Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells
As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-solu...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 30; pp. 25323 - 25331 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p–i–n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs. |
---|---|
AbstractList | As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS₂ and WS₂ were used as HTLs in p–i–n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS₂ and WS₂, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS₂ and WS₂ HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs. As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS and WS were used as HTLs in p-i-n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS and WS , respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS and WS HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs. As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p-i-n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs.As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p-i-n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs. As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and hygroscopic effect that would in the long run affect the stability of perovskite solar cells (Pero-SCs). As alternatives, herein water-soluble two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS2 and WS2 were used as HTLs in p–i–n Pero-SCs. It was found that the content of 1T phase in 2D TMDs HTLs is centrally important to the power conversion efficiencies (PCEs) of Pero-SCs, and the 1T-rich TMDs (as achieved from exfoliation and without postheating) lead to much higher PCEs. More importantly, as PEDOT:PSS was replaced by 2D TMDs, both the PCEs and stability of Pero-SCs were significantly improved. The highest PCEs of 14.35 and 15.00% were obtained for the Pero-SCs with MoS2 and WS2, respectively, whereas the Pero-SCs with PEDOT:PSS showed a highest PCE of only 12.44%. These are up to date the highest PCEs using 2D TMDs as HTLs. After being stored in a glovebox for 56 days, PCEs of the Pero-SCs using MoS2 and WS2 HTLs remained 78 and 72%, respectively, whereas the PCEs of Pero-SCs with PEDOT:PSS almost dropped to 0 over 35 days. This study demonstrates that water-soluble 2D TMDs have great potential for application as new generation of HTLs aiming at high performance and long-term stable Pero-SCs. |
Author | Liu, Yanfeng Li, Yongfang Zhang, Kaicheng Zhou, Yi Yuan, Ligang Wang, Zhaowei Song, Bo Huang, Peng |
AuthorAffiliation | Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – name: Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry |
Author_xml | – sequence: 1 givenname: Peng surname: Huang fullname: Huang, Peng organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 2 givenname: Zhaowei surname: Wang fullname: Wang, Zhaowei organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 3 givenname: Yanfeng surname: Liu fullname: Liu, Yanfeng organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 4 givenname: Kaicheng surname: Zhang fullname: Zhang, Kaicheng organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 5 givenname: Ligang surname: Yuan fullname: Yuan, Ligang organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 6 givenname: Yi surname: Zhou fullname: Zhou, Yi email: yizhou@suda.edu.cn organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 7 givenname: Bo orcidid: 0000-0002-7546-9482 surname: Song fullname: Song, Bo email: songbo@suda.edu.cn organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science – sequence: 8 givenname: Yongfang orcidid: 0000-0002-2565-2748 surname: Li fullname: Li, Yongfang organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28695726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URB-wZYm8RJUm-DEvL1FaCFIQSC1iad3x3GlcHDvYHqTs-AVs-If9JZ2QlAVSxcKyZX3n-PqcU3Lkg0dCXnI240zwN2ASrO2s6VhdMvmEnHBVlkUrKnH091yWx-Q0pVvGailY9Ywci7ZWVSPqE_LrK2SMxVVwY-eQigt6HcEnm23w9CNmcPTCmhU4E27Q2x4ThUTzCukiOCz-wJsQM13CFiMdQqQLe7NyW3o5DNZY9JmC7-lVhp3_5u7nbzstTz9jDD_SN5uRTo9DpHN0Lj0nTwdwCV8c9jPy5d3l9XxRLD-9_zB_uyygFCoX09dVLVlT80bVdSc7hs3QDEPfibZqhZGd4kphA0aJFhWwrm-F7AAVU31ZM3lGXu99NzF8HzFlvbbJTBOAxzAmLTjjshWM_x_lajcEqySf0FcHdOzW2OtNtGuIW_0Q9wSUe8DEkFLEQRubYZd1jmCd5kzvWtX7VvWh1Uk2-0f24Pyo4HwvmO71bRijn8J8DL4HM021Lg |
CitedBy_id | crossref_primary_10_35848_1882_0786_ab9efa crossref_primary_10_1002_aenm_201902253 crossref_primary_10_1016_j_jallcom_2019_152602 crossref_primary_10_1016_j_surfin_2024_105027 crossref_primary_10_1016_j_jechem_2021_12_003 crossref_primary_10_1016_j_solener_2020_04_021 crossref_primary_10_1039_D2QM00366J crossref_primary_10_1016_j_orgel_2017_11_013 crossref_primary_10_1039_C7TA08827B crossref_primary_10_1016_j_solidstatesciences_2019_05_021 crossref_primary_10_1021_acsaelm_9b00668 crossref_primary_10_1002_ente_202101155 crossref_primary_10_1021_acsanm_0c02775 crossref_primary_10_1039_C8TA01143E crossref_primary_10_1016_j_ceramint_2022_03_163 crossref_primary_10_1016_j_mssp_2024_108326 crossref_primary_10_7498_aps_69_20200591 crossref_primary_10_1016_j_solener_2020_07_007 crossref_primary_10_1088_1361_6463_abe502 crossref_primary_10_1039_C9NR09326E crossref_primary_10_1039_D0SE01215G crossref_primary_10_1039_C9CS00254E crossref_primary_10_1002_adfm_201905694 crossref_primary_10_1002_solr_202000260 crossref_primary_10_1039_C9MH01978B crossref_primary_10_1007_s41061_022_00416_3 crossref_primary_10_1021_acsami_3c13076 crossref_primary_10_1039_C8QM00356D crossref_primary_10_1002_admi_201800339 crossref_primary_10_1002_smtd_202000937 crossref_primary_10_1002_pssa_202300322 crossref_primary_10_1016_j_jallcom_2021_161039 crossref_primary_10_1021_acsenergylett_0c00485 crossref_primary_10_1088_2515_7655_ab3585 crossref_primary_10_1016_j_optmat_2020_109933 crossref_primary_10_1039_D1CS00106J crossref_primary_10_29026_oes_2022_220006 crossref_primary_10_1007_s10853_022_07958_3 crossref_primary_10_1039_D2NJ05350K crossref_primary_10_1039_D3QI02016A crossref_primary_10_1021_acscatal_7b04233 crossref_primary_10_1021_acsami_2c08842 crossref_primary_10_1002_cctc_202400264 crossref_primary_10_1002_adma_202301129 crossref_primary_10_1002_cctc_201901553 crossref_primary_10_1021_acsami_8b05759 crossref_primary_10_1002_solr_202000555 crossref_primary_10_1038_s41598_023_39189_0 crossref_primary_10_1016_j_est_2024_114526 crossref_primary_10_1088_0256_307X_37_10_107301 crossref_primary_10_1186_s11671_024_04044_2 crossref_primary_10_1039_C7TA10366B crossref_primary_10_1063_5_0211610 crossref_primary_10_1002_adsu_202100457 crossref_primary_10_1016_j_orgel_2019_05_032 crossref_primary_10_1063_1_5029484 crossref_primary_10_1021_acsami_2c08680 crossref_primary_10_1021_acsami_8b03225 crossref_primary_10_3390_coatings14081078 crossref_primary_10_1007_s12274_018_2103_z crossref_primary_10_1039_C8TA12254G crossref_primary_10_1016_j_mtener_2018_11_006 crossref_primary_10_1016_j_micrna_2022_207398 crossref_primary_10_1039_D1TC02407H crossref_primary_10_3390_app11198904 crossref_primary_10_1021_acsenergylett_9b02063 crossref_primary_10_1016_j_jechem_2024_03_009 crossref_primary_10_1016_j_nanoen_2020_104556 crossref_primary_10_1039_D1DT02991F crossref_primary_10_1088_2515_7639_abf544 crossref_primary_10_1016_j_rinp_2018_12_049 crossref_primary_10_1021_acs_chemrev_9b00600 crossref_primary_10_1002_adfm_202002358 crossref_primary_10_1016_j_jechem_2021_09_017 crossref_primary_10_1016_j_mser_2023_100727 crossref_primary_10_1021_acs_energyfuels_3c04226 crossref_primary_10_1002_aelm_201900730 crossref_primary_10_1039_D0TA09545A crossref_primary_10_3390_mi14101907 crossref_primary_10_1016_j_optmat_2022_112771 crossref_primary_10_1016_j_xcrp_2024_102245 crossref_primary_10_1007_s10825_022_01941_6 crossref_primary_10_1016_j_solmat_2024_113147 crossref_primary_10_1039_D2CS00218C crossref_primary_10_3390_cryst10100902 crossref_primary_10_1007_s00339_021_04531_8 crossref_primary_10_1016_j_flatc_2024_100629 crossref_primary_10_1016_j_jpcs_2022_111157 crossref_primary_10_1016_j_spmi_2021_106972 crossref_primary_10_1016_j_jallcom_2020_156752 crossref_primary_10_1002_aenm_201703482 crossref_primary_10_1039_C9TA07331K crossref_primary_10_1016_j_apsusc_2021_151988 crossref_primary_10_1007_s12598_020_01691_z crossref_primary_10_1016_j_mtsust_2024_100982 crossref_primary_10_1088_2515_7655_ab9eab crossref_primary_10_1039_D3TC01076G crossref_primary_10_1021_acsenergylett_9b01151 crossref_primary_10_1002_cnma_201900101 crossref_primary_10_1002_sstr_202300282 crossref_primary_10_1016_j_nanoen_2021_106833 crossref_primary_10_1002_er_8587 crossref_primary_10_1021_acsaem_1c02039 crossref_primary_10_1002_solr_201900421 crossref_primary_10_1016_j_apsusc_2020_145880 crossref_primary_10_1002_adma_202007431 crossref_primary_10_1002_adfm_202316175 crossref_primary_10_1002_adts_202401253 crossref_primary_10_1007_s12596_023_01648_2 crossref_primary_10_1021_acs_chemrev_3c00931 crossref_primary_10_1002_aenm_202000910 crossref_primary_10_1021_acsami_9b18501 crossref_primary_10_1016_j_nanoen_2020_105292 crossref_primary_10_1039_D0CS00143K crossref_primary_10_1039_D1TC02307A crossref_primary_10_1021_acsami_0c21064 crossref_primary_10_1002_er_6672 crossref_primary_10_1039_C8CS00169C crossref_primary_10_1039_D3MH01060K crossref_primary_10_1002_solr_201800200 crossref_primary_10_1016_j_jpowsour_2021_230766 |
Cites_doi | 10.1002/smll.201403534 10.1063/1.1469220 10.1016/j.nanoen.2014.12.022 10.1007/s11426-016-0115-x 10.1021/nn1003937 10.1039/C6TA03755K 10.1002/adfm.201501333 10.1039/C5TA09011C 10.1016/j.nanoen.2015.07.024 10.1016/j.jpowsour.2016.04.032 10.1021/acsami.5b08038 10.1002/adma.201603995 10.1038/ncomms10672 10.1002/adma.201401775 10.1063/1.1315344 10.1002/smll.201401647 10.1126/science.1254050 10.1038/ncomms3761 10.1021/acsami.6b13582 10.1021/acsami.5b00468 10.1039/C6NR01927G 10.1021/cm960579t 10.1038/ncomms8348 10.1039/c1nr10867k 10.1126/science.1243982 10.1063/1.4928535 10.1038/nature12509 10.1021/ja5107145 10.1039/c3ta14313a 10.1016/j.solmat.2008.01.005 10.1021/nl201874w 10.1021/ja412583t 10.1038/srep00591 10.1002/aenm.201502101 10.1126/science.aaf8060 10.1021/acs.jpcc.5b09277 10.1038/nmat4080 10.1002/ange.201000009 10.1039/C5TA04028K 10.1039/C4EE01624F 10.1016/j.orgel.2014.11.023 10.1039/C5CS00593K 10.1002/adma.201504168 10.1021/am404161k 10.1039/C5EE03560K 10.1021/ja809598r 10.1002/aenm201300549 10.1002/aenm.201600664 10.1039/C5EE00645G 10.1002/adma.201503298 10.1039/C5CS00151J 10.1002/aenm.201670095 10.1039/C4TA01336K 10.1002/smll.201601804 10.1039/C5CC00803D 10.1002/adma.201301327 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.7b06403 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 25331 |
ExternalDocumentID | 28695726 10_1021_acsami_7b06403 b20839171 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a429t-10296307617966b3b0e7f7ffdb28582c3b9199e7ac928e9a0bd823bae909d4603 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 00:48:01 EDT 2025 Fri Jul 11 05:41:16 EDT 2025 Thu Jan 02 23:09:31 EST 2025 Thu Apr 24 22:58:21 EDT 2025 Tue Jul 01 02:29:18 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | p−i−n perovskite solar cells improved stability 1T phase hole-transport layer 2D transition metal dichalcogenides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-10296307617966b3b0e7f7ffdb28582c3b9199e7ac928e9a0bd823bae909d4603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2565-2748 0000-0002-7546-9482 |
PMID | 28695726 |
PQID | 1917960531 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101382010 proquest_miscellaneous_1917960531 pubmed_primary_28695726 crossref_citationtrail_10_1021_acsami_7b06403 crossref_primary_10_1021_acsami_7b06403 acs_journals_10_1021_acsami_7b06403 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-02 |
PublicationDateYYYYMMDD | 2017-08-02 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1002/smll.201403534 – ident: ref23/cit23 doi: 10.1063/1.1469220 – ident: ref54/cit54 doi: 10.1016/j.nanoen.2014.12.022 – ident: ref18/cit18 doi: 10.1007/s11426-016-0115-x – ident: ref37/cit37 doi: 10.1021/nn1003937 – ident: ref15/cit15 doi: 10.1039/C6TA03755K – ident: ref36/cit36 doi: 10.1002/adfm.201501333 – ident: ref11/cit11 doi: 10.1039/C5TA09011C – ident: ref49/cit49 doi: 10.1016/j.nanoen.2015.07.024 – ident: ref30/cit30 doi: 10.1016/j.jpowsour.2016.04.032 – ident: ref13/cit13 doi: 10.1021/acsami.5b08038 – ident: ref45/cit45 doi: 10.1002/adma.201603995 – ident: ref42/cit42 doi: 10.1038/ncomms10672 – ident: ref52/cit52 doi: 10.1002/adma.201401775 – ident: ref21/cit21 doi: 10.1063/1.1315344 – ident: ref34/cit34 doi: 10.1002/smll.201401647 – ident: ref4/cit4 doi: 10.1126/science.1254050 – ident: ref26/cit26 doi: 10.1038/ncomms3761 – ident: ref29/cit29 doi: 10.1021/acsami.6b13582 – ident: ref17/cit17 doi: 10.1021/acsami.5b00468 – ident: ref24/cit24 doi: 10.1039/C6NR01927G – ident: ref32/cit32 doi: 10.1021/cm960579t – ident: ref22/cit22 doi: 10.1038/ncomms8348 – ident: ref7/cit7 doi: 10.1039/c1nr10867k – ident: ref6/cit6 doi: 10.1126/science.1243982 – ident: ref14/cit14 doi: 10.1063/1.4928535 – ident: ref3/cit3 doi: 10.1038/nature12509 – ident: ref44/cit44 doi: 10.1021/ja5107145 – ident: ref35/cit35 doi: 10.1039/c3ta14313a – ident: ref56/cit56 doi: 10.1016/j.solmat.2008.01.005 – ident: ref33/cit33 doi: 10.1021/nl201874w – ident: ref10/cit10 doi: 10.1021/ja412583t – ident: ref2/cit2 doi: 10.1038/srep00591 – ident: ref25/cit25 doi: 10.1002/aenm.201502101 – ident: ref5/cit5 doi: 10.1126/science.aaf8060 – ident: ref46/cit46 doi: 10.1021/acs.jpcc.5b09277 – ident: ref47/cit47 doi: 10.1038/nmat4080 – ident: ref38/cit38 doi: 10.1002/ange.201000009 – ident: ref51/cit51 doi: 10.1039/C5TA04028K – ident: ref8/cit8 doi: 10.1039/C4EE01624F – ident: ref55/cit55 doi: 10.1016/j.orgel.2014.11.023 – ident: ref20/cit20 doi: 10.1039/C5CS00593K – ident: ref48/cit48 doi: 10.1002/adma.201504168 – ident: ref39/cit39 doi: 10.1021/am404161k – ident: ref9/cit9 doi: 10.1039/C5EE03560K – ident: ref1/cit1 doi: 10.1021/ja809598r – ident: ref27/cit27 doi: 10.1002/aenm201300549 – ident: ref50/cit50 doi: 10.1002/aenm.201600664 – ident: ref19/cit19 doi: 10.1039/C5EE00645G – ident: ref53/cit53 doi: 10.1002/adma.201503298 – ident: ref43/cit43 doi: 10.1039/C5CS00151J – ident: ref31/cit31 doi: 10.1002/aenm.201670095 – ident: ref28/cit28 doi: 10.1039/C4TA01336K – ident: ref40/cit40 doi: 10.1002/smll.201601804 – ident: ref41/cit41 doi: 10.1039/C5CC00803D – ident: ref16/cit16 doi: 10.1002/adma.201301327 |
SSID | ssj0063205 |
Score | 2.5446012 |
Snippet | As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity... As a hole-transport layer (HTL) material, poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) was often criticized for its intrinsic acidity and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25323 |
SubjectTerms | acidity molybdenum disulfide solar cells water solubility |
Title | Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells |
URI | http://dx.doi.org/10.1021/acsami.7b06403 https://www.ncbi.nlm.nih.gov/pubmed/28695726 https://www.proquest.com/docview/1917960531 https://www.proquest.com/docview/2101382010 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODQUl7dAtUgkDi5ZJ2H7WO1bbWqWoRUKnqLbGdWqoiSarOLBCd-QS_9h_0lnUmyy6NawSG3SWJPZjzfeCafhXiXkuKRYKtUkyShBCVKpUeHkjJnrwnAB1_wv8MnH7PxWXJ0np7_2u_4u4Kvhh9caPgoHO255hTfFw9UZjSnWXuj08Wam8WqbVakjDyRhiLWgp7xzv0chELzZxBagSzbCHO40dEdNS0xITeWfN2dz_xu-HGXtvGfg38s1nuYCXudXWyKe1g9EY9-Ix98Kq6-EMycSt4X8yWC2oc2brUtXHCCBMphn3vqy1CTkV0U2IBrgPAijOsS5ZIVHY4dwXYg8AvcNFJ-h4OWloKiGbiqAIKz_PzLm5_XF3RV8Amn9beGd43hlBNrGGFZNs_E2eHB59FY9qczSEcxbEbrtyLn5W0QTSmTj32EeqInk8IrkxoVYm-H1qJ2wSqD1kW-MCr2Dm1kiySL4udiraor3BKQJSHWFochdYQwg3EhpIFsyKYmqGDCQLwlRea9dzV5WzhXw7zTbt5rdyDk4qPmoSc453M2ypXy75fylx21x0rJNwsbycn7uKTiKqznNBLLs-eFbLUMJdVM9EiJ70C86Axs-T5lMptqlW3_1wxfioeKUQV3rKhXYm02neNrwkQzv9O6wy0O1ghB |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxELZKOQAH3o_wHASI05Zd79MHDlXSKqVJhdRW9LbY3olUsdqtsgmonPgFXPgB_BV-C7-EGWc3vBSJSyUOuUQjrz0ez3xjjz8L8TQmxSPBVk9OoogSFD_2DGr0KHM2KQF4awq-OzzeS4aH0auj-GhNfO3uwlAnGmqpcYf4P9kFghf0H7-Ikxo-eupeq97F0w-UozUvdwY0oc-k3N466A-99hkBT5OznZGjkWRlnK-nhO1NaHxMJ-lkUhiZxZm0oVGBUphqq2SGSvumyGRoNCpfFVHih9TuOXGekI_k7G6zv9-5-iSUrkYyUDTOjAJlxwr5V3859tnm99i3AtC6wLZ9RXxbqsTVs7zbmM_Mhv34B1vkf6yzq-JyC6phc7EKrok1rK6LS79QLd4Qn98QqJ56vAtoSgQ5ABelXcEajJFSEBjwDYLS1rSkjgtsQDdA6BiGdYnekgMeRpqSFCCoD1wiU57CliPhoNgNuiqAwDu3f_L905dj-lXwGqf1-4b3yGGftxGgj2XZ3BSHZ6KQW2K9qiu8IyCJbJgqDGysCU_bTFsbW1oxKs6stJntiSc0cXnrS5rclQnIIF_MZt7OZk94nS3ltqVz51dFypXyz5fyJwsik5WSjzvTzMnX8AGSrrCeU08Uj57d9moZGfDZN9dY9MTthV0vvyezRMWpTO7-0wgfiQvDg_EoH-3s7d4TFyXjKa7VkffF-mw6xweEBmfmoVuRIN6etTn_AI4IaRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIiE4UN6E8hgEiJOLvX7ugUOVNErpQ5VKRW_u7notVVh2FCegcuIX9NKfwF_hl_BLmHHsiIcicanEIZdotN7HPL7ZmZ0BeBnSxluCrY7Ig4AcFDd0tFXWIc9ZxwTgjc747fDefjQ6Ct4dh8cr8K17C0OTqGmkugnis1SPs7ytMOC9of-5K06sOfzUdazesWefyU-r324P6FBfCTHcet8fOW0rAUeRwp2SshHEaeyzx4Tvta9dG-dxnmdaJGEijK-lJ6WNlZEisVK5OkuEr5WVrsyCyPVp3CtwlWOE7OFt9g87dR_5osmT9CStNSFj2VWG_Gu-bP9M_bv9WwJqG-M2XIPvi21pclo-bsymesN8-aNi5H--b7fgZguucXMuDbdhxZZ34MYvJRfvwvkHAtcTh28DdWFRDLCx1k3iGu5ZckVwwC8JClORaJ1mtkZVI6FkHFWFdRa14HFXkbOCBPmRU2WKM9xqinGQDUdVZkggnscf__h6cUq_Eg_spPpU8105HvJ1AvZtUdT34OhSNuQ-rJZVaR8CRoHxY2k9EyrC1SZRxoSGJEeGiREmMT14QQeXtjqlTpt0AeGl89NM29PsgdPxU2rasu7cXaRYSv96QT-eFzRZSvm8Y8-UdA4HklRpqxnNRPLqWX0vpxEex8A516IHD-a8vfieSCIZxiJ69E8rfAbXDgbDdHd7f2cdrguGVZyyIx7D6nQys08IFE7100YoEU4um5t_Amena5s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Soluble+2D+Transition+Metal+Dichalcogenides+as+the+Hole-Transport+Layer+for+Highly+Efficient+and+Stable+p-i-n+Perovskite+Solar+Cells&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Huang%2C+Peng&rft.au=Wang%2C+Zhaowei&rft.au=Liu%2C+Yanfeng&rft.au=Zhang%2C+Kaicheng&rft.date=2017-08-02&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=9&rft.issue=30&rft.spage=25323&rft_id=info:doi/10.1021%2Facsami.7b06403&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |