From Sediment to Top Predators: Broad Exposure of Polyhalogenated Carbazoles in San Francisco Bay (U.S.A.)

The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scar...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 51; no. 4; pp. 2038 - 2046
Main Authors Wu, Yan, Tan, Hongli, Sutton, Rebecca, Chen, Da
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8–19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.
AbstractList The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.
The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of capital sigma PHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.
The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ...PHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments. (ProQuest: ... denotes formulae/symbols omitted.)
The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been found in soil and aquatic sediment from several different regions, but knowledge of their bioaccumulation and trophodynamics is extremely scarce. This work investigated a suite of 11 PHCZ congeners in San Francisco Bay (United States) sediment and organisms, including bivalves (n = 6 composites), sport fish (n = 12 composites), harbor seal blubber (n = 18), and bird eggs (n = 8 composites). The most detectable congeners included 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), 1,3,6-tribromocarbazole (136-BCZ), 1,3,6,8-tetrabromocarbazole (1368-BCZ), and 1,8-dibromo-3,6-dichlorocarbazole (18-B-36-CCZ). The median concentrations of ΣPHCZs were 9.3 ng/g dry weight in sediment and ranged from 33.7 to 164 ng/g lipid weight in various species. Biomagnification was observed from fish to harbor seal and was mainly driven by chlorinated carbazoles, particularly 36-CCZ. Congener compositions of PHCZs differed among species, suggesting that individual congeners may be subject to different bioaccumulation or metabolism in species occupying various trophic levels in the studied aquatic system. Toxic equivalent (TEQ) values of PHCZs were determined on the basis of their relative effect potencies (REP) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The median TEQ was 1.2 pg TEQ/g dry weight in sediment and 4.8-19.5 pg TEQ/g lipid weight in biological tissues. Our study demonstrated the broad exposure of PHCZs in San Francisco Bay and their characteristics of bioaccumulation and biomagnification along with dioxin-like effects. These findings raise the need for additional research to better elucidate their sources, environmental behavior, and fate in global environments.
Author Sutton, Rebecca
Tan, Hongli
Wu, Yan
Chen, Da
AuthorAffiliation Jinan University
Southern Illinois University
School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health
Cooperative Wildlife Research Laboratory and Department of Zoology
San Francisco Estuary Institute
AuthorAffiliation_xml – name: San Francisco Estuary Institute
– name: School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health
– name: Southern Illinois University
– name: Jinan University
– name: Cooperative Wildlife Research Laboratory and Department of Zoology
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0001-7876-261X
  surname: Wu
  fullname: Wu, Yan
– sequence: 2
  givenname: Hongli
  surname: Tan
  fullname: Tan, Hongli
– sequence: 3
  givenname: Rebecca
  surname: Sutton
  fullname: Sutton, Rebecca
– sequence: 4
  givenname: Da
  orcidid: 0000-0001-5563-0091
  surname: Chen
  fullname: Chen, Da
  email: dachen@siu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28112952$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAURkVJaSZp190VQTcpwY4eli13lwyZthBoYBLozlxb160HW5pIMnT662Mz0xYCfay00Pk-Xd1zQo6ss0jIa85SzgS_gCakGGKa10wVUj4jC64ES5RW_IgsGOMyKWX-5ZichLBhjAnJ9AtyLDTnolRiQTYr7wa6RtMNaCONjt65Lb31aCA6H97TK-_A0OvvWxdGj9S19Nb1u2_Qu69oIaKhS_A1_HA9BtpZugZLVx5s04XG0SvY0bP7dJ1epu9ekuct9AFfHc5Tcr-6vlt-TG4-f_i0vLxJIBNFTEBJ1EwyJTBreaNaUWvVQNkiK4XSea4gz3RTF7pspTFZZgwTIOoSM9BaGnlKzva9W-8exmk71TDNgn0PFt0YKjHvgakyL_-Jcl0UOsulFP-B5jznmeTFhL59gm7c6O3057lQcDFZmN9-c6DGekBTbX03gN9VP91MwMUeaLwLwWP7C-Gsmu1Xk_1qrj_YnxLqSaLpIsTO2eih6_-SO9_n5ovfs_6BfgTqVsCP
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_envpol_2024_124451
crossref_primary_10_1016_j_chemosphere_2024_142476
crossref_primary_10_1016_j_marpolbul_2019_110632
crossref_primary_10_1016_j_watres_2023_120009
crossref_primary_10_1016_j_scitotenv_2019_03_325
crossref_primary_10_1016_j_envres_2025_120758
crossref_primary_10_3390_toxics12080609
crossref_primary_10_1007_s11356_023_28535_4
crossref_primary_10_1016_j_jes_2024_06_014
crossref_primary_10_1016_j_chemosphere_2022_134016
crossref_primary_10_1016_j_ecoenv_2019_109609
crossref_primary_10_1016_j_marpolbul_2018_11_055
crossref_primary_10_1007_s11356_017_0055_6
crossref_primary_10_1016_j_aquatox_2023_106803
crossref_primary_10_1016_j_scitotenv_2023_164590
crossref_primary_10_1021_acs_est_1c03798
crossref_primary_10_1021_acs_est_9b05388
crossref_primary_10_1080_10643389_2022_2077062
crossref_primary_10_1016_j_jhazmat_2021_127315
crossref_primary_10_1016_j_scitotenv_2022_156738
crossref_primary_10_1016_j_ecoenv_2023_115892
crossref_primary_10_1021_acs_est_1c06512
crossref_primary_10_1016_j_ecoenv_2019_109470
crossref_primary_10_1016_j_jhazmat_2022_129999
crossref_primary_10_1021_acs_est_3c00311
crossref_primary_10_1016_j_scitotenv_2023_163809
crossref_primary_10_1016_j_marpolbul_2023_115873
crossref_primary_10_1007_s10661_023_11813_6
crossref_primary_10_1016_j_envpol_2023_122103
crossref_primary_10_1016_j_scitotenv_2020_141615
crossref_primary_10_1016_j_marpolbul_2020_111656
crossref_primary_10_1016_j_envres_2025_121219
crossref_primary_10_1021_acsestwater_1c00077
crossref_primary_10_1016_j_envpol_2024_123609
crossref_primary_10_1016_j_jclepro_2024_144482
crossref_primary_10_1016_j_jes_2022_10_048
crossref_primary_10_1002_rcm_9324
crossref_primary_10_1016_j_scitotenv_2022_159971
crossref_primary_10_1016_j_envint_2020_105729
crossref_primary_10_1016_j_aquatox_2025_107323
crossref_primary_10_1016_j_scitotenv_2020_142072
crossref_primary_10_1007_s11270_025_07870_x
crossref_primary_10_1016_j_jhazmat_2021_128084
crossref_primary_10_1016_j_jhazmat_2024_134813
crossref_primary_10_3390_ani12243581
crossref_primary_10_1016_j_foodchem_2021_129214
crossref_primary_10_1016_j_envpol_2020_115717
crossref_primary_10_1021_acs_est_4c09194
crossref_primary_10_1016_j_chemosphere_2024_141442
crossref_primary_10_1016_j_talanta_2024_125711
crossref_primary_10_1021_acsestwater_3c00108
crossref_primary_10_2166_ws_2023_069
crossref_primary_10_1002_jssc_202100493
crossref_primary_10_1016_j_envres_2022_113565
crossref_primary_10_1016_j_scitotenv_2023_169787
crossref_primary_10_1016_j_scitotenv_2024_174136
crossref_primary_10_1016_j_scitotenv_2023_168732
crossref_primary_10_1016_j_scitotenv_2021_149459
crossref_primary_10_1016_j_envpol_2022_120475
crossref_primary_10_1007_s00128_019_02637_7
crossref_primary_10_1016_j_microc_2024_110515
crossref_primary_10_1016_j_scitotenv_2020_140753
crossref_primary_10_2139_ssrn_4059923
crossref_primary_10_1007_s13762_022_04004_2
crossref_primary_10_1021_envhealth_4c00263
crossref_primary_10_1016_j_scitotenv_2023_164499
crossref_primary_10_1016_j_scitotenv_2021_147908
crossref_primary_10_1021_acs_est_8b00427
crossref_primary_10_1016_j_jhazmat_2024_133956
crossref_primary_10_1016_j_jhazmat_2024_134649
crossref_primary_10_1016_j_marpolbul_2024_116131
crossref_primary_10_1016_j_marpolbul_2019_06_078
crossref_primary_10_1016_j_envres_2023_117379
crossref_primary_10_1016_j_watres_2019_05_015
crossref_primary_10_1016_j_envpol_2025_125910
crossref_primary_10_1016_j_ecoenv_2018_11_131
crossref_primary_10_1016_j_cej_2019_121986
crossref_primary_10_1016_j_scitotenv_2019_134156
crossref_primary_10_1016_j_scitotenv_2024_177253
crossref_primary_10_1016_j_envpol_2024_125378
crossref_primary_10_1021_acsestwater_2c00191
crossref_primary_10_1016_j_foodchem_2024_142132
crossref_primary_10_1016_j_trac_2022_116755
crossref_primary_10_1016_j_envpol_2022_120957
crossref_primary_10_1016_j_scitotenv_2019_135524
crossref_primary_10_1016_j_jhazmat_2019_01_079
crossref_primary_10_1016_j_jes_2022_06_028
crossref_primary_10_1016_j_watres_2025_123266
crossref_primary_10_1038_s41467_023_39491_5
crossref_primary_10_1016_j_scitotenv_2021_150643
crossref_primary_10_1007_s00128_019_02681_3
crossref_primary_10_1016_j_watres_2020_116717
Cites_doi 10.1021/es5018152
10.1016/j.envint.2012.06.005
10.1016/j.envint.2012.01.001
10.1016/j.emcon.2016.07.002
10.1126/science.1138275
10.1016/j.scitotenv.2011.05.047
10.1111/mms.12214
10.1021/ja0022066
10.1016/j.chemosphere.2015.01.001
10.1021/es048905q
10.1002/ieam.1642
10.1021/acs.est.6b06128
10.1021/es015746r
10.1002/qsar.200390023
10.1080/10659360500474623
10.1016/j.envpol.2016.09.032
10.1007/s11356-014-3386-6
10.1186/1752-153X-4-S1-S1
10.1016/j.envres.2006.07.001
10.1007/s11356-010-0393-0
10.1021/es503936u
10.1021/es0515248
10.1016/j.scitotenv.2009.02.018
10.1016/j.envpol.2008.09.025
10.1016/j.envres.2007.01.013
10.1002/etc.3416
10.1007/s11356-013-1823-6
10.1021/acs.est.5b02751
10.1289/ehp.9355
10.1016/j.chemosphere.2008.02.066
10.1016/j.chemosphere.2016.02.051
10.1016/j.watres.2004.04.054
10.1016/S0027-5107(01)00303-7
10.1289/ehp.98106775
10.1016/S0045-6535(01)00225-9
10.1897/05-591R.1
10.1016/j.chroma.2016.01.036
10.1021/es0158298
10.1021/es503727b
10.1002/jhet.5570340327
10.1007/s11270-010-0451-8
10.1016/j.chemosphere.2005.12.012
10.1016/j.envpol.2006.08.022
10.1016/S0146-6380(04)00121-4
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright American Chemical Society Feb 21, 2017
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright American Chemical Society Feb 21, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.6b05733
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
Toxicology Abstracts
Biotechnology Research Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2046
ExternalDocumentID 4317209611
28112952
10_1021_acs_est_6b05733
c001672514
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations United States--US
USA
INE, USA, California, San Francisco Bay
United States
GeographicLocations_xml – name: United States--US
– name: INE, USA, California, San Francisco Bay
– name: USA
– name: United States
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a427t-a53e803052e4f1c5f2b85ca9fe09258665a648cb789f3dd44dd02a2b9e4a883d3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Jul 10 22:24:40 EDT 2025
Fri Jul 11 00:10:43 EDT 2025
Fri Jul 11 10:45:09 EDT 2025
Sun Jun 29 15:12:34 EDT 2025
Wed Feb 19 02:42:36 EST 2025
Thu Apr 24 23:06:09 EDT 2025
Tue Jul 01 02:57:51 EDT 2025
Thu Aug 27 13:43:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a427t-a53e803052e4f1c5f2b85ca9fe09258665a648cb789f3dd44dd02a2b9e4a883d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5563-0091
0000-0001-7876-261X
PMID 28112952
PQID 1872122309
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_2000205969
proquest_miscellaneous_1877846332
proquest_miscellaneous_1861614317
proquest_journals_1872122309
pubmed_primary_28112952
crossref_primary_10_1021_acs_est_6b05733
crossref_citationtrail_10_1021_acs_est_6b05733
acs_journals_10_1021_acs_est_6b05733
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-21
PublicationDateYYYYMMDD 2017-02-21
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
SFEI (ref45/cit45) 2015
References_xml – volume-title: 2013–2014 Annual Monitoring Results. The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP)
  year: 2015
  ident: ref45/cit45
– ident: ref9/cit9
  doi: 10.1021/es5018152
– ident: ref26/cit26
  doi: 10.1016/j.envint.2012.06.005
– ident: ref4/cit4
– ident: ref37/cit37
  doi: 10.1016/j.envint.2012.01.001
– ident: ref48/cit48
  doi: 10.1016/j.emcon.2016.07.002
– ident: ref44/cit44
– ident: ref34/cit34
  doi: 10.1126/science.1138275
– ident: ref46/cit46
  doi: 10.1016/j.scitotenv.2011.05.047
– ident: ref33/cit33
  doi: 10.1111/mms.12214
– ident: ref43/cit43
  doi: 10.1021/ja0022066
– ident: ref16/cit16
  doi: 10.1016/j.chemosphere.2015.01.001
– ident: ref27/cit27
  doi: 10.1021/es048905q
– ident: ref35/cit35
  doi: 10.1002/ieam.1642
– ident: ref5/cit5
  doi: 10.1021/acs.est.6b06128
– ident: ref29/cit29
– ident: ref25/cit25
  doi: 10.1021/es015746r
– ident: ref30/cit30
  doi: 10.1002/qsar.200390023
– ident: ref31/cit31
  doi: 10.1080/10659360500474623
– ident: ref13/cit13
  doi: 10.1016/j.envpol.2016.09.032
– ident: ref21/cit21
  doi: 10.1007/s11356-014-3386-6
– ident: ref32/cit32
  doi: 10.1186/1752-153X-4-S1-S1
– ident: ref47/cit47
  doi: 10.1016/j.envres.2006.07.001
– ident: ref15/cit15
  doi: 10.1007/s11356-010-0393-0
– ident: ref6/cit6
  doi: 10.1021/es503936u
– ident: ref7/cit7
  doi: 10.1021/es0515248
– ident: ref36/cit36
  doi: 10.1016/j.scitotenv.2009.02.018
– ident: ref41/cit41
  doi: 10.1016/j.envpol.2008.09.025
– ident: ref24/cit24
  doi: 10.1016/j.envres.2007.01.013
– ident: ref20/cit20
  doi: 10.1002/etc.3416
– ident: ref18/cit18
  doi: 10.1007/s11356-013-1823-6
– ident: ref19/cit19
  doi: 10.1021/acs.est.5b02751
– ident: ref39/cit39
  doi: 10.1289/ehp.9355
– ident: ref2/cit2
  doi: 10.1016/j.chemosphere.2008.02.066
– ident: ref28/cit28
– ident: ref3/cit3
– ident: ref10/cit10
  doi: 10.1016/j.chemosphere.2016.02.051
– ident: ref12/cit12
  doi: 10.1016/j.watres.2004.04.054
– ident: ref22/cit22
  doi: 10.1016/S0027-5107(01)00303-7
– ident: ref49/cit49
  doi: 10.1289/ehp.98106775
– ident: ref1/cit1
  doi: 10.1016/S0045-6535(01)00225-9
– ident: ref40/cit40
  doi: 10.1897/05-591R.1
– ident: ref8/cit8
  doi: 10.1016/j.chroma.2016.01.036
– ident: ref38/cit38
  doi: 10.1021/es0158298
– ident: ref23/cit23
  doi: 10.1021/es503727b
– ident: ref42/cit42
  doi: 10.1002/jhet.5570340327
– ident: ref14/cit14
  doi: 10.1007/s11270-010-0451-8
– ident: ref50/cit50
  doi: 10.1016/j.chemosphere.2005.12.012
– ident: ref17/cit17
  doi: 10.1016/j.envpol.2006.08.022
– ident: ref11/cit11
  doi: 10.1016/S0146-6380(04)00121-4
SSID ssj0002308
Score 2.5231462
Snippet The present study provides the first comprehensive investigation of polyhalogenated carbazoles (PHCZs) contamination in an aquatic ecosystem. PHCZs have been...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2038
SubjectTerms Animals
Aquatic ecosystems
Bays
Bioaccumulation
Birds
Bivalvia
blubber
carbazoles
Carbazoles - analysis
Carbazoles - metabolism
Contamination
Dioxins
eggs
Fish
Fishes - metabolism
Food Chain
game fish
Lipids
Metabolism
Phoca vitulina
Polychlorinated Biphenyls
predators
San Francisco
Sediments
soil
tetrachlorodibenzo-p-dioxin
toxicity
trophic levels
United States
Title From Sediment to Top Predators: Broad Exposure of Polyhalogenated Carbazoles in San Francisco Bay (U.S.A.)
URI http://dx.doi.org/10.1021/acs.est.6b05733
https://www.ncbi.nlm.nih.gov/pubmed/28112952
https://www.proquest.com/docview/1872122309
https://www.proquest.com/docview/1861614317
https://www.proquest.com/docview/1877846332
https://www.proquest.com/docview/2000205969
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcGexkPG2Nj62CTJ_HAHpK1tpM4vJWqFUJiQiqV-hb5K2Ibi6smlQZ_PXdpGr7Ujdf4nFgXn-93Pvt3hBxwlncNuOHAARYNhNZpoCUXgXXgi1UCEKHmmT37EZ9MxOk0mt6RRT_O4LPed2XKEBbIMNY1d98GeclimWCc1R-M20UXkLRcFStIeTxtWXyevADdkCkfuqE12LL2MaM3y9NZZU1NiEdLfoeLSofm5ilx4_-Hv01eN0iT9pdT4y154YodsnWPf3CH7A7vrrmBaGPn5TvyazT3f-gYHBs20crTCz-j53NnMUYvjyhE78rS4d-Zxx1G6nN67q-uL3EnyBUAXy0dYCLjBumi6M-CjlVBmxoextNjdU0PJ-E47Iff3pPJaHgxOAmaqgyBEiypAhVxJ3GZYE7kPRPlTMvIqDR33ZRFSJ-nYiGNTmSac2uFsLbLFNOpE0pKbvku2Sx84T4SKm0iNLwhhiBIuCRS4FGNUiK3CoCeFB1yAOrLGqsqszphznoZPgSdZo1OOyRc_cvMNMzmWGDjan2Hw7bDbEnqsV50fzU57o1DQtwMuKqbdsjXthnsEpMtqnB-gTIxgGmEZ_-SSRLAf5yz9TKsThZHaQzf-rCcnO2YmUS0HLFPz9PTHnnFEJTghfzePtms5gv3GSBVpb_UxnQLLi4ZnA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4a4wH2wGUwKAww0pDGQ0LrOImDxENXWnXsokltpb5lduxowIirJhV0v4a_wj_jOE2zASriZRKv8bFj2efyHV8-A-x4NG0mGIYdjVjUYVJGjuQec5TGWCxChAglz-zRcdAfsQ9jf7wG35d3YbATObaUl5v4l-wCrTf2G_pJN5AlhV91jPJAz79ikpa_23-PM_qK0l532Ok71TsCjmA0LBzhe5pbxaaapa3ET6nkfiKiVDcj6lvCNxEwnsiQR6mnFGNKNamgMtJMcO4pD9u9ATcR-lCb3rU7g9rXI4DnyzcSIi8Y1-RBf3TYRr8k_zX6rYC0ZWjr3YUf9aCUJ1o-u7NCusnFb3yR__Oo3YM7Fa4m7YUh3Ic1nW3CxhW2xU3Y6l5e6kPRyqvlD-BTb2q-kAGGcVtECkOGZkJOplrZFYn8LdmbGqFI99vE2PVUYlJyYs7nZ3bdS2cI1hXp2G2bC0uORT5mZCAyUr1YkhiyJ-Zkd-QO3Lb7-iGMrmUUtmA9M5l-DISrkElsIcCUj-nQF4gfEiFYqgTCWs4asIPTFVc-JI_L4wG0FduPOIdxNYcNcJcqFCcVj7t9TuR8dYXdusJkQWGyWnR7qZNX-sFDxDeo6VEDXtbF6IXs1pLItJlZmQBTBwtG_yYThoh2PY-ulqHl1rgfBfivRwubqPtMuc0NfPrk38bpBdzqD48O48P944OncJtaOGapCFrbsF5MZ_oZgslCPi_tmcDpdZvCTwjjfAI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-NISH2wJ_BoDDASEMaDwmt4yQOEg9d12pjMFXqKvUtc2JHA0ZcNa2g-zx8Fb4Xd2kaBqiIl0m8xmfHsn13v_PZPwPseDxrpuiGHYNY1BFJEjmJ9ISjDfpiFSJEKHlm3x8HB0PxduSP1uDb8i4MdqLAlooyiU9aPdZZxTDQekXf0Va6QVLS-FVHKY_M_AsGasWbw32c1Rec97onnQOnekvAUYKHU0f5npG0uLkRWSv1M55IP1VRZpoR94n0TQVCpkkoo8zTWgitm1zxJDJCSelpD9u9BtcpSUghXrszqO09gni5fCch8oJRTSD0R4fJA6bFrx5wBawt3VvvNnyvB6Y81fLJnU0TN734jTPyfx-5O3CrwtesvVCIu7Bm8k3YuMS6uAlb3Z-X-1C0sm7FPfjYm9jPbIDunIrY1LITO2b9idG0M1G8ZnsTqzTrfh1b2ldlNmN9ez4_o_0vkyNo16xD6ZsLIsliH3I2UDmrXi5JLdtTc7Y7dAdu2315H4ZXMgpbsJ7b3DwEJnUoEmwhwNBPmNBXiCNSpUSmFcJbKRqwg9MVV7akiMtjArwV00ecw7iawwa4y2UUpxWfOz0rcr66wm5dYbygMlktur1cl5f6IUPEObjaowY8r4vRGlGKSeXGzkgmwBCCQOnfZMIQUa_n8dUyvEyR-1GA_3qw0Iu6z1xSjODzR_82Ts_gRn-_F787PD56DDc5oTJiJGhtw_p0MjNPEFNOk6elSjM4vWpN-AGE6n6F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Sediment+to+Top+Predators%3A+Broad+Exposure+of+Polyhalogenated+Carbazoles+in+San+Francisco+Bay+%28U.S.A.%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Wu%2C+Yan&rft.au=Tan%2C+Hongli&rft.au=Sutton%2C+Rebecca&rft.au=Chen%2C+Da&rft.date=2017-02-21&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=51&rft.issue=4&rft.spage=2038&rft.epage=2046&rft_id=info:doi/10.1021%2Facs.est.6b05733&rft.externalDocID=c001672514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon