Fouling-Resistant and Self-Cleaning Aliphatic Polyketone Membrane for Sustainable Oil–Water Emulsion Separation

The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 51; pp. 44880 - 44889
Main Authors Cheng, Liang, Shaikh, Abdul Rajjak, Fang, Li-Feng, Jeon, Sungil, Liu, Cui-Jing, Zhang, Lei, Wu, Hao-Chen, Wang, Da-Ming, Matsuyama, Hideto
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m–2 h–1 bar–1), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil–water separation in complex environments.
AbstractList The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m–² h–¹ bar–¹), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil–water separation in complex environments.
The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m–2 h–1 bar–1), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil–water separation in complex environments.
The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m-2 h-1 bar-1), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil-water separation in complex environments.The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m-2 h-1 bar-1), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil-water separation in complex environments.
The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m h bar ), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil-water separation in complex environments.
Author Wu, Hao-Chen
Matsuyama, Hideto
Wang, Da-Ming
Shaikh, Abdul Rajjak
Jeon, Sungil
Liu, Cui-Jing
Zhang, Lei
Cheng, Liang
Fang, Li-Feng
AuthorAffiliation Department of Chemistry
Department of Chemical Engineering
Center for Membrane and Film Technology, Department of Chemical Science and Engineering
King Fahad University of Petroleum and Minerals
AuthorAffiliation_xml – name: King Fahad University of Petroleum and Minerals
– name: Department of Chemical Engineering
– name: Department of Chemistry
– name: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
Author_xml – sequence: 1
  givenname: Liang
  surname: Cheng
  fullname: Cheng, Liang
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
– sequence: 2
  givenname: Abdul Rajjak
  orcidid: 0000-0003-4444-0684
  surname: Shaikh
  fullname: Shaikh, Abdul Rajjak
  organization: King Fahad University of Petroleum and Minerals
– sequence: 3
  givenname: Li-Feng
  surname: Fang
  fullname: Fang, Li-Feng
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
– sequence: 4
  givenname: Sungil
  surname: Jeon
  fullname: Jeon, Sungil
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
– sequence: 5
  givenname: Cui-Jing
  surname: Liu
  fullname: Liu, Cui-Jing
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
– sequence: 6
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
– sequence: 7
  givenname: Hao-Chen
  surname: Wu
  fullname: Wu, Hao-Chen
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
– sequence: 8
  givenname: Da-Ming
  surname: Wang
  fullname: Wang, Da-Ming
  organization: Department of Chemical Engineering
– sequence: 9
  givenname: Hideto
  orcidid: 0000-0003-2468-4905
  surname: Matsuyama
  fullname: Matsuyama, Hideto
  email: matuyama@kobe-u.ac.jp
  organization: Center for Membrane and Film Technology, Department of Chemical Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30484634$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9LHTEUxYMo_t-6lFmKMK_5PzNLeagtWBS1dDncyUtqNJM8k8zCnd-h37CfpGnfq4uC4CqX3N85XM7ZQ5s-eI3QEcEzgin5BCrBaGftQBrS0Q20SzrO65YKuvk2c76D9lJ6xFgyisU22mGYt1wyvoueL8LkrP9R3-pkUwafK_CL6k47U8-dBl921ZmzywfIVlU3wb086VxuqL7qcYhQBhNidTcVrfUwOF1dW_fr9ed3yDpW5-Pkkg2-GC4hFovgD9CWAZf04frdR98uzu_nn-ur68sv87OrGjjtcs2aVgNoJYxUkhhKMB-kEYwaQpSQSncDbxrVAGBqhCJNZ5hkQysUCFjQlu2jk5XvMobnSafcjzYp7Vy5OUypp6TthJBNIz6AslYyiSkt6PEanYZRL_pltCPEl_5fogWYrQAVQ0pRmzeE4P5PZf2qsn5dWRHw_wTK5r9J5QjWvS87XcnKf_8YpuhLmO_BvwE4CavX
CitedBy_id crossref_primary_10_1021_acsami_9b12252
crossref_primary_10_1016_j_memsci_2023_121639
crossref_primary_10_1016_j_memsci_2020_118141
crossref_primary_10_1016_j_seppur_2025_131841
crossref_primary_10_1016_j_watres_2022_119052
crossref_primary_10_1016_j_memsci_2023_122176
crossref_primary_10_1021_acsapm_9b00229
crossref_primary_10_1016_j_culher_2023_05_022
crossref_primary_10_1016_j_indcrop_2024_119634
crossref_primary_10_1021_acs_iecr_1c02187
crossref_primary_10_1016_j_memsci_2019_03_090
crossref_primary_10_1016_j_ijbiomac_2020_07_175
crossref_primary_10_1016_j_seppur_2021_119165
crossref_primary_10_1016_j_memsci_2020_119005
crossref_primary_10_1021_acsanm_2c04463
crossref_primary_10_1016_j_seppur_2020_117400
crossref_primary_10_1016_j_memsci_2024_122511
crossref_primary_10_1016_j_memsci_2019_117455
crossref_primary_10_1016_j_memsci_2023_122263
crossref_primary_10_1016_j_memsci_2022_120582
crossref_primary_10_1039_D1TA03460J
crossref_primary_10_1016_j_jcis_2019_03_003
crossref_primary_10_1016_j_compositesb_2020_108449
crossref_primary_10_1016_j_memsci_2020_118789
crossref_primary_10_1021_acsomega_0c05830
crossref_primary_10_1016_j_jece_2025_115784
crossref_primary_10_1039_D2RA04300A
crossref_primary_10_1007_s12221_022_4095_2
crossref_primary_10_1016_j_seppur_2021_118922
crossref_primary_10_1016_j_memsci_2024_123115
crossref_primary_10_1002_admi_202201081
crossref_primary_10_3390_membranes10090239
crossref_primary_10_1002_cnma_202300110
crossref_primary_10_1016_j_memsci_2021_119185
crossref_primary_10_1016_j_seppur_2024_127757
crossref_primary_10_1039_D4NJ03339F
crossref_primary_10_1002_adsu_202000253
crossref_primary_10_1007_s11270_020_04524_y
crossref_primary_10_1021_acsami_0c06697
crossref_primary_10_1016_j_memsci_2019_117747
crossref_primary_10_1016_j_molliq_2021_116433
crossref_primary_10_1016_j_jtice_2024_105821
crossref_primary_10_1039_C9TA04913D
crossref_primary_10_1016_j_seppur_2023_123728
crossref_primary_10_1039_D0RA08119A
crossref_primary_10_1016_j_seppur_2021_118657
crossref_primary_10_1021_acsami_0c08947
crossref_primary_10_1021_acsnano_2c07977
crossref_primary_10_1016_j_seppur_2024_128119
crossref_primary_10_1039_C9TA12418G
crossref_primary_10_1002_adfm_201907772
crossref_primary_10_1016_j_cis_2023_102971
Cites_doi 10.1016/j.memsci.2015.03.043
10.1002/adma.201304487
10.1016/j.apsusc.2016.02.084
10.1016/S0025-326X(03)00042-0
10.1039/tf9444000546
10.1002/adfm.201705051
10.1002/adma.201602714
10.1002/adma.201305112
10.1126/science.1148326
10.1126/science.1084282
10.1007/s10924-010-0258-0
10.1002/adma.201200797
10.1038/am.2014.23
10.1002/adma.201002192
10.1021/ie50215a026
10.1016/j.polymer.2010.08.022
10.1016/S0269-7491(99)00244-4
10.1016/j.polymer.2010.02.045
10.1021/ie50320a024
10.1021/ar900205g
10.1039/C5GC01818H
10.1039/C6EN00505E
10.1002/adma.201101048
10.1002/smll.201503685
10.1002/adma.200801782
10.1021/nn5062854
10.1021/acsami.8b09687
10.1002/anie.201405785
10.1016/S0376-7388(98)00190-2
10.1016/j.psep.2016.01.010
10.1021/ma990302p
10.1002/app.2022
10.1002/adma.201204520
10.1002/adma.201600417
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b17192
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 44889
ExternalDocumentID 30484634
10_1021_acsami_8b17192
a966773608
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-378eaaec5f6c61f2104b6f532f11c56ce9b477c7aa02f5c179f363b85ca5ad283
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 11:35:02 EDT 2025
Fri Jul 11 13:54:19 EDT 2025
Thu Jan 02 23:01:30 EST 2025
Tue Jul 01 04:06:11 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords fouling-resistant
oil−water separation
phase separation
self-cleaning
aliphatic polyketone
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-378eaaec5f6c61f2104b6f532f11c56ce9b477c7aa02f5c179f363b85ca5ad283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4444-0684
0000-0003-2468-4905
PMID 30484634
PQID 2138636022
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2189556775
proquest_miscellaneous_2138636022
pubmed_primary_30484634
crossref_primary_10_1021_acsami_8b17192
crossref_citationtrail_10_1021_acsami_8b17192
acs_journals_10_1021_acsami_8b17192
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-26
PublicationDateYYYYMMDD 2018-12-26
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref15/cit15
ref22/cit22
Singh R. (ref12/cit12) 2016
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1016/j.memsci.2015.03.043
– ident: ref8/cit8
  doi: 10.1002/adma.201304487
– ident: ref35/cit35
  doi: 10.1016/j.apsusc.2016.02.084
– ident: ref9/cit9
  doi: 10.1016/S0025-326X(03)00042-0
– ident: ref31/cit31
  doi: 10.1039/tf9444000546
– ident: ref21/cit21
  doi: 10.1002/adfm.201705051
– ident: ref30/cit30
  doi: 10.1002/adma.201602714
– ident: ref22/cit22
  doi: 10.1002/adma.201305112
– ident: ref29/cit29
  doi: 10.1126/science.1148326
– ident: ref1/cit1
  doi: 10.1126/science.1084282
– ident: ref20/cit20
  doi: 10.1007/s10924-010-0258-0
– ident: ref14/cit14
  doi: 10.1002/adma.201200797
– ident: ref7/cit7
  doi: 10.1038/am.2014.23
– ident: ref15/cit15
  doi: 10.1002/adma.201002192
– volume-title: Emerging Membrane Technology for Sustainable Water Treatment
  year: 2016
  ident: ref12/cit12
– ident: ref33/cit33
  doi: 10.1021/ie50215a026
– ident: ref18/cit18
  doi: 10.1016/j.polymer.2010.08.022
– ident: ref3/cit3
  doi: 10.1016/S0269-7491(99)00244-4
– ident: ref25/cit25
  doi: 10.1016/j.polymer.2010.02.045
– ident: ref32/cit32
  doi: 10.1021/ie50320a024
– ident: ref16/cit16
  doi: 10.1021/ar900205g
– ident: ref23/cit23
  doi: 10.1039/C5GC01818H
– ident: ref5/cit5
  doi: 10.1039/C6EN00505E
– ident: ref10/cit10
  doi: 10.1002/adma.201101048
– ident: ref4/cit4
  doi: 10.1002/smll.201503685
– ident: ref13/cit13
  doi: 10.1002/adma.200801782
– ident: ref34/cit34
  doi: 10.1021/nn5062854
– ident: ref28/cit28
  doi: 10.1021/acsami.8b09687
– ident: ref17/cit17
  doi: 10.1002/anie.201405785
– ident: ref6/cit6
  doi: 10.1016/S0376-7388(98)00190-2
– ident: ref2/cit2
  doi: 10.1016/j.psep.2016.01.010
– ident: ref24/cit24
  doi: 10.1021/ma990302p
– ident: ref26/cit26
  doi: 10.1002/app.2022
– ident: ref11/cit11
  doi: 10.1002/adma.201204520
– ident: ref19/cit19
  doi: 10.1002/adma.201600417
SSID ssj0063205
Score 2.4730482
Snippet The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44880
SubjectTerms cellulose
cost effectiveness
emulsions
fouling
geometry
hydrophilicity
microporous membranes
moieties
oils
polymers
proteins
salinity
separation
surfactants
wastewater
Title Fouling-Resistant and Self-Cleaning Aliphatic Polyketone Membrane for Sustainable Oil–Water Emulsion Separation
URI http://dx.doi.org/10.1021/acsami.8b17192
https://www.ncbi.nlm.nih.gov/pubmed/30484634
https://www.proquest.com/docview/2138636022
https://www.proquest.com/docview/2189556775
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELaAXsqhpS20FKiMQOJkSJzYzh7RaleoEj_qgsotciY2RWSzC8ke4MQ78IY8CeMku0DRArccJok9mZ_PY-cbQjYrjjGPG2aV57kWZsBa4AFLA6lCaZLUWFca2D-Qeyfh71Nx-ljv-H8Hn_s7GgrXCidKfIVoZJZ84BI92IGgdm8cc2XAq8OKuCIPWYQZa0zP-OJ-l4SgeJ6EpiDLKsN0P9d0R0VFTOgOllxsj8pkG25e0ja-OfgF8qmBmXS3tosvZMbkX8n8E_LBb-Sy65qh52fsjykciMxLqvOU9kxmWTsz2hVM6G52PvznSF3p0SC7vjCOupvumz6usfECAS_tPf6BRQ_Ps_vbu78IX69opz_KXCUOH1jTiw_yRXLS7Ry391jTgIFpTFMlBp_IaG1AWAnSt7g6DBNpRcCt74OQYFpJqBQorT1uBaBv20AGSSRAC50icFkiczmO6wehHqQy1ej-SrZCYXjiad8DDAYgFFgplskG6ipuHKiIq71x7se1AuNGgcuEjb9bDA2HuWulkU2V35rID2v2jqmS62MziNHB3K4J6nEwKmLuB5EjVeOvykQtIaRSOI_vtQ1N3hdgjAxlEP581wxXyEeEZJE7MMPlKpkrr0ZmDWFPmfyqLP4B2lj-xw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvAvlaQQSJ7eJE9vZ42rV1QLdUrGt6C1yJjZUTbOlyR7gxH_gH_JLGOex5aFFcIuiSWJP5vH59Q3Ai4ZjLBCWOx0EvoQZ8gEGyPNI6VjZLLfOTw1M99TkMH59JI_WYLs_C0ONqOhNVbOIf8EuEG7TPV8RJ8lCTaDkElwmJCK8SQ9Hsz70qkg0exZpYB7zhBJXz9L4x_M-F2H1ay5aATCbRDO-AfvLJjb7S062FnW2hV9-Y2_8jz7chOsd6GTD1kpuwZotb8O1n6gI78CnsS-NXn7g72zlIWVZM1PmbGYLx0eFNX76hA2L47OPnuKV7c-LzyfWE3mzqT2lETddEPxls4vzWOztcfH967f3BGbP2c7povDzcvTClmx8Xt6Fw_HOwWjCu3IM3FDSqikUJdYYi9IpVKGjsWKcKScj4cIQpUI7yGKtURsTCCeRPN1FKsoSiUaanGDMBqyX1K77wALMVW4oGGg1iKUVWWDCACk0oNTolNyE56SrtHOnKm1WykWYtgpMOwVuAu9_X4odo7kvrFGslH-5lD9ruTxWSj7rrSEld_NrKKTH-aJKRRglnmJN_FUmGUiptKZ-3GtNafm9iCJmrKL4wT_18ClcmRxMd9PdV3tvHsJVAmuJ30oj1CNYr88X9jEBojp70jjBD5arBzc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyF6KOXZFgpGIHFySZzYzh5XS1fl0VKxregtciY2rZpmt032ACf-A_-QX8JMkl1eWgS3KHISezKPzx77G8aeNRxjgXTCmyCgEmYgehCAyCNtYu2y3HlaGtg_0HvH8esTddKd46azMNiJCt9UNUl8supJ7juGgfAF3qeqOEkWGgQm19gK5exIrfuD0cz96kg2-xZxch6LBIPXjKnxj-cpHkH1azxaADKbYDO8yY7m3Wz2mJzvTOtsBz7_xuD4n-NYZ2sd-OT9VltusSVX3marP1ES3mGXQyqRXn4U711F0LKsuS1zPnKFF4PCWVpG4f3ibHJKVK_8cFx8OndE6M333QXOvPECYTAf_TiXxd-dFd--fP2AoPaK715MC1qfwxe2pOPj8i47Hu4eDfZEV5ZBWAxeNbqkxFnrQHkNOvQ4Z4wz7VUkfRiC0uB6WWwMGGsD6RWgxftIR1miwCqbI5y5x5ZL7NcG4wHkOrfoFIzuxcrJLLBhAOgiQBnwWm2ypyirtDOrKm0y5jJMWwGmnQA3mZj9whQ6ZnMqsFEsbP983n7ScnosbPlkphEpmh3lUlCO42mVyjBKiGpN_rVN0lNKG4PjuN-q0_x7EXrOWEfx1j-N8DG7fvhymL59dfDmAbuBmC2hHTVSP2TL9dXUbSMuqrNHjR18BwtaCbo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fouling-Resistant+and+Self-Cleaning+Aliphatic+Polyketone+Membrane+for+Sustainable+Oil-Water+Emulsion+Separation&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Cheng%2C+Liang&rft.au=Shaikh%2C+Abdul+Rajjak&rft.au=Fang%2C+Li-Feng&rft.au=Jeon%2C+Sungil&rft.date=2018-12-26&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=10&rft.issue=51&rft.spage=44880&rft_id=info:doi/10.1021%2Facsami.8b17192&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon