High-Pressure Synthesis of Magnetic Neodymium Polyhydrides

Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron–phonon interaction in metal superhydrides. Encouraged by the recently found highest-T C superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We ide...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 6; pp. 2803 - 2811
Main Authors Zhou, Di, Semenok, Dmitrii V, Xie, Hui, Huang, Xiaoli, Duan, Defang, Aperis, Alex, Oppeneer, Peter M, Galasso, Michele, Kartsev, Alexey I, Kvashnin, Alexander G, Oganov, Artem R, Cui, Tian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.02.2020
Online AccessGet full text

Cover

Loading…
Abstract Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron–phonon interaction in metal superhydrides. Encouraged by the recently found highest-T C superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd–H phases at pressures ranging from 85 to 135 GPa: I4/mmm-NdH4, C2/c-NdH7, and P63/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm3̅m-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/c-NdH7 are stable from 135 to 85 GPa, and P63/mmc-NdH9 is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at ∼4.5 K in P63/mmc-NdH9. Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH4), 251 K (NdH7), and 136 K (NdH9).
AbstractList Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides. Encouraged by the recently found highest- superconductor -LaH , here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd-H phases at pressures ranging from 85 to 135 GPa: 4/ -NdH , 2/ -NdH , and 6 / -NdH , synthesized by laser-heating metal samples in NH BH media for in situ generation of hydrogen. A lower trihydride 3̅ -NdH is found at pressures from 2 to 52 GPa. 4/ -NdH and 2/ -NdH are stable from 135 to 85 GPa, and 6 / -NdH is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH demonstrate a possible superconducting transition at ∼4.5 K in 6 / -NdH . Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH ), 251 K (NdH ), and 136 K (NdH ).
Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides. Encouraged by the recently found highest-T-C superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd-H phases at pressures ranging from 85 to 135 GPa: I4/mmm-NdH4, C2/c-NdH7 , and P6(3)/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm (3) over barm-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/c-NdH7 are stable from 135 to 85 GPa, and P6(3) /mmc-NdH9 is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at similar to 4.5 K in P6(3)/mmc-NdH9. Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Neel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH4), 251 K (NdH7), and 136 K (NdH9).
Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron–phonon interaction in metal superhydrides. Encouraged by the recently found highest-T C superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd–H phases at pressures ranging from 85 to 135 GPa: I4/mmm-NdH4, C2/c-NdH7, and P63/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm3̅m-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/c-NdH7 are stable from 135 to 85 GPa, and P63/mmc-NdH9 is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at ∼4.5 K in P63/mmc-NdH9. Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH4), 251 K (NdH7), and 136 K (NdH9).
Author Galasso, Michele
Kvashnin, Alexander G
Kartsev, Alexey I
Duan, Defang
Aperis, Alex
Oganov, Artem R
Huang, Xiaoli
Zhou, Di
Semenok, Dmitrii V
Cui, Tian
Xie, Hui
Oppeneer, Peter M
AuthorAffiliation Queen’s University Belfast
International Center for Materials Discovery
Computing Center of Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
State Key Laboratory of Superhard Materials, College of Physics
Ningbo University
School of Mathematics and Physics
School of Physical Science and Technology
Northwestern Polytechnical University
Department of Physics and Astronomy
AuthorAffiliation_xml – name: Ningbo University
– name: School of Physical Science and Technology
– name: Department of Physics and Astronomy
– name: International Center for Materials Discovery
– name: Northwestern Polytechnical University
– name: Queen’s University Belfast
– name: State Key Laboratory of Superhard Materials, College of Physics
– name: Computing Center of Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS)
– name: School of Mathematics and Physics
Author_xml – sequence: 1
  givenname: Di
  surname: Zhou
  fullname: Zhou, Di
  organization: State Key Laboratory of Superhard Materials, College of Physics
– sequence: 2
  givenname: Dmitrii V
  surname: Semenok
  fullname: Semenok, Dmitrii V
– sequence: 3
  givenname: Hui
  surname: Xie
  fullname: Xie, Hui
  organization: State Key Laboratory of Superhard Materials, College of Physics
– sequence: 4
  givenname: Xiaoli
  orcidid: 0000-0001-9628-5618
  surname: Huang
  fullname: Huang, Xiaoli
  email: huangxiaoli@jlu.edu.cn
  organization: State Key Laboratory of Superhard Materials, College of Physics
– sequence: 5
  givenname: Defang
  orcidid: 0000-0002-6878-1830
  surname: Duan
  fullname: Duan, Defang
  organization: State Key Laboratory of Superhard Materials, College of Physics
– sequence: 6
  givenname: Alex
  surname: Aperis
  fullname: Aperis, Alex
  organization: Department of Physics and Astronomy
– sequence: 7
  givenname: Peter M
  surname: Oppeneer
  fullname: Oppeneer, Peter M
  organization: Department of Physics and Astronomy
– sequence: 8
  givenname: Michele
  surname: Galasso
  fullname: Galasso, Michele
– sequence: 9
  givenname: Alexey I
  orcidid: 0000-0002-3916-3443
  surname: Kartsev
  fullname: Kartsev, Alexey I
  organization: Queen’s University Belfast
– sequence: 10
  givenname: Alexander G
  orcidid: 0000-0002-0718-6691
  surname: Kvashnin
  fullname: Kvashnin, Alexander G
  email: a.kvashnin@skoltech.ru
– sequence: 11
  givenname: Artem R
  orcidid: 0000-0002-9315-1419
  surname: Oganov
  fullname: Oganov, Artem R
  email: a.oganov@skoltech.ru
  organization: Northwestern Polytechnical University
– sequence: 12
  givenname: Tian
  orcidid: 0000-0002-9664-848X
  surname: Cui
  fullname: Cui, Tian
  email: cuitian@jlu.edu.cn
  organization: Ningbo University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31967807$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408203$$DView record from Swedish Publication Index
BookMark eNptkElLAzEUgINUtFZvnmWOHhzNMpNJvEldKtQFXK4hk6VN6Uxq0iDz722xthdPjwff-x58R6DX-tYAcIrgJYIYXc2kipe8RrAgfA_0UYlhXiJMe6APIcR5xSg5BEcxzlZrgRk6AIcEcVoxWPXB9chNpvlrMDGmYLK3rl1OTXQx8zZ7kpPWLJ3Kno3XXeNSk736eTftdHDaxGOwb-U8mpPNHICP-7v34Sgfvzw8Dm_GuSxwtcwtIdQyVGqtKWIcWsslVxJVnCNTElXostJQQoWVLWrMKltSgjHFXMEal4wMwMWvN36bRarFIrhGhk546cSt-7wRPkxESqKADEOyws9_8UXwX8nEpWhcVGY-l63xKQpMigJjRinamVXwMQZjt24ExTquWMcVm7gr_GxjTnVj9Bb-q7l7vb6a-RTaVZf_XT-L1oNv
CitedBy_id crossref_primary_10_1038_s41467_022_33743_6
crossref_primary_10_1039_D1DT02364K
crossref_primary_10_1021_acs_inorgchem_4c00520
crossref_primary_10_3367_UFNe_2021_05_039187
crossref_primary_10_1088_1361_648X_ac4eaf
crossref_primary_10_1103_PhysRevB_104_054501
crossref_primary_10_1016_j_mtphys_2024_101499
crossref_primary_10_1103_PhysRevB_105_224107
crossref_primary_10_1103_PhysRevLett_130_266001
crossref_primary_10_1002_adma_202204038
crossref_primary_10_3389_femat_2022_906213
crossref_primary_10_1039_D4CP00191E
crossref_primary_10_1103_PhysRevB_102_214109
crossref_primary_10_1038_s41598_024_61400_z
crossref_primary_10_1039_D2SC02017C
crossref_primary_10_1088_0256_307X_38_10_107401
crossref_primary_10_1016_j_scriptamat_2024_116022
crossref_primary_10_1039_D0CP01797C
crossref_primary_10_1038_s41598_022_19080_0
crossref_primary_10_1016_j_mattod_2021_03_025
crossref_primary_10_1039_D0NR04325G
crossref_primary_10_1016_j_fmre_2022_11_010
crossref_primary_10_1021_acs_inorgchem_1c01340
crossref_primary_10_1088_1361_648X_acccc5
crossref_primary_10_1002_adma_202200924
crossref_primary_10_1002_adma_202006832
crossref_primary_10_1038_s41586_023_05742_0
crossref_primary_10_1063_5_0056400
crossref_primary_10_7498_aps_70_20202189
crossref_primary_10_1039_D1CP03270D
crossref_primary_10_1103_PhysRevB_105_L020510
crossref_primary_10_1021_acs_jpclett_0c03331
crossref_primary_10_1093_nsr_nwad270
crossref_primary_10_1103_PhysRevB_104_174509
crossref_primary_10_1021_acs_jpcc_3c07213
crossref_primary_10_1088_1361_648X_acdebc
crossref_primary_10_1103_PhysRevLett_127_117001
crossref_primary_10_1016_j_physb_2024_415706
crossref_primary_10_1103_PhysRevB_102_144524
crossref_primary_10_1093_nsr_nwad307
crossref_primary_10_1103_PhysRevB_104_214511
crossref_primary_10_1093_nsr_nwad107
crossref_primary_10_1103_PhysRevB_101_144505
crossref_primary_10_1016_j_chempr_2022_10_015
crossref_primary_10_1103_PhysRevB_109_174507
crossref_primary_10_1038_s41598_021_86855_2
crossref_primary_10_1103_PhysRevResearch_3_043107
crossref_primary_10_1002_chem_202102679
crossref_primary_10_1039_D3CP00604B
crossref_primary_10_1021_acs_inorgchem_1c01960
crossref_primary_10_1063_5_0077748
crossref_primary_10_1002_adfm_202315386
crossref_primary_10_1021_acsmaterialslett_0c00329
crossref_primary_10_1088_1361_648X_ad1ca7
crossref_primary_10_1103_PhysRevLett_128_047001
crossref_primary_10_1021_jacs_4c02586
crossref_primary_10_1038_s41598_020_73665_1
crossref_primary_10_1021_acsomega_3c00299
crossref_primary_10_1016_j_mtphys_2021_100596
crossref_primary_10_1103_PhysRevB_101_224511
crossref_primary_10_1088_1361_648X_ad4ccc
crossref_primary_10_1039_D1SC04239D
crossref_primary_10_1038_s41467_022_34755_y
crossref_primary_10_1007_s11433_023_2101_9
crossref_primary_10_1103_PhysRevB_107_064102
crossref_primary_10_1007_s40831_024_00873_8
Cites_doi 10.1038/s41467-019-12326-y
10.1002/anie.201709970
10.1103/PhysRevB.12.905
10.1103/PhysRevLett.112.165501
10.1063/1.330261
10.1103/PhysRevB.84.144515
10.1103/RevModPhys.84.1607
10.1038/s41586-019-1201-8
10.1126/sciadv.aat9776
10.1103/PhysRevLett.119.107001
10.1073/pnas.1704505114
10.1063/1.5053650
10.1103/PhysRevB.93.174308
10.1073/pnas.1507508112
10.1038/nature14964
10.1103/PhysRevLett.21.1748
10.1088/1674-4926/33/8/082001
10.1103/PhysRevB.100.184109
10.1016/0038-1098(78)91299-1
10.1073/pnas.1118168109
10.1088/0953-8984/20/43/434235
10.1021/ar1001318
10.1103/PhysRevLett.114.105305
10.1021/acsami.8b17100
10.1016/j.mattod.2019.10.005
10.1088/0953-8984/21/39/395502
10.1038/ncomms12267
10.1103/PhysRevLett.122.027001
10.1038/s41467-019-11330-6
10.4028/www.scientific.net/SSP.49-50.71
10.1103/RevModPhys.63.239
10.1021/jp410193m
10.1021/acs.jpclett.8b00615
10.1080/00018732.2010.513480
10.1021/jp908025p
10.1038/nature14165
10.1103/PhysRevB.92.054516
10.1088/0953-8984/28/34/345504
10.1103/PhysRevB.93.094525
10.1103/PhysRevB.94.125113
10.1063/1.2210932
10.1016/j.jpcs.2008.03.037
10.1016/j.commatsci.2014.06.009
10.1126/sciadv.aax6849
10.1039/C5RA11459D
10.1016/j.cpc.2012.12.009
10.1039/c3cp52154k
10.1103/PhysRevLett.92.187002
10.1103/PhysRevB.61.R3768
10.1063/1.3174262
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
ADTPV
AOWAS
DF2
DOI 10.1021/jacs.9b10439
DatabaseName PubMed
CrossRef
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 2811
ExternalDocumentID oai_DiVA_org_uu_408203
10_1021_jacs_9b10439
31967807
a443003581
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
IH2
NPM
XSW
YQT
ZCA
~02
AAYXX
CITATION
7X8
.GJ
.HR
186
1WB
3EH
3O-
41~
6TJ
AAUPJ
AAYJJ
AAYOK
ABDEX
ABHMW
ABTAH
ABWLT
ACBNA
ACKIV
ADTPV
AFFDN
AFFNX
AI.
AIDAL
ANTXH
AOWAS
D0S
DF2
EJD
IHE
MVM
NHB
OHT
P-O
RNS
UBC
UBX
UQL
VH1
X7L
XOL
YXA
YXE
YYP
ZCG
ZE2
ZGI
ZY4
ID FETCH-LOGICAL-a427t-f336f815ddd61890ff9a9ca17991e53c4d57d0a0c2cf4b287f56322629c0b2583
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Tue Oct 01 22:26:55 EDT 2024
Fri Aug 16 11:29:01 EDT 2024
Thu Sep 26 18:20:50 EDT 2024
Sat Sep 28 08:31:49 EDT 2024
Thu Aug 27 22:09:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a427t-f336f815ddd61890ff9a9ca17991e53c4d57d0a0c2cf4b287f56322629c0b2583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0718-6691
0000-0001-9628-5618
0000-0002-6878-1830
0000-0002-9315-1419
0000-0002-3916-3443
0000-0002-9664-848X
PMID 31967807
PQID 2344228661
PQPubID 23479
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_uu_408203
proquest_miscellaneous_2344228661
crossref_primary_10_1021_jacs_9b10439
pubmed_primary_31967807
acs_journals_10_1021_jacs_9b10439
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-02-12
PublicationDateYYYYMMDD 2020-02-12
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Eliashberg G. M. (ref48/cit48) 1959; 11
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
Stoner E. G. (ref42/cit42) 1938; 165
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1038/s41467-019-12326-y
– ident: ref12/cit12
  doi: 10.1002/anie.201709970
– ident: ref25/cit25
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.12.905
– ident: ref5/cit5
  doi: 10.1103/PhysRevLett.112.165501
– ident: ref50/cit50
  doi: 10.1063/1.330261
– ident: ref2/cit2
  doi: 10.1103/PhysRevB.84.144515
– ident: ref4/cit4
  doi: 10.1103/RevModPhys.84.1607
– ident: ref10/cit10
  doi: 10.1038/s41586-019-1201-8
– ident: ref15/cit15
  doi: 10.1126/sciadv.aat9776
– ident: ref13/cit13
  doi: 10.1103/PhysRevLett.119.107001
– ident: ref23/cit23
  doi: 10.1073/pnas.1704505114
– ident: ref35/cit35
  doi: 10.1063/1.5053650
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.93.174308
– ident: ref19/cit19
  doi: 10.1073/pnas.1507508112
– ident: ref8/cit8
  doi: 10.1038/nature14964
– ident: ref1/cit1
  doi: 10.1103/PhysRevLett.21.1748
– ident: ref39/cit39
  doi: 10.1088/1674-4926/33/8/082001
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.100.184109
– ident: ref47/cit47
  doi: 10.1016/0038-1098(78)91299-1
– ident: ref22/cit22
  doi: 10.1073/pnas.1118168109
– ident: ref51/cit51
  doi: 10.1088/0953-8984/20/43/434235
– ident: ref29/cit29
  doi: 10.1021/ar1001318
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.114.105305
– ident: ref34/cit34
  doi: 10.1021/acsami.8b17100
– ident: ref14/cit14
  doi: 10.1016/j.mattod.2019.10.005
– ident: ref46/cit46
  doi: 10.1088/0953-8984/21/39/395502
– volume: 165
  start-page: 372
  year: 1938
  ident: ref42/cit42
  publication-title: Proc. R. Soc.
  contributor:
    fullname: Stoner E. G.
– ident: ref20/cit20
  doi: 10.1038/ncomms12267
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.122.027001
– ident: ref17/cit17
  doi: 10.1038/s41467-019-11330-6
– ident: ref27/cit27
  doi: 10.4028/www.scientific.net/SSP.49-50.71
– ident: ref52/cit52
  doi: 10.1103/RevModPhys.63.239
– ident: ref33/cit33
  doi: 10.1021/jp410193m
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.8b00615
– ident: ref44/cit44
  doi: 10.1080/00018732.2010.513480
– ident: ref38/cit38
  doi: 10.1021/jp908025p
– ident: ref24/cit24
  doi: 10.1038/nature14165
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.92.054516
– ident: ref41/cit41
  doi: 10.1088/0953-8984/28/34/345504
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.93.094525
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.94.125113
– ident: ref28/cit28
  doi: 10.1063/1.2210932
– ident: ref11/cit11
  doi: 10.1016/j.jpcs.2008.03.037
– ident: ref37/cit37
  doi: 10.1016/j.commatsci.2014.06.009
– volume: 11
  start-page: 696
  year: 1959
  ident: ref48/cit48
  publication-title: JETP
  contributor:
    fullname: Eliashberg G. M.
– ident: ref18/cit18
  doi: 10.1126/sciadv.aax6849
– ident: ref21/cit21
  doi: 10.1039/C5RA11459D
– ident: ref30/cit30
  doi: 10.1016/j.cpc.2012.12.009
– ident: ref32/cit32
  doi: 10.1039/c3cp52154k
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.92.187002
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.61.R3768
– ident: ref31/cit31
  doi: 10.1063/1.3174262
SSID ssj0004281
Score 2.6041422
Snippet Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron–phonon interaction in metal superhydrides....
Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides....
SourceID swepub
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2803
Title High-Pressure Synthesis of Magnetic Neodymium Polyhydrides
URI http://dx.doi.org/10.1021/jacs.9b10439
https://www.ncbi.nlm.nih.gov/pubmed/31967807
https://search.proquest.com/docview/2344228661
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408203
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8qmIMExVWIndsKtKpQKqQipgHqLHC9QQRNEmkP4ejxZqChCcHXiJPazM_PkmTcInVFtUJaK2lgoYntcE5vHMbVZbBhRoIyR05DgPLil_QfvZuSPZgGy8yf4GPSBRNYOYxdyOBfRMjYmEUhWpzuc5T_iwG3cXBZQUge4z_cGAySy7wboh1c5JxlampneOrpuknWq6JKXdj6N2-Ljp3bjHyPYQGu1p2l1qqWxiRZUsoVWuk2Bt210ATEedpUf-K6sYZEYZzAbZ1aqrQF_SiC90bpVqSwm43xi3aWvxXMB1dhVtoMeelf33b5dl1KwuYfZ1NaEUB24vpSSukHoaB3yUHCQg3OVT4QnfSYd7ggstBcbFqV9arY6xaFwYuwHZBctJWmi9pFFsXS1BBV5hj3mYC4NY1KBDk0rw9hpoVMz3qjeCllUnnJjwzKgtZ6FFjpvMIjeKlWNX-47bQCKzOTAWQZPVJpnESYeiJcZ76KF9irkvp4EfxUWOMy8pYLy6wpoaV-OHzuRgSfK8wiqbTvk4B9ffIhWMTDtshTMEVqavufq2Lgj0_ikXIuf3S7Xvw
link.rule.ids 230,315,786,790,891,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4a7AAXYBuMMjaCtB2DEjuxk92qAuoYrSYBEzfLie2tGk0QaQ7dr997SdpqnSZxdWLH9rPzvif7-x7AR-HQysYKn-WW-5F23NdZJnyZYUSUWHRyjgjOo7EY3kVX9_F9R1YnLgx2osKWquYQf6UuQDJBWJhmIVE5N-BlLNHRERIa3KxokCwJF2hXJoJ399zXa5Mfyqu__dA_4HJNObTxNpe7MF72s7lk8uusnmVn-e81CcdnD2QPdjrc6fXbhfIKXtjiNWwNFune3sBnuvHht2zBJ-vdzAuEhtWk8krnjfSPgsiO3tiWZj6d1FPvW_kw_zmn3Oy22oe7y4vbwdDvEiv4OmJy5jvOhUvC2BgjwiQNnEt1mmsShwttzPPIxNIEOshZ7qIMYyoXC9z4gqV5kLE44QewWZSFPQRPMBM6Q5rykkUyYNpg_GQTl2KpZCzowSmOV3Ubo1LNmTfDmINKu1nowaeFKdRjq7Hxn_dOF3ZSODl0sqELW9aVYjwiKTPEGj142xpw2RL9Y2QSSPxKa9HlE1LWPp987ys0kaprRbm3A370jB6fwNbwdnStrr-Mv76DbUYxeJMk5hg2Z0-1fY9AZZZ9aJbnH6fN4Co
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGkIAXBhuMYwM6iT12apM2afd2uu009nGaGJv2FqVNwk6wdlqvD8dfj92PQ9w0CV6TJk3iOLZl-2eAz8IhlY0VPsst9yPtuK-zTPgyQ4sosSjkHCU4n03E0WV0fB1fr0DY58LgIiqcqWqc-MTVd8Z1CAMEFYQdaRZSOucTeBrLMCJeHI4u_qRCsiTsNV6ZCN7Fui-PJlmUV3_LogcK5hJ6aCNxxmvwdbHWJtDkx149y_byX0swjv-1mVfwstM_vWF7YV7Dii3W4fmoL_u2AfsU-eG3WYP31ruYF6giVtPKK513pr8XlPToTWxp5rfT-tY7L3_Ob-ZUo91Wb-ByfPhtdOR3BRZ8HTE58x3nwiVhbIwRYZIGzqU6zTWBxIU25nlkYmkCHeQsd1GGtpWLBT4AgqV5kLE44W9htSgL-w48wUzoDGHLSxbJgGmDdpRNXIqtkrFgADu4X9UxSKUa3zdD24Nau1MYwG5PDnXXYm088t1OTyuFh0MeDl3Ysq4U4xFBmqHOMYDNloiLmeitkUkg8S8tVRc9hLB9ML0aKiSTqmtFNbgD_v4fVvwJnp0fjNXpl8nJFrxgZIo3tWK2YXV2X9sPqK_Mso_NDf0NAcbipA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Pressure+Synthesis+of+Magnetic+Neodymium+Polyhydrides&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhou%2C+Di&rft.au=Semenok%2C+Dmitrii+V.&rft.au=Xie%2C+Hui&rft.au=Huang%2C+Xiaoli&rft.date=2020-02-12&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=6&rft.spage=2803&rft.epage=2811&rft_id=info:doi/10.1021%2Fjacs.9b10439&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_9b10439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon