Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles In Vivo
In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was...
Saved in:
Published in | ACS nano Vol. 15; no. 12; pp. 19956 - 19969 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.1c07470 |
Cover
Abstract | In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects. |
---|---|
AbstractList | In vivo
multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However,
in vivo
multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIRSERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current
ex vivo
multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted
in vivo
imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects. In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects. multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects. In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects. |
Author | Chung, Daniel Tan Jung, Kyung Oh Radzyminski, Rochelle Karina D’Souza, Aloma L Rosenberg, Jarrett Frostig, Hadas Park, Seung-min Pratx, Guillem Steinberg, Idan Gambhir, Sanjiv S Curet, Luis Dan Levin, Craig Zlitni, Aimen Chang, Edwin Campbell, Jos Davis, Ryan M Malkovskiy, Andrey V Yu, Jung Ho |
AuthorAffiliation | Carnegie Institute for Science Department of Radiation Oncology Department of Applied Physics Molecular Imaging Program at Stanford (MIPS) and Bio-X Program Department of Radiology Department of Plant Biology |
AuthorAffiliation_xml | – name: Department of Radiology – name: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – name: Department of Plant Biology – name: Department of Applied Physics – name: Department of Radiation Oncology – name: Carnegie Institute for Science |
Author_xml | – sequence: 1 givenname: Jung Ho orcidid: 0000-0003-4101-513X surname: Yu fullname: Yu, Jung Ho email: junghyu@stanford.edu organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 2 givenname: Idan surname: Steinberg fullname: Steinberg, Idan organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 3 givenname: Ryan M orcidid: 0000-0003-4341-2809 surname: Davis fullname: Davis, Ryan M organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 4 givenname: Andrey V surname: Malkovskiy fullname: Malkovskiy, Andrey V organization: Carnegie Institute for Science – sequence: 5 givenname: Aimen surname: Zlitni fullname: Zlitni, Aimen organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 6 givenname: Rochelle Karina surname: Radzyminski fullname: Radzyminski, Rochelle Karina organization: Department of Applied Physics – sequence: 7 givenname: Kyung Oh surname: Jung fullname: Jung, Kyung Oh organization: Department of Radiation Oncology – sequence: 8 givenname: Daniel Tan surname: Chung fullname: Chung, Daniel Tan organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 9 givenname: Luis Dan surname: Curet fullname: Curet, Luis Dan organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 10 givenname: Aloma L surname: D’Souza fullname: D’Souza, Aloma L organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 11 givenname: Edwin surname: Chang fullname: Chang, Edwin organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 12 givenname: Jarrett surname: Rosenberg fullname: Rosenberg, Jarrett organization: Department of Radiology – sequence: 13 givenname: Jos surname: Campbell fullname: Campbell, Jos organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 14 givenname: Hadas surname: Frostig fullname: Frostig, Hadas organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 15 givenname: Seung-min surname: Park fullname: Park, Seung-min organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 16 givenname: Guillem orcidid: 0000-0002-0247-6470 surname: Pratx fullname: Pratx, Guillem organization: Department of Radiation Oncology – sequence: 17 givenname: Craig surname: Levin fullname: Levin, Craig organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program – sequence: 18 givenname: Sanjiv S orcidid: 0000-0002-2711-7554 surname: Gambhir fullname: Gambhir, Sanjiv S email: sgambhir@stanford.edu organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34797988$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1rFDEYDlKx7erZm-QoyLT5mJnMXARZWrtQV9Aq3sI7mWQ3JZOsycxi_0N_dLPstqjQSxLyfL28zyk68sFrhN5SckYJo-egkgcfzqgiohTkBTqhLa8L0tS_jp7eFT1GpyndElKJRtSv0DEvRSvapjlB98vgrd9CsluNwff4yq7W7g5_mdxoN07_0T2-zFgxDy5EfDMN-VwMsLJ-hYPZ81SIGi81xGLhTYSYNd90CnmyEX-fogGliwu_Bq92CAzg8TJPvYGYtU4nvPD4p92G1-ilAZf0m8M9Qz8uL27mV8X118-L-afrAkrWjgUXvBVdz7qKCQ6i71XTMW1M2TNORd_VxhBSMm4qoUjZd8w0RFBCFe2V7lrNZ-jj3nczdYPOn36M4OQm2gHinQxg5b-It2u5ClvZEsqqvNUZen8wiOH3pNMoB5uUdg68DlOSrCaENbziPFPf_Z31FPJYQSZUe4KKIaWojVR2hNGGXbR1khK5q1oeqpaHqrPu_D_do_Xzig97RQbkbZiiz0t-lv0As07AAQ |
CitedBy_id | crossref_primary_10_1016_j_bios_2023_115079 crossref_primary_10_1002_jrs_6519 crossref_primary_10_1021_acsami_3c05039 crossref_primary_10_1002_advs_202202051 crossref_primary_10_1016_j_jiec_2024_05_040 crossref_primary_10_1021_acsami_4c15017 crossref_primary_10_1007_s11468_024_02749_9 crossref_primary_10_1021_acssensors_4c00276 crossref_primary_10_1039_D3AN01298K crossref_primary_10_2174_0113816128347223241021111914 crossref_primary_10_1039_D4NH00226A crossref_primary_10_1021_acsbiomaterials_3c01871 crossref_primary_10_3390_chemosensors10050190 crossref_primary_10_1038_s41557_023_01383_y crossref_primary_10_1021_acsnano_2c00353 crossref_primary_10_1016_j_talanta_2024_127283 crossref_primary_10_1039_D4CS00090K crossref_primary_10_1186_s40580_024_00443_4 crossref_primary_10_3389_fbioe_2023_1251595 crossref_primary_10_1002_smll_202409698 crossref_primary_10_1021_acsnano_2c10378 crossref_primary_10_1021_acs_analchem_3c02154 crossref_primary_10_1021_acsnano_4c18470 crossref_primary_10_1039_D3NH90027D crossref_primary_10_1038_s41467_022_32975_w crossref_primary_10_1002_jrs_6653 crossref_primary_10_1021_acs_chemrev_2c00897 crossref_primary_10_1016_j_aca_2025_343829 crossref_primary_10_1142_S1793545823300082 |
Cites_doi | 10.1039/C8CC04267E 10.1038/nature22051 10.1038/srep21242 10.1073/pnas.1616400113 10.1038/s41587-019-0262-4 10.1158/1078-0432.CCR-07-1658 10.1021/acsnano.5b07200 10.1021/acsnano.9b04224 10.1021/nn304347g 10.1073/pnas.0813327106 10.1158/0008-5472.CAN-17-0709 10.7150/ntno.21136 10.1038/natrevmats.2017.14 10.1021/ja203316q 10.1002/adfm.201203726 10.1021/nn800243g 10.1021/nn100280z 10.1007/s12274-010-1025-1 10.1021/acs.nanolett.5b02594 10.1073/pnas.1300136110 10.1021/acs.chemmater.6b03349 10.1073/pnas.1301379110 10.1021/acsnano.8b03217 10.1038/nbt1377 10.1038/ncomms7570 10.1021/ja104174m 10.1021/nn100213v 10.1158/1078-0432.CCR-10-0059 10.1038/nrclinonc.2017.166 10.1021/ac501701h 10.1021/jp057584h 10.1021/nl0707003 10.1021/acsnano.7b00152 10.1038/s41570-017-0060 10.1073/pnas.1617990114 10.1126/scitranslmed.3001963 10.1016/j.nantod.2012.02.008 10.1038/natrevmats.2016.14 10.1038/s41565-018-0221-0 10.1038/nm.3488 10.7150/thno.13842 10.1117/1.JBO.23.4.046005 10.1021/acs.accounts.6b00409 10.1021/acs.chemrev.5b00265 10.1038/srep04075 10.1038/s41557-020-00554-5 10.1021/acs.analchem.6b01597 10.1117/1.JBO.20.5.055002 10.1038/s41598-017-18502-8 10.1038/s41551-017-0131-8 10.1021/ac302510g 10.1016/S1470-2045(10)70009-7 10.1021/acsphotonics.9b01819 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsnano.1c07470 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 19969 |
ExternalDocumentID | PMC9012519 34797988 10_1021_acsnano_1c07470 a52503718 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA199075 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a429t-37397bd2b5273a7ddc8b2eff4d2317db6ff00423f57c04db2f807101c1dceb9e3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 14:11:38 EDT 2025 Thu Jul 10 20:38:08 EDT 2025 Mon Jul 21 06:00:55 EDT 2025 Tue Jul 01 03:37:18 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Thu Dec 30 08:20:01 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | surface-enhanced resonant Raman scattering in vivo imaging multiplexed imaging cancer imaging surface-enhanced Raman spectroscopy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-37397bd2b5273a7ddc8b2eff4d2317db6ff00423f57c04db2f807101c1dceb9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 J.H.Y. designed and carried out the experiments, analyzed the data, and wrote the manuscript. I.S., R.M.D., A.V.M., and H.F. wrote the code for Raman imaging analysis. A.Z., A.L.D., K.o.J., E.C., and G.P. contributed to the tumor xenograft preparation and animal study. R.K.R., D.T.C., L.D.C., J.C., and S.P. contributed to the SERS nanoparticle design and syntheses. J.R. performed the statistical analysis to assess the reproducibility of the SERS nanoparticles. C.L. supervised the revision of the manuscript. S.S.G. designed the experiments, analyzed the data, and supervised the project. The manuscript was revised through the contributions of all authors. All authors approved the final version of the manuscript. Author Contributions |
ORCID | 0000-0002-0247-6470 0000-0002-2711-7554 0000-0003-4101-513X 0000-0003-4341-2809 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9012519 |
PMID | 34797988 |
PQID | 2600283533 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012519 proquest_miscellaneous_2600283533 pubmed_primary_34797988 crossref_citationtrail_10_1021_acsnano_1c07470 crossref_primary_10_1021_acsnano_1c07470 acs_journals_10_1021_acsnano_1c07470 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-28 |
PublicationDateYYYYMMDD | 2021-12-28 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Yuan F. (ref50/cit50) 1995; 55 ref24/cit24 ref38/cit38 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1039/C8CC04267E – ident: ref20/cit20 doi: 10.1038/nature22051 – ident: ref9/cit9 doi: 10.1038/srep21242 – ident: ref52/cit52 doi: 10.1073/pnas.1616400113 – ident: ref15/cit15 doi: 10.1038/s41587-019-0262-4 – ident: ref54/cit54 doi: 10.1158/1078-0432.CCR-07-1658 – ident: ref40/cit40 doi: 10.1021/acsnano.5b07200 – ident: ref25/cit25 doi: 10.1021/acsnano.9b04224 – ident: ref37/cit37 doi: 10.1021/nn304347g – ident: ref31/cit31 doi: 10.1073/pnas.0813327106 – ident: ref10/cit10 doi: 10.1158/0008-5472.CAN-17-0709 – ident: ref4/cit4 doi: 10.7150/ntno.21136 – ident: ref53/cit53 doi: 10.1038/natrevmats.2017.14 – ident: ref45/cit45 doi: 10.1021/ja203316q – ident: ref33/cit33 doi: 10.1002/adfm.201203726 – ident: ref49/cit49 doi: 10.1021/nn800243g – ident: ref29/cit29 doi: 10.1021/nn100280z – ident: ref8/cit8 doi: 10.1007/s12274-010-1025-1 – ident: ref48/cit48 doi: 10.1021/acs.nanolett.5b02594 – ident: ref6/cit6 doi: 10.1073/pnas.1300136110 – ident: ref30/cit30 doi: 10.1021/acs.chemmater.6b03349 – ident: ref32/cit32 doi: 10.1073/pnas.1301379110 – ident: ref12/cit12 doi: 10.1021/acsnano.8b03217 – ident: ref36/cit36 doi: 10.1038/nbt1377 – ident: ref38/cit38 doi: 10.1038/ncomms7570 – ident: ref26/cit26 doi: 10.1021/ja104174m – ident: ref7/cit7 doi: 10.1021/nn100213v – ident: ref44/cit44 doi: 10.1158/1078-0432.CCR-10-0059 – ident: ref1/cit1 doi: 10.1038/nrclinonc.2017.166 – ident: ref41/cit41 doi: 10.1021/ac501701h – ident: ref47/cit47 doi: 10.1021/jp057584h – ident: ref17/cit17 doi: 10.1021/nl0707003 – ident: ref24/cit24 doi: 10.1021/acsnano.7b00152 – ident: ref22/cit22 doi: 10.1038/s41570-017-0060 – volume: 55 start-page: 3752 year: 1995 ident: ref50/cit50 publication-title: Cancer Res. – ident: ref18/cit18 doi: 10.1073/pnas.1617990114 – ident: ref51/cit51 doi: 10.1126/scitranslmed.3001963 – ident: ref42/cit42 doi: 10.1016/j.nantod.2012.02.008 – ident: ref35/cit35 doi: 10.1038/natrevmats.2016.14 – ident: ref16/cit16 doi: 10.1038/s41565-018-0221-0 – ident: ref5/cit5 doi: 10.1038/nm.3488 – ident: ref39/cit39 doi: 10.7150/thno.13842 – ident: ref11/cit11 doi: 10.1117/1.JBO.23.4.046005 – ident: ref28/cit28 doi: 10.1021/acs.accounts.6b00409 – ident: ref23/cit23 doi: 10.1021/acs.chemrev.5b00265 – ident: ref34/cit34 doi: 10.1038/srep04075 – ident: ref19/cit19 doi: 10.1038/s41557-020-00554-5 – ident: ref21/cit21 doi: 10.1021/acs.analchem.6b01597 – ident: ref27/cit27 doi: 10.1117/1.JBO.20.5.055002 – ident: ref46/cit46 doi: 10.1038/s41598-017-18502-8 – ident: ref2/cit2 doi: 10.1038/s41551-017-0131-8 – ident: ref43/cit43 doi: 10.1021/ac302510g – ident: ref3/cit3 doi: 10.1016/S1470-2045(10)70009-7 – ident: ref14/cit14 doi: 10.1021/acsphotonics.9b01819 |
SSID | ssj0057876 |
Score | 2.5387115 |
Snippet | In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical... multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has... In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19956 |
SubjectTerms | Animals Diagnostic Imaging Gold Metal Nanoparticles Mice Nanoparticles Neoplasms - diagnostic imaging Spectrum Analysis, Raman Tumor Microenvironment |
Title | Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles In Vivo |
URI | http://dx.doi.org/10.1021/acsnano.1c07470 https://www.ncbi.nlm.nih.gov/pubmed/34797988 https://www.proquest.com/docview/2600283533 https://pubmed.ncbi.nlm.nih.gov/PMC9012519 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQXODAvpRNRuLAxYU4adIcUUVFkeiBTdwirwLROqhpEPANfDQzSVooFYJLLl6kOGPPm8ybZ0IOpY9C-XHMmjpqsIBLxWKtLAuDSFgZ-r4MsXb4shue3wYX9437L7Honxl87h0LlTnh0rqnUOsdovM5HoKRIQpqXY8OXbS7sEwgQ4AMKGKs4jM1AbohlU26oSls-ZMi-c3ntJdKtlZWSBUi1eSpng9lXb1PCzn-_TrLZLFCnvS0NJUVMmPcKln4pke4Rj66-HP2RSClnQqnKbJAem_0smIdvhpN29DGWnBkDuhN3odnp19cdERTW_ZDXUzahQ3EOs4OkN9OMUeAhBt6nQ-sUIaduYeCeUCvRF84Ckc8xO4VRY92HL17fEnXyW377KZ1zqrrGpgApzaEowqwjdRcoqabiLRWTcmNtYEGDBlhuZ8tWDi2EamTQEtum4hvPOXBKsvY-Btk1qXObBEKQY_l8iSSxoKXlYApIOoKQiW9WPO4GdbIIaxjUm23LCky6dxLqsVNqsWtkfroIyeqkjzHmzd6vw84Gg94LtU-fu96MLKaBHYkplmEM2meJSj5jyp2vl8jm6UVjSfDul1UiKuRaMK-xh1Q7XuyxT0-FKrfANywynj7f6--Q-Y5sm88LL7fJbPDQW72AD4N5X6xcT4B8-oZVQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB1V5QAcoHwHWlikHrhsiNeOHR-rqFECTSRoinqz9lOtaNYojivgN_CjmbEdt2lVCS45xOuVvZndeZN58wZgX4UklJ-mfGCSPo-E0jw12vE4SqRTcRiqmGqHp7N4fBJ9Ou2fbkFvXQuDD1HgTEWVxL9SFwg-4nde-rwbaJJ8xyD9HkIRQc0aDobH67OXzC-u88gYJyOYaMV8bk1A3kgXm97oFsS8yZS85npGj-FL-9AV4-R7t1yprv59Q8_xf95qBx41OJQd1IbzBLasfwoPr6kTPoM_M_qr9lISwZ1JbxhxQi5-sWnDQfxpDRvhNT7EA3TJ5uUCPyeLqu0Ry109jlQy2Qy3E594tyS2O6OMAdFv2HG5dFJbfujPKh4C-yoX0jM88DGSbwh7bOLZt_PL_DmcjA7nwzFvmjdwiS5uhQcXIh1lhCKFN5kYowdKWOcig4gyoeI_V3FyXD_Rvcgo4QaEdgId4GKr1IYvYNvn3r4ChiGQE6qXKOvQ5ypEGBiDRbFWQWpEOog7sI_rmDWbr8iqvLoIsmZxs2ZxO9Bd_9aZbgTQqQ_Hxd03fGhv-FFrf9w99P3aeDLcn5R0kd7mZZFRAwDStAvDDrysjamdjKp4SS-uA8mGmbUDSPt784o_P6s0wBHGUc3x63979XdwfzyfHmVHk9nnN_BAEC8noLL8XdheLUu7h8Bqpd5We-kvdgshtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5VVKraAy190ECBrcShl03xI3Z8RIGI0BJVhVTcrH0KVLJGcYxafkN_dGfsjUVASO3FB3u9stczOzOeb74B2JUREeVnGe_rtMfjUCqeaWV5EqfCyiSKZEK1wyfj5GgSH5_3zn1RGNXC4EOUOFNZJ_FJq6-19QwDwWc874QruoEi2ncM1J9S0o4aNuwPThf7L4lg0uSSMVZGh6Il9HkwAVkkVS5bpAdu5n205B3zM3wJk_bBa9TJz241l111e4_T8X_f7BWsen-U7TcCtAZPjHsNL-6wFL6BP2P6ZXsjCOjOhNOMsCFXv9mJxyL-MpoN8Rof4EY6Y2fVFI-jad3-iBW2GUdsmWyMasVHzs4I9c4oc0AwHHZazaxQhh-6ixqPwL6LqXAMN36M6D1wj40c-3F5U7yFyfDwbHDEfRMHLtDUzXEDQ49H6lAS05tItVZ9GRprY42eZUpFgLbG5theqvZiLUPbJ68nUAEuuMxM9A5WXOHMe2AYCtlQ7qXSWLS9Ej0NjMXiRMkg02HWTzqwi-uYeyUs8zq_Hga5X9zcL24HuovvnStPhE79OK4ev-FTe8N1wwHy-NCPCwHKUU8p-SKcKaoyp0YAxG0XRR1YbwSqnYyqeYk3rgPpkqi1A4gDfPmKu7youcDRnaPa441_e_UdePbtYJh_HY2_bMLzkOA5AVXnf4CV-awyW-hfzeV2rU5_AaBQJDk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+and+Highly+Multiplexed+Five-Color+Tumor+Imaging+of+Multicore+Near-Infrared+Resonant+Surface-Enhanced+Raman+Nanoparticles+In+Vivo&rft.jtitle=ACS+nano&rft.au=Yu%2C+Jung+Ho&rft.au=Steinberg%2C+Idan&rft.au=Davis%2C+Ryan+M&rft.au=Malkovskiy%2C+Andrey+V&rft.date=2021-12-28&rft.eissn=1936-086X&rft.volume=15&rft.issue=12&rft.spage=19956&rft_id=info:doi/10.1021%2Facsnano.1c07470&rft_id=info%3Apmid%2F34797988&rft.externalDocID=34797988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |