncliH3Ud8usw0XYoAhTJYbJsuCEAXR3bxlW4z90aX7_sq70gk33AsDRtTQU90W8XFWz2WuFQasAV6fVbgHVWd7-4HAUlNwnzzA8h1S-qL481Zrz2uPdwOU4BjMYe4uOfprVxilsvp2lPoD9GxD0PAxSTfGt8yTL_1lI_rZ-jddx_9_uyfkkUanNOrcaY_cU-VTcpx0z65O6GS7W6s-occ02Qpfr56RHxMFILwTaR7MR4Pzcr2aKTpZYDLf-KTZuF8Vjbs0cEYTVInAT_Mo-vntu4BfMr6APzMKq341hbhNAVTTuOPTF0rSqMTkO3jqgp4tllPKSwlWVE1VIxO_uV7jDVUg22RF-ZRfA_yl7S5jiY-DEQiYy4aeIhu_AVPavmJVFPVzcjk8n8QjQx8QYXAIo43hMI_DGmVxz2OmbytLmg4P8hBAq5krN5AKHJDLXPgOV6HryDDgAgX3LOUw1P15QXbKqlQvCQ0YV8IRnsnBbazMEaGyfS4t2w5zkbl-j-C4pXqC12lbu7etFC_eGrRUD1qPsBsPSjMtt46nfhR3aWpvms47zZG7NDq6cdMUVggs-_BSVUswNYSvUJ9B6x7Z7_x30y2K_QPCNl_96-u9JbvJ2TD9eDH-8Jo8tBHrIMfHfUN2msVSHQBSa8RhOx1_AQL_Q20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature%2FpH%2FEnzyme+Triple-Responsive+Cationic+Protein%2FPAA-b-PNIPAAm+Nanogels+for+Controlled+Anticancer+Drug+and+Photosensitizer+Delivery+against+Multidrug+Resistant+Breast+Cancer+Cells&rft.jtitle=Molecular+pharmaceutics&rft.au=Don%2C+Trong-Ming&rft.au=Lu%2C+Kun-Ying&rft.au=Lin%2C+Li-Jie&rft.au=Hsu%2C+Chun-Hua&rft.date=2017-12-04&rft.eissn=1543-8392&rft.volume=14&rft.issue=12&rft.spage=4648&rft_id=info:doi/10.1021%2Facs.molpharmaceut.7b00737&rft_id=info%3Apmid%2F29061050&rft.externalDocID=29061050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon