Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells

As a hole-transport layer (HTL) material, poly­(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-solu...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 30; pp. 25323 - 25331
Main Authors Huang, Peng, Wang, Zhaowei, Liu, Yanfeng, Zhang, Kaicheng, Yuan, Ligang, Zhou, Yi, Song, Bo, Li, Yongfang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a hole-transport layer (HTL) material, poly­(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p–i–n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.
AbstractList As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS₂ and WS₂ were used as HTLs in p–i–n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS₂ and WS₂, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS₂ and WS₂ HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.
As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS and WS were used as HTLs in p-i-n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS and WS , respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS and WS HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.
As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p-i-n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p-i-n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.
As a hole-transport layer (HTL) material, poly­(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p–i–n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.
Author Liu, Yanfeng
Li, Yongfang
Zhang, Kaicheng
Zhou, Yi
Yuan, Ligang
Wang, Zhaowei
Song, Bo
Huang, Peng
AuthorAffiliation Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry
Chinese Academy of Sciences
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– name: Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry
Author_xml – sequence: 1
  givenname: Peng
  surname: Huang
  fullname: Huang, Peng
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 2
  givenname: Zhaowei
  surname: Wang
  fullname: Wang, Zhaowei
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 3
  givenname: Yanfeng
  surname: Liu
  fullname: Liu, Yanfeng
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 4
  givenname: Kaicheng
  surname: Zhang
  fullname: Zhang, Kaicheng
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 5
  givenname: Ligang
  surname: Yuan
  fullname: Yuan, Ligang
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 6
  givenname: Yi
  surname: Zhou
  fullname: Zhou, Yi
  email: yizhou@suda.edu.cn
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 7
  givenname: Bo
  orcidid: 0000-0002-7546-9482
  surname: Song
  fullname: Song, Bo
  email: songbo@suda.edu.cn
  organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 8
  givenname: Yongfang
  orcidid: 0000-0002-2565-2748
  surname: Li
  fullname: Li, Yongfang
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28695726$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URB-wZYm8RJUm-DEvL1FaCFIQSC1iad3x3GlcHDvYHqTs-AVs-If9JZ2QlAVSxcKyZX3n-PqcU3Lkg0dCXnI240zwN2ASrO2s6VhdMvmEnHBVlkUrKnH091yWx-Q0pVvGailY9Ywci7ZWVSPqE_LrK2SMxVVwY-eQigt6HcEnm23w9CNmcPTCmhU4E27Q2x4ThUTzCukiOCz-wJsQM13CFiMdQqQLe7NyW3o5DNZY9JmC7-lVhp3_5u7nbzstTz9jDD_SN5uRTo9DpHN0Lj0nTwdwCV8c9jPy5d3l9XxRLD-9_zB_uyygFCoX09dVLVlT80bVdSc7hs3QDEPfibZqhZGd4kphA0aJFhWwrm-F7AAVU31ZM3lGXu99NzF8HzFlvbbJTBOAxzAmLTjjshWM_x_lajcEqySf0FcHdOzW2OtNtGuIW_0Q9wSUe8DEkFLEQRubYZd1jmCd5kzvWtX7VvWh1Uk2-0f24Pyo4HwvmO71bRijn8J8DL4HM021Lg
CitedBy_id crossref_primary_10_35848_1882_0786_ab9efa
crossref_primary_10_1002_aenm_201902253
crossref_primary_10_1016_j_jallcom_2019_152602
crossref_primary_10_1016_j_surfin_2024_105027
crossref_primary_10_1016_j_jechem_2021_12_003
crossref_primary_10_1016_j_solener_2020_04_021
crossref_primary_10_1039_D2QM00366J
crossref_primary_10_1016_j_orgel_2017_11_013
crossref_primary_10_1039_C7TA08827B
crossref_primary_10_1016_j_solidstatesciences_2019_05_021
crossref_primary_10_1021_acsaelm_9b00668
crossref_primary_10_1002_ente_202101155
crossref_primary_10_1021_acsanm_0c02775
crossref_primary_10_1039_C8TA01143E
crossref_primary_10_1016_j_ceramint_2022_03_163
crossref_primary_10_1016_j_mssp_2024_108326
crossref_primary_10_7498_aps_69_20200591
crossref_primary_10_1016_j_solener_2020_07_007
crossref_primary_10_1088_1361_6463_abe502
crossref_primary_10_1039_C9NR09326E
crossref_primary_10_1039_D0SE01215G
crossref_primary_10_1039_C9CS00254E
crossref_primary_10_1002_adfm_201905694
crossref_primary_10_1002_solr_202000260
crossref_primary_10_1039_C9MH01978B
crossref_primary_10_1007_s41061_022_00416_3
crossref_primary_10_1021_acsami_3c13076
crossref_primary_10_1039_C8QM00356D
crossref_primary_10_1002_admi_201800339
crossref_primary_10_1002_smtd_202000937
crossref_primary_10_1002_pssa_202300322
crossref_primary_10_1016_j_jallcom_2021_161039
crossref_primary_10_1021_acsenergylett_0c00485
crossref_primary_10_1088_2515_7655_ab3585
crossref_primary_10_1016_j_optmat_2020_109933
crossref_primary_10_1039_D1CS00106J
crossref_primary_10_29026_oes_2022_220006
crossref_primary_10_1007_s10853_022_07958_3
crossref_primary_10_1039_D2NJ05350K
crossref_primary_10_1039_D3QI02016A
crossref_primary_10_1021_acscatal_7b04233
crossref_primary_10_1021_acsami_2c08842
crossref_primary_10_1002_cctc_202400264
crossref_primary_10_1002_adma_202301129
crossref_primary_10_1002_cctc_201901553
crossref_primary_10_1021_acsami_8b05759
crossref_primary_10_1002_solr_202000555
crossref_primary_10_1038_s41598_023_39189_0
crossref_primary_10_1016_j_est_2024_114526
crossref_primary_10_1088_0256_307X_37_10_107301
crossref_primary_10_1186_s11671_024_04044_2
crossref_primary_10_1039_C7TA10366B
crossref_primary_10_1063_5_0211610
crossref_primary_10_1002_adsu_202100457
crossref_primary_10_1016_j_orgel_2019_05_032
crossref_primary_10_1063_1_5029484
crossref_primary_10_1021_acsami_2c08680
crossref_primary_10_1021_acsami_8b03225
crossref_primary_10_3390_coatings14081078
crossref_primary_10_1007_s12274_018_2103_z
crossref_primary_10_1039_C8TA12254G
crossref_primary_10_1016_j_mtener_2018_11_006
crossref_primary_10_1016_j_micrna_2022_207398
crossref_primary_10_1039_D1TC02407H
crossref_primary_10_3390_app11198904
crossref_primary_10_1021_acsenergylett_9b02063
crossref_primary_10_1016_j_jechem_2024_03_009
crossref_primary_10_1016_j_nanoen_2020_104556
crossref_primary_10_1039_D1DT02991F
crossref_primary_10_1088_2515_7639_abf544
crossref_primary_10_1016_j_rinp_2018_12_049
crossref_primary_10_1021_acs_chemrev_9b00600
crossref_primary_10_1002_adfm_202002358
crossref_primary_10_1016_j_jechem_2021_09_017
crossref_primary_10_1016_j_mser_2023_100727
crossref_primary_10_1021_acs_energyfuels_3c04226
crossref_primary_10_1002_aelm_201900730
crossref_primary_10_1039_D0TA09545A
crossref_primary_10_3390_mi14101907
crossref_primary_10_1016_j_optmat_2022_112771
crossref_primary_10_1016_j_xcrp_2024_102245
crossref_primary_10_1007_s10825_022_01941_6
crossref_primary_10_1016_j_solmat_2024_113147
crossref_primary_10_1039_D2CS00218C
crossref_primary_10_3390_cryst10100902
crossref_primary_10_1007_s00339_021_04531_8
crossref_primary_10_1016_j_flatc_2024_100629
crossref_primary_10_1016_j_jpcs_2022_111157
crossref_primary_10_1016_j_spmi_2021_106972
crossref_primary_10_1016_j_jallcom_2020_156752
crossref_primary_10_1002_aenm_201703482
crossref_primary_10_1039_C9TA07331K
crossref_primary_10_1016_j_apsusc_2021_151988
crossref_primary_10_1007_s12598_020_01691_z
crossref_primary_10_1016_j_mtsust_2024_100982
crossref_primary_10_1088_2515_7655_ab9eab
crossref_primary_10_1039_D3TC01076G
crossref_primary_10_1021_acsenergylett_9b01151
crossref_primary_10_1002_cnma_201900101
crossref_primary_10_1002_sstr_202300282
crossref_primary_10_1016_j_nanoen_2021_106833
crossref_primary_10_1002_er_8587
crossref_primary_10_1021_acsaem_1c02039
crossref_primary_10_1002_solr_201900421
crossref_primary_10_1016_j_apsusc_2020_145880
crossref_primary_10_1002_adma_202007431
crossref_primary_10_1002_adfm_202316175
crossref_primary_10_1002_adts_202401253
crossref_primary_10_1007_s12596_023_01648_2
crossref_primary_10_1021_acs_chemrev_3c00931
crossref_primary_10_1002_aenm_202000910
crossref_primary_10_1021_acsami_9b18501
crossref_primary_10_1016_j_nanoen_2020_105292
crossref_primary_10_1039_D0CS00143K
crossref_primary_10_1039_D1TC02307A
crossref_primary_10_1021_acsami_0c21064
crossref_primary_10_1002_er_6672
crossref_primary_10_1039_C8CS00169C
crossref_primary_10_1039_D3MH01060K
crossref_primary_10_1002_solr_201800200
crossref_primary_10_1016_j_jpowsour_2021_230766
Cites_doi 10.1002/smll.201403534
10.1063/1.1469220
10.1016/j.nanoen.2014.12.022
10.1007/s11426-016-0115-x
10.1021/nn1003937
10.1039/C6TA03755K
10.1002/adfm.201501333
10.1039/C5TA09011C
10.1016/j.nanoen.2015.07.024
10.1016/j.jpowsour.2016.04.032
10.1021/acsami.5b08038
10.1002/adma.201603995
10.1038/ncomms10672
10.1002/adma.201401775
10.1063/1.1315344
10.1002/smll.201401647
10.1126/science.1254050
10.1038/ncomms3761
10.1021/acsami.6b13582
10.1021/acsami.5b00468
10.1039/C6NR01927G
10.1021/cm960579t
10.1038/ncomms8348
10.1039/c1nr10867k
10.1126/science.1243982
10.1063/1.4928535
10.1038/nature12509
10.1021/ja5107145
10.1039/c3ta14313a
10.1016/j.solmat.2008.01.005
10.1021/nl201874w
10.1021/ja412583t
10.1038/srep00591
10.1002/aenm.201502101
10.1126/science.aaf8060
10.1021/acs.jpcc.5b09277
10.1038/nmat4080
10.1002/ange.201000009
10.1039/C5TA04028K
10.1039/C4EE01624F
10.1016/j.orgel.2014.11.023
10.1039/C5CS00593K
10.1002/adma.201504168
10.1021/am404161k
10.1039/C5EE03560K
10.1021/ja809598r
10.1002/aenm201300549
10.1002/aenm.201600664
10.1039/C5EE00645G
10.1002/adma.201503298
10.1039/C5CS00151J
10.1002/aenm.201670095
10.1039/C4TA01336K
10.1002/smll.201601804
10.1039/C5CC00803D
10.1002/adma.201301327
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.7b06403
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 25331
ExternalDocumentID 28695726
10_1021_acsami_7b06403
b20839171
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a429t-10296307617966b3b0e7f7ffdb28582c3b9199e7ac928e9a0bd823bae909d4603
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 00:48:01 EDT 2025
Fri Jul 11 05:41:16 EDT 2025
Thu Jan 02 23:09:31 EST 2025
Thu Apr 24 22:58:21 EDT 2025
Tue Jul 01 02:29:18 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords p−i−n perovskite solar cells
improved stability
1T phase
hole-transport layer
2D transition metal dichalcogenides
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-10296307617966b3b0e7f7ffdb28582c3b9199e7ac928e9a0bd823bae909d4603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2565-2748
0000-0002-7546-9482
PMID 28695726
PQID 1917960531
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2101382010
proquest_miscellaneous_1917960531
pubmed_primary_28695726
crossref_citationtrail_10_1021_acsami_7b06403
crossref_primary_10_1021_acsami_7b06403
acs_journals_10_1021_acsami_7b06403
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-02
PublicationDateYYYYMMDD 2017-08-02
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1002/smll.201403534
– ident: ref23/cit23
  doi: 10.1063/1.1469220
– ident: ref54/cit54
  doi: 10.1016/j.nanoen.2014.12.022
– ident: ref18/cit18
  doi: 10.1007/s11426-016-0115-x
– ident: ref37/cit37
  doi: 10.1021/nn1003937
– ident: ref15/cit15
  doi: 10.1039/C6TA03755K
– ident: ref36/cit36
  doi: 10.1002/adfm.201501333
– ident: ref11/cit11
  doi: 10.1039/C5TA09011C
– ident: ref49/cit49
  doi: 10.1016/j.nanoen.2015.07.024
– ident: ref30/cit30
  doi: 10.1016/j.jpowsour.2016.04.032
– ident: ref13/cit13
  doi: 10.1021/acsami.5b08038
– ident: ref45/cit45
  doi: 10.1002/adma.201603995
– ident: ref42/cit42
  doi: 10.1038/ncomms10672
– ident: ref52/cit52
  doi: 10.1002/adma.201401775
– ident: ref21/cit21
  doi: 10.1063/1.1315344
– ident: ref34/cit34
  doi: 10.1002/smll.201401647
– ident: ref4/cit4
  doi: 10.1126/science.1254050
– ident: ref26/cit26
  doi: 10.1038/ncomms3761
– ident: ref29/cit29
  doi: 10.1021/acsami.6b13582
– ident: ref17/cit17
  doi: 10.1021/acsami.5b00468
– ident: ref24/cit24
  doi: 10.1039/C6NR01927G
– ident: ref32/cit32
  doi: 10.1021/cm960579t
– ident: ref22/cit22
  doi: 10.1038/ncomms8348
– ident: ref7/cit7
  doi: 10.1039/c1nr10867k
– ident: ref6/cit6
  doi: 10.1126/science.1243982
– ident: ref14/cit14
  doi: 10.1063/1.4928535
– ident: ref3/cit3
  doi: 10.1038/nature12509
– ident: ref44/cit44
  doi: 10.1021/ja5107145
– ident: ref35/cit35
  doi: 10.1039/c3ta14313a
– ident: ref56/cit56
  doi: 10.1016/j.solmat.2008.01.005
– ident: ref33/cit33
  doi: 10.1021/nl201874w
– ident: ref10/cit10
  doi: 10.1021/ja412583t
– ident: ref2/cit2
  doi: 10.1038/srep00591
– ident: ref25/cit25
  doi: 10.1002/aenm.201502101
– ident: ref5/cit5
  doi: 10.1126/science.aaf8060
– ident: ref46/cit46
  doi: 10.1021/acs.jpcc.5b09277
– ident: ref47/cit47
  doi: 10.1038/nmat4080
– ident: ref38/cit38
  doi: 10.1002/ange.201000009
– ident: ref51/cit51
  doi: 10.1039/C5TA04028K
– ident: ref8/cit8
  doi: 10.1039/C4EE01624F
– ident: ref55/cit55
  doi: 10.1016/j.orgel.2014.11.023
– ident: ref20/cit20
  doi: 10.1039/C5CS00593K
– ident: ref48/cit48
  doi: 10.1002/adma.201504168
– ident: ref39/cit39
  doi: 10.1021/am404161k
– ident: ref9/cit9
  doi: 10.1039/C5EE03560K
– ident: ref1/cit1
  doi: 10.1021/ja809598r
– ident: ref27/cit27
  doi: 10.1002/aenm201300549
– ident: ref50/cit50
  doi: 10.1002/aenm.201600664
– ident: ref19/cit19
  doi: 10.1039/C5EE00645G
– ident: ref53/cit53
  doi: 10.1002/adma.201503298
– ident: ref43/cit43
  doi: 10.1039/C5CS00151J
– ident: ref31/cit31
  doi: 10.1002/aenm.201670095
– ident: ref28/cit28
  doi: 10.1039/C4TA01336K
– ident: ref40/cit40
  doi: 10.1002/smll.201601804
– ident: ref41/cit41
  doi: 10.1039/C5CC00803D
– ident: ref16/cit16
  doi: 10.1002/adma.201301327
SSID ssj0063205
Score 2.5446012
Snippet As a hole-transport layer (HTL) material, poly­(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity...
As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25323
SubjectTerms acidity
molybdenum disulfide
solar cells
water solubility
Title Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells
URI http://dx.doi.org/10.1021/acsami.7b06403
https://www.ncbi.nlm.nih.gov/pubmed/28695726
https://www.proquest.com/docview/1917960531
https://www.proquest.com/docview/2101382010
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODQUl7dAtUgkDi5ZJ2H7WO1bbWqWoRUKnqLbGdWqoiSarOLBCd-QS_9h_0lnUmyy6NawSG3SWJPZjzfeCafhXiXkuKRYKtUkyShBCVKpUeHkjJnrwnAB1_wv8MnH7PxWXJ0np7_2u_4u4Kvhh9caPgoHO255hTfFw9UZjSnWXuj08Wam8WqbVakjDyRhiLWgp7xzv0chELzZxBagSzbCHO40dEdNS0xITeWfN2dz_xu-HGXtvGfg38s1nuYCXudXWyKe1g9EY9-Ix98Kq6-EMycSt4X8yWC2oc2brUtXHCCBMphn3vqy1CTkV0U2IBrgPAijOsS5ZIVHY4dwXYg8AvcNFJ-h4OWloKiGbiqAIKz_PzLm5_XF3RV8Amn9beGd43hlBNrGGFZNs_E2eHB59FY9qczSEcxbEbrtyLn5W0QTSmTj32EeqInk8IrkxoVYm-H1qJ2wSqD1kW-MCr2Dm1kiySL4udiraor3BKQJSHWFochdYQwg3EhpIFsyKYmqGDCQLwlRea9dzV5WzhXw7zTbt5rdyDk4qPmoSc453M2ypXy75fylx21x0rJNwsbycn7uKTiKqznNBLLs-eFbLUMJdVM9EiJ70C86Axs-T5lMptqlW3_1wxfioeKUQV3rKhXYm02neNrwkQzv9O6wy0O1ghB
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxELZKOQAH3o_wHASI05Zd79MHDlXSKqVJhdRW9LbY3olUsdqtsgmonPgFXPgB_BV-C7-EGWc3vBSJSyUOuUQjrz0ez3xjjz8L8TQmxSPBVk9OoogSFD_2DGr0KHM2KQF4awq-OzzeS4aH0auj-GhNfO3uwlAnGmqpcYf4P9kFghf0H7-Ikxo-eupeq97F0w-UozUvdwY0oc-k3N466A-99hkBT5OznZGjkWRlnK-nhO1NaHxMJ-lkUhiZxZm0oVGBUphqq2SGSvumyGRoNCpfFVHih9TuOXGekI_k7G6zv9-5-iSUrkYyUDTOjAJlxwr5V3859tnm99i3AtC6wLZ9RXxbqsTVs7zbmM_Mhv34B1vkf6yzq-JyC6phc7EKrok1rK6LS79QLd4Qn98QqJ56vAtoSgQ5ABelXcEajJFSEBjwDYLS1rSkjgtsQDdA6BiGdYnekgMeRpqSFCCoD1wiU57CliPhoNgNuiqAwDu3f_L905dj-lXwGqf1-4b3yGGftxGgj2XZ3BSHZ6KQW2K9qiu8IyCJbJgqDGysCU_bTFsbW1oxKs6stJntiSc0cXnrS5rclQnIIF_MZt7OZk94nS3ltqVz51dFypXyz5fyJwsik5WSjzvTzMnX8AGSrrCeU08Uj57d9moZGfDZN9dY9MTthV0vvyezRMWpTO7-0wgfiQvDg_EoH-3s7d4TFyXjKa7VkffF-mw6xweEBmfmoVuRIN6etTn_AI4IaRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIiE4UN6E8hgEiJOLvX7ugUOVNErpQ5VKRW_u7notVVh2FCegcuIX9NKfwF_hl_BLmHHsiIcicanEIZdotN7HPL7ZmZ0BeBnSxluCrY7Ig4AcFDd0tFXWIc9ZxwTgjc747fDefjQ6Ct4dh8cr8K17C0OTqGmkugnis1SPs7ytMOC9of-5K06sOfzUdazesWefyU-r324P6FBfCTHcet8fOW0rAUeRwp2SshHEaeyzx4Tvta9dG-dxnmdaJGEijK-lJ6WNlZEisVK5OkuEr5WVrsyCyPVp3CtwlWOE7OFt9g87dR_5osmT9CStNSFj2VWG_Gu-bP9M_bv9WwJqG-M2XIPvi21pclo-bsymesN8-aNi5H--b7fgZguucXMuDbdhxZZ34MYvJRfvwvkHAtcTh28DdWFRDLCx1k3iGu5ZckVwwC8JClORaJ1mtkZVI6FkHFWFdRa14HFXkbOCBPmRU2WKM9xqinGQDUdVZkggnscf__h6cUq_Eg_spPpU8105HvJ1AvZtUdT34OhSNuQ-rJZVaR8CRoHxY2k9EyrC1SZRxoSGJEeGiREmMT14QQeXtjqlTpt0AeGl89NM29PsgdPxU2rasu7cXaRYSv96QT-eFzRZSvm8Y8-UdA4HklRpqxnNRPLqWX0vpxEex8A516IHD-a8vfieSCIZxiJ69E8rfAbXDgbDdHd7f2cdrguGVZyyIx7D6nQys08IFE7100YoEU4um5t_Amena5s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Soluble+2D+Transition+Metal+Dichalcogenides+as+the+Hole-Transport+Layer+for+Highly+Efficient+and+Stable+p-i-n+Perovskite+Solar+Cells&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Huang%2C+Peng&rft.au=Wang%2C+Zhaowei&rft.au=Liu%2C+Yanfeng&rft.au=Zhang%2C+Kaicheng&rft.date=2017-08-02&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=9&rft.issue=30&rft.spage=25323&rft_id=info:doi/10.1021%2Facsami.7b06403&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon