Multifunctional Peptide-Amphiphile End-Capped Mesoporous Silica Nanoparticles for Tumor Targeting Drug Delivery

A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGR­KKRR­QRRR­PPQR­GDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segm...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 3; pp. 2093 - 2103
Main Authors Cheng, Yin-Jia, Zhang, Ai-Qing, Hu, Jing-Jing, He, Feng, Zeng, Xuan, Zhang, Xian-Zheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGR­KKRR­QRRR­PPQR­GDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48‑60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited “zero premature release” of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48‑60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.
AbstractList A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48-60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited "zero premature release" of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48-60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48-60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited "zero premature release" of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48-60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.
A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat₄₈₋₆₀ peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited “zero premature release” of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αᵥβ₃ integrin overexpressed tumor cells, and Tat₄₈₋₆₀ modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.
A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGR­KKRR­QRRR­PPQR­GDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat48‑60 peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited “zero premature release” of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to αvβ3 integrin overexpressed tumor cells, and Tat48‑60 modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.
A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile C12-CGRKKRRQRRRPPQRGDS (defined as ADDA-TCPP) onto the mesoporous silica nanoparticles (MSNs) as an end-capping nanovalve, which consists of two main segments: a hydrophobic alkyl chain ADDA and a hydrophilic amino acid sequence containing a Tat peptide sequence with a thiol terminal group and an RGDS targeting ligand, via a disulfide linkage for redox-triggered intracellular drug delivery. A series of characterizations confirmed that the nanosystem had been successfully fabricated. The antitumor drug doxorubicin (DOX) was selected as a model drug and efficiently trapped in the pores of MSNs, and an in vitro release experiment demonstrated that the mesopores of the resulting DOX-loaded MSNs (DOX@MSN-ss-ADDA-TCPP) could be sealed tightly with ADDA-TCPP self-assemblies through hydrophobic interactions between the alkyl chains; the resulting DDS exhibited "zero premature release" of DOX in the physical environment. However, a burst drug release was triggered by a high concentration of glutathione (GSH) in simulated cellular cytosol. Moreover, detailed investigations confirmed that incorporation of RGDS peptide facilitated the active targeting delivery of DOX to α β integrin overexpressed tumor cells, and Tat modification on MSNs could enhance intracellular drug delivery, exhibiting an obvious toxicity to tumor cells. The multifunctional nanosystem constructed here can realize the controlled drug release and serve as a platform for designing multifunctional nanocarriers using diversified bioactive peptide-based amphiphile.
Author Zhang, Ai-Qing
He, Feng
Hu, Jing-Jing
Zeng, Xuan
Zhang, Xian-Zheng
Cheng, Yin-Jia
AuthorAffiliation Wuhan University
School of Chemistry and Materials Science
Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
South-Central University for Nationalities
AuthorAffiliation_xml – name: School of Chemistry and Materials Science
– name: South-Central University for Nationalities
– name: Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
– name: Wuhan University
Author_xml – sequence: 1
  givenname: Yin-Jia
  orcidid: 0000-0001-6445-3138
  surname: Cheng
  fullname: Cheng, Yin-Jia
  email: ChengYJ@mail.scuec.edu.cn
– sequence: 2
  givenname: Ai-Qing
  surname: Zhang
  fullname: Zhang, Ai-Qing
– sequence: 3
  givenname: Jing-Jing
  surname: Hu
  fullname: Hu, Jing-Jing
– sequence: 4
  givenname: Feng
  surname: He
  fullname: He, Feng
– sequence: 5
  givenname: Xuan
  surname: Zeng
  fullname: Zeng, Xuan
  email: zeng_xuan@163.com
– sequence: 6
  givenname: Xian-Zheng
  orcidid: 0000-0001-6242-6005
  surname: Zhang
  fullname: Zhang, Xian-Zheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28032742$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtLBCEUxiWK7q89xjxGMJs6zjj7GNsVukH1LK4ey3DGSZ2g_z6X3XoIIpCjHH7fwfN9O2i99z0gdEDwhGBKTqSKsrOTZk5ow_ga2iZTxsqW1nT9583YFtqJ8Q3jpqK43kRbtMUV5YxuI387umTN2KtkfS9d8QBDshrK0254tfk4KM57Xc7kMIAubiH6wQc_xuLROqtkcSd7P8iQrHIQC-ND8TR2iyrDCyTbvxRnYcwFnP2A8LmHNox0EfZX9y56vjh_ml2VN_eX17PTm1IyOk0lgVbXU27mtTJE86Y20FDeajyvgGJNQJMGCDcElMlLNTU3ykjKoQVDmKbVLjpazh2Cfx8hJtHZqMA52UP-vaAYY4qnvOL_oqStGcHZXZLRwxU6zjvQYgi2k-FTfPuZAbYEVPAxBjBC2SQX1qYgrRMEi0VsYhmbWMWWZZNfsu_JfwqOl4LcF29-DDm6-Bf8BUiTqsA
CitedBy_id crossref_primary_10_1002_smll_202205787
crossref_primary_10_1016_j_canlet_2019_12_019
crossref_primary_10_1016_j_cej_2018_11_156
crossref_primary_10_1039_D0TB01960G
crossref_primary_10_3389_fchem_2020_00602
crossref_primary_10_2174_1381612825666190903154847
crossref_primary_10_1016_j_colsurfb_2019_03_019
crossref_primary_10_3390_biomedicines12010202
crossref_primary_10_1021_acs_analchem_8b00708
crossref_primary_10_3389_fchem_2020_598722
crossref_primary_10_1016_j_mseb_2021_115161
crossref_primary_10_1142_S1793292019300081
crossref_primary_10_3390_bios11090344
crossref_primary_10_1080_02648725_2022_2147678
crossref_primary_10_1039_C9NR08309J
crossref_primary_10_1021_acsabm_8b00830
crossref_primary_10_1002_adfm_201703313
crossref_primary_10_1016_j_ijpx_2022_100116
crossref_primary_10_1002_adhm_201700831
crossref_primary_10_1021_acsami_8b07917
crossref_primary_10_1007_s13233_020_8087_z
crossref_primary_10_1039_D3RA00768E
crossref_primary_10_1002_mabi_202000034
crossref_primary_10_1039_C9ME00092E
crossref_primary_10_1080_17425247_2019_1575806
crossref_primary_10_1016_j_carbpol_2023_121562
crossref_primary_10_1039_C7AN01127J
crossref_primary_10_1016_j_molliq_2021_115417
crossref_primary_10_1016_j_ajps_2019_08_003
crossref_primary_10_1039_C7NJ02804K
crossref_primary_10_1039_C7NR07618E
crossref_primary_10_1080_1061186X_2020_1812614
crossref_primary_10_1016_j_msec_2021_112199
crossref_primary_10_3390_pharmaceutics10040250
crossref_primary_10_3390_pharmaceutics15051320
crossref_primary_10_1021_acsabm_8b00050
crossref_primary_10_1039_C8NJ05879B
crossref_primary_10_1088_2053_1591_ac65e3
crossref_primary_10_3390_pharmaceutics12060527
crossref_primary_10_12677_HJBM_2021_113020
crossref_primary_10_1016_j_ccr_2021_214309
crossref_primary_10_3390_pharmaceutics14061200
crossref_primary_10_1002_cjoc_202000320
crossref_primary_10_2147_IJN_S341421
crossref_primary_10_1039_C7BM00793K
crossref_primary_10_1007_s10853_020_04428_6
crossref_primary_10_3390_nano11092222
crossref_primary_10_1016_j_actbio_2018_11_021
crossref_primary_10_1088_1361_6528_ac6fee
crossref_primary_10_1007_s00604_023_05907_8
crossref_primary_10_1007_s42247_020_00109_x
crossref_primary_10_1080_00914037_2018_1525542
crossref_primary_10_1007_s13346_024_01609_7
crossref_primary_10_1021_acsami_7b17949
crossref_primary_10_1186_s12951_022_01315_x
crossref_primary_10_3390_nano12122016
crossref_primary_10_1016_j_molliq_2024_124830
crossref_primary_10_3389_fnut_2022_1050647
crossref_primary_10_1007_s12274_020_2641_z
crossref_primary_10_1007_s10934_017_0508_9
crossref_primary_10_1002_adfm_202107174
crossref_primary_10_1007_s00289_021_03999_x
crossref_primary_10_1038_s41467_023_38056_w
crossref_primary_10_1016_j_mtcomm_2022_105215
crossref_primary_10_1016_j_cej_2024_154514
crossref_primary_10_3390_nano10050916
crossref_primary_10_1016_j_mtbio_2022_100472
Cites_doi 10.1021/acsnano.5b07781
10.1039/c3nr06049g
10.1080/10408360500523878
10.1021/ja312004m
10.1002/smll.201600325
10.4155/tde.15.93
10.1016/j.ejpb.2005.07.006
10.1016/j.jconrel.2011.06.038
10.1016/j.addr.2007.09.012
10.1016/j.colsurfb.2016.04.051
10.1016/j.msec.2016.04.085
10.1021/acsnano.6b00043
10.1039/c3tb20792g
10.1016/j.biomaterials.2015.05.003
10.1016/j.ijpharm.2011.10.013
10.1016/j.biomaterials.2016.03.019
10.1016/j.addr.2015.04.023
10.1016/j.ejps.2015.02.008
10.1039/C4NR07245F
10.1021/acsnano.5b07521
10.1039/b607706d
10.1016/S1359-6446(04)03279-9
10.1016/j.nantod.2016.02.004
10.1002/cbf.1275
10.1016/j.biomaterials.2016.03.013
10.2147/IJN.S16923
10.1039/C5NR09112H
10.1016/j.biomaterials.2010.08.039
10.1021/acs.bioconjchem.6b00156
10.1016/j.colsurfb.2016.04.015
10.2174/1567201811666140822112516
10.1021/nn5070343
10.1039/C5NR08163G
10.1039/c1cp20636b
10.1039/c1cc14547a
10.1039/C5TB02490K
10.1080/10610278.2015.1089357
10.1002/smll.201402865
10.1188/16.CJON.364-366
10.1016/j.jconrel.2016.03.030
10.1021/acsami.5b00752
10.1002/jbm.820251209
10.1039/C5NR08753H
10.1016/j.synthmet.2012.08.016
10.1002/adfm.201402755
10.1016/j.addr.2016.05.015
10.1021/acsami.6b00376
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.6b12647
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 2103
ExternalDocumentID 28032742
10_1021_acsami_6b12647
f87264426
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-1e8d597fb5cf1d765fe6278d0b3e20d1ed16e17f1ecf632657fcfa27e8ef14d23
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 14:54:58 EDT 2025
Thu Jul 10 23:35:51 EDT 2025
Thu Jan 02 23:02:36 EST 2025
Thu Apr 24 22:56:42 EDT 2025
Tue Jul 01 02:29:06 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords tumor targeting
mesoporous silica nanoparticle
drug release
redox-sensitive
peptide-amphiphile
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-1e8d597fb5cf1d765fe6278d0b3e20d1ed16e17f1ecf632657fcfa27e8ef14d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6242-6005
0000-0001-6445-3138
PMID 28032742
PQID 1854106471
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000209737
proquest_miscellaneous_1854106471
pubmed_primary_28032742
crossref_citationtrail_10_1021_acsami_6b12647
crossref_primary_10_1021_acsami_6b12647
acs_journals_10_1021_acsami_6b12647
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-25
PublicationDateYYYYMMDD 2017-01-25
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/acsnano.5b07781
– ident: ref37/cit37
  doi: 10.1039/c3nr06049g
– ident: ref41/cit41
  doi: 10.1080/10408360500523878
– ident: ref22/cit22
  doi: 10.1021/ja312004m
– ident: ref32/cit32
  doi: 10.1002/smll.201600325
– ident: ref8/cit8
  doi: 10.4155/tde.15.93
– ident: ref36/cit36
  doi: 10.1016/j.ejpb.2005.07.006
– ident: ref44/cit44
  doi: 10.1016/j.jconrel.2011.06.038
– ident: ref31/cit31
  doi: 10.1016/j.addr.2007.09.012
– ident: ref11/cit11
  doi: 10.1016/j.colsurfb.2016.04.051
– ident: ref40/cit40
  doi: 10.1016/j.msec.2016.04.085
– ident: ref5/cit5
  doi: 10.1021/acsnano.6b00043
– ident: ref35/cit35
  doi: 10.1039/c3tb20792g
– ident: ref4/cit4
  doi: 10.1016/j.biomaterials.2015.05.003
– ident: ref43/cit43
  doi: 10.1016/j.ijpharm.2011.10.013
– ident: ref18/cit18
  doi: 10.1016/j.biomaterials.2016.03.019
– ident: ref28/cit28
  doi: 10.1016/j.addr.2015.04.023
– ident: ref38/cit38
  doi: 10.1016/j.ejps.2015.02.008
– ident: ref24/cit24
  doi: 10.1039/C4NR07245F
– ident: ref9/cit9
  doi: 10.1021/acsnano.5b07521
– ident: ref26/cit26
  doi: 10.1039/b607706d
– ident: ref30/cit30
  doi: 10.1016/S1359-6446(04)03279-9
– ident: ref27/cit27
  doi: 10.1016/j.nantod.2016.02.004
– ident: ref42/cit42
  doi: 10.1002/cbf.1275
– ident: ref23/cit23
  doi: 10.1016/j.biomaterials.2016.03.013
– ident: ref6/cit6
  doi: 10.2147/IJN.S16923
– ident: ref25/cit25
  doi: 10.1039/C5NR09112H
– ident: ref46/cit46
  doi: 10.1016/j.biomaterials.2010.08.039
– ident: ref10/cit10
  doi: 10.1021/acs.bioconjchem.6b00156
– ident: ref12/cit12
  doi: 10.1016/j.colsurfb.2016.04.015
– ident: ref2/cit2
  doi: 10.2174/1567201811666140822112516
– ident: ref3/cit3
  doi: 10.1021/nn5070343
– ident: ref21/cit21
  doi: 10.1039/C5NR08163G
– ident: ref45/cit45
  doi: 10.1039/c1cp20636b
– ident: ref47/cit47
  doi: 10.1039/c1cc14547a
– ident: ref33/cit33
  doi: 10.1039/C5TB02490K
– ident: ref19/cit19
  doi: 10.1080/10610278.2015.1089357
– ident: ref34/cit34
  doi: 10.1002/smll.201402865
– ident: ref1/cit1
  doi: 10.1188/16.CJON.364-366
– ident: ref15/cit15
  doi: 10.1016/j.jconrel.2016.03.030
– ident: ref14/cit14
  doi: 10.1021/acsami.5b00752
– ident: ref29/cit29
  doi: 10.1002/jbm.820251209
– ident: ref20/cit20
  doi: 10.1039/C5NR08753H
– ident: ref39/cit39
  doi: 10.1016/j.synthmet.2012.08.016
– ident: ref16/cit16
  doi: 10.1002/adfm.201402755
– ident: ref7/cit7
  doi: 10.1016/j.addr.2016.05.015
– ident: ref17/cit17
  doi: 10.1021/acsami.6b00376
SSID ssj0063205
Score 2.4712925
Snippet A tumor targeting redox-responsive drug delivery system (DDS) with bioactive surface was constructed by immobilizing peptide-based amphiphile...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2093
SubjectTerms amino acid sequences
cytosol
Doxorubicin
Drug Carriers
Drug Delivery Systems
Drug Liberation
glutathione
hydrophilicity
hydrophobic bonding
hydrophobicity
integrins
ligands
nanocarriers
Nanoparticles
neoplasm cells
Peptides
Porosity
porous media
silica
Silicon Dioxide
thiols
toxicity
Title Multifunctional Peptide-Amphiphile End-Capped Mesoporous Silica Nanoparticles for Tumor Targeting Drug Delivery
URI http://dx.doi.org/10.1021/acsami.6b12647
https://www.ncbi.nlm.nih.gov/pubmed/28032742
https://www.proquest.com/docview/1854106471
https://www.proquest.com/docview/2000209737
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDI_Y8cIegG18jynTJvEUuKRp0ntEBwhNYpoESLxVSeNIiKN3otcH-Oux296NDZ1AqvLkftlO_HPs2Iz9DMb6gQMvEFsEoVEOYgABBDgwOjrZD55OI1_8NufX-tdNevN3v-P_CL6SR66oqBWO8RJtt_3AlpXBGUwgaHg5W3NNoppkRfTItcjQYs3KM766n4xQUf1rhBYgy8bCnK215Y6qpjAhJZbcHdZTf1g8vS7b-ObHr7PVDmby41YvPrElKD-zjy-KD35h4-bsLdm1djuQ_6EEF2TgMQr4Fq8R8NMyiKGbTCDwC6jGiNXHdcUvb2mnj-PCjB53l1jHEfzyq_qexia5HN_BTx5qHGBEuR-PG-z67PRqeC669gvCoZGaCglZQHcj-rSIMliTRjDKZqHvE1D9ICFIA9JGCUVEAZjUxiI6ZSGDKHVQySbrleMSthnPXIw2jUFHrXTMvAtAhcdcgu5eMtB2h_1ATuXd9KnyJjKuZN6yL-_Yt8PETGp50VUwp0Yao4X0B3P6SVu7YyHl95kS5Di9KGbiSkCO5ghntKQDuXIxjWriuQOb4HO2Wg2av4-af1E0fPddf7jHVhTBhr4UKv3KetOHGvYR9Ez9t0bfnwH58P7-
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcYe9h42MY2GGyAp03ak6F2HDt9rDpQt1GERJF4i-z4LCFKWpHmYfvrOTtJ96VKIEV-iBzHvjv7fuc7nwn57JS2fQOWIbZwTCIfWB8cMDCgpDe852w4jTw-U6NL-f0qvVojR91ZGOxEhS1V0Yn_O7sAP8J34UYcZTmqcP2EPEUkIoJID4YX3dKrEhFjFtEwlyxDxdVlafzv-6CLiupvXbQCYEZFc_KSnC-7GONLbg7rhT0sfv2TvfERY3hFXrSgkw4aKdkka1C-Jht_pCJ8Q2bxJG7Qcs3mID0P4S5IzgGy-xqfKdDj0rGhmc_B0TFUM0Tus7qiF9dh34_iMo32dxtmRxEK00l9G8oYao7_oF_vaixgGiJBfr4llyfHk-GItZcxMIMqa8E4ZA6ND2_TwnOnVepBCZ25nk1A9BwHxxVw7TkUHvmgUu0Lb4SGDDyXTiRbZL2clfCO0Mx4r1PvpJdC-swaByENmUnQ-Ev6Uu-QT0ipvJ1MVR795ILnDfnylnw7hHXMy4s2n3m4VmO6sv6XZf15k8ljZc2PnSzkONmCB8WUgBTNEdxIHo7n8tV1RPTu9nWC7Ww3grT8X7gKLPjGdx80wgPybDQZn-an385-vCfPRQAUPc5E-oGsL-5q2EM4tLD7cQrcA7zBB24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dT9sw0GIgTeNhsC8GDOZpk_ZkVjtOnD5WhYp9gJAoEm-RHZ8lREkr0jxsv547J632oUpDivwQOY59H74734cZ--Qz4_oWnEDdwguNeBB98CDAQqaDlT3vKBv57Dw7vdLfrtPrLo-bcmFwEjWOVEcnPnH1zIeuwoD8gu_pVpzMSRTj5gnbIJ8dkfVgeLnYfrNExbhFNM61yFF4LSo1_vM9yaOy_lMerVAyo7AZbbHxcpoxxuT2qJm7o_LXXxUcH7mObfa8Uz75oKWWF2wNqpds87eShK_YNGbkkrRrDwn5BYW9IFgHiPYbfCbATyovhnY2A8_PoJ6iBj9tan55Q-d_HLdrtMO7cDuOKjEfN3fUxpBz_Ac_vm-wgQlFhPx8za5GJ-PhqeguZRAWRddcSMg9GiHBpWWQ3mRpgEyZ3PdcAqrnJXiZgTRBQhkQF4igUAarDOQQpPYqecPWq2kFbxnPbQgmDV4HrXTInfVA5chsgkZg0tdml31ESBUdU9VF9JcrWbTgKzrw7TKxQGBRdnXN6XqNycr-n5f9Z21Fj5U9PyzooUCmI0-KrQAhWqCSoyWl6crVfVT08vZNguPstMS0_B9dCUY-8r3_WuF79vTieFT8-Hr-fZ89U6RX9KRQ6Tu2Pr9v4AC1ork7jFzwADPXCfE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Peptide-Amphiphile+End-Capped+Mesoporous+Silica+Nanoparticles+for+Tumor+Targeting+Drug+Delivery&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Cheng%2C+Yin-Jia&rft.au=Zhang%2C+Ai-Qing&rft.au=Hu%2C+Jing-Jing&rft.au=He%2C+Feng&rft.date=2017-01-25&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=3&rft.spage=2093&rft.epage=2103&rft_id=info:doi/10.1021%2Facsami.6b12647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_6b12647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon