From Sediment to Top Predators: Broad Exposure of Polyhalogenated Carbazoles in San Francisco Bay (U.S.A.)
The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scar...
Saved in:
Published in | Environmental science & technology Vol. 51; no. 4; pp. 2038 - 2046 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8–19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments. |
---|---|
AbstractList | The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments. The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of capital sigma PHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments. The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ...PHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments. (ProQuest: ... denotes formulae/symbols omitted.) The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments. |
Author | Sutton, Rebecca Tan, Hongli Wu, Yan Chen, Da |
AuthorAffiliation | Jinan University Southern Illinois University School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health Cooperative Wildlife Research Laboratory and Department of Zoology San Francisco Estuary Institute |
AuthorAffiliation_xml | – name: San Francisco Estuary Institute – name: School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health – name: Southern Illinois University – name: Jinan University – name: Cooperative Wildlife Research Laboratory and Department of Zoology |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0001-7876-261X surname: Wu fullname: Wu, Yan – sequence: 2 givenname: Hongli surname: Tan fullname: Tan, Hongli – sequence: 3 givenname: Rebecca surname: Sutton fullname: Sutton, Rebecca – sequence: 4 givenname: Da orcidid: 0000-0001-5563-0091 surname: Chen fullname: Chen, Da email: dachen@siu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28112952$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3DAURkVJaSZp190VQTcpwY4eli13lwyZthBoYBLozlxb160HW5pIMnT662Mz0xYCfay00Pk-Xd1zQo6ss0jIa85SzgS_gCakGGKa10wVUj4jC64ES5RW_IgsGOMyKWX-5ZichLBhjAnJ9AtyLDTnolRiQTYr7wa6RtMNaCONjt65Lb31aCA6H97TK-_A0OvvWxdGj9S19Nb1u2_Qu69oIaKhS_A1_HA9BtpZugZLVx5s04XG0SvY0bP7dJ1epu9ekuct9AFfHc5Tcr-6vlt-TG4-f_i0vLxJIBNFTEBJ1EwyJTBreaNaUWvVQNkiK4XSea4gz3RTF7pspTFZZgwTIOoSM9BaGnlKzva9W-8exmk71TDNgn0PFt0YKjHvgakyL_-Jcl0UOsulFP-B5jznmeTFhL59gm7c6O3057lQcDFZmN9-c6DGekBTbX03gN9VP91MwMUeaLwLwWP7C-Gsmu1Xk_1qrj_YnxLqSaLpIsTO2eih6_-SO9_n5ovfs_6BfgTqVsCP |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_envpol_2024_124451 crossref_primary_10_1016_j_chemosphere_2024_142476 crossref_primary_10_1016_j_marpolbul_2019_110632 crossref_primary_10_1016_j_watres_2023_120009 crossref_primary_10_1016_j_scitotenv_2019_03_325 crossref_primary_10_1016_j_envres_2025_120758 crossref_primary_10_3390_toxics12080609 crossref_primary_10_1007_s11356_023_28535_4 crossref_primary_10_1016_j_jes_2024_06_014 crossref_primary_10_1016_j_chemosphere_2022_134016 crossref_primary_10_1016_j_ecoenv_2019_109609 crossref_primary_10_1016_j_marpolbul_2018_11_055 crossref_primary_10_1007_s11356_017_0055_6 crossref_primary_10_1016_j_aquatox_2023_106803 crossref_primary_10_1016_j_scitotenv_2023_164590 crossref_primary_10_1021_acs_est_1c03798 crossref_primary_10_1021_acs_est_9b05388 crossref_primary_10_1080_10643389_2022_2077062 crossref_primary_10_1016_j_jhazmat_2021_127315 crossref_primary_10_1016_j_scitotenv_2022_156738 crossref_primary_10_1016_j_ecoenv_2023_115892 crossref_primary_10_1021_acs_est_1c06512 crossref_primary_10_1016_j_ecoenv_2019_109470 crossref_primary_10_1016_j_jhazmat_2022_129999 crossref_primary_10_1021_acs_est_3c00311 crossref_primary_10_1016_j_scitotenv_2023_163809 crossref_primary_10_1016_j_marpolbul_2023_115873 crossref_primary_10_1007_s10661_023_11813_6 crossref_primary_10_1016_j_envpol_2023_122103 crossref_primary_10_1016_j_scitotenv_2020_141615 crossref_primary_10_1016_j_marpolbul_2020_111656 crossref_primary_10_1016_j_envres_2025_121219 crossref_primary_10_1021_acsestwater_1c00077 crossref_primary_10_1016_j_envpol_2024_123609 crossref_primary_10_1016_j_jclepro_2024_144482 crossref_primary_10_1016_j_jes_2022_10_048 crossref_primary_10_1002_rcm_9324 crossref_primary_10_1016_j_scitotenv_2022_159971 crossref_primary_10_1016_j_envint_2020_105729 crossref_primary_10_1016_j_aquatox_2025_107323 crossref_primary_10_1016_j_scitotenv_2020_142072 crossref_primary_10_1007_s11270_025_07870_x crossref_primary_10_1016_j_jhazmat_2021_128084 crossref_primary_10_1016_j_jhazmat_2024_134813 crossref_primary_10_3390_ani12243581 crossref_primary_10_1016_j_foodchem_2021_129214 crossref_primary_10_1016_j_envpol_2020_115717 crossref_primary_10_1021_acs_est_4c09194 crossref_primary_10_1016_j_chemosphere_2024_141442 crossref_primary_10_1016_j_talanta_2024_125711 crossref_primary_10_1021_acsestwater_3c00108 crossref_primary_10_2166_ws_2023_069 crossref_primary_10_1002_jssc_202100493 crossref_primary_10_1016_j_envres_2022_113565 crossref_primary_10_1016_j_scitotenv_2023_169787 crossref_primary_10_1016_j_scitotenv_2024_174136 crossref_primary_10_1016_j_scitotenv_2023_168732 crossref_primary_10_1016_j_scitotenv_2021_149459 crossref_primary_10_1016_j_envpol_2022_120475 crossref_primary_10_1007_s00128_019_02637_7 crossref_primary_10_1016_j_microc_2024_110515 crossref_primary_10_1016_j_scitotenv_2020_140753 crossref_primary_10_2139_ssrn_4059923 crossref_primary_10_1007_s13762_022_04004_2 crossref_primary_10_1021_envhealth_4c00263 crossref_primary_10_1016_j_scitotenv_2023_164499 crossref_primary_10_1016_j_scitotenv_2021_147908 crossref_primary_10_1021_acs_est_8b00427 crossref_primary_10_1016_j_jhazmat_2024_133956 crossref_primary_10_1016_j_jhazmat_2024_134649 crossref_primary_10_1016_j_marpolbul_2024_116131 crossref_primary_10_1016_j_marpolbul_2019_06_078 crossref_primary_10_1016_j_envres_2023_117379 crossref_primary_10_1016_j_watres_2019_05_015 crossref_primary_10_1016_j_envpol_2025_125910 crossref_primary_10_1016_j_ecoenv_2018_11_131 crossref_primary_10_1016_j_cej_2019_121986 crossref_primary_10_1016_j_scitotenv_2019_134156 crossref_primary_10_1016_j_scitotenv_2024_177253 crossref_primary_10_1016_j_envpol_2024_125378 crossref_primary_10_1021_acsestwater_2c00191 crossref_primary_10_1016_j_foodchem_2024_142132 crossref_primary_10_1016_j_trac_2022_116755 crossref_primary_10_1016_j_envpol_2022_120957 crossref_primary_10_1016_j_scitotenv_2019_135524 crossref_primary_10_1016_j_jhazmat_2019_01_079 crossref_primary_10_1016_j_jes_2022_06_028 crossref_primary_10_1016_j_watres_2025_123266 crossref_primary_10_1038_s41467_023_39491_5 crossref_primary_10_1016_j_scitotenv_2021_150643 crossref_primary_10_1007_s00128_019_02681_3 crossref_primary_10_1016_j_watres_2020_116717 |
Cites_doi | 10.1021/es5018152 10.1016/j.envint.2012.06.005 10.1016/j.envint.2012.01.001 10.1016/j.emcon.2016.07.002 10.1126/science.1138275 10.1016/j.scitotenv.2011.05.047 10.1111/mms.12214 10.1021/ja0022066 10.1016/j.chemosphere.2015.01.001 10.1021/es048905q 10.1002/ieam.1642 10.1021/acs.est.6b06128 10.1021/es015746r 10.1002/qsar.200390023 10.1080/10659360500474623 10.1016/j.envpol.2016.09.032 10.1007/s11356-014-3386-6 10.1186/1752-153X-4-S1-S1 10.1016/j.envres.2006.07.001 10.1007/s11356-010-0393-0 10.1021/es503936u 10.1021/es0515248 10.1016/j.scitotenv.2009.02.018 10.1016/j.envpol.2008.09.025 10.1016/j.envres.2007.01.013 10.1002/etc.3416 10.1007/s11356-013-1823-6 10.1021/acs.est.5b02751 10.1289/ehp.9355 10.1016/j.chemosphere.2008.02.066 10.1016/j.chemosphere.2016.02.051 10.1016/j.watres.2004.04.054 10.1016/S0027-5107(01)00303-7 10.1289/ehp.98106775 10.1016/S0045-6535(01)00225-9 10.1897/05-591R.1 10.1016/j.chroma.2016.01.036 10.1021/es0158298 10.1021/es503727b 10.1002/jhet.5570340327 10.1007/s11270-010-0451-8 10.1016/j.chemosphere.2005.12.012 10.1016/j.envpol.2006.08.022 10.1016/S0146-6380(04)00121-4 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American
Chemical Society Copyright American Chemical Society Feb 21, 2017 |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society – notice: Copyright American Chemical Society Feb 21, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.6b05733 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Toxicology Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2046 |
ExternalDocumentID | 4317209611 28112952 10_1021_acs_est_6b05733 c001672514 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | United States--US USA INE, USA, California, San Francisco Bay United States |
GeographicLocations_xml | – name: United States--US – name: INE, USA, California, San Francisco Bay – name: USA – name: United States |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a427t-a53e803052e4f1c5f2b85ca9fe09258665a648cb789f3dd44dd02a2b9e4a883d3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 22:24:40 EDT 2025 Fri Jul 11 00:10:43 EDT 2025 Fri Jul 11 10:45:09 EDT 2025 Sun Jun 29 15:12:34 EDT 2025 Wed Feb 19 02:42:36 EST 2025 Thu Apr 24 23:06:09 EDT 2025 Tue Jul 01 02:57:51 EDT 2025 Thu Aug 27 13:43:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a427t-a53e803052e4f1c5f2b85ca9fe09258665a648cb789f3dd44dd02a2b9e4a883d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5563-0091 0000-0001-7876-261X |
PMID | 28112952 |
PQID | 1872122309 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000205969 proquest_miscellaneous_1877846332 proquest_miscellaneous_1861614317 proquest_journals_1872122309 pubmed_primary_28112952 crossref_primary_10_1021_acs_est_6b05733 crossref_citationtrail_10_1021_acs_est_6b05733 acs_journals_10_1021_acs_est_6b05733 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-21 |
PublicationDateYYYYMMDD | 2017-02-21 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 SFEI (ref45/cit45) 2015 |
References_xml | – volume-title: 2013–2014 Annual Monitoring Results. The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) year: 2015 ident: ref45/cit45 – ident: ref9/cit9 doi: 10.1021/es5018152 – ident: ref26/cit26 doi: 10.1016/j.envint.2012.06.005 – ident: ref4/cit4 – ident: ref37/cit37 doi: 10.1016/j.envint.2012.01.001 – ident: ref48/cit48 doi: 10.1016/j.emcon.2016.07.002 – ident: ref44/cit44 – ident: ref34/cit34 doi: 10.1126/science.1138275 – ident: ref46/cit46 doi: 10.1016/j.scitotenv.2011.05.047 – ident: ref33/cit33 doi: 10.1111/mms.12214 – ident: ref43/cit43 doi: 10.1021/ja0022066 – ident: ref16/cit16 doi: 10.1016/j.chemosphere.2015.01.001 – ident: ref27/cit27 doi: 10.1021/es048905q – ident: ref35/cit35 doi: 10.1002/ieam.1642 – ident: ref5/cit5 doi: 10.1021/acs.est.6b06128 – ident: ref29/cit29 – ident: ref25/cit25 doi: 10.1021/es015746r – ident: ref30/cit30 doi: 10.1002/qsar.200390023 – ident: ref31/cit31 doi: 10.1080/10659360500474623 – ident: ref13/cit13 doi: 10.1016/j.envpol.2016.09.032 – ident: ref21/cit21 doi: 10.1007/s11356-014-3386-6 – ident: ref32/cit32 doi: 10.1186/1752-153X-4-S1-S1 – ident: ref47/cit47 doi: 10.1016/j.envres.2006.07.001 – ident: ref15/cit15 doi: 10.1007/s11356-010-0393-0 – ident: ref6/cit6 doi: 10.1021/es503936u – ident: ref7/cit7 doi: 10.1021/es0515248 – ident: ref36/cit36 doi: 10.1016/j.scitotenv.2009.02.018 – ident: ref41/cit41 doi: 10.1016/j.envpol.2008.09.025 – ident: ref24/cit24 doi: 10.1016/j.envres.2007.01.013 – ident: ref20/cit20 doi: 10.1002/etc.3416 – ident: ref18/cit18 doi: 10.1007/s11356-013-1823-6 – ident: ref19/cit19 doi: 10.1021/acs.est.5b02751 – ident: ref39/cit39 doi: 10.1289/ehp.9355 – ident: ref2/cit2 doi: 10.1016/j.chemosphere.2008.02.066 – ident: ref28/cit28 – ident: ref3/cit3 – ident: ref10/cit10 doi: 10.1016/j.chemosphere.2016.02.051 – ident: ref12/cit12 doi: 10.1016/j.watres.2004.04.054 – ident: ref22/cit22 doi: 10.1016/S0027-5107(01)00303-7 – ident: ref49/cit49 doi: 10.1289/ehp.98106775 – ident: ref1/cit1 doi: 10.1016/S0045-6535(01)00225-9 – ident: ref40/cit40 doi: 10.1897/05-591R.1 – ident: ref8/cit8 doi: 10.1016/j.chroma.2016.01.036 – ident: ref38/cit38 doi: 10.1021/es0158298 – ident: ref23/cit23 doi: 10.1021/es503727b – ident: ref42/cit42 doi: 10.1002/jhet.5570340327 – ident: ref14/cit14 doi: 10.1007/s11270-010-0451-8 – ident: ref50/cit50 doi: 10.1016/j.chemosphere.2005.12.012 – ident: ref17/cit17 doi: 10.1016/j.envpol.2006.08.022 – ident: ref11/cit11 doi: 10.1016/S0146-6380(04)00121-4 |
SSID | ssj0002308 |
Score | 2.5231462 |
Snippet | The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2038 |
SubjectTerms | Animals Aquatic ecosystems Bays Bioaccumulation Birds Bivalvia blubber carbazoles Carbazoles - analysis Carbazoles - metabolism Contamination Dioxins eggs Fish Fishes - metabolism Food Chain game fish Lipids Metabolism Phoca vitulina Polychlorinated Biphenyls predators San Francisco Sediments soil tetrachlorodibenzo-p-dioxin toxicity trophic levels United States |
Title | From Sediment to Top Predators: Broad Exposure of Polyhalogenated Carbazoles in San Francisco Bay (U.S.A.) |
URI | http://dx.doi.org/10.1021/acs.est.6b05733 https://www.ncbi.nlm.nih.gov/pubmed/28112952 https://www.proquest.com/docview/1872122309 https://www.proquest.com/docview/1861614317 https://www.proquest.com/docview/1877846332 https://www.proquest.com/docview/2000205969 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcGexkPG2Nj62CTJ_HAHpK1tpM4vJWqFUJiQiqV-hb5K2Ibi6smlQZ_PXdpGr7Ujdf4nFgXn-93Pvt3hBxwlncNuOHAARYNhNZpoCUXgXXgi1UCEKHmmT37EZ9MxOk0mt6RRT_O4LPed2XKEBbIMNY1d98GeclimWCc1R-M20UXkLRcFStIeTxtWXyevADdkCkfuqE12LL2MaM3y9NZZU1NiEdLfoeLSofm5ilx4_-Hv01eN0iT9pdT4y154YodsnWPf3CH7A7vrrmBaGPn5TvyazT3f-gYHBs20crTCz-j53NnMUYvjyhE78rS4d-Zxx1G6nN67q-uL3EnyBUAXy0dYCLjBumi6M-CjlVBmxoextNjdU0PJ-E47Iff3pPJaHgxOAmaqgyBEiypAhVxJ3GZYE7kPRPlTMvIqDR33ZRFSJ-nYiGNTmSac2uFsLbLFNOpE0pKbvku2Sx84T4SKm0iNLwhhiBIuCRS4FGNUiK3CoCeFB1yAOrLGqsqszphznoZPgSdZo1OOyRc_cvMNMzmWGDjan2Hw7bDbEnqsV50fzU57o1DQtwMuKqbdsjXthnsEpMtqnB-gTIxgGmEZ_-SSRLAf5yz9TKsThZHaQzf-rCcnO2YmUS0HLFPz9PTHnnFEJTghfzePtms5gv3GSBVpb_UxnQLLi4ZnA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4a4wH2wGUwKAww0pDGQ0LrOImDxENXWnXsokltpb5lduxowIirJhV0v4a_wj_jOE2zASriZRKv8bFj2efyHV8-A-x4NG0mGIYdjVjUYVJGjuQec5TGWCxChAglz-zRcdAfsQ9jf7wG35d3YbATObaUl5v4l-wCrTf2G_pJN5AlhV91jPJAz79ikpa_23-PM_qK0l532Ok71TsCjmA0LBzhe5pbxaaapa3ET6nkfiKiVDcj6lvCNxEwnsiQR6mnFGNKNamgMtJMcO4pD9u9ATcR-lCb3rU7g9rXI4DnyzcSIi8Y1-RBf3TYRr8k_zX6rYC0ZWjr3YUf9aCUJ1o-u7NCusnFb3yR__Oo3YM7Fa4m7YUh3Ic1nW3CxhW2xU3Y6l5e6kPRyqvlD-BTb2q-kAGGcVtECkOGZkJOplrZFYn8LdmbGqFI99vE2PVUYlJyYs7nZ3bdS2cI1hXp2G2bC0uORT5mZCAyUr1YkhiyJ-Zkd-QO3Lb7-iGMrmUUtmA9M5l-DISrkElsIcCUj-nQF4gfEiFYqgTCWs4asIPTFVc-JI_L4wG0FduPOIdxNYcNcJcqFCcVj7t9TuR8dYXdusJkQWGyWnR7qZNX-sFDxDeo6VEDXtbF6IXs1pLItJlZmQBTBwtG_yYThoh2PY-ulqHl1rgfBfivRwubqPtMuc0NfPrk38bpBdzqD48O48P944OncJtaOGapCFrbsF5MZ_oZgslCPi_tmcDpdZvCTwjjfAI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-NISH2wJ_BoDDASEMaDwmt4yQOEg9d12pjMFXqKvUtc2JHA0ZcNa2g-zx8Fb4Xd2kaBqiIl0m8xmfHsn13v_PZPwPseDxrpuiGHYNY1BFJEjmJ9ISjDfpiFSJEKHlm3x8HB0PxduSP1uDb8i4MdqLAlooyiU9aPdZZxTDQekXf0Va6QVLS-FVHKY_M_AsGasWbw32c1Rec97onnQOnekvAUYKHU0f5npG0uLkRWSv1M55IP1VRZpoR94n0TQVCpkkoo8zTWgitm1zxJDJCSelpD9u9BtcpSUghXrszqO09gni5fCch8oJRTSD0R4fJA6bFrx5wBawt3VvvNnyvB6Y81fLJnU0TN734jTPyfx-5O3CrwtesvVCIu7Bm8k3YuMS6uAlb3Z-X-1C0sm7FPfjYm9jPbIDunIrY1LITO2b9idG0M1G8ZnsTqzTrfh1b2ldlNmN9ez4_o_0vkyNo16xD6ZsLIsliH3I2UDmrXi5JLdtTc7Y7dAdu2315H4ZXMgpbsJ7b3DwEJnUoEmwhwNBPmNBXiCNSpUSmFcJbKRqwg9MVV7akiMtjArwV00ecw7iawwa4y2UUpxWfOz0rcr66wm5dYbygMlktur1cl5f6IUPEObjaowY8r4vRGlGKSeXGzkgmwBCCQOnfZMIQUa_n8dUyvEyR-1GA_3qw0Iu6z1xSjODzR_82Ts_gRn-_F787PD56DDc5oTJiJGhtw_p0MjNPEFNOk6elSjM4vWpN-AGE6n6F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Sediment+to+Top+Predators%3A+Broad+Exposure+of+Polyhalogenated+Carbazoles+in+San+Francisco+Bay+%28U.S.A.%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Wu%2C+Yan&rft.au=Tan%2C+Hongli&rft.au=Sutton%2C+Rebecca&rft.au=Chen%2C+Da&rft.date=2017-02-21&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=51&rft.issue=4&rft.spage=2038&rft.epage=2046&rft_id=info:doi/10.1021%2Facs.est.6b05733&rft.externalDocID=c001672514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |