The Origin of Chalcogen-Bonding Interactions
Favorable molecular interactions between group 16 elements have been implicated in catalysis, biological processes, and materials and medicinal chemistry. Such interactions have since become known as chalcogen bonds by analogy to hydrogen and halogen bonds. Although the prevalence and applications o...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 42; pp. 15160 - 15167 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.10.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | Favorable molecular interactions between group 16 elements have been implicated in catalysis, biological processes, and materials and medicinal chemistry. Such interactions have since become known as chalcogen bonds by analogy to hydrogen and halogen bonds. Although the prevalence and applications of chalcogen-bonding interactions continues to develop, debate still surrounds the energetic significance and physicochemical origins of this class of σ-hole interaction. Here, synthetic molecular balances were used to perform a quantitative experimental investigation of chalcogen-bonding interactions. Over 160 experimental conformational free energies were measured in 13 different solvents to examine the energetics of O···S, O···Se, S···S, O···HC, and S···HC contacts and the associated substituent and solvent effects. The strongest chalcogen-bonding interactions were found to be at least as strong as conventional H-bonds, but unlike H-bonds, surprisingly independent of the solvent. The independence of the conformational free energies on solvent polarity, polarizability, and H-bonding characteristics showed that electrostatic, solvophobic, and van der Waals dispersion forces did not account for the observed experimental trends. Instead, a quantitative relationship between the experimental conformational free energies and computed molecular orbital energies was consistent with the chalcogen-bonding interactions being dominated by n → σ* orbital delocalization between a lone pair (n) of a (thio)amide donor and the antibonding σ* orbital of an acceptor thiophene or selenophene. Interestingly, stabilization was manifested through the same acceptor molecular orbital irrespective of whether a direct chalcogen···chalcogen or chalcogen···H–C contact was made. Our results underline the importance of often-overlooked orbital delocalization effects in conformational control and molecular recognition phenomena. |
---|---|
AbstractList | Favorable molecular interactions between group 16 elements have been implicated in catalysis, biological processes, and materials and medicinal chemistry. Such interactions have since become known as chalcogen bonds by analogy to hydrogen and halogen bonds. Although the prevalence and applications of chalcogen-bonding interactions continues to develop, debate still surrounds the energetic significance and physicochemical origins of this class of σ-hole interaction. Here, synthetic molecular balances were used to perform a quantitative experimental investigation of chalcogen-bonding interactions. Over 160 experimental conformational free energies were measured in 13 different solvents to examine the energetics of O···S, O···Se, S···S, O···HC, and S···HC contacts and the associated substituent and solvent effects. The strongest chalcogen-bonding interactions were found to be at least as strong as conventional H-bonds, but unlike H-bonds, surprisingly independent of the solvent. The independence of the conformational free energies on solvent polarity, polarizability, and H-bonding characteristics showed that electrostatic, solvophobic, and van der Waals dispersion forces did not account for the observed experimental trends. Instead, a quantitative relationship between the experimental conformational free energies and computed molecular orbital energies was consistent with the chalcogen-bonding interactions being dominated by n → σ* orbital delocalization between a lone pair (n) of a (thio)amide donor and the antibonding σ* orbital of an acceptor thiophene or selenophene. Interestingly, stabilization was manifested through the same acceptor molecular orbital irrespective of whether a direct chalcogen···chalcogen or chalcogen···H-C contact was made. Our results underline the importance of often-overlooked orbital delocalization effects in conformational control and molecular recognition phenomena. Favorable molecular interactions between group 16 elements have been implicated in catalysis, biological processes, and materials and medicinal chemistry. Such interactions have since become known as chalcogen bonds by analogy to hydrogen and halogen bonds. Although the prevalence and applications of chalcogen-bonding interactions continues to develop, debate still surrounds the energetic significance and physicochemical origins of this class of σ-hole interaction. Here, synthetic molecular balances were used to perform a quantitative experimental investigation of chalcogen-bonding interactions. Over 160 experimental conformational free energies were measured in 13 different solvents to examine the energetics of O···S, O···Se, S···S, O···HC, and S···HC contacts and the associated substituent and solvent effects. The strongest chalcogen-bonding interactions were found to be at least as strong as conventional H-bonds, but unlike H-bonds, surprisingly independent of the solvent. The independence of the conformational free energies on solvent polarity, polarizability, and H-bonding characteristics showed that electrostatic, solvophobic, and van der Waals dispersion forces did not account for the observed experimental trends. Instead, a quantitative relationship between the experimental conformational free energies and computed molecular orbital energies was consistent with the chalcogen-bonding interactions being dominated by n → σ* orbital delocalization between a lone pair (n) of a (thio)amide donor and the antibonding σ* orbital of an acceptor thiophene or selenophene. Interestingly, stabilization was manifested through the same acceptor molecular orbital irrespective of whether a direct chalcogen···chalcogen or chalcogen···H–C contact was made. Our results underline the importance of often-overlooked orbital delocalization effects in conformational control and molecular recognition phenomena. |
Author | Cockroft, Scott L Pascoe, Dominic J Ling, Kenneth B |
AuthorAffiliation | University of Edinburgh EaStCHEM School of Chemistry |
AuthorAffiliation_xml | – name: EaStCHEM School of Chemistry – name: University of Edinburgh |
Author_xml | – sequence: 1 givenname: Dominic J surname: Pascoe fullname: Pascoe, Dominic J organization: University of Edinburgh – sequence: 2 givenname: Kenneth B surname: Ling fullname: Ling, Kenneth B – sequence: 3 givenname: Scott L orcidid: 0000-0001-9321-8997 surname: Cockroft fullname: Cockroft, Scott L email: scott.cockroft@ed.ac.uk organization: University of Edinburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28985065$$D View this record in MEDLINE/PubMed |
BookMark | eNptkD1PwzAQhi1URD9gY0YZGZpiO3HsjFDxUalSlzJbF-fSpkrtYicD_76pWmBhOp303HN375gMrLNIyD2jM0Y5e9qBCTNZUCUYuyIjJjiNBePZgIwopTyWKkuGZBzCrm9TrtgNGXKVK0EzMSLT9Rajla83tY1cFc230Bi3QRu_OFvWdhMtbIseTFs7G27JdQVNwLtLnZDPt9f1_CNert4X8-dlDL2_jYHTtFKMs8LQKq9A5phKKIzJASjKkqeo-qOSpECpSmlUWtKcc8FBgqElSybk8ew9ePfVYWj1vg4GmwYsui5olqdKZolQqkenZ9R4F4LHSh98vQf_rRnVp3z0KR99yafHHy7mrthj-Qv_BPK3-jS1c523_aP_u45So26B |
CitedBy_id | crossref_primary_10_1039_C9NJ03781K crossref_primary_10_1002_anie_202311044 crossref_primary_10_1002_anie_201905436 crossref_primary_10_1002_chem_202002059 crossref_primary_10_1039_C8NJ04690E crossref_primary_10_1016_j_molstruc_2021_130638 crossref_primary_10_1002_ejoc_202001554 crossref_primary_10_1007_s11224_023_02218_9 crossref_primary_10_3390_molecules26237364 crossref_primary_10_1021_jacs_9b01006 crossref_primary_10_1021_acs_joc_0c02728 crossref_primary_10_1039_D1SC03860E crossref_primary_10_3390_ijms241713035 crossref_primary_10_1002_ejoc_201800970 crossref_primary_10_1002_ange_202212707 crossref_primary_10_3389_fchem_2022_858946 crossref_primary_10_1107_S2053229623000062 crossref_primary_10_1021_acs_chemmater_1c01969 crossref_primary_10_1039_C8NJ01648H crossref_primary_10_1002_jcc_26489 crossref_primary_10_1002_anie_201905439 crossref_primary_10_1002_chem_202201660 crossref_primary_10_1021_jacs_9b00148 crossref_primary_10_3390_molecules23030699 crossref_primary_10_1039_D2CP01060G crossref_primary_10_1021_acsearthspacechem_8b00208 crossref_primary_10_3390_molecules28052385 crossref_primary_10_1021_acs_orglett_2c01486 crossref_primary_10_1002_chem_202302139 crossref_primary_10_1002_jcc_27368 crossref_primary_10_1002_chem_201805631 crossref_primary_10_1002_anie_202116071 crossref_primary_10_1055_a_1883_6076 crossref_primary_10_3390_molecules23112742 crossref_primary_10_1002_chem_202301054 crossref_primary_10_1021_acscatal_7b02697 crossref_primary_10_1039_D0OB02208J crossref_primary_10_1039_D0CP06273A crossref_primary_10_1021_acs_inorgchem_4c00255 crossref_primary_10_1021_acs_joc_9b02381 crossref_primary_10_1039_D2CS00701K crossref_primary_10_1002_cphc_202000654 crossref_primary_10_1021_acs_accounts_9b00037 crossref_primary_10_3390_molecules26216333 crossref_primary_10_1002_chem_201803684 crossref_primary_10_1038_s41467_023_43013_8 crossref_primary_10_1039_D4CC01472C crossref_primary_10_1021_acs_accounts_3c00625 crossref_primary_10_1039_D2CE00069E crossref_primary_10_1002_ange_201801452 crossref_primary_10_1002_chem_201905498 crossref_primary_10_1039_D0CP01321H crossref_primary_10_1039_C9TC04176A crossref_primary_10_1002_adma_202110639 crossref_primary_10_1002_anie_201908627 crossref_primary_10_1016_j_molstruc_2020_129288 crossref_primary_10_1039_D1CC01287H crossref_primary_10_1039_C9DT04013G crossref_primary_10_5433_1679_0375_2022v43n2p211 crossref_primary_10_1002_adsc_201900168 crossref_primary_10_1248_cpb_c18_00668 crossref_primary_10_1007_s11224_021_01817_8 crossref_primary_10_1002_ejoc_202000660 crossref_primary_10_1039_D3OB00530E crossref_primary_10_1039_D3CP00134B crossref_primary_10_1002_anie_202006943 crossref_primary_10_1021_acs_organomet_9b00587 crossref_primary_10_1002_anie_202005739 crossref_primary_10_1021_jacsau_4c00325 crossref_primary_10_1039_D0CP00330A crossref_primary_10_1002_anie_201916480 crossref_primary_10_1016_j_tet_2020_131758 crossref_primary_10_1038_s41586_020_2330_9 crossref_primary_10_1039_D3MD00736G crossref_primary_10_1002_anie_202202621 crossref_primary_10_1080_07391102_2022_2143427 crossref_primary_10_3390_inorganics11050209 crossref_primary_10_1134_S1070363218040151 crossref_primary_10_1039_D2CE01168A crossref_primary_10_3390_ijms222212550 crossref_primary_10_1063_5_0031162 crossref_primary_10_1002_chem_202203976 crossref_primary_10_1002_anie_201801452 crossref_primary_10_1039_D2CE01385A crossref_primary_10_1039_D3QI00087G crossref_primary_10_1002_ange_202005739 crossref_primary_10_1002_ange_202006943 crossref_primary_10_1021_acs_jpca_9b03587 crossref_primary_10_1021_acsomega_1c03461 crossref_primary_10_1039_D0CP02880K crossref_primary_10_1016_j_molstruc_2022_133371 crossref_primary_10_1016_j_poly_2019_03_036 crossref_primary_10_1002_chem_202003426 crossref_primary_10_1021_acsmedchemlett_9b00480 crossref_primary_10_1002_cplu_202300523 crossref_primary_10_1002_chem_202302755 crossref_primary_10_1016_j_ccr_2020_213243 crossref_primary_10_1016_j_tet_2018_05_027 crossref_primary_10_1002_jcc_25566 crossref_primary_10_1002_chem_201803393 crossref_primary_10_1039_D0CC07784D crossref_primary_10_1002_ange_201916480 crossref_primary_10_1021_acs_jmedchem_1c01859 crossref_primary_10_1021_jacs_9b02174 crossref_primary_10_3390_computation10100169 crossref_primary_10_1039_D2NJ01796B crossref_primary_10_1002_anie_202005374 crossref_primary_10_1039_C8CE02006J crossref_primary_10_1515_zkri_2018_2100 crossref_primary_10_1002_advs_202405622 crossref_primary_10_1039_C8CP03937B crossref_primary_10_1002_anie_202007314 crossref_primary_10_1039_C8CE01365A crossref_primary_10_1002_ange_202202621 crossref_primary_10_1039_D4SC01410C crossref_primary_10_1039_D3SC02101G crossref_primary_10_1002_anie_201914421 crossref_primary_10_1039_C8SC01324A crossref_primary_10_1002_cphc_201901001 crossref_primary_10_1039_C8NJ00700D crossref_primary_10_1039_D1DT03925C crossref_primary_10_1039_D1CP00474C crossref_primary_10_1016_j_ccr_2022_214556 crossref_primary_10_1039_D2CC01615J crossref_primary_10_1021_acs_orglett_0c03969 crossref_primary_10_1002_chem_201804261 crossref_primary_10_1021_acs_cgd_8b00585 crossref_primary_10_1021_acs_chemrev_0c00522 crossref_primary_10_1039_D0CE00220H crossref_primary_10_1039_D3DT02787B crossref_primary_10_3390_ijms242216193 crossref_primary_10_1039_C9NJ02469G crossref_primary_10_1021_acs_orglett_0c00461 crossref_primary_10_1016_j_chemphys_2022_111763 crossref_primary_10_1016_j_dyepig_2023_111615 crossref_primary_10_1021_jacs_2c02924 crossref_primary_10_1039_C9CP03783G crossref_primary_10_1039_D0NJ03897K crossref_primary_10_1039_D0SC06583H crossref_primary_10_1002_anie_202206604 crossref_primary_10_1016_j_ccr_2024_216038 crossref_primary_10_1016_j_molstruc_2023_137063 crossref_primary_10_1039_D2SC01800D crossref_primary_10_1021_acs_chemmater_0c02251 crossref_primary_10_1039_D0SC00432D crossref_primary_10_1039_D1CP01929E crossref_primary_10_1002_anie_201809432 crossref_primary_10_1021_acs_joc_3c00345 crossref_primary_10_1021_acs_orglett_9b04615 crossref_primary_10_1002_adsc_202001376 crossref_primary_10_1021_jacs_3c13604 crossref_primary_10_1021_acschembio_9b00339 crossref_primary_10_1039_D3CP02526H crossref_primary_10_1002_asia_202300026 crossref_primary_10_1021_acs_inorgchem_7b02967 crossref_primary_10_1039_D0CE00662A crossref_primary_10_1021_jacs_8b04569 crossref_primary_10_1021_acsomega_8b02243 crossref_primary_10_1016_j_molstruc_2021_132045 crossref_primary_10_1021_acs_oprd_4c00113 crossref_primary_10_1002_anie_202016220 crossref_primary_10_1002_anie_202202137 crossref_primary_10_1002_cphc_202100613 crossref_primary_10_1039_C9DT01953G crossref_primary_10_1039_D1TC04518K crossref_primary_10_1002_ceur_202300015 crossref_primary_10_1039_C8CC08135B crossref_primary_10_1002_adom_202303333 crossref_primary_10_3390_cryst8030112 crossref_primary_10_1002_ange_202106614 crossref_primary_10_1021_acs_chemrev_9b00279 crossref_primary_10_1002_ange_202010462 crossref_primary_10_1002_adfm_201807033 crossref_primary_10_1039_D2CP03744K crossref_primary_10_1002_anie_202004354 crossref_primary_10_1021_acs_jpca_4c01103 crossref_primary_10_3389_fmolb_2023_1155629 crossref_primary_10_1021_acs_jpclett_1c00614 crossref_primary_10_1002_cphc_202200481 crossref_primary_10_1134_S0022476622110178 crossref_primary_10_3390_ijms23094674 crossref_primary_10_1007_s00775_024_02052_2 crossref_primary_10_1002_ange_202311044 crossref_primary_10_1002_anie_202107041 crossref_primary_10_1039_D0CE01640C crossref_primary_10_1002_wcms_1631 crossref_primary_10_1039_C9CP01033E crossref_primary_10_1021_acs_joc_2c02688 crossref_primary_10_1021_acsomega_3c00205 crossref_primary_10_1021_acsorginorgau_1c00051 crossref_primary_10_1002_adom_202300087 crossref_primary_10_3390_molecules24173166 crossref_primary_10_1002_ange_201803277 crossref_primary_10_1039_C9CC09896H crossref_primary_10_1002_open_201800201 crossref_primary_10_1039_C9OB00703B crossref_primary_10_1007_s00214_020_02669_x crossref_primary_10_1002_hlca_202200159 crossref_primary_10_1016_j_molstruc_2019_127050 crossref_primary_10_1039_D0CP05222A crossref_primary_10_1039_D1CE00129A crossref_primary_10_1021_acs_joc_2c01141 crossref_primary_10_1039_C9CP01759C crossref_primary_10_1002_ajoc_202000290 crossref_primary_10_1002_open_201900288 crossref_primary_10_3390_ijms25073972 crossref_primary_10_1002_cptc_201900074 crossref_primary_10_1063_5_0076872 crossref_primary_10_1039_C9CP01710K crossref_primary_10_1021_acs_cgd_1c01342 crossref_primary_10_1002_chem_201705428 crossref_primary_10_1021_acs_orglett_9b04404 crossref_primary_10_1039_D3CE01155K crossref_primary_10_1039_D2CP03874A crossref_primary_10_1088_1361_648X_ab8253 crossref_primary_10_1039_D3CP02820H crossref_primary_10_1021_acsanm_0c00886 crossref_primary_10_1021_acs_jpca_2c02451 crossref_primary_10_1039_D3DT03686C crossref_primary_10_1080_10426507_2019_1603233 crossref_primary_10_1002_anie_202208800 crossref_primary_10_1002_anie_201810637 crossref_primary_10_1002_chem_202302933 crossref_primary_10_1039_D2NJ02345H crossref_primary_10_1016_j_isci_2024_108917 crossref_primary_10_1021_acs_jpca_9b06004 crossref_primary_10_1002_ange_201812095 crossref_primary_10_1021_acs_orglett_9b03106 crossref_primary_10_1016_j_ccr_2021_213935 crossref_primary_10_1002_cbic_202100498 crossref_primary_10_1021_jacs_7b12894 crossref_primary_10_1002_ange_202010309 crossref_primary_10_1021_acs_cgd_8b00509 crossref_primary_10_1002_qua_25837 crossref_primary_10_1021_acs_cgd_9b01491 crossref_primary_10_1007_s41745_019_00144_6 crossref_primary_10_1039_D2QO00684G crossref_primary_10_1039_C8CP05922E crossref_primary_10_1002_anie_201808551 crossref_primary_10_1002_ange_202007314 crossref_primary_10_1039_D0SC02872J crossref_primary_10_1021_acs_chemmater_0c03975 crossref_primary_10_1002_anie_202010309 crossref_primary_10_1002_ange_202005374 crossref_primary_10_1039_D4SC02841D crossref_primary_10_1002_ajoc_201800544 crossref_primary_10_1002_cphc_202200733 crossref_primary_10_1016_j_progsolidstchem_2018_11_001 crossref_primary_10_1002_ange_201909741 crossref_primary_10_1039_C9NJ02656H crossref_primary_10_3390_molecules29051043 crossref_primary_10_1021_acs_jpca_9b11538 crossref_primary_10_1016_j_chempr_2018_02_022 crossref_primary_10_1002_chem_201805131 crossref_primary_10_1002_ange_201712456 crossref_primary_10_1021_jacs_0c01290 crossref_primary_10_1021_jacs_1c01839 crossref_primary_10_1002_chem_202101681 crossref_primary_10_1021_jacs_1c02808 crossref_primary_10_1002_hlca_201800075 crossref_primary_10_1080_17415993_2021_2002863 crossref_primary_10_1017_qrd_2023_3 crossref_primary_10_1021_acs_inorgchem_8b00485 crossref_primary_10_1021_acs_cgd_3c00605 crossref_primary_10_1016_j_ccr_2020_213586 crossref_primary_10_1002_ange_201908627 crossref_primary_10_1016_j_tetlet_2018_05_037 crossref_primary_10_1021_acs_inorgchem_1c03109 crossref_primary_10_1021_acs_jpca_2c00224 crossref_primary_10_1021_acs_joc_1c00545 crossref_primary_10_1002_chem_201903604 crossref_primary_10_1016_j_dyepig_2018_10_008 crossref_primary_10_1016_j_molstruc_2019_127019 crossref_primary_10_1021_acs_jpca_4c02723 crossref_primary_10_1002_cphc_201800656 crossref_primary_10_1134_S1070363218100158 crossref_primary_10_1021_acsami_1c16950 crossref_primary_10_1021_acsomega_2c04784 crossref_primary_10_1039_D2RA03307K crossref_primary_10_1002_qua_26739 crossref_primary_10_1002_chem_201904762 crossref_primary_10_1002_cphc_202200936 crossref_primary_10_1002_open_202000323 crossref_primary_10_1039_C8CE01853G crossref_primary_10_1021_acs_cgd_0c00791 crossref_primary_10_1021_acs_jmedchem_2c01147 crossref_primary_10_1038_s41467_023_38078_4 crossref_primary_10_1039_C9CP06377C crossref_primary_10_1039_D2CE01414A crossref_primary_10_3390_ijms23063114 crossref_primary_10_1002_ange_202016220 crossref_primary_10_1002_chem_202203791 crossref_primary_10_1016_j_gresc_2021_08_002 crossref_primary_10_1039_D1NJ02124A crossref_primary_10_1016_j_jms_2022_111672 crossref_primary_10_1021_acs_accounts_0c00545 crossref_primary_10_3390_ijms23084188 crossref_primary_10_1002_ange_202004354 crossref_primary_10_1039_C9NJ03397A crossref_primary_10_1016_j_ica_2018_09_035 crossref_primary_10_3390_sym15010212 crossref_primary_10_1007_s00723_023_01618_8 crossref_primary_10_1007_s00894_021_05023_5 crossref_primary_10_1021_jacs_9b03806 crossref_primary_10_1002_ange_201808551 crossref_primary_10_1107_S2052520618017778 crossref_primary_10_1021_acs_cgd_4c00228 crossref_primary_10_3390_ijms241613020 crossref_primary_10_1021_acs_orglett_2c02170 crossref_primary_10_1039_C8SC04221G crossref_primary_10_1002_anie_201712456 crossref_primary_10_3390_molecules26216394 crossref_primary_10_1021_acs_inorgchem_1c01232 crossref_primary_10_3390_molecules27041315 crossref_primary_10_1002_ange_201809432 crossref_primary_10_1002_ajoc_202000127 crossref_primary_10_1039_D2RA06660B crossref_primary_10_1002_ange_201905439 crossref_primary_10_1021_acs_inorgchem_8b00190 crossref_primary_10_1002_chem_202101425 crossref_primary_10_1039_D2CC04777B crossref_primary_10_1021_acs_cgd_4c00496 crossref_primary_10_1007_s11224_018_1274_2 crossref_primary_10_1002_anie_201803277 crossref_primary_10_1021_jacs_3c01030 crossref_primary_10_1002_ange_201810637 crossref_primary_10_1039_D2CP05269E crossref_primary_10_1039_C9SC04303A crossref_primary_10_1016_j_comptc_2024_114707 crossref_primary_10_1021_acs_jpca_0c00439 crossref_primary_10_1002_ange_201905436 crossref_primary_10_1002_anie_201909741 crossref_primary_10_1007_s00214_021_02790_5 crossref_primary_10_1002_anie_201812095 crossref_primary_10_1002_chem_202401150 crossref_primary_10_1002_ange_202116071 crossref_primary_10_1080_00268976_2018_1539259 crossref_primary_10_1002_chem_201900266 crossref_primary_10_1021_acs_jpcb_2c03745 crossref_primary_10_1021_acs_inorgchem_1c02585 crossref_primary_10_1039_C7NJ03632A crossref_primary_10_1002_ejoc_202101111 crossref_primary_10_1002_ntls_20220057 crossref_primary_10_1016_j_mencom_2024_04_001 crossref_primary_10_1002_ange_202107041 crossref_primary_10_1021_acscatal_0c03689 crossref_primary_10_1039_D0DT04091F crossref_primary_10_1016_j_bioorg_2022_105983 crossref_primary_10_1021_acs_orglett_3c01075 crossref_primary_10_1002_ejic_201800831 crossref_primary_10_3390_molecules28073133 crossref_primary_10_1002_ejic_202000275 crossref_primary_10_1002_ange_201914421 crossref_primary_10_1021_acs_cgd_3c00101 crossref_primary_10_1002_chem_201905786 crossref_primary_10_2174_2212796817666221121155138 crossref_primary_10_1016_j_molstruc_2021_131757 crossref_primary_10_1039_D1OB01053K crossref_primary_10_1021_acs_cgd_0c01318 crossref_primary_10_1002_ange_202208800 crossref_primary_10_1039_C7NJ04843B crossref_primary_10_1039_D1CE01470F crossref_primary_10_1002_cphc_202100056 crossref_primary_10_1016_j_tet_2019_01_035 crossref_primary_10_1039_C9SC00390H crossref_primary_10_1002_anie_202212707 crossref_primary_10_1021_acs_cgd_1c01315 crossref_primary_10_1039_D3SC05470E crossref_primary_10_3390_inorganics10090133 crossref_primary_10_1002_ange_202202137 crossref_primary_10_3390_ijms25115609 crossref_primary_10_1039_C8NJ00554K crossref_primary_10_1002_anie_202106614 crossref_primary_10_1002_cphc_202100148 crossref_primary_10_1039_D2DT00796G crossref_primary_10_1021_acs_inorgchem_0c03650 crossref_primary_10_1039_C8SC01943F crossref_primary_10_1021_acs_orglett_4c01143 crossref_primary_10_1016_j_jechem_2024_05_031 crossref_primary_10_1002_chem_201904795 crossref_primary_10_1039_D0CP01643H crossref_primary_10_1055_a_1921_8664 crossref_primary_10_1002_anie_202010462 crossref_primary_10_1021_acs_accounts_3c00674 crossref_primary_10_1002_solr_202200156 crossref_primary_10_3987_COM_19_S_F_15 crossref_primary_10_1002_ange_202206604 crossref_primary_10_1039_D2CP00291D crossref_primary_10_1039_D0CP04921B crossref_primary_10_3390_ijms232314973 |
Cites_doi | 10.1039/b902351h 10.1021/acschembio.5b00852 10.1021/jo702354x 10.1021/ja901188y 10.1021/ja00090a057 10.1021/ja103490h 10.1021/cr60255a003 10.1039/b822665m 10.1002/anie.201703757 10.1002/anie.201306501 10.1021/ja982620u 10.1021/ja506518t 10.1039/C5SC03550C 10.1002/anie.201611019 10.1039/C7DT01685A 10.1021/ja953358h 10.1002/qua.21753 10.1021/jacs.6b12745 10.1021/jm501853m 10.1021/ja044005y 10.1039/C2CE26741A 10.1002/qua.21352 10.1021/ic062110y 10.1021/acs.orglett.6b01655 10.1002/anie.201502571 10.1021/ja401420w 10.1002/chem.201304810 10.1021/jacs.5b04554 10.1016/j.cplett.2015.06.034 10.1021/ja4033583 10.1021/ja027146d 10.1002/chem.201002146 10.1039/C4SC01746C 10.1007/s00894-008-0386-9 10.1007/s00894-011-1089-1 10.1002/wcms.1326 10.1021/ja511648d 10.1039/C6OB00254D 10.1021/acs.joc.5b01072 10.1039/C5SC01370D 10.1039/C2CS35213C 10.1002/chem.200204684 10.1021/ja012633z 10.1039/a808126c 10.1039/c2cs35037h 10.1021/jacs.6b03283 10.1021/ja512183e 10.1021/ja016348r 10.1021/cr00088a005 10.1021/ja026472q 10.1021/ja056827g 10.1002/anie.200701463 10.1038/nchem.1779 10.1002/anie.201408982 10.1021/jacs.5b05736 10.1007/s00894-007-0225-4 10.1021/ja00089a057 10.1021/ja0262481 10.1021/ja402566w 10.1021/ja4106122 10.1016/j.saa.2011.04.021 10.1021/j100323a006 10.1039/B1RP90011K 10.1007/s00894-006-0130-2 10.1002/anie.200460781 10.1039/C6SC00940A 10.1038/nchembio.406 10.1021/cr800346f 10.1039/b608165g 10.1039/c3sc51764k 10.1073/pnas.0806129105 10.1007/s00894-012-1624-8 10.1002/anie.201508056 10.1021/ja049690n 10.1039/c3cp00054k 10.1021/ja9086352 10.1021/acs.chemrev.5b00484 10.1021/ja00033a004 10.1021/ja00065a015 10.1002/anie.201702950 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/jacs.7b08511 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 15167 |
ExternalDocumentID | 10_1021_jacs_7b08511 28985065 c047672813 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CUPRZ GGK IH2 NPM XSW YQT ZCA ~02 AAYXX ADOJD CITATION 7X8 |
ID | FETCH-LOGICAL-a428t-a204f8121bc0f9fa79e47abcc9aa0e7d24e886333be78d7c84d092252a7ac0d13 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Wed Dec 04 14:56:47 EST 2024 Fri Dec 06 04:14:09 EST 2024 Sat Sep 28 08:47:48 EDT 2024 Thu Aug 27 13:42:17 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a428t-a204f8121bc0f9fa79e47abcc9aa0e7d24e886333be78d7c84d092252a7ac0d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9321-8997 |
OpenAccessLink | https://www.pure.ed.ac.uk/ws/files/45001341/20171012_Cockroft_MANUSCRIPT_R1.pdf |
PMID | 28985065 |
PQID | 1948763588 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1948763588 crossref_primary_10_1021_jacs_7b08511 pubmed_primary_28985065 acs_journals_10_1021_jacs_7b08511 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-10-25 |
PublicationDateYYYYMMDD | 2017-10-25 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref44/cit44 doi: 10.1039/b902351h – ident: ref10/cit10 doi: 10.1021/acschembio.5b00852 – ident: ref54/cit54 doi: 10.1021/jo702354x – ident: ref66/cit66 doi: 10.1021/ja901188y – ident: ref55/cit55 doi: 10.1021/ja00090a057 – ident: ref6/cit6 doi: 10.1021/ja103490h – ident: ref75/cit75 doi: 10.1021/cr60255a003 – ident: ref46/cit46 doi: 10.1039/b822665m – ident: ref68/cit68 doi: 10.1002/anie.201703757 – ident: ref19/cit19 doi: 10.1002/anie.201306501 – ident: ref56/cit56 doi: 10.1021/ja982620u – ident: ref11/cit11 doi: 10.1021/ja506518t – ident: ref60/cit60 doi: 10.1039/C5SC03550C – ident: ref4/cit4 doi: 10.1002/anie.201611019 – ident: ref8/cit8 doi: 10.1039/C7DT01685A – ident: ref36/cit36 doi: 10.1021/ja953358h – ident: ref2/cit2 doi: 10.1002/qua.21753 – ident: ref12/cit12 doi: 10.1021/jacs.6b12745 – ident: ref1/cit1 doi: 10.1021/jm501853m – ident: ref25/cit25 doi: 10.1021/ja044005y – ident: ref38/cit38 doi: 10.1039/C2CE26741A – ident: ref20/cit20 doi: 10.1002/qua.21352 – ident: ref24/cit24 doi: 10.1021/ic062110y – ident: ref63/cit63 doi: 10.1021/acs.orglett.6b01655 – ident: ref22/cit22 doi: 10.1002/anie.201502571 – ident: ref30/cit30 doi: 10.1021/ja401420w – ident: ref58/cit58 doi: 10.1002/chem.201304810 – ident: ref52/cit52 doi: 10.1021/jacs.5b04554 – ident: ref26/cit26 doi: 10.1016/j.cplett.2015.06.034 – ident: ref65/cit65 doi: 10.1021/ja4033583 – ident: ref9/cit9 doi: 10.1021/ja027146d – ident: ref21/cit21 doi: 10.1002/chem.201002146 – ident: ref72/cit72 doi: 10.1039/C4SC01746C – ident: ref15/cit15 doi: 10.1007/s00894-008-0386-9 – ident: ref27/cit27 doi: 10.1007/s00894-011-1089-1 – ident: ref81/cit81 doi: 10.1002/wcms.1326 – ident: ref14/cit14 doi: 10.1021/ja511648d – ident: ref41/cit41 doi: 10.1039/C6OB00254D – ident: ref51/cit51 doi: 10.1021/acs.joc.5b01072 – ident: ref61/cit61 doi: 10.1039/C5SC01370D – ident: ref16/cit16 doi: 10.1039/C2CS35213C – ident: ref13/cit13 doi: 10.1002/chem.200204684 – ident: ref79/cit79 doi: 10.1021/ja012633z – ident: ref35/cit35 doi: 10.1039/a808126c – ident: ref77/cit77 doi: 10.1039/c2cs35037h – ident: ref7/cit7 doi: 10.1021/jacs.6b03283 – ident: ref31/cit31 doi: 10.1021/ja512183e – ident: ref33/cit33 doi: 10.1021/ja016348r – ident: ref76/cit76 doi: 10.1021/cr00088a005 – ident: ref39/cit39 doi: 10.1021/ja026472q – ident: ref37/cit37 doi: 10.1021/ja056827g – ident: ref59/cit59 doi: 10.1002/anie.200701463 – ident: ref70/cit70 doi: 10.1038/nchem.1779 – ident: ref43/cit43 doi: 10.1002/anie.201408982 – ident: ref48/cit48 doi: 10.1021/jacs.5b05736 – ident: ref3/cit3 doi: 10.1007/s00894-007-0225-4 – ident: ref57/cit57 doi: 10.1021/ja00089a057 – ident: ref53/cit53 doi: 10.1021/ja0262481 – ident: ref47/cit47 doi: 10.1021/ja402566w – ident: ref62/cit62 doi: 10.1021/ja4106122 – ident: ref40/cit40 doi: 10.1016/j.saa.2011.04.021 – ident: ref74/cit74 doi: 10.1021/j100323a006 – ident: ref80/cit80 doi: 10.1039/B1RP90011K – ident: ref18/cit18 doi: 10.1007/s00894-006-0130-2 – ident: ref49/cit49 doi: 10.1002/anie.200460781 – ident: ref5/cit5 doi: 10.1039/C6SC00940A – ident: ref64/cit64 doi: 10.1038/nchembio.406 – ident: ref78/cit78 doi: 10.1021/cr800346f – ident: ref45/cit45 doi: 10.1039/b608165g – ident: ref42/cit42 doi: 10.1039/c3sc51764k – ident: ref67/cit67 doi: 10.1073/pnas.0806129105 – ident: ref28/cit28 doi: 10.1007/s00894-012-1624-8 – ident: ref73/cit73 doi: 10.1002/anie.201508056 – ident: ref29/cit29 doi: 10.1021/ja049690n – ident: ref32/cit32 doi: 10.1039/c3cp00054k – ident: ref71/cit71 doi: 10.1021/ja9086352 – ident: ref17/cit17 doi: 10.1021/acs.chemrev.5b00484 – ident: ref23/cit23 doi: 10.1021/ja00033a004 – ident: ref34/cit34 doi: 10.1021/ja00065a015 – ident: ref50/cit50 doi: 10.1002/anie.201702950 |
SSID | ssj0004281 |
Score | 2.6986015 |
Snippet | Favorable molecular interactions between group 16 elements have been implicated in catalysis, biological processes, and materials and medicinal chemistry. Such... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 15160 |
Title | The Origin of Chalcogen-Bonding Interactions |
URI | http://dx.doi.org/10.1021/jacs.7b08511 https://www.ncbi.nlm.nih.gov/pubmed/28985065 https://search.proquest.com/docview/1948763588 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGP_QedCL78d80YHe7OjSdEmOUpxDUA862K0kaYKgtGK7i3-9X_pwOBl6LW1Ivge_X_q9AC7Q_W2UpkNfCxX5LmCIPqcpKiSMNBqVYsLVDt8_DMcTejeNpvME2cUIPnH9gXTRZ6qiBquwRhjevB0Fip_m9Y-ED1qay_gwbBLcF792AKSLnwC0hFVW6DLagtu2RqdOKnntz0rV15-_Wzb-sfFt2GwIpnddW8QOrJhsF9bjdq7bHlyhZXiP1TwsL7de_CLfdI5m5LsJwwhkXvWTsK53KPZhMrp5jsd-MzPBlyiF0pckoBZBe6B0YIWVTBjKpNJaSBkYlhJqOEooDJVhPGWa0zQQ6NNEMqmDdBAeQCfLM3MEHrMa6ZywPHTFs1IrjhTXKp5WJIGSLvTwhElj80VShbMJXifc0-bcXbhshZ281-0zlrzXazWRoDhc0EJmJp_hqoJWTfM478JhraLvlfCy6BruRcf_2MkJbBCHyAg7JDqFTvkxM2fIJ0p1XhnTFwfdwYY |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHMaF92M8OwludOr6WJIjqpgGbOPAJu1WJWkqJFCLaHfh1-Ok7SYmTdo1SiPHsfV9qWMb4A7dPwniuGdLJgJbBwzR56SPB-IFEo1KEKZzh0fj3mDqv8yCWZWsrnNhUIgcV8pNEH9ZXUCXCcJBIgxD2IadQHer1EwofF-mQbq0W7NdQnte9c599WuNQzL_j0NryKUBmf4-jBfimbcln515ITryd6Vy48byH8BeRTetx9I-DmFLpUfQDOsub8fwgHZivZnuWFaWWOEH_5IZGpWt-w0jrFnml2GZ_ZCfwLT_NAkHdtVBweaojMLmruMnCOFdIZ2EJZww5RMupGScO4rErq8oKsrzhCI0JpL6scPQw11OuHTirncKjTRL1TlYJJFI7lhCPZ1Ky6WgSHgTQWNDGXy3BW3cYVR5QB6Z4LaLlws9Wu27Bfe1zqPvspjGmnnt-kAiVIcOYfBUZXNclfmmhB6lLTgrT2qxEl4ddfm94GIDSW6hOZiMhtHwefx6CbuuxmoEJDe4gkbxM1fXyDQKcWPs6w9u4snz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7UCurFfalrCnozJWtncizRUrcqaqG3MDPJIChJMenFX--bSVKxUNBrlmHmzXv5vsnbAM7R_KUfx11TBNw3lcMQbU54uCGuL1CpOAlU7vDDsDsYebdjf9wAu86FwUnkOFKunfjKqiexrCoMqFJBeINwzRKWYNnHD62K4uqFLz-pkA61a8ZLaNetYt3n31ZYJPLfWLSAYGqg6W_A82yKOr7kvTMteEd8zVVv_NcaNmG9op1Gr9STLWgk6TashnW3tx24RH0xHnWXLCOTRvjGPkSGymWqvsMIb4b-dVhmQeS7MOpfv4YDs-qkYDIUSGEyx_IkQrnNhSUDyUiQeIRxIQLGrITEjpdQFJbr8oTQmAjqxVaAlu4wwoQV2-4eNNMsTQ7AIFIgyQskdVVKLROcIvGVnMaaOnhOC9q4wqiyhDzSTm4HDxnqarXuFlzUco8mZVGNBc-1602JUBzKlcHSJJviqIGnS-lR2oL9crdmI-ERUpXh8w__MJMzWHm66kf3N8O7I1hzFGQjLjn-MTSLz2lygoSj4Kdaxb4BP4nMdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Origin+of+Chalcogen-Bonding+Interactions&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Pascoe%2C+Dominic+J&rft.au=Ling%2C+Kenneth+B&rft.au=Cockroft%2C+Scott+L&rft.date=2017-10-25&rft.eissn=1520-5126&rft.volume=139&rft.issue=42&rft.spage=15160&rft.epage=15167&rft_id=info:doi/10.1021%2Fjacs.7b08511&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |