Global soil characterization with VNIR diffuse reflectance spectroscopy
There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from al...
Saved in:
Published in | Geoderma Vol. 132; no. 3; pp. 273 - 290 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.06.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36 different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-dry soil (<
2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation (RMSD) estimates of 54 g kg
−
1
for clay, 7.9 g kg
−
1
for soil organic C (SOC), 5.6 g kg
−
1
for inorganic C (IC), 8.9 g kg
−
1
for dithionate–citrate extractable Fe (FEd), and 5.5 cmol
c kg
−
1
for cation exchange capacity (CEC) with NH
4 at pH
=
7. For all of these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmorillonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD) values (0–5 on ordinal scale). Given the amount of information obtained in this study with ∼4
×
10
3 samples, we anticipate that calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 10
4–10
5 samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required. |
---|---|
AbstractList | There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36 different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-dry soil (<
2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation (RMSD) estimates of 54 g kg
−
1
for clay, 7.9 g kg
−
1
for soil organic C (SOC), 5.6 g kg
−
1
for inorganic C (IC), 8.9 g kg
−
1
for dithionate–citrate extractable Fe (FEd), and 5.5 cmol
c kg
−
1
for cation exchange capacity (CEC) with NH
4 at pH
=
7. For all of these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmorillonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD) values (0–5 on ordinal scale). Given the amount of information obtained in this study with ∼4
×
10
3 samples, we anticipate that calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 10
4–10
5 samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required. There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36 different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-dry soil (- 2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation (RMSD) estimates of 54 g kg super(- 1) for clay, 7.9 g kg super(- 1) for soil organic C (SOC), 5.6 g kg super(- 1) for inorganic C (IC), 8.9 g kg super(- 1) for dithionate-citrate extractable Fe (FEd), and 5.5 cmol sub(c) kg super(- 1) for cation exchange capacity (CEC) with NH sub(4) at pH = 7. For all of these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmorillonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD) values (0-5 on ordinal scale). Given the amount of information obtained in this study with 4 x 10 super(3) samples, we anticipate that calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 10 super(4)-10 super(5) samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required. |
Author | Reinsch, Thomas G. Brown, David J. Shepherd, Keith D. Walsh, Markus G. Dewayne Mays, M. |
Author_xml | – sequence: 1 givenname: David J. surname: Brown fullname: Brown, David J. email: djbrown@montana.edu organization: Department of Land Resources and Environmental Sciences, Montana State University, USA – sequence: 2 givenname: Keith D. surname: Shepherd fullname: Shepherd, Keith D. organization: World Agroforestry Center (ICRAF), Nairobi, Kenya – sequence: 3 givenname: Markus G. surname: Walsh fullname: Walsh, Markus G. organization: World Agroforestry Center (ICRAF), Nairobi, Kenya – sequence: 4 givenname: M. surname: Dewayne Mays fullname: Dewayne Mays, M. organization: USDA National Soil Survey Center, Soil Survey Laboratory (NSSC-SSL), Lincoln, NE, USA – sequence: 5 givenname: Thomas G. surname: Reinsch fullname: Reinsch, Thomas G. organization: USDA National Soil Survey Center, Soil Survey Laboratory (NSSC-SSL), Lincoln, NE, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17773940$$DView record in Pascal Francis |
BookMark | eNqFkM1uEzEURi1UJNLAK6DZwG6m1z9jjyUWRVVJK1UgIWBrOZ5r6sgZB3vSqjw9btN2waYr29L5ru93jsnRlCYk5D2FjgKVJ5vuN6YR89Z2DKDvQHTA-ldkQQfFWsl6fUQWUMlWgaRvyHEpm_pUwGBBVquY1jY2JYXYuGubrZsxh792DmlqbsN83fz6evm9GYP3-4JNRh_RzXZy2JRdveVUXNrdvSWvvY0F3z2eS_Lzy_mPs4v26tvq8uzzVWsFU3OrxQhCaD7IkWnKPFcULNVS-17x0Y_A0EvLNYq-tygVrMWaC4_aD4oPg-dL8vEwd5fTnz2W2WxDcRijnTDti6Fay55XeEk-PIK2OBt9riuHYnY5bG2-M1QpxbWAyn06cK42KbWecWF-aD9nG6KhYO4tm415smzuLRsQplqucflf_PmHl4KnhyBWWzcBsykuYNU6hly1mjGFl0b8A25CnRA |
CODEN | GEDMAB |
CitedBy_id | crossref_primary_10_2136_sssaj2013_06_0241 crossref_primary_10_3390_rs13081549 crossref_primary_10_1016_j_geoderma_2010_04_007 crossref_primary_10_1255_jnirs_716 crossref_primary_10_1111_ejss_12362 crossref_primary_10_1016_j_geoderma_2012_08_020 crossref_primary_10_1111_ejss_12485 crossref_primary_10_3390_rs8080660 crossref_primary_10_1016_j_catena_2020_104938 crossref_primary_10_1038_s41597_025_04667_9 crossref_primary_10_1016_j_geoderma_2015_06_015 crossref_primary_10_1155_2023_4155390 crossref_primary_10_1016_j_geoderma_2019_113981 crossref_primary_10_1080_15324982_2010_528153 crossref_primary_10_1016_j_compag_2019_02_003 crossref_primary_10_1016_S1002_0160_12_60022_8 crossref_primary_10_1016_j_geoderma_2014_12_011 crossref_primary_10_2136_sssaj2008_0311 crossref_primary_10_1016_j_geodrs_2020_e00333 crossref_primary_10_1111_ejss_12239 crossref_primary_10_1007_s11119_009_9123_3 crossref_primary_10_1016_j_catena_2016_12_014 crossref_primary_10_1016_j_geoderma_2009_01_025 crossref_primary_10_1016_j_catena_2013_06_013 crossref_primary_10_1016_j_geoderma_2017_02_014 crossref_primary_10_1016_j_geoderma_2022_115837 crossref_primary_10_1016_j_still_2023_105789 crossref_primary_10_3390_soilsystems6010030 crossref_primary_10_1016_j_geoderma_2018_04_017 crossref_primary_10_1111_j_1365_2389_2012_01429_x crossref_primary_10_3390_nano10122501 crossref_primary_10_2136_sssaj2019_06_0205 crossref_primary_10_1155_2017_1375158 crossref_primary_10_1016_j_tfp_2022_100280 crossref_primary_10_1016_j_compag_2010_08_005 crossref_primary_10_2136_sssaj2014_09_0390 crossref_primary_10_1097_SS_0b013e3181906a09 crossref_primary_10_1007_s12517_016_2659_4 crossref_primary_10_1016_j_geoderma_2010_12_020 crossref_primary_10_2136_vzj2016_06_0054 crossref_primary_10_3390_life10070113 crossref_primary_10_1016_j_agrformet_2015_12_062 crossref_primary_10_1016_j_geoderma_2014_04_029 crossref_primary_10_1255_jnirs_936 crossref_primary_10_1016_j_geoderma_2007_12_009 crossref_primary_10_1016_j_geoderma_2020_114272 crossref_primary_10_1016_j_apgeochem_2012_11_005 crossref_primary_10_1255_jnirs_930 crossref_primary_10_1038_s41598_024_53210_0 crossref_primary_10_1007_s10661_012_2838_z crossref_primary_10_1016_j_geoderma_2014_04_030 crossref_primary_10_1016_j_geoderma_2017_02_015 crossref_primary_10_3390_s110706656 crossref_primary_10_3390_s24216855 crossref_primary_10_1016_j_compag_2018_08_036 crossref_primary_10_1016_j_catena_2019_104109 crossref_primary_10_1016_j_ecolind_2009_05_001 crossref_primary_10_1016_j_geodrs_2014_08_001 crossref_primary_10_1155_2011_641328 crossref_primary_10_1255_jnirs_923 crossref_primary_10_1134_S1064229320080165 crossref_primary_10_1016_j_neucom_2020_01_008 crossref_primary_10_1016_j_biosystemseng_2016_06_011 crossref_primary_10_1016_j_envsci_2007_03_002 crossref_primary_10_2134_agronj2015_0173 crossref_primary_10_1371_journal_pone_0233242 crossref_primary_10_1016_j_biosystemseng_2016_06_007 crossref_primary_10_3390_rs14030740 crossref_primary_10_1364_BOE_531681 crossref_primary_10_1007_s11368_016_1502_6 crossref_primary_10_3390_s24165126 crossref_primary_10_1007_s12524_016_0587_0 crossref_primary_10_1016_j_chemolab_2007_06_007 crossref_primary_10_1016_j_apgeochem_2021_104909 crossref_primary_10_1016_j_geoderma_2015_07_017 crossref_primary_10_1002_ldr_3497 crossref_primary_10_1016_j_geoderma_2021_115501 crossref_primary_10_3390_heritage3020031 crossref_primary_10_1016_j_geoderma_2015_07_010 crossref_primary_10_1016_j_geoderma_2019_05_020 crossref_primary_10_1016_j_geoderma_2014_05_005 crossref_primary_10_1002_ldr_3250 crossref_primary_10_1016_j_geoderma_2022_115905 crossref_primary_10_1016_j_geodrs_2020_e00253 crossref_primary_10_1111_ejss_12272 crossref_primary_10_1109_JSTARS_2014_2371920 crossref_primary_10_1117_1_JRS_12_042803 crossref_primary_10_1590_S0100_06832010000300027 crossref_primary_10_1002_2015GB005178 crossref_primary_10_1016_j_geoderma_2014_11_011 crossref_primary_10_1080_00103624_2022_2070638 crossref_primary_10_2136_sssaj2017_09_0332 crossref_primary_10_1007_s11368_023_03691_9 crossref_primary_10_3390_soilsystems6020038 crossref_primary_10_1016_j_geoderma_2014_05_012 crossref_primary_10_1371_journal_pone_0066409 crossref_primary_10_1016_j_crte_2013_12_001 crossref_primary_10_1080_10106049_2015_1086903 crossref_primary_10_3390_min8050184 crossref_primary_10_1016_j_geoderma_2018_03_029 crossref_primary_10_1016_j_geoderma_2017_11_020 crossref_primary_10_1111_j_1365_2389_2011_01358_x crossref_primary_10_3390_ai3020032 crossref_primary_10_1016_j_geoderma_2017_11_027 crossref_primary_10_1016_j_geoderma_2012_01_017 crossref_primary_10_1016_j_geoderma_2012_01_018 crossref_primary_10_1016_j_geodrs_2020_e00349 crossref_primary_10_1016_j_jag_2020_102094 crossref_primary_10_1016_j_geoderma_2020_114358 crossref_primary_10_1007_s10933_019_00076_2 crossref_primary_10_3390_rs9101078 crossref_primary_10_2136_sssaj2017_10_0361 crossref_primary_10_1016_j_geoderma_2013_03_018 crossref_primary_10_1109_JSTARS_2023_3269078 crossref_primary_10_1016_j_compag_2020_105710 crossref_primary_10_1111_ejss_12259 crossref_primary_10_1016_j_gsf_2024_101881 crossref_primary_10_1016_j_geoderma_2019_05_043 crossref_primary_10_1016_j_scitotenv_2013_03_093 crossref_primary_10_1590_S0100_06832013000400004 crossref_primary_10_1007_s10661_018_6898_6 crossref_primary_10_1080_00103624_2020_1729367 crossref_primary_10_1016_j_scitotenv_2018_10_106 crossref_primary_10_3390_network3040021 crossref_primary_10_1007_s00704_011_0425_9 crossref_primary_10_1016_j_geoderma_2015_06_002 crossref_primary_10_1002_jpln_200700087 crossref_primary_10_1007_s10311_008_0166_x crossref_primary_10_1007_s11119_024_10203_3 crossref_primary_10_1016_j_apgeochem_2009_04_017 crossref_primary_10_1016_j_geoderma_2016_10_036 crossref_primary_10_5433_1679_0359_2019v40n1p99 crossref_primary_10_3390_agronomy13030935 crossref_primary_10_1080_01431161_2020_1854892 crossref_primary_10_3390_rs16173142 crossref_primary_10_1016_j_mineng_2017_08_007 crossref_primary_10_1111_ejss_12129 crossref_primary_10_1016_j_geoderma_2009_01_013 crossref_primary_10_1016_j_geoderma_2017_01_030 crossref_primary_10_1007_s10661_016_5605_8 crossref_primary_10_1016_j_geoderma_2013_04_007 crossref_primary_10_1016_j_geoderma_2013_12_007 crossref_primary_10_1080_10095020_2023_2211612 crossref_primary_10_1016_j_geoderma_2015_08_026 crossref_primary_10_1080_00103624_2024_2378158 crossref_primary_10_3390_w12010261 crossref_primary_10_1016_j_envpol_2022_120962 crossref_primary_10_3390_rs13020308 crossref_primary_10_1007_s11707_011_0175_0 crossref_primary_10_1016_j_still_2022_105439 crossref_primary_10_1016_j_clay_2011_09_010 crossref_primary_10_1016_j_catena_2016_10_001 crossref_primary_10_5424_sjar_2012104_681_11 crossref_primary_10_1016_j_geoderma_2014_06_007 crossref_primary_10_1016_j_scitotenv_2015_01_087 crossref_primary_10_3390_su12020443 crossref_primary_10_1007_s11270_013_1658_2 crossref_primary_10_1016_j_geoderma_2009_06_003 crossref_primary_10_1071_SR09005 crossref_primary_10_1016_j_geoderma_2019_04_003 crossref_primary_10_1080_01431161_2013_796097 crossref_primary_10_3390_rs8090755 crossref_primary_10_1016_S1002_0160_17_60485_5 crossref_primary_10_1016_j_geoderma_2018_10_015 crossref_primary_10_1097_ss_0b013e31804fa202 crossref_primary_10_1002_ppp_705 crossref_primary_10_1016_j_geoderma_2020_114469 crossref_primary_10_2136_sssaj2008_0025 crossref_primary_10_3390_rs13183718 crossref_primary_10_1016_j_scitotenv_2015_09_096 crossref_primary_10_1111_ejss_12986 crossref_primary_10_2136_sssaj2016_02_0052 crossref_primary_10_2136_sssaj2018_01_0014 crossref_primary_10_3390_rs9090939 crossref_primary_10_1016_j_scitotenv_2008_12_049 crossref_primary_10_1109_ACCESS_2024_3403720 crossref_primary_10_1002_clen_201400400 crossref_primary_10_1016_j_catena_2019_104185 crossref_primary_10_1080_00103624_2015_1048250 crossref_primary_10_4236_ojss_2016_69014 crossref_primary_10_29252_jgit_8_2_59 crossref_primary_10_1007_s11356_018_1217_x crossref_primary_10_1007_s10705_015_9750_1 crossref_primary_10_1080_01431161_2012_676687 crossref_primary_10_2136_sssaj2006_0285 crossref_primary_10_1016_j_rse_2022_113166 crossref_primary_10_1590_S0006_87052011000300017 crossref_primary_10_2136_sssaj2006_0049 crossref_primary_10_2136_sssaj2008_0015 crossref_primary_10_3390_rs8040341 crossref_primary_10_1039_c2em30330b crossref_primary_10_1016_j_geoderma_2019_07_010 crossref_primary_10_1016_j_jhydrol_2010_07_014 crossref_primary_10_1016_j_envpol_2020_115845 crossref_primary_10_19047_0136_1694_2013_71_52_64 crossref_primary_10_1016_j_catena_2014_09_004 crossref_primary_10_1016_j_earscirev_2024_104814 crossref_primary_10_3390_land12122155 crossref_primary_10_1590_01000683rbcs20140410 crossref_primary_10_3390_rs13122313 crossref_primary_10_1109_JSEN_2011_2128867 crossref_primary_10_12677_AAM_2021_1011387 crossref_primary_10_1016_j_geoderma_2018_10_038 crossref_primary_10_1155_2018_3168974 crossref_primary_10_3390_s24030849 crossref_primary_10_1080_00207233_2014_967509 crossref_primary_10_1016_j_rse_2011_02_004 crossref_primary_10_1111_j_1475_2743_2011_00337_x crossref_primary_10_1016_j_catena_2024_108115 crossref_primary_10_1007_s12517_014_1580_y crossref_primary_10_1016_j_geoderma_2018_11_004 crossref_primary_10_2139_ssrn_1141986 crossref_primary_10_29050_harranziraat_931045 crossref_primary_10_1016_j_geoderma_2009_07_001 crossref_primary_10_2134_jeq2009_0314 crossref_primary_10_1016_j_chemolab_2008_06_003 crossref_primary_10_1071_SR07099 crossref_primary_10_1371_journal_pone_0210235 crossref_primary_10_1016_j_jag_2020_102111 crossref_primary_10_3390_rs8090701 crossref_primary_10_1016_j_geoderma_2020_114775 crossref_primary_10_1029_2011JF001977 crossref_primary_10_33724_zm_718134 crossref_primary_10_5721_EuJRS20134601 crossref_primary_10_3390_rs6054305 crossref_primary_10_1080_05704928_2011_570837 crossref_primary_10_1111_ejss_12434 crossref_primary_10_2136_vzj2014_07_0080 crossref_primary_10_1016_j_geoderma_2017_03_012 crossref_primary_10_1016_j_geoderma_2019_07_013 crossref_primary_10_1016_S1002_0160_21_60074_7 crossref_primary_10_1255_jnirs_1184 crossref_primary_10_1016_j_soisec_2024_100145 crossref_primary_10_1007_s12524_012_0211_x crossref_primary_10_1672_06_182_1 crossref_primary_10_1007_s11119_010_9173_6 crossref_primary_10_1016_j_geoderma_2022_116284 crossref_primary_10_1146_annurev_energy_31_020105_100307 crossref_primary_10_1016_j_chemolab_2016_02_013 crossref_primary_10_3390_rs6042699 crossref_primary_10_1016_j_geoderma_2022_116048 crossref_primary_10_1016_S1002_0160_15_60029_7 crossref_primary_10_1016_j_geoderma_2018_12_044 crossref_primary_10_1016_j_geoderma_2007_10_012 crossref_primary_10_1016_j_geoderma_2018_12_042 crossref_primary_10_1002_ppp_629 crossref_primary_10_1016_j_geoderma_2020_114306 crossref_primary_10_1016_j_clet_2022_100434 crossref_primary_10_1255_jnirs_1053 crossref_primary_10_1016_j_jag_2014_04_007 crossref_primary_10_1016_j_geoderma_2022_116294 crossref_primary_10_1590_0103_9016_2013_0365 crossref_primary_10_1672_0277_5212_2007_27_1098_PCEISU_2_0_CO_2 crossref_primary_10_2136_sssaj2013_08_0354 crossref_primary_10_1139_cjss_2018_0027 crossref_primary_10_1016_j_catena_2017_07_016 crossref_primary_10_1186_s13717_018_0138_4 crossref_primary_10_1016_j_catena_2017_07_014 crossref_primary_10_2136_sssaj2013_11_0488 crossref_primary_10_1111_j_1365_2389_2012_01495_x crossref_primary_10_1016_j_isprsjprs_2022_04_009 crossref_primary_10_1016_j_geoderma_2012_03_011 crossref_primary_10_1590_S0100_06832014000200002 crossref_primary_10_1016_j_eswa_2021_115678 crossref_primary_10_1007_s11104_017_3418_3 crossref_primary_10_1007_s12665_012_2096_y crossref_primary_10_1080_03650340_2017_1373185 crossref_primary_10_1016_j_catena_2020_105041 crossref_primary_10_1016_j_jag_2016_08_006 crossref_primary_10_1016_j_palaeo_2017_02_027 crossref_primary_10_1016_j_jappgeo_2016_01_015 crossref_primary_10_1109_TGRS_2018_2883311 crossref_primary_10_2136_sssaj2008_0288 crossref_primary_10_2136_sssaj2011_0053 crossref_primary_10_2136_sssaj2018_11_0440 crossref_primary_10_1016_j_geoderma_2013_05_011 crossref_primary_10_1080_10106049_2013_821175 crossref_primary_10_1111_j_1365_2389_2012_01483_x crossref_primary_10_1016_j_geoderma_2019_114038 crossref_primary_10_1016_j_geodrs_2023_e00726 crossref_primary_10_1016_j_compag_2022_107192 crossref_primary_10_3390_f10030217 crossref_primary_10_1007_s11104_020_04775_y crossref_primary_10_1111_j_1365_2389_2012_01456_x crossref_primary_10_3390_rs14112599 crossref_primary_10_2136_sssaj2011_0106N crossref_primary_10_1002_saj2_20158 crossref_primary_10_1016_j_infrared_2022_104372 crossref_primary_10_56530_spectroscopy_pj5166a9 crossref_primary_10_1016_j_still_2014_11_002 crossref_primary_10_1016_j_snb_2013_08_023 crossref_primary_10_1111_j_1365_2389_2009_01178_x crossref_primary_10_1364_AO_52_000B82 crossref_primary_10_1088_1742_6596_1294_9_092022 crossref_primary_10_1371_journal_pone_0151536 crossref_primary_10_1016_j_compag_2017_11_029 crossref_primary_10_2136_sssaj2016_08_0253 crossref_primary_10_1016_j_biosystemseng_2011_07_002 crossref_primary_10_1016_j_meatsci_2020_108153 crossref_primary_10_1007_s11269_014_0796_7 crossref_primary_10_1255_jnirs_1132 crossref_primary_10_1016_j_proeng_2012_04_187 crossref_primary_10_1255_jnirs_1035 crossref_primary_10_1016_j_geoderma_2007_08_021 crossref_primary_10_2136_sssaj2011_0307 crossref_primary_10_1016_j_geoderma_2015_11_023 crossref_primary_10_1016_j_geoderma_2019_114133 crossref_primary_10_1016_j_geoderma_2009_04_005 crossref_primary_10_1002_ldr_3718 crossref_primary_10_1016_j_geoderma_2009_04_010 crossref_primary_10_1016_j_still_2018_11_002 crossref_primary_10_1016_j_geoderma_2011_03_010 crossref_primary_10_1002_saj2_20164 crossref_primary_10_2136_sssaj2015_10_0364 crossref_primary_10_1016_j_soisec_2021_100023 crossref_primary_10_1016_j_geoderma_2013_06_002 crossref_primary_10_1016_j_rse_2008_09_004 crossref_primary_10_1016_j_gsme_2024_05_001 crossref_primary_10_3390_rs16030565 crossref_primary_10_1016_j_saa_2016_05_026 crossref_primary_10_1007_s11368_024_03914_7 crossref_primary_10_1016_j_rsase_2024_101242 crossref_primary_10_1177_0309133312446981 crossref_primary_10_1016_j_quascirev_2014_01_011 crossref_primary_10_2136_sssaj2006_0211 crossref_primary_10_1007_s12517_014_1475_y crossref_primary_10_1016_j_jafrearsci_2024_105457 crossref_primary_10_1016_j_geoderma_2014_01_011 crossref_primary_10_1080_2150704X_2013_767479 crossref_primary_10_2136_sssaj2012_0093 crossref_primary_10_1016_j_catena_2012_01_001 crossref_primary_10_1080_00103624_2014_954716 crossref_primary_10_1111_j_1365_2389_2011_01372_x crossref_primary_10_14358_PERS_76_1_85 crossref_primary_10_5897_JCECT2018_0482 crossref_primary_10_1071_SR14339 crossref_primary_10_1016_j_geoderma_2019_114083 crossref_primary_10_1016_j_geodrs_2018_e00198 crossref_primary_10_15377_2409_9813_2014_01_01_3 crossref_primary_10_1016_j_geoderma_2015_01_002 crossref_primary_10_1071_SR10098 crossref_primary_10_1016_j_geoderma_2013_07_016 crossref_primary_10_1016_j_rse_2020_112223 crossref_primary_10_1007_s10812_019_00891_5 crossref_primary_10_1016_j_soilbio_2011_02_019 crossref_primary_10_4995_raet_2020_13331 crossref_primary_10_1016_j_xinn_2025_100839 crossref_primary_10_1080_05704928_2022_2128365 crossref_primary_10_1002_admt_202400038 crossref_primary_10_1016_j_geoderma_2012_11_011 crossref_primary_10_1016_j_infrared_2022_104056 crossref_primary_10_3390_rs9020134 crossref_primary_10_1016_j_compag_2018_11_006 crossref_primary_10_1016_j_scitotenv_2019_02_125 crossref_primary_10_1007_s40808_016_0259_7 crossref_primary_10_1016_j_geoderma_2008_09_019 crossref_primary_10_3390_s20236729 crossref_primary_10_3390_rs10081172 crossref_primary_10_1007_s11270_015_2442_2 crossref_primary_10_1016_j_geoderma_2023_116651 crossref_primary_10_3390_rs15174264 crossref_primary_10_3390_s22093187 crossref_primary_10_1007_s11368_009_0162_1 crossref_primary_10_1016_j_geoderma_2011_10_015 crossref_primary_10_1016_j_geoderma_2011_08_001 crossref_primary_10_1016_j_geoderma_2008_04_007 crossref_primary_10_1016_j_measurement_2013_07_007 crossref_primary_10_1007_s10661_011_2326_x crossref_primary_10_1080_01431161_2019_1574992 crossref_primary_10_1016_j_chemolab_2024_105253 crossref_primary_10_1016_j_soilbio_2011_03_023 crossref_primary_10_3390_agronomy11091879 crossref_primary_10_1155_2012_439567 crossref_primary_10_1016_j_geoderma_2012_12_014 crossref_primary_10_1016_j_trac_2010_05_006 crossref_primary_10_18393_ejss_319208 crossref_primary_10_1016_j_geoderma_2024_116941 crossref_primary_10_1016_j_geoderma_2012_12_016 crossref_primary_10_1016_j_geoderma_2019_114163 crossref_primary_10_1016_j_geoderma_2022_116102 crossref_primary_10_2136_sssaj2013_02_0062 crossref_primary_10_1016_j_geoderma_2010_02_001 crossref_primary_10_2136_sssaj2014_11_0458 crossref_primary_10_1016_j_geoderma_2009_12_021 crossref_primary_10_1016_j_scitotenv_2023_163677 crossref_primary_10_2134_jeq2010_0183 crossref_primary_10_1016_j_geoderma_2017_05_018 crossref_primary_10_1016_j_geoderma_2009_12_025 crossref_primary_10_1109_MGRS_2024_3469069 crossref_primary_10_1016_j_saa_2018_06_018 crossref_primary_10_1016_j_biosystemseng_2008_02_007 crossref_primary_10_1590_S0100_06832014000300028 crossref_primary_10_1016_j_chemolab_2011_11_003 crossref_primary_10_1016_j_geoderma_2021_115387 crossref_primary_10_3390_rs14215627 crossref_primary_10_1007_s12665_014_3353_z crossref_primary_10_1016_j_aca_2019_01_002 crossref_primary_10_1080_03650340_2017_1280728 crossref_primary_10_1007_s10661_016_5631_6 crossref_primary_10_1016_j_catena_2022_106288 crossref_primary_10_1016_j_chemolab_2019_03_011 crossref_primary_10_1016_j_geomorph_2010_11_008 crossref_primary_10_1080_15320383_2012_712069 crossref_primary_10_3390_rs1040971 crossref_primary_10_1002_saj2_20435 crossref_primary_10_1016_j_still_2015_07_021 crossref_primary_10_1016_j_geoderma_2015_12_014 crossref_primary_10_1016_j_geoderma_2012_06_009 crossref_primary_10_1016_j_geoderma_2024_117051 crossref_primary_10_1016_j_scitotenv_2019_134890 crossref_primary_10_1086_733661 crossref_primary_10_3390_s17102428 crossref_primary_10_5194_soil_6_89_2020 crossref_primary_10_1016_j_geoderma_2016_10_010 crossref_primary_10_3390_w14071158 crossref_primary_10_1007_s11769_019_1020_8 crossref_primary_10_1016_j_geoderma_2008_01_010 crossref_primary_10_1016_j_pacs_2019_100151 crossref_primary_10_1111_j_1365_2389_2009_01162_x crossref_primary_10_4236_ars_2013_24040 crossref_primary_10_1111_ejss_13271 crossref_primary_10_1016_j_compag_2020_105630 crossref_primary_10_1080_10106049_2011_623792 crossref_primary_10_1590_18069657rbcs20180174 crossref_primary_10_2751_jcac_10_53 crossref_primary_10_1016_j_geoderma_2021_115163 crossref_primary_10_1007_s11270_013_1539_8 crossref_primary_10_1016_j_geoderma_2014_10_019 crossref_primary_10_1590_S0006_87052010000100020 crossref_primary_10_25130_tjas_21_1_2 crossref_primary_10_1016_j_geoderma_2019_01_021 crossref_primary_10_1016_j_geoderma_2019_01_022 crossref_primary_10_15446_esrj_v25n4_95748 crossref_primary_10_1080_01431161_2013_779045 crossref_primary_10_3390_s21010148 crossref_primary_10_1111_j_1365_2389_2008_01058_x crossref_primary_10_1016_j_compag_2009_10_006 crossref_primary_10_1016_j_geoderma_2009_10_001 crossref_primary_10_1016_j_geoderma_2015_12_031 crossref_primary_10_1007_s11430_013_4808_x crossref_primary_10_1016_j_geoderma_2024_117036 crossref_primary_10_1080_00103624_2014_988582 crossref_primary_10_1016_j_geodrs_2017_04_003 crossref_primary_10_1080_03650340_2022_2134565 crossref_primary_10_1016_j_soisec_2022_100061 crossref_primary_10_1080_00103624_2011_584597 crossref_primary_10_1080_00103624_2013_768263 crossref_primary_10_1016_j_biosystemseng_2013_01_005 crossref_primary_10_1016_j_geoderma_2022_115696 crossref_primary_10_1097_SS_0b013e3181b21491 crossref_primary_10_1111_j_1365_2389_2010_01305_x crossref_primary_10_1016_j_catena_2013_03_009 crossref_primary_10_1016_j_biosystemseng_2016_04_019 crossref_primary_10_1016_j_biosystemseng_2016_04_018 crossref_primary_10_1177_0967033518799518 crossref_primary_10_1016_j_catena_2023_107649 crossref_primary_10_2136_sssaj2009_0218 crossref_primary_10_1016_j_catena_2012_10_014 crossref_primary_10_1016_j_catena_2020_104795 crossref_primary_10_3390_rs10111747 crossref_primary_10_3390_soilsystems3010011 crossref_primary_10_1007_s10661_016_5568_9 crossref_primary_10_1016_j_geoderma_2010_03_001 crossref_primary_10_1155_2013_720589 crossref_primary_10_1080_01431161_2016_1163751 crossref_primary_10_1155_2012_868090 crossref_primary_10_1016_j_jhazmat_2020_123288 crossref_primary_10_1016_j_apgeochem_2011_08_004 crossref_primary_10_1080_00380768_2013_802643 crossref_primary_10_4028_www_scientific_net_KEM_500_838 crossref_primary_10_1016_j_agrformet_2017_05_018 crossref_primary_10_1016_j_jaridenv_2009_08_011 crossref_primary_10_3390_agronomy14061150 crossref_primary_10_1177_09670335241269168 crossref_primary_10_1016_j_compag_2015_05_002 crossref_primary_10_1016_j_gexplo_2023_107243 crossref_primary_10_1080_00387010_2013_840315 crossref_primary_10_1080_05704928_2013_811081 crossref_primary_10_2136_sssaj2009_0244 crossref_primary_10_1016_j_geoderma_2011_07_015 crossref_primary_10_1016_j_geoderma_2011_05_006 crossref_primary_10_1016_j_chemolab_2009_04_005 crossref_primary_10_1016_j_geoderma_2015_03_010 crossref_primary_10_3390_soilsystems4030042 crossref_primary_10_1007_s11368_017_1766_5 crossref_primary_10_5194_soil_4_101_2018 crossref_primary_10_2136_sssaj2014_09_0355 crossref_primary_10_1080_01431161_2018_1460511 crossref_primary_10_1590_18069657rbcs20170413 crossref_primary_10_2136_sssaj2018_05_0175 crossref_primary_10_1002_saj2_20475 crossref_primary_10_1016_j_catena_2020_104609 crossref_primary_10_1080_01431160801930248 crossref_primary_10_1177_0734242X12450601 crossref_primary_10_1088_1748_9326_aca41e crossref_primary_10_1016_j_proenv_2013_06_056 crossref_primary_10_1016_j_tifs_2021_04_008 crossref_primary_10_1016_j_soilbio_2013_10_022 crossref_primary_10_1111_ejss_13192 crossref_primary_10_1007_s42452_020_03322_9 crossref_primary_10_1016_j_microc_2018_06_040 crossref_primary_10_1016_j_earscirev_2016_01_012 crossref_primary_10_1002_ldr_4162 crossref_primary_10_1002_ldr_3073 crossref_primary_10_1155_2011_358193 crossref_primary_10_1016_j_rse_2023_113715 crossref_primary_10_1364_JOT_83_000642 crossref_primary_10_1016_j_catena_2020_104987 crossref_primary_10_1080_15324982_2010_502917 crossref_primary_10_1134_S1064229320010111 crossref_primary_10_3390_s18020583 crossref_primary_10_2136_sssaj2015_06_0234 crossref_primary_10_1016_j_envpol_2014_03_005 crossref_primary_10_1016_j_catena_2023_107200 crossref_primary_10_1016_j_geoderma_2006_07_004 crossref_primary_10_1371_journal_pone_0142295 crossref_primary_10_2136_sssaj2009_0130 crossref_primary_10_1016_j_geoderma_2022_115776 crossref_primary_10_3390_s17102366 crossref_primary_10_1071_SR16227 crossref_primary_10_1002_xrs_1363 crossref_primary_10_1016_j_geoderma_2018_09_015 |
Cites_doi | 10.1016/j.geoderma.2005.01.001 10.1016/0895-4356(88)90031-5 10.1016/S0065-2113(08)60672-0 10.1097/00010694-193401000-00003 10.2135/cropsci1991.0011183X003100020049x 10.2136/sssaj1981.03615995004500060031x 10.1029/JB095iB08p12653 10.2136/sssaj2002.0299 10.1255/jnirs.258 10.1255/jnirs.283 10.1016/S0167-9473(01)00065-2 10.1346/CCMN.1998.0460506 10.1080/00103620009370525 10.1071/EA97144 10.1016/0003-2670(86)80028-9 10.2136/sssaj1992.03615995005600030031x 10.13031/2013.7002 10.4141/S01-054 10.1214/aos/1176347963 10.1214/aos/1013203451 10.2136/sssaj1992.03615995005600030027x 10.1023/A:1023008322682 10.1214/aos/1016218223 10.1255/jnirs.362 10.1346/CCMN.1999.0470205 10.1006/jcss.1997.1504 10.1029/JB089iB07p06329 10.2135/cropsci1991.0011183X003100060034x 10.1071/SR02137 10.1017/S0021859602002836 10.1016/S0169-7439(01)00155-1 10.2136/sssaj2001.6551463x 10.2136/sssaj2002.0640 10.1190/1.1440721 10.1002/sim.1501 10.2136/sssaj2002.0988 10.1071/EA97158 10.2307/2346830 10.1255/jnirs.275 10.2136/sssaj1995.03615995005900020014x 10.2134/agronj2003.1442 10.1255/jnirs.248 10.1029/2002JE001847 10.1023/A:1017514802028 10.1016/S0065-2113(02)75005-0 10.1071/EA01172 |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier B.V. – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TV C1K F1W H96 L.G |
DOI | 10.1016/j.geoderma.2005.04.025 |
DatabaseName | CrossRef Pascal-Francis Pollution Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Pollution Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 290 |
ExternalDocumentID | 17773940 10_1016_j_geoderma_2005_04_025 S0016706105001564 |
GeographicLocations | United States USA British Isles, England, Lincoln Asia Europe Africa |
GeographicLocations_xml | – name: British Isles, England, Lincoln – name: Asia – name: Africa – name: USA – name: Europe |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TV C1K F1W H96 L.G |
ID | FETCH-LOGICAL-a427t-94d0449386d2912f3710a1969f573dfd02ef6a39e455ae670b4b34fe9f87388f3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 19:56:30 EDT 2025 Mon Jul 21 09:15:43 EDT 2025 Tue Jul 01 02:24:33 EDT 2025 Thu Apr 24 22:50:32 EDT 2025 Fri Feb 23 02:20:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | PLS regression VNIR Diffuse reflectance spectroscopy Boosted regression trees Clay mineralogy Soil characterization Archive tropical zone global Soil investigation North America Reflection spectrometry diversity America pedons calibration Validation Center Territory cost Diffuse reflection Europe Africa sampling Regional scope Property of soil samples Weight Near infrared radiation Asia characterization Reflectance |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a427t-94d0449386d2912f3710a1969f573dfd02ef6a39e455ae670b4b34fe9f87388f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 19965387 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_19965387 pascalfrancis_primary_17773940 crossref_citationtrail_10_1016_j_geoderma_2005_04_025 crossref_primary_10_1016_j_geoderma_2005_04_025 elsevier_sciencedirect_doi_10_1016_j_geoderma_2005_04_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-06-01 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Geoderma |
PublicationYear | 2006 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Friedman (bib22) 2001; 29 Moron, Cozzolino (bib40) 2003; 11 Dunn, Beecher, Batten, Ciavarella (bib16) 2002; 42 Friedman, Hastie, Tibshirani (bib19) 2000; 28 Friedman, Hastie, Tibshirani (bib20) 2000; 28 Baumgardner, Silva, Biehl, Stoner (bib2) 1985; 38 Geladi, Kowalski (bib26) 1986; 185 Cozzolino, Moron (bib14) 2003; 140 Post, Izaurralde, Mann, Bliss (bib41) 2001; 51 Brown, D.J., Bricklemyer, R.S. and Miller, P.R., in press. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma. Freund, Schapire (bib17) 1997; 55 Agresti (bib1) 1996 Clark, King, Klejwa, Swayze, Vergo (bib11) 1990; 95 Kaufman, Rousseeuw (bib34) 1990 Stoner, Baumgardner (bib56) 1981; 45 Wold, Sjostrom, Eriksson (bib62) 2001; 58 Islam, Singh, McBratney (bib32) 2003; 41 McKenzie, Cresswell, Ryan, Grundy (bib38) 2000; 31 Reeves, McCarty, Reeves, Follet, Kimble (bib45) 2002; 223 Martin, Malley, Manning, Fuller (bib35) 2002; 82 McCarty, Reeves, Reeves, Follett, Kimble (bib37) 2002; 66 Scheinost, Chavernas, Barron, Torrent (bib48) 1998; 46 Shepherd, Walsh (bib53) 2002; 66 Shenk, Westerhaus (bib52) 1991; 31 Clark (bib10) 1999 Hunt (bib30) 1977; 42 Reeves, McCarty, Meisinger (bib43) 1999; 7 Thomasson, Sui, Cox, Al-Rajehy (bib57) 2001; 44 Hunt (bib31) 1982 Henderson, Baumgardner, Franzmeier, Stott, Coster (bib28) 1992; 56 Friedman, Meulman (bib24) 2003; 22 Ben-Dor (bib3) 2002; 75 Ben-Dor, Irons, Epema (bib5) 1999 Clark, Swayze, Livo, Kokaly, Sutley, Dalton, McDougal, Gent (bib13) 2003; 108 Scheinost, Schulze, Schwertmann (bib49) 1999; 47 Freund, Schapire (bib18) 2000; 28 Hudson (bib29) 1992; 56 Sherrod, Dunn, Peterson, Kolberg (bib54) 2002; 66 Shenk, Westerhaus (bib51) 1991; 31 Hartigan, Wong (bib27) 1979; 28 Rossel, McBratney (bib47) 1998; 38 Gauch, Hwang, Fick (bib25) 2003; 95 Janik, Merry, Skjemstad (bib33) 1998; 38 Ridgeway (bib46) 2000; 28 Whittig, Allardice (bib61) 1986 Zhu, Hudson, Burt, Lubich, Simonson (bib63) 2001; 65 Berzaghi, Shenk, Westerhaus (bib6) 2000; 8 Mehra, Jackson (bib39) 1960 R Development Core Team (bib42) 2004 Reeves, McCarty, Meisinger (bib44) 2000; 8 Walkley, Black (bib60) 1934; 37 Ben-Dor, Banin (bib4) 1995; 59 Breiman, Friedman, Olshen, Stone (bib7) 1983 Udelhoven, Emmerling, Jarmer (bib59) 2003; 251 Soil Survey Staff, 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, version 3.0, USDA-NRCS National Soil Survey Center, Washington, D.C. Clark, Roush (bib12) 1984; 89 Schwertmann (bib50) 1993; vol. 31 Thompson, Walter (bib58) 1988; 41 Dardenne, Sinnaeve, Baeten (bib15) 2000; 8 Friedman (bib21) 1991; 19 Friedman (bib23) 2002; 38 Friedman (10.1016/j.geoderma.2005.04.025_bib21) 1991; 19 Thomasson (10.1016/j.geoderma.2005.04.025_bib57) 2001; 44 Udelhoven (10.1016/j.geoderma.2005.04.025_bib59) 2003; 251 Cozzolino (10.1016/j.geoderma.2005.04.025_bib14) 2003; 140 Mehra (10.1016/j.geoderma.2005.04.025_bib39) 1960 Martin (10.1016/j.geoderma.2005.04.025_bib35) 2002; 82 Friedman (10.1016/j.geoderma.2005.04.025_bib22) 2001; 29 Friedman (10.1016/j.geoderma.2005.04.025_bib19) 2000; 28 Sherrod (10.1016/j.geoderma.2005.04.025_bib54) 2002; 66 Dardenne (10.1016/j.geoderma.2005.04.025_bib15) 2000; 8 Clark (10.1016/j.geoderma.2005.04.025_bib10) 1999 Friedman (10.1016/j.geoderma.2005.04.025_bib20) 2000; 28 Dunn (10.1016/j.geoderma.2005.04.025_bib16) 2002; 42 Islam (10.1016/j.geoderma.2005.04.025_bib32) 2003; 41 Agresti (10.1016/j.geoderma.2005.04.025_bib1) 1996 Baumgardner (10.1016/j.geoderma.2005.04.025_bib2) 1985; 38 Geladi (10.1016/j.geoderma.2005.04.025_bib26) 1986; 185 Gauch (10.1016/j.geoderma.2005.04.025_bib25) 2003; 95 Scheinost (10.1016/j.geoderma.2005.04.025_bib49) 1999; 47 10.1016/j.geoderma.2005.04.025_bib8 Hudson (10.1016/j.geoderma.2005.04.025_bib29) 1992; 56 Ben-Dor (10.1016/j.geoderma.2005.04.025_bib3) 2002; 75 Hunt (10.1016/j.geoderma.2005.04.025_bib30) 1977; 42 Reeves (10.1016/j.geoderma.2005.04.025_bib45) 2002; 223 Hunt (10.1016/j.geoderma.2005.04.025_bib31) 1982 Post (10.1016/j.geoderma.2005.04.025_bib41) 2001; 51 Ben-Dor (10.1016/j.geoderma.2005.04.025_bib5) 1999 10.1016/j.geoderma.2005.04.025_bib55 Hartigan (10.1016/j.geoderma.2005.04.025_bib27) 1979; 28 Kaufman (10.1016/j.geoderma.2005.04.025_bib34) 1990 Stoner (10.1016/j.geoderma.2005.04.025_bib56) 1981; 45 Clark (10.1016/j.geoderma.2005.04.025_bib12) 1984; 89 Freund (10.1016/j.geoderma.2005.04.025_bib17) 1997; 55 Reeves (10.1016/j.geoderma.2005.04.025_bib43) 1999; 7 Ridgeway (10.1016/j.geoderma.2005.04.025_bib46) 2000; 28 Shenk (10.1016/j.geoderma.2005.04.025_bib52) 1991; 31 Janik (10.1016/j.geoderma.2005.04.025_bib33) 1998; 38 Ben-Dor (10.1016/j.geoderma.2005.04.025_bib4) 1995; 59 McKenzie (10.1016/j.geoderma.2005.04.025_bib38) 2000; 31 Shepherd (10.1016/j.geoderma.2005.04.025_bib53) 2002; 66 Henderson (10.1016/j.geoderma.2005.04.025_bib28) 1992; 56 Schwertmann (10.1016/j.geoderma.2005.04.025_bib50) 1993; vol. 31 Clark (10.1016/j.geoderma.2005.04.025_bib13) 2003; 108 Moron (10.1016/j.geoderma.2005.04.025_bib40) 2003; 11 Walkley (10.1016/j.geoderma.2005.04.025_bib60) 1934; 37 Zhu (10.1016/j.geoderma.2005.04.025_bib63) 2001; 65 Wold (10.1016/j.geoderma.2005.04.025_bib62) 2001; 58 Berzaghi (10.1016/j.geoderma.2005.04.025_bib6) 2000; 8 Clark (10.1016/j.geoderma.2005.04.025_bib11) 1990; 95 Shenk (10.1016/j.geoderma.2005.04.025_bib51) 1991; 31 Breiman (10.1016/j.geoderma.2005.04.025_bib7) 1983 Friedman (10.1016/j.geoderma.2005.04.025_bib24) 2003; 22 Thompson (10.1016/j.geoderma.2005.04.025_bib58) 1988; 41 Reeves (10.1016/j.geoderma.2005.04.025_bib44) 2000; 8 Scheinost (10.1016/j.geoderma.2005.04.025_bib48) 1998; 46 R Development Core Team (10.1016/j.geoderma.2005.04.025_bib42) 2004 McCarty (10.1016/j.geoderma.2005.04.025_bib37) 2002; 66 Freund (10.1016/j.geoderma.2005.04.025_bib18) 2000; 28 Rossel (10.1016/j.geoderma.2005.04.025_bib47) 1998; 38 Friedman (10.1016/j.geoderma.2005.04.025_bib23) 2002; 38 Whittig (10.1016/j.geoderma.2005.04.025_bib61) 1986 |
References_xml | – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bib60 article-title: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 41 start-page: 949 year: 1988 end-page: 958 ident: bib58 article-title: A reappraisal of the kappa-coefficient publication-title: J. Clin. Epidemiol. – volume: 95 start-page: 1442 year: 2003 end-page: 1446 ident: bib25 article-title: Model evaluation by comparison of model-based predictions and measured values publication-title: Agron. J. – year: 1983 ident: bib7 article-title: Classification and Regression Trees – volume: 66 start-page: 640 year: 2002 end-page: 646 ident: bib37 article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement publication-title: Soil Sci. Soc. Am. J. – volume: 28 start-page: 393 year: 2000 end-page: 400 ident: bib46 article-title: Additive logistic regression: a statistical view of boosting—discussion publication-title: Ann. Stat. – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: bib62 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bib23 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. – volume: 82 start-page: 413 year: 2002 end-page: 422 ident: bib35 article-title: Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy publication-title: Can. J. Soil Sci. – year: 1990 ident: bib34 article-title: Finding Groups in Data: An Introduction to Cluster Analysis – volume: 38 start-page: 681 year: 1998 end-page: 696 ident: bib33 article-title: Can mid infrared diffuse reflectance analysis replace soil extractions? publication-title: Aust. J. Exp. Agric. – volume: 45 start-page: 1161 year: 1981 end-page: 1165 ident: bib56 article-title: Characteristic variations in reflectance of surface soils publication-title: Soil Sci. Soc. Am. J. – volume: 108 year: 2003 ident: bib13 article-title: Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems publication-title: J. Geophys. Res.,-Planets. – volume: vol. 31 start-page: 51 year: 1993 end-page: 70 ident: bib50 article-title: Relations between iron oxides, soil color, and soil formation publication-title: Soil Color – reference: Soil Survey Staff, 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, version 3.0, USDA-NRCS National Soil Survey Center, Washington, D.C. – volume: 65 start-page: 1463 year: 2001 end-page: 1472 ident: bib63 article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic publication-title: Soil Sci. Soc. Am. J. – start-page: 317 year: 1960 end-page: 327 ident: bib39 article-title: Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate publication-title: Clays and Clay Minerals, 7th National Conference – volume: 28 start-page: 400 year: 2000 end-page: 407 ident: bib20 article-title: Additive logistic regression: a statistical view of boosting—rejoinder publication-title: Ann. Stat. – year: 1986 ident: bib61 article-title: X-ray diffraction techniques publication-title: Methods of Soil Analysis. Part 1 – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib22 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 75 start-page: 173 year: 2002 end-page: 243 ident: bib3 article-title: Quantitative remote sensing of soil properties publication-title: Adv. Agron. – volume: 251 start-page: 319 year: 2003 end-page: 329 ident: bib59 article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study publication-title: Plant Soil – volume: 59 start-page: 364 year: 1995 end-page: 372 ident: bib4 article-title: Near infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 89 start-page: 6329 year: 1984 end-page: 6340 ident: bib12 article-title: Reflectance spectroscopy–quantitative-analysis techniques for remote-sensing applications publication-title: J. Geophys. Res. – volume: 31 start-page: 1553 year: 2000 end-page: 1569 ident: bib38 article-title: Contemporary land resource survey requires improvements in direct soil measurement publication-title: Commun. Soil Sci. Plant Anal. – volume: 185 start-page: 1 year: 1986 end-page: 17 ident: bib26 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta – volume: 41 start-page: 1101 year: 2003 end-page: 1114 ident: bib32 article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy publication-title: Aust. J. Soil Res. – volume: 56 start-page: 865 year: 1992 end-page: 872 ident: bib28 article-title: High dimensional reflectance analysis of soil organic matter publication-title: Soil Sci. Soc. Am. J. – reference: Brown, D.J., Bricklemyer, R.S. and Miller, P.R., in press. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma. – volume: 56 start-page: 836 year: 1992 end-page: 841 ident: bib29 article-title: The soil survey as paradigm-based science publication-title: Soil Sci. Soc. Am. J. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib17 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 22 start-page: 1365 year: 2003 end-page: 1381 ident: bib24 article-title: Multiple additive regression trees with application in epidemiology publication-title: Stat. Med. – volume: 38 start-page: 1 year: 1985 end-page: 44 ident: bib2 article-title: Reflectance properties of soils publication-title: Adv. Agron. – volume: 223 start-page: U141 year: 2002 end-page: U142 ident: bib45 article-title: Mid-versus near-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials publication-title: Abstr. Pap. - Am. Chem. Soc. – volume: 8 start-page: 161 year: 2000 end-page: 170 ident: bib44 article-title: Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils publication-title: J. Near Infrared Spectrosc. – year: 1996 ident: bib1 article-title: An Introduction to Categorical Data Analysis – volume: 8 start-page: 229 year: 2000 end-page: 237 ident: bib15 article-title: Multivariate calibration and chemometrics for near infrared spectroscopy: which method? publication-title: J. Near Infrared Spectrosc. – volume: 66 start-page: 299 year: 2002 end-page: 305 ident: bib54 article-title: Inorganic carbon analysis by modified pressure–calcimeter method publication-title: Soil Sci. Soc. Am. J. – volume: 31 start-page: 469 year: 1991 end-page: 474 ident: bib51 article-title: Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy publication-title: Crop Sci. – volume: 28 start-page: 337 year: 2000 end-page: 374 ident: bib19 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann. Stat. – start-page: 3 year: 1999 end-page: 52 ident: bib10 article-title: Spectroscopy of rocks and minerals, and principles of spectroscopy publication-title: Remote Sensing for the Earth Sciences: Manual of Remote Sensing – volume: 42 start-page: 607 year: 2002 end-page: 614 ident: bib16 article-title: The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia publication-title: Aust. J. Exp. Agric. – volume: 66 start-page: 988 year: 2002 end-page: 998 ident: bib53 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. – year: 2004 ident: bib42 article-title: R: a language and environment for statistical computing publication-title: R Foundation for Statistical Computing, Vienna, Austria – volume: 7 start-page: 179 year: 1999 end-page: 193 ident: bib43 article-title: Near infrared reflectance spectroscopy for the analysis of agricultural soils publication-title: J. Near Infrared Spectrosc. – volume: 31 start-page: 1548 year: 1991 end-page: 1555 ident: bib52 article-title: Population structuring of near-infrared spectra and modified partial least-squares regression publication-title: Crop Sci. – volume: 42 start-page: 501 year: 1977 end-page: 513 ident: bib30 article-title: Spectral signatures of particulate minerals in visible and near IR publication-title: Geophysics – start-page: 111 year: 1999 end-page: 188 ident: bib5 article-title: Soil reflectance publication-title: Remote Sensing for the Earth Sciences: Manual of Remote Sensing – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: bib21 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 11 start-page: 145 year: 2003 end-page: 154 ident: bib40 article-title: Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils publication-title: J. Near Infrared Spectrosc. – volume: 140 start-page: 65 year: 2003 end-page: 71 ident: bib14 article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics publication-title: J. Agric. Sci. – volume: 46 start-page: 528 year: 1998 end-page: 536 ident: bib48 article-title: Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils publication-title: Clay Clay Miner. – volume: 44 start-page: 1445 year: 2001 end-page: 1453 ident: bib57 article-title: Soil reflectance sensing for determining soil properties in precision agriculture publication-title: Trans. ASAE – volume: 8 start-page: 1 year: 2000 end-page: 9 ident: bib6 article-title: LOCAL prediction with near infrared multi-product databases publication-title: J. Near Infrared Spectrosc. – volume: 28 start-page: 391 year: 2000 end-page: 393 ident: bib18 article-title: Additive logistic regression: a statistical view of boosting—discussion publication-title: Ann. Stat. – volume: 38 start-page: 765 year: 1998 end-page: 775 ident: bib47 article-title: Soil chemical analytical accuracy and costs: implications from precision agriculture publication-title: Aust. J. Exp. Agric. – volume: 47 start-page: 156 year: 1999 end-page: 164 ident: bib49 article-title: Diffuse reflectance spectra of al substituted goethite: a ligand field approach publication-title: Clay Clay Miner. – start-page: 295 year: 1982 end-page: 385 ident: bib31 article-title: Spectroscopic properties of rocks and minerals publication-title: Handbook of Physical Properties of Rocks – volume: 51 start-page: 73 year: 2001 end-page: 99 ident: bib41 article-title: Monitoring and verifying changes of organic carbon in soil publication-title: Clim. Change – volume: 95 start-page: 12653 year: 1990 end-page: 12680 ident: bib11 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res., -Solid Earth Planets – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: bib27 article-title: A K-means clustering algorithm publication-title: Appl. Stat. – ident: 10.1016/j.geoderma.2005.04.025_bib8 doi: 10.1016/j.geoderma.2005.01.001 – volume: 41 start-page: 949 issue: 10 year: 1988 ident: 10.1016/j.geoderma.2005.04.025_bib58 article-title: A reappraisal of the kappa-coefficient publication-title: J. Clin. Epidemiol. doi: 10.1016/0895-4356(88)90031-5 – volume: 38 start-page: 1 year: 1985 ident: 10.1016/j.geoderma.2005.04.025_bib2 article-title: Reflectance properties of soils publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60672-0 – start-page: 317 year: 1960 ident: 10.1016/j.geoderma.2005.04.025_bib39 article-title: Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate – volume: 28 start-page: 393 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib46 article-title: Additive logistic regression: a statistical view of boosting—discussion publication-title: Ann. Stat. – year: 1996 ident: 10.1016/j.geoderma.2005.04.025_bib1 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geoderma.2005.04.025_bib60 article-title: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 31 start-page: 469 issue: 2 year: 1991 ident: 10.1016/j.geoderma.2005.04.025_bib51 article-title: Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy publication-title: Crop Sci. doi: 10.2135/cropsci1991.0011183X003100020049x – volume: 45 start-page: 1161 issue: 6 year: 1981 ident: 10.1016/j.geoderma.2005.04.025_bib56 article-title: Characteristic variations in reflectance of surface soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1981.03615995004500060031x – volume: 95 start-page: 12653 issue: B8 year: 1990 ident: 10.1016/j.geoderma.2005.04.025_bib11 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res., -Solid Earth Planets doi: 10.1029/JB095iB08p12653 – volume: 66 start-page: 299 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib54 article-title: Inorganic carbon analysis by modified pressure–calcimeter method publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.0299 – year: 1986 ident: 10.1016/j.geoderma.2005.04.025_bib61 article-title: X-ray diffraction techniques – volume: 8 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib6 article-title: LOCAL prediction with near infrared multi-product databases publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.258 – volume: 8 start-page: 229 issue: 4 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib15 article-title: Multivariate calibration and chemometrics for near infrared spectroscopy: which method? publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.283 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib23 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 46 start-page: 528 issue: 5 year: 1998 ident: 10.1016/j.geoderma.2005.04.025_bib48 article-title: Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1998.0460506 – volume: 31 start-page: 1553 issue: 11–14 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib38 article-title: Contemporary land resource survey requires improvements in direct soil measurement publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620009370525 – volume: 38 start-page: 681 issue: 7 year: 1998 ident: 10.1016/j.geoderma.2005.04.025_bib33 article-title: Can mid infrared diffuse reflectance analysis replace soil extractions? publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA97144 – volume: 185 start-page: 1 year: 1986 ident: 10.1016/j.geoderma.2005.04.025_bib26 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – start-page: 111 year: 1999 ident: 10.1016/j.geoderma.2005.04.025_bib5 article-title: Soil reflectance – volume: 56 start-page: 865 year: 1992 ident: 10.1016/j.geoderma.2005.04.025_bib28 article-title: High dimensional reflectance analysis of soil organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600030031x – ident: 10.1016/j.geoderma.2005.04.025_bib55 – volume: 44 start-page: 1445 issue: 6 year: 2001 ident: 10.1016/j.geoderma.2005.04.025_bib57 article-title: Soil reflectance sensing for determining soil properties in precision agriculture publication-title: Trans. ASAE doi: 10.13031/2013.7002 – volume: 82 start-page: 413 issue: 4 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib35 article-title: Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy publication-title: Can. J. Soil Sci. doi: 10.4141/S01-054 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.geoderma.2005.04.025_bib21 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.geoderma.2005.04.025_bib22 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 56 start-page: 836 year: 1992 ident: 10.1016/j.geoderma.2005.04.025_bib29 article-title: The soil survey as paradigm-based science publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600030027x – volume: 251 start-page: 319 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib59 article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study publication-title: Plant Soil doi: 10.1023/A:1023008322682 – volume: 28 start-page: 400 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib20 article-title: Additive logistic regression: a statistical view of boosting—rejoinder publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – volume: 11 start-page: 145 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib40 article-title: Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.362 – volume: 47 start-page: 156 issue: 2 year: 1999 ident: 10.1016/j.geoderma.2005.04.025_bib49 article-title: Diffuse reflectance spectra of al substituted goethite: a ligand field approach publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1999.0470205 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.geoderma.2005.04.025_bib17 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 89 start-page: 6329 issue: NB7 year: 1984 ident: 10.1016/j.geoderma.2005.04.025_bib12 article-title: Reflectance spectroscopy–quantitative-analysis techniques for remote-sensing applications publication-title: J. Geophys. Res. doi: 10.1029/JB089iB07p06329 – volume: 31 start-page: 1548 issue: 6 year: 1991 ident: 10.1016/j.geoderma.2005.04.025_bib52 article-title: Population structuring of near-infrared spectra and modified partial least-squares regression publication-title: Crop Sci. doi: 10.2135/cropsci1991.0011183X003100060034x – volume: 41 start-page: 1101 issue: 6 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib32 article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy publication-title: Aust. J. Soil Res. doi: 10.1071/SR02137 – volume: 140 start-page: 65 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib14 article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics publication-title: J. Agric. Sci. doi: 10.1017/S0021859602002836 – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.geoderma.2005.04.025_bib62 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – year: 2004 ident: 10.1016/j.geoderma.2005.04.025_bib42 article-title: R: a language and environment for statistical computing – year: 1983 ident: 10.1016/j.geoderma.2005.04.025_bib7 – start-page: 295 year: 1982 ident: 10.1016/j.geoderma.2005.04.025_bib31 article-title: Spectroscopic properties of rocks and minerals – start-page: 3 year: 1999 ident: 10.1016/j.geoderma.2005.04.025_bib10 article-title: Spectroscopy of rocks and minerals, and principles of spectroscopy – volume: 223 start-page: U141 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib45 article-title: Mid-versus near-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials publication-title: Abstr. Pap. - Am. Chem. Soc. – volume: 65 start-page: 1463 year: 2001 ident: 10.1016/j.geoderma.2005.04.025_bib63 article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6551463x – volume: 66 start-page: 640 issue: 2 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib37 article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.0640 – volume: 42 start-page: 501 issue: 3 year: 1977 ident: 10.1016/j.geoderma.2005.04.025_bib30 article-title: Spectral signatures of particulate minerals in visible and near IR publication-title: Geophysics doi: 10.1190/1.1440721 – volume: 22 start-page: 1365 issue: 9 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib24 article-title: Multiple additive regression trees with application in epidemiology publication-title: Stat. Med. doi: 10.1002/sim.1501 – year: 1990 ident: 10.1016/j.geoderma.2005.04.025_bib34 – volume: 66 start-page: 988 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib53 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.0988 – volume: 38 start-page: 765 issue: 7 year: 1998 ident: 10.1016/j.geoderma.2005.04.025_bib47 article-title: Soil chemical analytical accuracy and costs: implications from precision agriculture publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA97158 – volume: 28 start-page: 100 year: 1979 ident: 10.1016/j.geoderma.2005.04.025_bib27 article-title: A K-means clustering algorithm publication-title: Appl. Stat. doi: 10.2307/2346830 – volume: 8 start-page: 161 issue: 3 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib44 article-title: Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.275 – volume: 28 start-page: 391 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib18 article-title: Additive logistic regression: a statistical view of boosting—discussion publication-title: Ann. Stat. – volume: 59 start-page: 364 year: 1995 ident: 10.1016/j.geoderma.2005.04.025_bib4 article-title: Near infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900020014x – volume: 28 start-page: 337 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2005.04.025_bib19 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – volume: 95 start-page: 1442 issue: 6 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib25 article-title: Model evaluation by comparison of model-based predictions and measured values publication-title: Agron. J. doi: 10.2134/agronj2003.1442 – volume: 7 start-page: 179 issue: 3 year: 1999 ident: 10.1016/j.geoderma.2005.04.025_bib43 article-title: Near infrared reflectance spectroscopy for the analysis of agricultural soils publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.248 – volume: vol. 31 start-page: 51 year: 1993 ident: 10.1016/j.geoderma.2005.04.025_bib50 article-title: Relations between iron oxides, soil color, and soil formation – volume: 108 issue: E12 year: 2003 ident: 10.1016/j.geoderma.2005.04.025_bib13 article-title: Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems publication-title: J. Geophys. Res.,-Planets. doi: 10.1029/2002JE001847 – volume: 51 start-page: 73 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2005.04.025_bib41 article-title: Monitoring and verifying changes of organic carbon in soil publication-title: Clim. Change doi: 10.1023/A:1017514802028 – volume: 75 start-page: 173 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib3 article-title: Quantitative remote sensing of soil properties publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)75005-0 – volume: 42 start-page: 607 issue: 5 year: 2002 ident: 10.1016/j.geoderma.2005.04.025_bib16 article-title: The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA01172 |
SSID | ssj0017020 |
Score | 2.4163892 |
Snippet | There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 273 |
SubjectTerms | Agronomy. Soil science and plant productions Biological and medical sciences Boosted regression trees Clay mineralogy Diffuse reflectance spectroscopy Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology PLS regression Soil characterization Soils Surficial geology VNIR |
Title | Global soil characterization with VNIR diffuse reflectance spectroscopy |
URI | https://dx.doi.org/10.1016/j.geoderma.2005.04.025 https://www.proquest.com/docview/19965387 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUqWEAI8SnKR_HAGhonTpyMVUVpQXRAFHWz7MZGRSitaDuw8Nu5S5xCBVIH1iiWo7vLnXO59x4hVypTjBmjkd8u8TjPfE-nie9BtQ0UZ1wnPuKdH_pxd8DvhtGwRtoVFgbHKl3uL3N6ka3dlaazZnM6HiPGl8UCypEfFXhg5ATlXGCUX38uxzyY8B01I4s9vPsHSvgVfISCY45_qKA8RcnsvwvUzlTNwGy21Lv4lbqLetTZI7vuIElb5bPuk5rJD8h26-XdkWmYQ3JbEvrT2WT8RkdLZuYSeEmxA0uf-71HiiIpi5mh8CzYxMc4oAUCE5kuJ9OPIzLo3Dy1u54TTvAUD8TcS8HknKdhEmdBygIbwjFCIQ-OjUSY2cwPjI1VmBoeRcqAETXXIbcmtYkAl9nwmGzkk9ycEJoxk2kNH2XgVB6HTLNIQ24dGa1CYZNRnUSVteTIsYqjuMWbrMbHXmVlZZS8jKTPJVi5TprLddOSV2PtirRyhlyJEAnJf-3axor3vrcUQqA2fJ1cVu6U8H7hTxOVm8liJnFKG4qCOP3H9mdkq-zcYPPmnGzM3xfmAs4yc90ogrVBNlu9-27_C4UR9N0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HAAhxFOMZw5cy5o2bdojQsB47YAAcYuSNUGb0Dax7cCF347dpgMEEgeuVaNEtmO7rv19AEe60JxbawjfLguEKMLA5FkYYLSNtODCZCHNO9-209aDuHpKnmbgtJ6FobZK7_srn156a_-k6aXZHHa7NOPLU4nhKEzKeWAxC_MCry_RGBy_T_s8uAw9NiNPA3r9y5hwD5VEjGMegKjEPCXO7N8j1PJQj1BuriK8-OG7y4B0vgorPpNkJ9Vh12DG9tdh6eT51aNp2A24qBD92WjQfWGdKTRzNXnJqATLHtuXd4xYUiYjy_AsVMUnQ2DlCCZBXQ6Gb5vwcH52f9oKPHNCoEUkx0GOMhcij7O0iHIeuRjzCE1AOC6RceGKMLIu1XFuRZJoi1I0wsTC2dxlEnXm4i2Y6w_6dhtYwW1hDH6VoVZFGnPDE4POtWONjqXLOg1IammpjocVJ3aLF1X3j_VULWXivExUKBRKuQHN6bphBazx54q8Vob6ZiIKvf-faw--ae9zSyklkcM34LBWp8ILRn9NdN8OJiNFbdpoVnLnH9sfwkLr_vZG3Vy2r3dhsSrjUCVnD-bGrxO7j4nN2ByUhvsBG132aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+soil+characterization+with+VNIR+diffuse+reflectance+spectroscopy&rft.jtitle=Geoderma&rft.au=Brown%2C+David+J&rft.au=Shepherd%2C+Keith+D&rft.au=Walsh%2C+Markus+G&rft.au=Mays%2C+MDewayne&rft.date=2006-06-01&rft.issn=0016-7061&rft.volume=132&rft.issue=3-4&rft.spage=273&rft.epage=290&rft_id=info:doi/10.1016%2Fj.geoderma.2005.04.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |