Optimal Selection of Raw Materials for Pharmaceutical Drug Product Design and Manufacture using Mixed Integer Nonlinear Programming and Multivariate Latent Variable Regression Models
This work presents a mathematical approach to make the most efficient use of historical data from development experiments (or commercial manufacture) to select the ingredients for the composition of a new product or to select the materials from inventory for the manufacture of a new lot of finished...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 52; no. 17; pp. 5934 - 5942 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work presents a mathematical approach to make the most efficient use of historical data from development experiments (or commercial manufacture) to select the ingredients for the composition of a new product or to select the materials from inventory for the manufacture of a new lot of finished product. The method relies in the construction of a latent variable regression model that will serve to predict the result of combining certain materials. This predictive model is then embedded into an optimization framework to find the best combination among the pool of available materials according to a well-defined objective and subject to the predefined constraints. The framework is illustrated with two successful applications: the selection of the formulation and process for the design of a new solid oral drug product with high drug concentration and a continuous improvement project in commercial manufacture seeking to select the optimal set of lots of raw materials from the inventory to be mixed together in the manufacture a new lot for a controlled release product, given certain targets of dissolution levels and subject to material availability. |
---|---|
AbstractList | This work presents a mathematical approach to make the most efficient use of historical data from development experiments (or commercial manufacture) to select the ingredients for the composition of a new product or to select the materials from inventory for the manufacture of a new lot of finished product. The method relies in the construction of a latent variable regression model that will serve to predict the result of combining certain materials. This predictive model is then embedded into an optimization framework to find the best combination among the pool of available materials according to a well-defined objective and subject to the predefined constraints. The framework is illustrated with two successful applications: the selection of the formulation and process for the design of a new solid oral drug product with high drug concentration and a continuous improvement project in commercial manufacture seeking to select the optimal set of lots of raw materials from the inventory to be mixed together in the manufacture a new lot for a controlled release product, given certain targets of dissolution levels and subject to material availability. |
Author | Garcı́a-Muñoz, Salvador Mercado, Jose |
AuthorAffiliation | Pfizer Worldwide Research & Development Pfizer Global Manufacturing |
AuthorAffiliation_xml | – name: Pfizer Worldwide Research & Development – name: Pfizer Global Manufacturing |
Author_xml | – sequence: 1 givenname: Salvador surname: Garcı́a-Muñoz fullname: Garcı́a-Muñoz, Salvador email: salvador.garcia-munoz@pfizer.com – sequence: 2 givenname: Jose surname: Mercado fullname: Mercado, Jose |
BookMark | eNqFkc9u1DAQhyNUJLaFA2_gCxIcQu04TrxH1BaotEur8ucajZ1xcOW1F9uB9sV4PhwWcUCVuHg00veNR_M7ro588FhVzxl9zWjDTi1yypls5KNqxURDa0FbcVStqJSyFlKKJ9VxSreUUiHadlX9vNpnuwNHPqJDnW3wJBhyAz_IFjJGCy4REyK5_gpxBxrnbHWhz-M8kesYxllnco7JTp6AH4vkZwM6zxHJnKyfyNbe4UgufcYJI_kQvLMeIS7yFGG3W5jf5uyy_Q7lx4xkUx6fyZelVQ7JDU4RU1q224YRXXpaPTZlNXz2p55Un99efDp7X2-u3l2evdnU0DYy1xyk4QyoGBk2a9CqbTRdGw6q61vWY0OVEUpzIzoorVJMqa7Tbd8jGqNaflK9PMzdx_BtxpSHnU0anQOPYU5DU64rWy5E_1-UdeuGS8a5LOirA6pjSCmiGfaxhBDvB0aHJcbhb4yFPf2H1TbDElSOYN2DxouDAToNt2GOvlzoAe4XvN2xAA |
CitedBy_id | crossref_primary_10_1208_s12249_018_1268_9 crossref_primary_10_1016_j_ijpharm_2019_04_002 crossref_primary_10_1016_j_chemolab_2022_104563 crossref_primary_10_1016_j_chemolab_2023_104991 crossref_primary_10_1016_j_spc_2018_09_003 crossref_primary_10_1080_09544828_2025_2473983 crossref_primary_10_1002_aic_16020 crossref_primary_10_1016_j_chemolab_2014_02_006 crossref_primary_10_1016_j_compchemeng_2015_12_012 crossref_primary_10_1016_j_chemolab_2018_08_014 crossref_primary_10_1016_j_compchemeng_2013_09_020 crossref_primary_10_1016_j_ijpharm_2021_121146 crossref_primary_10_1016_j_ijpharm_2013_08_074 crossref_primary_10_1016_j_powtec_2018_10_040 crossref_primary_10_1208_s12249_018_1198_6 crossref_primary_10_1016_j_xphs_2023_10_014 crossref_primary_10_1246_bcsj_20200220 crossref_primary_10_3389_fceng_2020_582126 crossref_primary_10_1021_ie503660f crossref_primary_10_1016_j_compchemeng_2024_108615 crossref_primary_10_1002_aic_15210 |
Cites_doi | 10.1016/S0169-7439(99)00018-0 10.1016/j.chemolab.2006.06.018 10.1021/ie301214c 10.1007/s11095-006-9201-4 10.1016/j.chemolab.2003.10.004 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S 10.1016/0169-7439(92)80092-I 10.1016/j.compchemeng.2003.09.029 10.1016/j.compchemeng.2003.09.030 10.1002/jps.20108 10.1016/j.compchemeng.2010.02.027 10.1016/j.ijpharm.2009.03.014 10.1016/S0169-7439(98)00126-9 10.1016/j.ijpharm.2011.04.064 10.1002/jps.21422 10.1016/S0169-7439(02)00088-6 10.1002/aic.11494 10.1016/S0169-409X(03)00120-0 10.1016/j.ejps.2007.03.003 10.1002/jps.22161 10.1016/S0928-0987(98)00063-3 10.1016/j.powtec.2004.02.005 10.1021/ie060314g 10.1016/j.ces.2011.05.049 10.1021/ie071437j 10.1016/j.chemolab.2012.03.009 10.1002/cem.1180020306 10.1016/j.ces.2010.01.037 10.1016/j.ejps.2007.03.004 10.1016/j.chemolab.2006.08.003 10.1016/j.ejpb.2012.07.001 10.1002/jps.21801 10.1080/00401706.1995.10485888 10.1021/ie050953b |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7S9 L.6 |
DOI | 10.1021/ie3031828 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 5942 |
ExternalDocumentID | 10_1021_ie3031828 a460280118 |
GroupedDBID | 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK ~02 7SR 8BQ 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-a428t-3a8f31a05d1e29acb42c09f3ab67417e20bf5bc3f56a17ebb1bb66c477eeffb43 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Fri Jul 11 06:18:37 EDT 2025 Thu Jul 10 22:03:48 EDT 2025 Tue Jul 01 01:17:19 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Thu Aug 27 13:43:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a428t-3a8f31a05d1e29acb42c09f3ab67417e20bf5bc3f56a17ebb1bb66c477eeffb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1692381338 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2045843557 proquest_miscellaneous_1692381338 crossref_primary_10_1021_ie3031828 crossref_citationtrail_10_1021_ie3031828 acs_journals_10_1021_ie3031828 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Faure A. (ref34/cit34) 1999; 8 Sun C. C. (ref3/cit3) 2009; 98 Waterman K. (ref5/cit5) 2007; 24 Vemavarapu C. (ref32/cit32) 2009; 374 Garcia-Munoz S. (ref18/cit18) 2010; 34 Hapgood K. P. (ref35/cit35) 2004; 141 Garcia-Munoz S. (ref25/cit25) 2012; 114 Nomikos P. (ref31/cit31) 1995; 37 Eriksson L. (ref33/cit33) 1998; 43 Hoskuldsson A. PLS (ref30/cit30) 1988; 2 Garcia-Munoz S. (ref15/cit15) 2006; 45 Shao Q. (ref22/cit22) 2007; 31 Hamad M. L. (ref4/cit4) 2010; 65 Muteki K. (ref20/cit20) 2008; 54 Cervera-Padrell A. E. (ref11/cit11) 2012; 82 Yacoub F. (ref14/cit14) 2004; 70 Barnicki S. D. (ref10/cit10) 2004; 28 Iacocca R. G. (ref1/cit1) 2010; 99 Stephanopoulos G. (ref8/cit8) 2011; 66 Garcia-Munoz S. (ref17/cit17) 2008; 47 Tomba E. (ref19/cit19) 2012; 51 Muteki K. (ref28/cit28) 2007; 85 Burnham A. (ref12/cit12) 1999; 48 Yacoub F. (ref13/cit13) 2003; 65 Polizzi M. A. (ref26/cit26) 2011; 418 Westerhuis J. (ref29/cit29) 1998; 12 Takayama K. (ref21/cit21) 2003; 55 Waterman K. C. (ref6/cit6) 2010; 99 Westerberg A. W. (ref9/cit9) 2004; 28 Muteki K. (ref24/cit24) 2007; 86 Muteki K. (ref16/cit16) 2006; 45 Mullarney M. P. (ref2/cit2) 2004; 93 Shao Q. (ref23/cit23) 2007; 31 Kettaneh-Wold N. (ref27/cit27) 1992; 14 ref7/cit7 |
References_xml | – volume: 48 start-page: 167 year: 1999 ident: ref12/cit12 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00018-0 – volume: 85 start-page: 186 year: 2007 ident: ref28/cit28 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2006.06.018 – volume: 51 start-page: 12886 issue: 39 year: 2012 ident: ref19/cit19 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301214c – volume: 24 start-page: 780 issue: 4 year: 2007 ident: ref5/cit5 publication-title: Pharm. Res. doi: 10.1007/s11095-006-9201-4 – volume: 70 start-page: 63 year: 2004 ident: ref14/cit14 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2003.10.004 – volume: 12 start-page: 301 year: 1998 ident: ref29/cit29 publication-title: J. Chemom. doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S – volume: 14 start-page: 57 issue: 1 year: 1992 ident: ref27/cit27 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(92)80092-I – volume: 28 start-page: 447 issue: 4 year: 2004 ident: ref9/cit9 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.029 – volume: 28 start-page: 441 issue: 4 year: 2004 ident: ref10/cit10 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.030 – volume: 93 start-page: 2017 issue: 8 year: 2004 ident: ref2/cit2 publication-title: J. Pharm. Sci. doi: 10.1002/jps.20108 – volume: 34 start-page: 1098 issue: 7 year: 2010 ident: ref18/cit18 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2010.02.027 – volume: 374 start-page: 96 issue: 1 year: 2009 ident: ref32/cit32 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.03.014 – volume: 43 start-page: 1 issue: 1 year: 1998 ident: ref33/cit33 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00126-9 – volume: 418 start-page: 235 year: 2011 ident: ref26/cit26 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.04.064 – volume: 98 start-page: 239 issue: 1 year: 2009 ident: ref3/cit3 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21422 – volume: 65 start-page: 17 year: 2003 ident: ref13/cit13 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00088-6 – volume: 54 start-page: 1554 issue: 6 year: 2008 ident: ref20/cit20 publication-title: AIChE J. doi: 10.1002/aic.11494 – volume: 55 start-page: 1217 issue: 9 year: 2003 ident: ref21/cit21 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(03)00120-0 – volume: 31 start-page: 129 year: 2007 ident: ref22/cit22 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2007.03.003 – volume: 99 start-page: 4437 issue: 11 year: 2010 ident: ref6/cit6 publication-title: J. Pharm. Sci. doi: 10.1002/jps.22161 – volume: 8 start-page: 85 issue: 2 year: 1999 ident: ref34/cit34 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(98)00063-3 – volume: 141 start-page: 20 issue: 1 year: 2004 ident: ref35/cit35 publication-title: Powder Technol. doi: 10.1016/j.powtec.2004.02.005 – volume: 45 start-page: 7856 year: 2006 ident: ref15/cit15 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060314g – volume: 66 start-page: 4272 issue: 19 year: 2011 ident: ref8/cit8 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.05.049 – volume: 47 start-page: 4202 year: 2008 ident: ref17/cit17 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071437j – volume: 114 start-page: 116 issue: 0 year: 2012 ident: ref25/cit25 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.009 – volume: 2 start-page: 211 year: 1988 ident: ref30/cit30 publication-title: J. Chemom. doi: 10.1002/cem.1180020306 – volume: 65 start-page: 5625 issue: 21 year: 2010 ident: ref4/cit4 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.01.037 – volume: 31 start-page: 137 year: 2007 ident: ref23/cit23 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2007.03.004 – volume: 86 start-page: 17 issue: 1 year: 2007 ident: ref24/cit24 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2006.08.003 – volume: 82 start-page: 437 year: 2012 ident: ref11/cit11 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2012.07.001 – volume: 99 start-page: 51 issue: 1 year: 2010 ident: ref1/cit1 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21801 – ident: ref7/cit7 – volume: 37 start-page: 41 issue: 1 year: 1995 ident: ref31/cit31 publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – volume: 45 start-page: 4653 issue: 13 year: 2006 ident: ref16/cit16 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050953b |
SSID | ssj0005544 |
Score | 2.2122693 |
Snippet | This work presents a mathematical approach to make the most efficient use of historical data from development experiments (or commercial manufacture) to select... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5934 |
SubjectTerms | Drugs engineering ingredients Inventories manufacturing Materials selection Mathematical models Optimization Raw materials Regression regression analysis Stockpiling |
Title | Optimal Selection of Raw Materials for Pharmaceutical Drug Product Design and Manufacture using Mixed Integer Nonlinear Programming and Multivariate Latent Variable Regression Models |
URI | http://dx.doi.org/10.1021/ie3031828 https://www.proquest.com/docview/1692381338 https://www.proquest.com/docview/2045843557 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKucCBN2qBVsPjwCUldmxvcqy6VBViS9VS1FtkO_ZSsc2ibAKIH9bf1xlnt2xFC5dIlmbkSPO2P88w9oZbUVgpZSJRexOM0GlilEVniNWQdiHFYo7OIUf7eu9YfjhRJyvs9Q03-IK_O_UZKZ7Ib7HbQqPxUv6zc_QHx6HixFa0FnpClKtF-6BlVgo9bnY19Fz1vDGc7N5nw8WjnB5F8m2ra-2W-_13j8Z__ekDdm-eTsJ2L_-HbMXXj9jdpSaDj9n5J_QKZ0h0FEfeoBxgGuDQ_ISRaXv9A8xc4eDr8uk2DJtuDAd9P1gYRpwHmLpCprqj1xBd44FA82MYnf7yFdDR4tg3sN_33jANMRP064xoIidhF39gbY7bwkf81C18oaWdeDj04x6RWwONZ5vMnrDj3fefd_aS-bSGxGAJ0yaZyUPGTaoq7kVhnJXCpUXIjNWYtQy8SG1Q1mVBaYNLa7m1Wjs5GHgfgpXZU7ZaT2u_xkAql4dK8wq9g-Qut9wVJqtyVXgtUbnW2SaKs5xb26yMF-mCl5cCWGdvF5Iu3bzXOY3cmFxH-uqS9Hvf4OM6opcLdSnR_OhOxdR-2uHWuqCkBwv9m2lEvIzGxG7w7H8__pzdEXHeBiEqX7DVtun8BmY9rd2MWn8B3pD-AQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIBDeYtCKQPiwCUlTmxvcqxaqgV2l6oP1FtkO85Ssc2iPArih_X3MeNk2y0qgkskSzOJFY_tGc_nbxh7w02UGiFEINB6A9yhw0BLg4shRkPKFiEGc3QOOZ6o4ZH4eCyPe5ocuguDnajxTbVP4l-yC_B3Jy4m-4uSm-wWOiERWfPW9sElnEP6wq04aegmUSIXLELLqrQD2frqDnR1Afa7yu69rjyR748Hk3zbbBuzaX_9QdX4fx2-z1Z75xK2Omt4wG648iG7u0Q5-Iidf8Y14hSFDnwBHBwVmBewr3_AWDedNQL6sbD3dfmsG3aqdgp7HTss7HjUB-gyR6WypbsRbeWAIPRTGJ_8dDnQQePUVTDpmDh0RcoEBDslGa9JSMYzjNTxszDCR9nAF2qamYN9N-3wuSVQsbZZ_Zgd7b4_3B4Gfe2GQGNA0wSxToqY61Dm3EWptkZENkyLWBuFPszARaEppLFxIZXGpjHcGKWsGAycKwoj4idspZyX7ikDIW1S5IrnuFYIbhPDbarjPJGpUwJNbY1t4P_P-rlXZz6tHvHsYgDW2NvFgGe2Zz6nAhyz60RfX4h-7-g-rhN6tbCaDCcjZVh06eYtflql5AJh2P93mcinptHNGzz7V8dfstvDw_EoG32YfHrO7kS-EgdhLdfZSlO17gX6Q43Z8BPhN4mLBnE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0IIiITjwRpRHGRAHLilxYmeTY9VlVaC7XbUU9RbZjr1UbLNVHoD4ML6PGSe7bFERXCJZmoktzdsznmHsFddRpoUQgUDuDdBCh4GSGpUhRkOJcSEGc3QPOZ4ke8fi_Yk86QNFeguDh6jxT7VP4pNUnxeu7zDA35zamHgwSq-ya5SuI47e2T36XdIh_fBWFBx6TZTKZSehdVSyQqa-aIUuKmFvWUa32cHqTL6g5Mt22-ht8-OPdo3_f-g77FbvZMJOxxV32RVb3mM311oP3mc_D1BXnCHQkR-Eg9SBhYND9Q3Gqum4EtCfhenn9TtvGFbtDKZdl1gY-uoPUGWBSGVLbyTaygKV0s9gfPrdFkAXjjNbwaTryKEqQqaCsDOC8ZhU0fgVI3bcFvbxUzbwiZZ6buHQzro63RJoaNu8fsCOR28_7u4F_QyHQGFg0wSxSl3MVSgLbqNMGS0iE2YuVjpBX2Zgo1A7qU3sZKJwqTXXOkmMGAysdU6L-CHbKBelfcRASJO6IuEF6gzBTaq5yVRcpDKziUCW22RbSIO8l8E69-n1iOcrAmyy10ui56bvgE6DOOaXgb5cgZ53bT8uA3qx5JwchZIyLaq0ixa3TjJyhTD8_ztM5FPU6O4NHv_r4M_Z9elwlO-_m3x4wm5EfiAHlVw-ZRtN1dpn6BY1esvLwi_3wAj0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Selection+of+Raw+Materials+for+Pharmaceutical+Drug+Product+Design+and+Manufacture+using+Mixed+Integer+Nonlinear+Programming+and+Multivariate+Latent+Variable+Regression+Models&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Garc%C4%B1%CC%81a-Mun%CC%83oz%2C+Salvador&rft.au=Mercado%2C+Jose&rft.date=2013-05-01&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=52&rft.issue=17&rft.spage=5934&rft.epage=5942&rft_id=info:doi/10.1021%2Fie3031828&rft.externalDocID=a460280118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |