Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles In Vivo

In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 12; pp. 19956 - 19969
Main Authors Yu, Jung Ho, Steinberg, Idan, Davis, Ryan M, Malkovskiy, Andrey V, Zlitni, Aimen, Radzyminski, Rochelle Karina, Jung, Kyung Oh, Chung, Daniel Tan, Curet, Luis Dan, D’Souza, Aloma L, Chang, Edwin, Rosenberg, Jarrett, Campbell, Jos, Frostig, Hadas, Park, Seung-min, Pratx, Guillem, Levin, Craig, Gambhir, Sanjiv S
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.12.2021
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.1c07470

Cover

Abstract In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
AbstractList In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIRSERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
Author Chung, Daniel Tan
Jung, Kyung Oh
Radzyminski, Rochelle Karina
D’Souza, Aloma L
Rosenberg, Jarrett
Frostig, Hadas
Park, Seung-min
Pratx, Guillem
Steinberg, Idan
Gambhir, Sanjiv S
Curet, Luis Dan
Levin, Craig
Zlitni, Aimen
Chang, Edwin
Campbell, Jos
Davis, Ryan M
Malkovskiy, Andrey V
Yu, Jung Ho
AuthorAffiliation Carnegie Institute for Science
Department of Radiation Oncology
Department of Applied Physics
Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
Department of Radiology
Department of Plant Biology
AuthorAffiliation_xml – name: Department of Radiology
– name: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– name: Department of Plant Biology
– name: Department of Applied Physics
– name: Department of Radiation Oncology
– name: Carnegie Institute for Science
Author_xml – sequence: 1
  givenname: Jung Ho
  orcidid: 0000-0003-4101-513X
  surname: Yu
  fullname: Yu, Jung Ho
  email: junghyu@stanford.edu
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 2
  givenname: Idan
  surname: Steinberg
  fullname: Steinberg, Idan
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 3
  givenname: Ryan M
  orcidid: 0000-0003-4341-2809
  surname: Davis
  fullname: Davis, Ryan M
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 4
  givenname: Andrey V
  surname: Malkovskiy
  fullname: Malkovskiy, Andrey V
  organization: Carnegie Institute for Science
– sequence: 5
  givenname: Aimen
  surname: Zlitni
  fullname: Zlitni, Aimen
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 6
  givenname: Rochelle Karina
  surname: Radzyminski
  fullname: Radzyminski, Rochelle Karina
  organization: Department of Applied Physics
– sequence: 7
  givenname: Kyung Oh
  surname: Jung
  fullname: Jung, Kyung Oh
  organization: Department of Radiation Oncology
– sequence: 8
  givenname: Daniel Tan
  surname: Chung
  fullname: Chung, Daniel Tan
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 9
  givenname: Luis Dan
  surname: Curet
  fullname: Curet, Luis Dan
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 10
  givenname: Aloma L
  surname: D’Souza
  fullname: D’Souza, Aloma L
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 11
  givenname: Edwin
  surname: Chang
  fullname: Chang, Edwin
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 12
  givenname: Jarrett
  surname: Rosenberg
  fullname: Rosenberg, Jarrett
  organization: Department of Radiology
– sequence: 13
  givenname: Jos
  surname: Campbell
  fullname: Campbell, Jos
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 14
  givenname: Hadas
  surname: Frostig
  fullname: Frostig, Hadas
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 15
  givenname: Seung-min
  surname: Park
  fullname: Park, Seung-min
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 16
  givenname: Guillem
  orcidid: 0000-0002-0247-6470
  surname: Pratx
  fullname: Pratx, Guillem
  organization: Department of Radiation Oncology
– sequence: 17
  givenname: Craig
  surname: Levin
  fullname: Levin, Craig
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
– sequence: 18
  givenname: Sanjiv S
  orcidid: 0000-0002-2711-7554
  surname: Gambhir
  fullname: Gambhir, Sanjiv S
  email: sgambhir@stanford.edu
  organization: Molecular Imaging Program at Stanford (MIPS) and Bio-X Program
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34797988$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1rFDEYDlKx7erZm-QoyLT5mJnMXARZWrtQV9Aq3sI7mWQ3JZOsycxi_0N_dLPstqjQSxLyfL28zyk68sFrhN5SckYJo-egkgcfzqgiohTkBTqhLa8L0tS_jp7eFT1GpyndElKJRtSv0DEvRSvapjlB98vgrd9CsluNwff4yq7W7g5_mdxoN07_0T2-zFgxDy5EfDMN-VwMsLJ-hYPZ81SIGi81xGLhTYSYNd90CnmyEX-fogGliwu_Bq92CAzg8TJPvYGYtU4nvPD4p92G1-ilAZf0m8M9Qz8uL27mV8X118-L-afrAkrWjgUXvBVdz7qKCQ6i71XTMW1M2TNORd_VxhBSMm4qoUjZd8w0RFBCFe2V7lrNZ-jj3nczdYPOn36M4OQm2gHinQxg5b-It2u5ClvZEsqqvNUZen8wiOH3pNMoB5uUdg68DlOSrCaENbziPFPf_Z31FPJYQSZUe4KKIaWojVR2hNGGXbR1khK5q1oeqpaHqrPu_D_do_Xzig97RQbkbZiiz0t-lv0As07AAQ
CitedBy_id crossref_primary_10_1016_j_bios_2023_115079
crossref_primary_10_1002_jrs_6519
crossref_primary_10_1021_acsami_3c05039
crossref_primary_10_1002_advs_202202051
crossref_primary_10_1016_j_jiec_2024_05_040
crossref_primary_10_1021_acsami_4c15017
crossref_primary_10_1007_s11468_024_02749_9
crossref_primary_10_1021_acssensors_4c00276
crossref_primary_10_1039_D3AN01298K
crossref_primary_10_2174_0113816128347223241021111914
crossref_primary_10_1039_D4NH00226A
crossref_primary_10_1021_acsbiomaterials_3c01871
crossref_primary_10_3390_chemosensors10050190
crossref_primary_10_1038_s41557_023_01383_y
crossref_primary_10_1021_acsnano_2c00353
crossref_primary_10_1016_j_talanta_2024_127283
crossref_primary_10_1039_D4CS00090K
crossref_primary_10_1186_s40580_024_00443_4
crossref_primary_10_3389_fbioe_2023_1251595
crossref_primary_10_1002_smll_202409698
crossref_primary_10_1021_acsnano_2c10378
crossref_primary_10_1021_acs_analchem_3c02154
crossref_primary_10_1021_acsnano_4c18470
crossref_primary_10_1039_D3NH90027D
crossref_primary_10_1038_s41467_022_32975_w
crossref_primary_10_1002_jrs_6653
crossref_primary_10_1021_acs_chemrev_2c00897
crossref_primary_10_1016_j_aca_2025_343829
crossref_primary_10_1142_S1793545823300082
Cites_doi 10.1039/C8CC04267E
10.1038/nature22051
10.1038/srep21242
10.1073/pnas.1616400113
10.1038/s41587-019-0262-4
10.1158/1078-0432.CCR-07-1658
10.1021/acsnano.5b07200
10.1021/acsnano.9b04224
10.1021/nn304347g
10.1073/pnas.0813327106
10.1158/0008-5472.CAN-17-0709
10.7150/ntno.21136
10.1038/natrevmats.2017.14
10.1021/ja203316q
10.1002/adfm.201203726
10.1021/nn800243g
10.1021/nn100280z
10.1007/s12274-010-1025-1
10.1021/acs.nanolett.5b02594
10.1073/pnas.1300136110
10.1021/acs.chemmater.6b03349
10.1073/pnas.1301379110
10.1021/acsnano.8b03217
10.1038/nbt1377
10.1038/ncomms7570
10.1021/ja104174m
10.1021/nn100213v
10.1158/1078-0432.CCR-10-0059
10.1038/nrclinonc.2017.166
10.1021/ac501701h
10.1021/jp057584h
10.1021/nl0707003
10.1021/acsnano.7b00152
10.1038/s41570-017-0060
10.1073/pnas.1617990114
10.1126/scitranslmed.3001963
10.1016/j.nantod.2012.02.008
10.1038/natrevmats.2016.14
10.1038/s41565-018-0221-0
10.1038/nm.3488
10.7150/thno.13842
10.1117/1.JBO.23.4.046005
10.1021/acs.accounts.6b00409
10.1021/acs.chemrev.5b00265
10.1038/srep04075
10.1038/s41557-020-00554-5
10.1021/acs.analchem.6b01597
10.1117/1.JBO.20.5.055002
10.1038/s41598-017-18502-8
10.1038/s41551-017-0131-8
10.1021/ac302510g
10.1016/S1470-2045(10)70009-7
10.1021/acsphotonics.9b01819
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsnano.1c07470
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 19969
ExternalDocumentID PMC9012519
34797988
10_1021_acsnano_1c07470
a52503718
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA199075
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a429t-37397bd2b5273a7ddc8b2eff4d2317db6ff00423f57c04db2f807101c1dceb9e3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Aug 21 14:11:38 EDT 2025
Thu Jul 10 20:38:08 EDT 2025
Mon Jul 21 06:00:55 EDT 2025
Tue Jul 01 03:37:18 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Thu Dec 30 08:20:01 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords surface-enhanced resonant Raman scattering
in vivo imaging
multiplexed imaging
cancer imaging
surface-enhanced Raman spectroscopy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-37397bd2b5273a7ddc8b2eff4d2317db6ff00423f57c04db2f807101c1dceb9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
J.H.Y. designed and carried out the experiments, analyzed the data, and wrote the manuscript. I.S., R.M.D., A.V.M., and H.F. wrote the code for Raman imaging analysis. A.Z., A.L.D., K.o.J., E.C., and G.P. contributed to the tumor xenograft preparation and animal study. R.K.R., D.T.C., L.D.C., J.C., and S.P. contributed to the SERS nanoparticle design and syntheses. J.R. performed the statistical analysis to assess the reproducibility of the SERS nanoparticles. C.L. supervised the revision of the manuscript. S.S.G. designed the experiments, analyzed the data, and supervised the project. The manuscript was revised through the contributions of all authors. All authors approved the final version of the manuscript.
Author Contributions
ORCID 0000-0002-0247-6470
0000-0002-2711-7554
0000-0003-4101-513X
0000-0003-4341-2809
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9012519
PMID 34797988
PQID 2600283533
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012519
proquest_miscellaneous_2600283533
pubmed_primary_34797988
crossref_citationtrail_10_1021_acsnano_1c07470
crossref_primary_10_1021_acsnano_1c07470
acs_journals_10_1021_acsnano_1c07470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-28
PublicationDateYYYYMMDD 2021-12-28
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Yuan F. (ref50/cit50) 1995; 55
ref24/cit24
ref38/cit38
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1039/C8CC04267E
– ident: ref20/cit20
  doi: 10.1038/nature22051
– ident: ref9/cit9
  doi: 10.1038/srep21242
– ident: ref52/cit52
  doi: 10.1073/pnas.1616400113
– ident: ref15/cit15
  doi: 10.1038/s41587-019-0262-4
– ident: ref54/cit54
  doi: 10.1158/1078-0432.CCR-07-1658
– ident: ref40/cit40
  doi: 10.1021/acsnano.5b07200
– ident: ref25/cit25
  doi: 10.1021/acsnano.9b04224
– ident: ref37/cit37
  doi: 10.1021/nn304347g
– ident: ref31/cit31
  doi: 10.1073/pnas.0813327106
– ident: ref10/cit10
  doi: 10.1158/0008-5472.CAN-17-0709
– ident: ref4/cit4
  doi: 10.7150/ntno.21136
– ident: ref53/cit53
  doi: 10.1038/natrevmats.2017.14
– ident: ref45/cit45
  doi: 10.1021/ja203316q
– ident: ref33/cit33
  doi: 10.1002/adfm.201203726
– ident: ref49/cit49
  doi: 10.1021/nn800243g
– ident: ref29/cit29
  doi: 10.1021/nn100280z
– ident: ref8/cit8
  doi: 10.1007/s12274-010-1025-1
– ident: ref48/cit48
  doi: 10.1021/acs.nanolett.5b02594
– ident: ref6/cit6
  doi: 10.1073/pnas.1300136110
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.6b03349
– ident: ref32/cit32
  doi: 10.1073/pnas.1301379110
– ident: ref12/cit12
  doi: 10.1021/acsnano.8b03217
– ident: ref36/cit36
  doi: 10.1038/nbt1377
– ident: ref38/cit38
  doi: 10.1038/ncomms7570
– ident: ref26/cit26
  doi: 10.1021/ja104174m
– ident: ref7/cit7
  doi: 10.1021/nn100213v
– ident: ref44/cit44
  doi: 10.1158/1078-0432.CCR-10-0059
– ident: ref1/cit1
  doi: 10.1038/nrclinonc.2017.166
– ident: ref41/cit41
  doi: 10.1021/ac501701h
– ident: ref47/cit47
  doi: 10.1021/jp057584h
– ident: ref17/cit17
  doi: 10.1021/nl0707003
– ident: ref24/cit24
  doi: 10.1021/acsnano.7b00152
– ident: ref22/cit22
  doi: 10.1038/s41570-017-0060
– volume: 55
  start-page: 3752
  year: 1995
  ident: ref50/cit50
  publication-title: Cancer Res.
– ident: ref18/cit18
  doi: 10.1073/pnas.1617990114
– ident: ref51/cit51
  doi: 10.1126/scitranslmed.3001963
– ident: ref42/cit42
  doi: 10.1016/j.nantod.2012.02.008
– ident: ref35/cit35
  doi: 10.1038/natrevmats.2016.14
– ident: ref16/cit16
  doi: 10.1038/s41565-018-0221-0
– ident: ref5/cit5
  doi: 10.1038/nm.3488
– ident: ref39/cit39
  doi: 10.7150/thno.13842
– ident: ref11/cit11
  doi: 10.1117/1.JBO.23.4.046005
– ident: ref28/cit28
  doi: 10.1021/acs.accounts.6b00409
– ident: ref23/cit23
  doi: 10.1021/acs.chemrev.5b00265
– ident: ref34/cit34
  doi: 10.1038/srep04075
– ident: ref19/cit19
  doi: 10.1038/s41557-020-00554-5
– ident: ref21/cit21
  doi: 10.1021/acs.analchem.6b01597
– ident: ref27/cit27
  doi: 10.1117/1.JBO.20.5.055002
– ident: ref46/cit46
  doi: 10.1038/s41598-017-18502-8
– ident: ref2/cit2
  doi: 10.1038/s41551-017-0131-8
– ident: ref43/cit43
  doi: 10.1021/ac302510g
– ident: ref3/cit3
  doi: 10.1016/S1470-2045(10)70009-7
– ident: ref14/cit14
  doi: 10.1021/acsphotonics.9b01819
SSID ssj0057876
Score 2.5387115
Snippet In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical...
multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has...
In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19956
SubjectTerms Animals
Diagnostic Imaging
Gold
Metal Nanoparticles
Mice
Nanoparticles
Neoplasms - diagnostic imaging
Spectrum Analysis, Raman
Tumor Microenvironment
Title Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles In Vivo
URI http://dx.doi.org/10.1021/acsnano.1c07470
https://www.ncbi.nlm.nih.gov/pubmed/34797988
https://www.proquest.com/docview/2600283533
https://pubmed.ncbi.nlm.nih.gov/PMC9012519
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQXODAvpRNRuLAxYU4adIcUUVFkeiBTdwirwLROqhpEPANfDQzSVooFYJLLl6kOGPPm8ybZ0IOpY9C-XHMmjpqsIBLxWKtLAuDSFgZ-r4MsXb4shue3wYX9437L7Honxl87h0LlTnh0rqnUOsdovM5HoKRIQpqXY8OXbS7sEwgQ4AMKGKs4jM1AbohlU26oSls-ZMi-c3ntJdKtlZWSBUi1eSpng9lXb1PCzn-_TrLZLFCnvS0NJUVMmPcKln4pke4Rj66-HP2RSClnQqnKbJAem_0smIdvhpN29DGWnBkDuhN3odnp19cdERTW_ZDXUzahQ3EOs4OkN9OMUeAhBt6nQ-sUIaduYeCeUCvRF84Ckc8xO4VRY92HL17fEnXyW377KZ1zqrrGpgApzaEowqwjdRcoqabiLRWTcmNtYEGDBlhuZ8tWDi2EamTQEtum4hvPOXBKsvY-Btk1qXObBEKQY_l8iSSxoKXlYApIOoKQiW9WPO4GdbIIaxjUm23LCky6dxLqsVNqsWtkfroIyeqkjzHmzd6vw84Gg94LtU-fu96MLKaBHYkplmEM2meJSj5jyp2vl8jm6UVjSfDul1UiKuRaMK-xh1Q7XuyxT0-FKrfANywynj7f6--Q-Y5sm88LL7fJbPDQW72AD4N5X6xcT4B8-oZVQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB1V5QAcoHwHWlikHrhsiNeOHR-rqFECTSRoinqz9lOtaNYojivgN_CjmbEdt2lVCS45xOuVvZndeZN58wZgX4UklJ-mfGCSPo-E0jw12vE4SqRTcRiqmGqHp7N4fBJ9Ou2fbkFvXQuDD1HgTEWVxL9SFwg-4nde-rwbaJJ8xyD9HkIRQc0aDobH67OXzC-u88gYJyOYaMV8bk1A3kgXm97oFsS8yZS85npGj-FL-9AV4-R7t1yprv59Q8_xf95qBx41OJQd1IbzBLasfwoPr6kTPoM_M_qr9lISwZ1JbxhxQi5-sWnDQfxpDRvhNT7EA3TJ5uUCPyeLqu0Ry109jlQy2Qy3E594tyS2O6OMAdFv2HG5dFJbfujPKh4C-yoX0jM88DGSbwh7bOLZt_PL_DmcjA7nwzFvmjdwiS5uhQcXIh1lhCKFN5kYowdKWOcig4gyoeI_V3FyXD_Rvcgo4QaEdgId4GKr1IYvYNvn3r4ChiGQE6qXKOvQ5ypEGBiDRbFWQWpEOog7sI_rmDWbr8iqvLoIsmZxs2ZxO9Bd_9aZbgTQqQ_Hxd03fGhv-FFrf9w99P3aeDLcn5R0kd7mZZFRAwDStAvDDrysjamdjKp4SS-uA8mGmbUDSPt784o_P6s0wBHGUc3x63979XdwfzyfHmVHk9nnN_BAEC8noLL8XdheLUu7h8Bqpd5We-kvdgshtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5VVKraAy190ECBrcShl03xI3Z8RIGI0BJVhVTcrH0KVLJGcYxafkN_dGfsjUVASO3FB3u9stczOzOeb74B2JUREeVnGe_rtMfjUCqeaWV5EqfCyiSKZEK1wyfj5GgSH5_3zn1RGNXC4EOUOFNZJ_FJq6-19QwDwWc874QruoEi2ncM1J9S0o4aNuwPThf7L4lg0uSSMVZGh6Il9HkwAVkkVS5bpAdu5n205B3zM3wJk_bBa9TJz241l111e4_T8X_f7BWsen-U7TcCtAZPjHsNL-6wFL6BP2P6ZXsjCOjOhNOMsCFXv9mJxyL-MpoN8Rof4EY6Y2fVFI-jad3-iBW2GUdsmWyMasVHzs4I9c4oc0AwHHZazaxQhh-6ixqPwL6LqXAMN36M6D1wj40c-3F5U7yFyfDwbHDEfRMHLtDUzXEDQ49H6lAS05tItVZ9GRprY42eZUpFgLbG5theqvZiLUPbJ68nUAEuuMxM9A5WXOHMe2AYCtlQ7qXSWLS9Ej0NjMXiRMkg02HWTzqwi-uYeyUs8zq_Hga5X9zcL24HuovvnStPhE79OK4ev-FTe8N1wwHy-NCPCwHKUU8p-SKcKaoyp0YAxG0XRR1YbwSqnYyqeYk3rgPpkqi1A4gDfPmKu7youcDRnaPa441_e_UdePbtYJh_HY2_bMLzkOA5AVXnf4CV-awyW-hfzeV2rU5_AaBQJDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+and+Highly+Multiplexed+Five-Color+Tumor+Imaging+of+Multicore+Near-Infrared+Resonant+Surface-Enhanced+Raman+Nanoparticles+In+Vivo&rft.jtitle=ACS+nano&rft.au=Yu%2C+Jung+Ho&rft.au=Steinberg%2C+Idan&rft.au=Davis%2C+Ryan+M&rft.au=Malkovskiy%2C+Andrey+V&rft.date=2021-12-28&rft.eissn=1936-086X&rft.volume=15&rft.issue=12&rft.spage=19956&rft_id=info:doi/10.1021%2Facsnano.1c07470&rft_id=info%3Apmid%2F34797988&rft.externalDocID=34797988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon