Multifunctional Peptide-Amphiphile End-Capped Mesoporous Silica Nanoparticles for Tumor Targeting Drug Delivery
A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segm...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 3; pp. 2093 - 2103 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48‑60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited “zero premature release” of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48‑60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile. |
---|---|
AbstractList | A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48-60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited "zero premature release" of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48-60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48-60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited "zero premature release" of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48-60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile. A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat₄₈₋₆₀ peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited “zero premature release” of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αᵥβ₃ integrin overexpressed tumor cells, and Tat₄₈₋₆₀ modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile. A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48‑60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited “zero premature release” of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48‑60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile. A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited "zero premature release" of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to α β integrin overexpressed tumor cells, and Tat modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile. |
Author | Zhang, Ai-Qing He, Feng Hu, Jing-Jing Zeng, Xuan Zhang, Xian-Zheng Cheng, Yin-Jia |
AuthorAffiliation | Wuhan University School of Chemistry and Materials Science Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry South-Central University for Nationalities |
AuthorAffiliation_xml | – name: School of Chemistry and Materials Science – name: South-Central University for Nationalities – name: Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry – name: Wuhan University |
Author_xml | – sequence: 1 givenname: Yin-Jia orcidid: 0000-0001-6445-3138 surname: Cheng fullname: Cheng, Yin-Jia email: ChengYJ@mail.scuec.edu.cn – sequence: 2 givenname: Ai-Qing surname: Zhang fullname: Zhang, Ai-Qing – sequence: 3 givenname: Jing-Jing surname: Hu fullname: Hu, Jing-Jing – sequence: 4 givenname: Feng surname: He fullname: He, Feng – sequence: 5 givenname: Xuan surname: Zeng fullname: Zeng, Xuan email: zeng_xuan@163.com – sequence: 6 givenname: Xian-Zheng orcidid: 0000-0001-6242-6005 surname: Zhang fullname: Zhang, Xian-Zheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28032742$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtLBCEUxiWK7q89xjxGMJs6zjj7GNsVukH1LK4ey3DGSZ2g_z6X3XoIIpCjHH7fwfN9O2i99z0gdEDwhGBKTqSKsrOTZk5ow_ga2iZTxsqW1nT9583YFtqJ8Q3jpqK43kRbtMUV5YxuI387umTN2KtkfS9d8QBDshrK0254tfk4KM57Xc7kMIAubiH6wQc_xuLROqtkcSd7P8iQrHIQC-ND8TR2iyrDCyTbvxRnYcwFnP2A8LmHNox0EfZX9y56vjh_ml2VN_eX17PTm1IyOk0lgVbXU27mtTJE86Y20FDeajyvgGJNQJMGCDcElMlLNTU3ykjKoQVDmKbVLjpazh2Cfx8hJtHZqMA52UP-vaAYY4qnvOL_oqStGcHZXZLRwxU6zjvQYgi2k-FTfPuZAbYEVPAxBjBC2SQX1qYgrRMEi0VsYhmbWMWWZZNfsu_JfwqOl4LcF29-DDm6-Bf8BUiTqsA |
CitedBy_id | crossref_primary_10_1002_smll_202205787 crossref_primary_10_1016_j_canlet_2019_12_019 crossref_primary_10_1016_j_cej_2018_11_156 crossref_primary_10_1039_D0TB01960G crossref_primary_10_3389_fchem_2020_00602 crossref_primary_10_2174_1381612825666190903154847 crossref_primary_10_1016_j_colsurfb_2019_03_019 crossref_primary_10_3390_biomedicines12010202 crossref_primary_10_1021_acs_analchem_8b00708 crossref_primary_10_3389_fchem_2020_598722 crossref_primary_10_1016_j_mseb_2021_115161 crossref_primary_10_1142_S1793292019300081 crossref_primary_10_3390_bios11090344 crossref_primary_10_1080_02648725_2022_2147678 crossref_primary_10_1039_C9NR08309J crossref_primary_10_1021_acsabm_8b00830 crossref_primary_10_1002_adfm_201703313 crossref_primary_10_1016_j_ijpx_2022_100116 crossref_primary_10_1002_adhm_201700831 crossref_primary_10_1021_acsami_8b07917 crossref_primary_10_1007_s13233_020_8087_z crossref_primary_10_1039_D3RA00768E crossref_primary_10_1002_mabi_202000034 crossref_primary_10_1039_C9ME00092E crossref_primary_10_1080_17425247_2019_1575806 crossref_primary_10_1016_j_carbpol_2023_121562 crossref_primary_10_1039_C7AN01127J crossref_primary_10_1016_j_molliq_2021_115417 crossref_primary_10_1016_j_ajps_2019_08_003 crossref_primary_10_1039_C7NJ02804K crossref_primary_10_1039_C7NR07618E crossref_primary_10_1080_1061186X_2020_1812614 crossref_primary_10_1016_j_msec_2021_112199 crossref_primary_10_3390_pharmaceutics10040250 crossref_primary_10_3390_pharmaceutics15051320 crossref_primary_10_1021_acsabm_8b00050 crossref_primary_10_1039_C8NJ05879B crossref_primary_10_1088_2053_1591_ac65e3 crossref_primary_10_3390_pharmaceutics12060527 crossref_primary_10_12677_HJBM_2021_113020 crossref_primary_10_1016_j_ccr_2021_214309 crossref_primary_10_3390_pharmaceutics14061200 crossref_primary_10_1002_cjoc_202000320 crossref_primary_10_2147_IJN_S341421 crossref_primary_10_1039_C7BM00793K crossref_primary_10_1007_s10853_020_04428_6 crossref_primary_10_3390_nano11092222 crossref_primary_10_1016_j_actbio_2018_11_021 crossref_primary_10_1088_1361_6528_ac6fee crossref_primary_10_1007_s00604_023_05907_8 crossref_primary_10_1007_s42247_020_00109_x crossref_primary_10_1080_00914037_2018_1525542 crossref_primary_10_1007_s13346_024_01609_7 crossref_primary_10_1021_acsami_7b17949 crossref_primary_10_1186_s12951_022_01315_x crossref_primary_10_3390_nano12122016 crossref_primary_10_1016_j_molliq_2024_124830 crossref_primary_10_3389_fnut_2022_1050647 crossref_primary_10_1007_s12274_020_2641_z crossref_primary_10_1007_s10934_017_0508_9 crossref_primary_10_1002_adfm_202107174 crossref_primary_10_1007_s00289_021_03999_x crossref_primary_10_1038_s41467_023_38056_w crossref_primary_10_1016_j_mtcomm_2022_105215 crossref_primary_10_1016_j_cej_2024_154514 crossref_primary_10_3390_nano10050916 crossref_primary_10_1016_j_mtbio_2022_100472 |
Cites_doi | 10.1021/acsnano.5b07781 10.1039/c3nr06049g 10.1080/10408360500523878 10.1021/ja312004m 10.1002/smll.201600325 10.4155/tde.15.93 10.1016/j.ejpb.2005.07.006 10.1016/j.jconrel.2011.06.038 10.1016/j.addr.2007.09.012 10.1016/j.colsurfb.2016.04.051 10.1016/j.msec.2016.04.085 10.1021/acsnano.6b00043 10.1039/c3tb20792g 10.1016/j.biomaterials.2015.05.003 10.1016/j.ijpharm.2011.10.013 10.1016/j.biomaterials.2016.03.019 10.1016/j.addr.2015.04.023 10.1016/j.ejps.2015.02.008 10.1039/C4NR07245F 10.1021/acsnano.5b07521 10.1039/b607706d 10.1016/S1359-6446(04)03279-9 10.1016/j.nantod.2016.02.004 10.1002/cbf.1275 10.1016/j.biomaterials.2016.03.013 10.2147/IJN.S16923 10.1039/C5NR09112H 10.1016/j.biomaterials.2010.08.039 10.1021/acs.bioconjchem.6b00156 10.1016/j.colsurfb.2016.04.015 10.2174/1567201811666140822112516 10.1021/nn5070343 10.1039/C5NR08163G 10.1039/c1cp20636b 10.1039/c1cc14547a 10.1039/C5TB02490K 10.1080/10610278.2015.1089357 10.1002/smll.201402865 10.1188/16.CJON.364-366 10.1016/j.jconrel.2016.03.030 10.1021/acsami.5b00752 10.1002/jbm.820251209 10.1039/C5NR08753H 10.1016/j.synthmet.2012.08.016 10.1002/adfm.201402755 10.1016/j.addr.2016.05.015 10.1021/acsami.6b00376 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.6b12647 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 2103 |
ExternalDocumentID | 28032742 10_1021_acsami_6b12647 f87264426 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-1e8d597fb5cf1d765fe6278d0b3e20d1ed16e17f1ecf632657fcfa27e8ef14d23 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 14:54:58 EDT 2025 Thu Jul 10 23:35:51 EDT 2025 Thu Jan 02 23:02:36 EST 2025 Thu Apr 24 22:56:42 EDT 2025 Tue Jul 01 02:29:06 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | tumor targeting mesoporous silica nanoparticle drug release redox-sensitive peptide-amphiphile |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-1e8d597fb5cf1d765fe6278d0b3e20d1ed16e17f1ecf632657fcfa27e8ef14d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6242-6005 0000-0001-6445-3138 |
PMID | 28032742 |
PQID | 1854106471 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000209737 proquest_miscellaneous_1854106471 pubmed_primary_28032742 crossref_citationtrail_10_1021_acsami_6b12647 crossref_primary_10_1021_acsami_6b12647 acs_journals_10_1021_acsami_6b12647 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-25 |
PublicationDateYYYYMMDD | 2017-01-25 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1021/acsnano.5b07781 – ident: ref37/cit37 doi: 10.1039/c3nr06049g – ident: ref41/cit41 doi: 10.1080/10408360500523878 – ident: ref22/cit22 doi: 10.1021/ja312004m – ident: ref32/cit32 doi: 10.1002/smll.201600325 – ident: ref8/cit8 doi: 10.4155/tde.15.93 – ident: ref36/cit36 doi: 10.1016/j.ejpb.2005.07.006 – ident: ref44/cit44 doi: 10.1016/j.jconrel.2011.06.038 – ident: ref31/cit31 doi: 10.1016/j.addr.2007.09.012 – ident: ref11/cit11 doi: 10.1016/j.colsurfb.2016.04.051 – ident: ref40/cit40 doi: 10.1016/j.msec.2016.04.085 – ident: ref5/cit5 doi: 10.1021/acsnano.6b00043 – ident: ref35/cit35 doi: 10.1039/c3tb20792g – ident: ref4/cit4 doi: 10.1016/j.biomaterials.2015.05.003 – ident: ref43/cit43 doi: 10.1016/j.ijpharm.2011.10.013 – ident: ref18/cit18 doi: 10.1016/j.biomaterials.2016.03.019 – ident: ref28/cit28 doi: 10.1016/j.addr.2015.04.023 – ident: ref38/cit38 doi: 10.1016/j.ejps.2015.02.008 – ident: ref24/cit24 doi: 10.1039/C4NR07245F – ident: ref9/cit9 doi: 10.1021/acsnano.5b07521 – ident: ref26/cit26 doi: 10.1039/b607706d – ident: ref30/cit30 doi: 10.1016/S1359-6446(04)03279-9 – ident: ref27/cit27 doi: 10.1016/j.nantod.2016.02.004 – ident: ref42/cit42 doi: 10.1002/cbf.1275 – ident: ref23/cit23 doi: 10.1016/j.biomaterials.2016.03.013 – ident: ref6/cit6 doi: 10.2147/IJN.S16923 – ident: ref25/cit25 doi: 10.1039/C5NR09112H – ident: ref46/cit46 doi: 10.1016/j.biomaterials.2010.08.039 – ident: ref10/cit10 doi: 10.1021/acs.bioconjchem.6b00156 – ident: ref12/cit12 doi: 10.1016/j.colsurfb.2016.04.015 – ident: ref2/cit2 doi: 10.2174/1567201811666140822112516 – ident: ref3/cit3 doi: 10.1021/nn5070343 – ident: ref21/cit21 doi: 10.1039/C5NR08163G – ident: ref45/cit45 doi: 10.1039/c1cp20636b – ident: ref47/cit47 doi: 10.1039/c1cc14547a – ident: ref33/cit33 doi: 10.1039/C5TB02490K – ident: ref19/cit19 doi: 10.1080/10610278.2015.1089357 – ident: ref34/cit34 doi: 10.1002/smll.201402865 – ident: ref1/cit1 doi: 10.1188/16.CJON.364-366 – ident: ref15/cit15 doi: 10.1016/j.jconrel.2016.03.030 – ident: ref14/cit14 doi: 10.1021/acsami.5b00752 – ident: ref29/cit29 doi: 10.1002/jbm.820251209 – ident: ref20/cit20 doi: 10.1039/C5NR08753H – ident: ref39/cit39 doi: 10.1016/j.synthmet.2012.08.016 – ident: ref16/cit16 doi: 10.1002/adfm.201402755 – ident: ref7/cit7 doi: 10.1016/j.addr.2016.05.015 – ident: ref17/cit17 doi: 10.1021/acsami.6b00376 |
SSID | ssj0063205 |
Score | 2.4712925 |
Snippet | A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2093 |
SubjectTerms | amino acid sequences cytosol Doxorubicin Drug Carriers Drug Delivery Systems Drug Liberation glutathione hydrophilicity hydrophobic bonding hydrophobicity integrins ligands nanocarriers Nanoparticles neoplasm cells Peptides Porosity porous media silica Silicon Dioxide thiols toxicity |
Title | Multifunctional Peptide-Amphiphile End-Capped Mesoporous Silica Nanoparticles for Tumor Targeting Drug Delivery |
URI | http://dx.doi.org/10.1021/acsami.6b12647 https://www.ncbi.nlm.nih.gov/pubmed/28032742 https://www.proquest.com/docview/1854106471 https://www.proquest.com/docview/2000209737 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDI_Y8cIegG18jynTJvEUuKRp0ntEBwhNYpoESLxVSeNIiKN3otcH-Oux296NDZ1AqvLkftlO_HPs2Iz9DMb6gQMvEFsEoVEOYgABBDgwOjrZD55OI1_8NufX-tdNevN3v-P_CL6SR66oqBWO8RJtt_3AlpXBGUwgaHg5W3NNoppkRfTItcjQYs3KM766n4xQUf1rhBYgy8bCnK215Y6qpjAhJZbcHdZTf1g8vS7b-ObHr7PVDmby41YvPrElKD-zjy-KD35h4-bsLdm1djuQ_6EEF2TgMQr4Fq8R8NMyiKGbTCDwC6jGiNXHdcUvb2mnj-PCjB53l1jHEfzyq_qexia5HN_BTx5qHGBEuR-PG-z67PRqeC669gvCoZGaCglZQHcj-rSIMliTRjDKZqHvE1D9ICFIA9JGCUVEAZjUxiI6ZSGDKHVQySbrleMSthnPXIw2jUFHrXTMvAtAhcdcgu5eMtB2h_1ATuXd9KnyJjKuZN6yL-_Yt8PETGp50VUwp0Yao4X0B3P6SVu7YyHl95kS5Di9KGbiSkCO5ghntKQDuXIxjWriuQOb4HO2Wg2av4-af1E0fPddf7jHVhTBhr4UKv3KetOHGvYR9Ez9t0bfnwH58P7- |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcYe9h42MY2GGyAp03ak6F2HDt9rDpQt1GERJF4i-z4LCFKWpHmYfvrOTtJ96VKIEV-iBzHvjv7fuc7nwn57JS2fQOWIbZwTCIfWB8cMDCgpDe852w4jTw-U6NL-f0qvVojR91ZGOxEhS1V0Yn_O7sAP8J34UYcZTmqcP2EPEUkIoJID4YX3dKrEhFjFtEwlyxDxdVlafzv-6CLiupvXbQCYEZFc_KSnC-7GONLbg7rhT0sfv2TvfERY3hFXrSgkw4aKdkka1C-Jht_pCJ8Q2bxJG7Qcs3mID0P4S5IzgGy-xqfKdDj0rGhmc_B0TFUM0Tus7qiF9dh34_iMo32dxtmRxEK00l9G8oYao7_oF_vaixgGiJBfr4llyfHk-GItZcxMIMqa8E4ZA6ND2_TwnOnVepBCZ25nk1A9BwHxxVw7TkUHvmgUu0Lb4SGDDyXTiRbZL2clfCO0Mx4r1PvpJdC-swaByENmUnQ-Ev6Uu-QT0ipvJ1MVR795ILnDfnylnw7hHXMy4s2n3m4VmO6sv6XZf15k8ljZc2PnSzkONmCB8WUgBTNEdxIHo7n8tV1RPTu9nWC7Ww3grT8X7gKLPjGdx80wgPybDQZn-an385-vCfPRQAUPc5E-oGsL-5q2EM4tLD7cQrcA7zBB24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dT9sw0GIgTeNhsC8GDOZpk_ZkVjtOnD5WhYp9gJAoEm-RHZ8lREkr0jxsv547J632oUpDivwQOY59H74734cZ--Qz4_oWnEDdwguNeBB98CDAQqaDlT3vKBv57Dw7vdLfrtPrLo-bcmFwEjWOVEcnPnH1zIeuwoD8gu_pVpzMSRTj5gnbIJ8dkfVgeLnYfrNExbhFNM61yFF4LSo1_vM9yaOy_lMerVAyo7AZbbHxcpoxxuT2qJm7o_LXXxUcH7mObfa8Uz75oKWWF2wNqpds87eShK_YNGbkkrRrDwn5BYW9IFgHiPYbfCbATyovhnY2A8_PoJ6iBj9tan55Q-d_HLdrtMO7cDuOKjEfN3fUxpBz_Ac_vm-wgQlFhPx8za5GJ-PhqeguZRAWRddcSMg9GiHBpWWQ3mRpgEyZ3PdcAqrnJXiZgTRBQhkQF4igUAarDOQQpPYqecPWq2kFbxnPbQgmDV4HrXTInfVA5chsgkZg0tdml31ESBUdU9VF9JcrWbTgKzrw7TKxQGBRdnXN6XqNycr-n5f9Z21Fj5U9PyzooUCmI0-KrQAhWqCSoyWl6crVfVT08vZNguPstMS0_B9dCUY-8r3_WuF79vTieFT8-Hr-fZ89U6RX9KRQ6Tu2Pr9v4AC1ork7jFzwADPXCfE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Peptide-Amphiphile+End-Capped+Mesoporous+Silica+Nanoparticles+for+Tumor+Targeting+Drug+Delivery&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Cheng%2C+Yin-Jia&rft.au=Zhang%2C+Ai-Qing&rft.au=Hu%2C+Jing-Jing&rft.au=He%2C+Feng&rft.date=2017-01-25&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=3&rft.spage=2093&rft.epage=2103&rft_id=info:doi/10.1021%2Facsami.6b12647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_6b12647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |