Dynamic Coupling of Iron, Manganese, and Phosphorus Behavior in Water and Sediment of Shallow Ice-Covered Eutrophic Lakes

Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrody...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 49; no. 16; pp. 9758 - 9767
Main Authors Schroth, Andrew W, Giles, Courtney D, Isles, Peter D. F, Xu, Yaoyang, Perzan, Zachary, Druschel, Gregory K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn­(oxy)­hydroxides below the SWI. Redox dynamics are driven by benthic O2 consumption, limited air–water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and “truly dissolved” Fe near the water column surface, and a relatively well-mixed “truly dissolved” Mn and “colloidal” Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.
AbstractList Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn­(oxy)­hydroxides below the SWI. Redox dynamics are driven by benthic O2 consumption, limited air–water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and “truly dissolved” Fe near the water column surface, and a relatively well-mixed “truly dissolved” Mn and “colloidal” Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.
Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn(oxy)hydroxides below the SWI. Redox dynamics are driven by benthic O2 consumption, limited air-water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and "truly dissolved" Fe near the water column surface, and a relatively well-mixed "truly dissolved" Mn and "colloidal" Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.
Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn(oxy)hydroxides below the SWI. Redox dynamics are driven by benthic O₂ consumption, limited air–water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and “truly dissolved” Fe near the water column surface, and a relatively well-mixed “truly dissolved” Mn and “colloidal” Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.
Author Druschel, Gregory K
Perzan, Zachary
Xu, Yaoyang
Schroth, Andrew W
Giles, Courtney D
Isles, Peter D. F
AuthorAffiliation Rubenstein School of Environment and Natural Resources
Department of Geology
Vermont EPSCoR
University of Vermont
Department of Earth Sciences
Indiana University Purdue University
Middlebury College
AuthorAffiliation_xml – name: Indiana University Purdue University
– name: University of Vermont
– name: Department of Earth Sciences
– name: Rubenstein School of Environment and Natural Resources
– name: Middlebury College
– name: Vermont EPSCoR
– name: Department of Geology
Author_xml – sequence: 1
  givenname: Andrew W
  surname: Schroth
  fullname: Schroth, Andrew W
  email: aschroth@uvm.edu
– sequence: 2
  givenname: Courtney D
  surname: Giles
  fullname: Giles, Courtney D
– sequence: 3
  givenname: Peter D. F
  surname: Isles
  fullname: Isles, Peter D. F
– sequence: 4
  givenname: Yaoyang
  surname: Xu
  fullname: Xu, Yaoyang
– sequence: 5
  givenname: Zachary
  surname: Perzan
  fullname: Perzan, Zachary
– sequence: 6
  givenname: Gregory K
  surname: Druschel
  fullname: Druschel, Gregory K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26206098$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC3Uim4LZ27IEhckmu2zHcfJEZYCKy0CqSC4RXbiNC6JHeyk1f77Ouy2lSoBJ1vyN-P3Zo7RgXVWI_SCwJIAJWeyCksdxiVXQIGLJ2hBOIWE55wcoAUAYUnBsp9H6DiEKwCgDPKn6IhmFDIo8gXavt9a2ZsKr9w0dMZeYtfgtXf2FH-W9lJaHfQplrbGX1sXhtb5KeB3upXXxnlsLP4hR-3_ABe6Nr224-xw0cquczd4Xelk5a611zU-n0bvhjb-tZG_dHiGDhvZBf18f56g7x_Ov60-JZsvH9ert5tEplSMSaEUE0pzRXOhUgq5ymmjM6GYShuZQ95UVSOgUZAWPK1EHq-UK1brVLGmyNgJer3zHbz7PcWwyt6ESndd3M1NoaRzLIRnjP4XJYJQLkjBZ9dXj9ArN3kbF4kUZAJYykWkXu6pSfW6Lgdveum35V3-ETjbAZV3IXjd3CMEyrnhMjZczvb7hqOCP1JUZpSjcXb00nT_0L3Z6eaHh1n_Qt8Cxoy5sA
CODEN ESTHAG
CitedBy_id crossref_primary_10_1002_jeq2_20432
crossref_primary_10_1029_2020WR027990
crossref_primary_10_1016_j_scitotenv_2024_175689
crossref_primary_10_1016_j_envpol_2023_123204
crossref_primary_10_1016_j_envres_2021_111525
crossref_primary_10_1039_D1EM00505G
crossref_primary_10_1016_j_scitotenv_2017_04_041
crossref_primary_10_1007_s10533_017_0327_8
crossref_primary_10_1016_j_chemgeo_2021_120212
crossref_primary_10_1029_2021EF002234
crossref_primary_10_1029_2020JG005713
crossref_primary_10_1007_s10533_021_00872_x
crossref_primary_10_1007_s13762_023_05382_x
crossref_primary_10_1016_j_scitotenv_2024_172924
crossref_primary_10_1002_lol2_10318
crossref_primary_10_1002_lom3_10287
crossref_primary_10_1002_lno_11556
crossref_primary_10_1016_j_aca_2020_07_013
crossref_primary_10_1007_s11368_024_03838_2
crossref_primary_10_1016_j_scitotenv_2023_166404
crossref_primary_10_1126_science_adl3211
crossref_primary_10_5194_tc_17_2045_2023
crossref_primary_10_1016_j_chemosphere_2021_131296
crossref_primary_10_1016_j_ecoleng_2023_107171
crossref_primary_10_1038_s41467_024_47931_z
crossref_primary_10_1016_j_coldregions_2023_103808
crossref_primary_10_1016_j_ecolind_2018_05_059
crossref_primary_10_1029_2021JG006318
crossref_primary_10_1016_j_jece_2023_111467
crossref_primary_10_1080_02626667_2023_2297075
crossref_primary_10_1007_s10533_015_0144_x
crossref_primary_10_1016_j_chemgeo_2024_122093
crossref_primary_10_1007_s10533_016_0290_9
crossref_primary_10_1021_acs_est_8b02320
crossref_primary_10_1021_acs_est_4c12049
crossref_primary_10_5004_dwt_2021_26744
crossref_primary_10_1038_s41598_017_03055_7
crossref_primary_10_1016_j_scitotenv_2022_158739
crossref_primary_10_1016_j_scitotenv_2021_151586
crossref_primary_10_1016_j_trac_2025_118153
crossref_primary_10_1007_s10750_017_3426_6
crossref_primary_10_1016_j_scitotenv_2024_176564
crossref_primary_10_1016_j_scitotenv_2019_02_194
crossref_primary_10_1002_lno_10521
crossref_primary_10_1029_2023WR034813
crossref_primary_10_1007_s10750_024_05739_4
crossref_primary_10_1016_j_scitotenv_2021_152907
crossref_primary_10_1146_annurev_ecolsys_110421_102101
crossref_primary_10_1016_j_biortech_2024_131296
crossref_primary_10_1029_2020JG006237
Cites_doi 10.4319/lo.1992.37.3.0510
10.1021/es00003a024
10.1002/2014GL060199
10.1016/j.chemgeo.2005.01.008
10.1126/science.1241396
10.1021/es505834y
10.4319/lo.1998.43.1.0053
10.1175/JAMC-D-13-0338.1
10.5194/bg-8-565-2011
10.1021/es403490g
10.1175/JCLI3339.1
10.1002/lom3.10021
10.1007/s10750-007-9188-9
10.1139/f80-024
10.1007/s10533-014-0005-z
10.1186/1467-4866-13-6
10.5194/bgd-8-273-2011
10.5194/bg-8-3341-2011
10.1186/1467-4866-4-20
10.1016/j.jglr.2011.07.007
10.1021/es0341182
10.4319/lo.1992.37.3.0577
10.1007/s00442-006-0543-8
10.1016/j.jglr.2013.03.016
10.1016/j.watres.2015.01.008
10.1007/s10750-013-1614-6
10.1029/2006GL029021
10.1016/j.gca.2006.04.008
10.1111/j.1365-2486.2010.02249.x
10.1002/joc.2300
10.1016/j.marchem.2005.09.016
10.1016/S0269-7491(00)00074-9
10.1016/j.gca.2006.04.021
10.1021/es990120a
10.4319/lo.1992.37.6.1129
10.1111/j.1365-2427.2007.01809.x
10.2113/gselements.7.2.101
10.1007/s10498-011-9154-z
10.1016/j.jglr.2012.01.002
10.1128/mr.55.2.259-287.1991
10.1016/j.gca.2008.04.035
10.1093/oso/9780195117806.001.0001
10.4319/lo.2013.58.6.1998
10.4319/lo.2011.56.6.2251
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright American Chemical Society Aug 18, 2015
Copyright_xml – notice: Copyright © American Chemical Society
– notice: Copyright American Chemical Society Aug 18, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TG
7U6
7UA
F1W
H97
KL.
L.G
7S9
L.6
DOI 10.1021/acs.est.5b02057
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
Biotechnology Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Geography
EISSN 1520-5851
EndPage 9767
ExternalDocumentID 3787324511
26206098
10_1021_acs_est_5b02057
c424199513
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID -
.K2
08R
186
1AW
1WB
3R3
4.4
42X
4R4
53G
55A
5GY
5VS
63O
7~N
85S
8WZ
A
A6W
AABXI
ABDEX
ABDTD
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACDCL
ACGFS
ACGOD
ACIWK
ACJ
ACKIV
ACPRK
ACS
AEESW
AENEX
AETEA
AFDAS
AFEFF
AFMIJ
AFRAH
AGXLV
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
HR
IH9
IHE
JG
JG~
K2
K78
LG6
MS
MVM
NHB
OHT
PQEST
PQQKQ
RNS
ROL
RXW
TAE
TN5
TWZ
U5U
UBX
UBY
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VJK
VOH
VQA
W1F
WH7
X
XFK
XZL
YZZ
ZCG
ZY4
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TG
7U6
7UA
F1W
H97
KL.
L.G
7S9
L.6
ID FETCH-LOGICAL-a427t-9bb37be5b287b4208b82fe67b3b4fa808fccf70fb04954c780fb25b3de4b3f963
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 05:24:25 EDT 2025
Thu Jul 10 19:12:28 EDT 2025
Sun Jun 29 15:54:22 EDT 2025
Mon Jul 21 05:59:33 EDT 2025
Tue Jul 01 04:29:00 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Fri Feb 05 20:53:47 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a427t-9bb37be5b287b4208b82fe67b3b4fa808fccf70fb04954c780fb25b3de4b3f963
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26206098
PQID 1706703457
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_2000215632
proquest_miscellaneous_1712571956
proquest_journals_1706703457
pubmed_primary_26206098
crossref_primary_10_1021_acs_est_5b02057
crossref_citationtrail_10_1021_acs_est_5b02057
acs_journals_10_1021_acs_est_5b02057
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
AGXLV
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
1WB
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-18
PublicationDateYYYYMMDD 2015-08-18
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
USEPA (ref32/cit32) 1996
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
Lovley D. R. (ref16/cit16) 1991; 55
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.4319/lo.1992.37.3.0510
– ident: ref34/cit34
  doi: 10.1021/es00003a024
– ident: ref38/cit38
  doi: 10.1002/2014GL060199
– ident: ref10/cit10
  doi: 10.1016/j.chemgeo.2005.01.008
– ident: ref12/cit12
  doi: 10.1126/science.1241396
– ident: ref39/cit39
  doi: 10.1021/es505834y
– ident: ref33/cit33
  doi: 10.4319/lo.1998.43.1.0053
– ident: ref24/cit24
  doi: 10.1175/JAMC-D-13-0338.1
– ident: ref41/cit41
  doi: 10.5194/bg-8-565-2011
– ident: ref19/cit19
  doi: 10.1021/es403490g
– volume-title: SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods
  year: 1996
  ident: ref32/cit32
– ident: ref23/cit23
  doi: 10.1175/JCLI3339.1
– ident: ref28/cit28
  doi: 10.1002/lom3.10021
– ident: ref1/cit1
  doi: 10.1007/s10750-007-9188-9
– ident: ref7/cit7
  doi: 10.1139/f80-024
– ident: ref21/cit21
  doi: 10.1007/s10533-014-0005-z
– ident: ref35/cit35
  doi: 10.1186/1467-4866-13-6
– ident: ref11/cit11
  doi: 10.5194/bgd-8-273-2011
– ident: ref43/cit43
  doi: 10.5194/bg-8-3341-2011
– ident: ref22/cit22
  doi: 10.1186/1467-4866-4-20
– ident: ref26/cit26
  doi: 10.1016/j.jglr.2011.07.007
– ident: ref31/cit31
  doi: 10.1021/es0341182
– ident: ref42/cit42
  doi: 10.4319/lo.1992.37.3.0577
– ident: ref8/cit8
  doi: 10.1007/s00442-006-0543-8
– ident: ref20/cit20
  doi: 10.1016/j.jglr.2013.03.016
– ident: ref40/cit40
  doi: 10.1016/j.watres.2015.01.008
– ident: ref25/cit25
  doi: 10.1007/s10750-013-1614-6
– ident: ref4/cit4
  doi: 10.1029/2006GL029021
– ident: ref29/cit29
– ident: ref44/cit44
  doi: 10.1016/j.gca.2006.04.008
– ident: ref2/cit2
  doi: 10.1111/j.1365-2486.2010.02249.x
– ident: ref3/cit3
  doi: 10.1002/joc.2300
– ident: ref17/cit17
  doi: 10.1016/j.marchem.2005.09.016
– ident: ref27/cit27
  doi: 10.1016/S0269-7491(00)00074-9
– ident: ref46/cit46
  doi: 10.1016/j.gca.2006.04.021
– ident: ref37/cit37
  doi: 10.1021/es990120a
– ident: ref18/cit18
  doi: 10.4319/lo.1992.37.6.1129
– ident: ref5/cit5
  doi: 10.1111/j.1365-2427.2007.01809.x
– ident: ref15/cit15
  doi: 10.2113/gselements.7.2.101
– ident: ref45/cit45
  doi: 10.1007/s10498-011-9154-z
– ident: ref30/cit30
  doi: 10.1016/j.jglr.2012.01.002
– volume: 55
  start-page: 259
  issue: 2
  year: 1991
  ident: ref16/cit16
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.55.2.259-287.1991
– ident: ref36/cit36
  doi: 10.1016/j.gca.2008.04.035
– ident: ref13/cit13
  doi: 10.1093/oso/9780195117806.001.0001
– ident: ref9/cit9
  doi: 10.4319/lo.2013.58.6.1998
– ident: ref6/cit6
  doi: 10.4319/lo.2011.56.6.2251
SSID ssj0002308
Score 2.39453
Snippet Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9758
SubjectTerms Biogeochemistry
Climate
Eutrophication
Fluid mechanics
freshwater
geochemistry
Geography
Geologic Sediments - chemistry
Global warming
Hydrodynamics
hydroxides
Ice
Ice Cover
iron
Iron - analysis
Lakes
Lakes - chemistry
manganese
Manganese - analysis
oxygen
Oxygen - analysis
oxygen consumption
Phosphorus
Phosphorus - analysis
river water
sediments
Temperature
Time series
time series analysis
Trace Elements - analysis
Water - chemistry
Water Pollutants, Chemical - analysis
Title Dynamic Coupling of Iron, Manganese, and Phosphorus Behavior in Water and Sediment of Shallow Ice-Covered Eutrophic Lakes
URI http://dx.doi.org/10.1021/acs.est.5b02057
https://www.ncbi.nlm.nih.gov/pubmed/26206098
https://www.proquest.com/docview/1706703457
https://www.proquest.com/docview/1712571956
https://www.proquest.com/docview/2000215632
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODAo9Cy0CIj9cChCbu2YzvHartViyhCWir2FsWO3UVFySoPIfj1zCTZ9KUV3KJk7Fhjj-cbj2eGkAOnhRBe-sBzk4GBon0QgxYIMg97n5PajTM8Gjj_Ik8vxKdFtLhOFn3Xg88mH1NbhbBBhpEBZBOph-QRk1qhnXU0nQ-bLiBpvS5WEHO5GLL43OsA1ZCtbquhDdiy1TEnz7rbWVWbmhCvllyFTW1C--d-4sZ_D_85edojTXrULY0X5IHLt8mTG_kHt8nO7DrMDUh7Oa9ekt_HXaF6Oi0aDNm9pIWnZ0B5SM_T_DLFspWHNM0z-nVZVKtlUTYV7VMtlvRHTr8DhC1bgjloR-wfe5hj5ZbiFz2zLpji3VGX0VlTl8VqCf_6nF656hW5OJl9m54GfZGGIBVM1UFsDFfGRQZML4O-eqOZd1IZboRPNUy-tV6NvQFTJBJWaXhkkeGZE4Z7EP8dspUXuXtNqGIytlkUS6GNEE7GAtqmXFiWeeOcGpED4GbSC1mVtP5zNknwJbA46Vk8IuF6ahPbJzrHehs_Nzf4MDRYdTk-NpPurdfKjXEoDHbiAj-_Hz6DmKLvBWakaJAGkKTC4MzNNBg1BQhMcjYiu906HMaDdQPkONZv_o8Hb8ljQHYRHn5P9B7ZqsvG7QN6qs27Vm7-AnzCFZQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8QB7YDAYKxtgpD3wsJQ2cWzncSqdWmgnUDfRtyhO7HXalFT5EIK_nrs0zQaoErxFztm52He-nz_uDuDYKM65Fdaxnk5wgaKsE6AVcBKLc58RyvQS2hqYnovRJf809-db0Fv7wiATBbZU1If4d9EF-h-oDOfJrq8R4PjyATxEKOLScut0MGvnXgTUap2zIPDEvA3m81cDZI3i4ndrtAFi1qbmbBe-tkzWN0xuulWpu_HPP-I3_s9fPIUnDe5kpytBeQZbJt2DnXvRCPdgf3jn9IakjdYXz-HHx1XaejbIKnLgvWKZZWOkPGHTKL2KKInlCYvShH1ZZMVykeVVwZrAizm7Ttk3BLR5TTBDW0ntUwszyuOSfWfj2DgDuklqEjasyjxbLvBbk-jGFC_g8mx4MRg5TcoGJ-KuLJ1Aa09q42tciGk6udfKtUZI7WluI4WiEMdW9qzGhYnPY6nw0fW1lxiuPYuTwT5sp1lqDoBJVwRx4geCK825EQHHupHHYzex2hjZgWPszbBRuSKsT9PdfkiF2MVh08Ud6K5HOIybsOeUfeN2c4X3bYXlKuLHZtKjtcjc40OS65PH6fW79jUqLZ3E4IhkFdEgrpTkqrmZhnyoEI8Jz-3Ay5U4tvxQFgHRC9Srf-uDt_BodDGdhJPx-edDeIyYz6dt8b46gu0yr8xrxFWlflOr0i_PnR31
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAge-BiMFQYYaQ88LKWNHdt5nLpWK2zTpFLRtyj-WtGmpMqHEPz13KVpGKBK8BY5Z8exfb7f-Xx3hBw6xTn3wgeeaQsKivJBDFIgsB72PieUG1g8Gji_EKdz_nERLVqnMPSFgU6U0FLZGPGRq1fWtxEGhh-wHPbKfqQB5ETyLrmHRjtUuY5Hs27_BVCtNnkLYiYWXUCfvxpAiWTK3yXSFpjZiJvJYzLvOtrcMrnu15Xumx9_xHD83z95Qh61-JMerxfMU3LHZbvk4a2ohLtkb_zL-Q1IW-4vn5HvJ-v09XSU1-jIe0VzT6dAeUTP0-wqxWSWRzTNLL1c5uVqmRd1SdsAjAX9mtEvAGyLhmAGMhPbxxZmmM8l_0anxgUjvFHqLB3XVZGvlvCts_Talc_JfDL-PDoN2tQNQcpDWQWx1kxqF2lQyDRa8LUKvRNSM819qmBJGOPlwGtQUCJupILHMNLMOq6Zh01hj-xkeeb2CZWhiI2NYsGV5tyJmEPdlHETWq-dkz1yCKOZtKxXJo1VPRwmWAhDnLRD3CP9zSwnpg1_jlk4brZXeN9VWK0jf2wnPdgsm1v9kOgCxTi-fte9BuZFiwzMSF4jDeBLiS6b22nQlwpwmWBhj7xYL8muP5hNQAxi9fLfxuAtuX95MknOphefXpEHAP0iPB0fqgOyUxW1ew3wqtJvGm76CfqbIHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Coupling+of+Iron%2C+Manganese%2C+and+Phosphorus+Behavior+in+Water+and+Sediment+of+Shallow+Ice-Covered+Eutrophic+Lakes&rft.jtitle=Environmental+science+%26+technology&rft.au=Schroth%2C+Andrew+W&rft.au=Giles%2C+Courtney+D&rft.au=Isles%2C+Peter+D.+F&rft.au=Xu%2C+Yaoyang&rft.date=2015-08-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021%2Facs.est.5b02057&rft.externalDocID=c424199513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon