Global soil characterization with VNIR diffuse reflectance spectroscopy

There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from al...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 132; no. 3; pp. 273 - 290
Main Authors Brown, David J., Shepherd, Keith D., Walsh, Markus G., Dewayne Mays, M., Reinsch, Thomas G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.06.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36 different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-dry soil (< 2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation (RMSD) estimates of 54 g kg − 1 for clay, 7.9 g kg − 1 for soil organic C (SOC), 5.6 g kg − 1 for inorganic C (IC), 8.9 g kg − 1 for dithionate–citrate extractable Fe (FEd), and 5.5 cmol c kg − 1 for cation exchange capacity (CEC) with NH 4 at pH = 7. For all of these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmorillonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD) values (0–5 on ordinal scale). Given the amount of information obtained in this study with ∼4 × 10 3 samples, we anticipate that calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 10 4–10 5 samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required.
AbstractList There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36 different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-dry soil (< 2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation (RMSD) estimates of 54 g kg − 1 for clay, 7.9 g kg − 1 for soil organic C (SOC), 5.6 g kg − 1 for inorganic C (IC), 8.9 g kg − 1 for dithionate–citrate extractable Fe (FEd), and 5.5 cmol c kg − 1 for cation exchange capacity (CEC) with NH 4 at pH = 7. For all of these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmorillonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD) values (0–5 on ordinal scale). Given the amount of information obtained in this study with ∼4 × 10 3 samples, we anticipate that calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 10 4–10 5 samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required.
There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36 different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-dry soil (- 2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation (RMSD) estimates of 54 g kg super(- 1) for clay, 7.9 g kg super(- 1) for soil organic C (SOC), 5.6 g kg super(- 1) for inorganic C (IC), 8.9 g kg super(- 1) for dithionate-citrate extractable Fe (FEd), and 5.5 cmol sub(c) kg super(- 1) for cation exchange capacity (CEC) with NH sub(4) at pH = 7. For all of these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmorillonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD) values (0-5 on ordinal scale). Given the amount of information obtained in this study with 4 x 10 super(3) samples, we anticipate that calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 10 super(4)-10 super(5) samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required.
Author Reinsch, Thomas G.
Brown, David J.
Shepherd, Keith D.
Walsh, Markus G.
Dewayne Mays, M.
Author_xml – sequence: 1
  givenname: David J.
  surname: Brown
  fullname: Brown, David J.
  email: djbrown@montana.edu
  organization: Department of Land Resources and Environmental Sciences, Montana State University, USA
– sequence: 2
  givenname: Keith D.
  surname: Shepherd
  fullname: Shepherd, Keith D.
  organization: World Agroforestry Center (ICRAF), Nairobi, Kenya
– sequence: 3
  givenname: Markus G.
  surname: Walsh
  fullname: Walsh, Markus G.
  organization: World Agroforestry Center (ICRAF), Nairobi, Kenya
– sequence: 4
  givenname: M.
  surname: Dewayne Mays
  fullname: Dewayne Mays, M.
  organization: USDA National Soil Survey Center, Soil Survey Laboratory (NSSC-SSL), Lincoln, NE, USA
– sequence: 5
  givenname: Thomas G.
  surname: Reinsch
  fullname: Reinsch, Thomas G.
  organization: USDA National Soil Survey Center, Soil Survey Laboratory (NSSC-SSL), Lincoln, NE, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17773940$$DView record in Pascal Francis
BookMark eNqFkM1uEzEURi1UJNLAK6DZwG6m1z9jjyUWRVVJK1UgIWBrOZ5r6sgZB3vSqjw9btN2waYr29L5ru93jsnRlCYk5D2FjgKVJ5vuN6YR89Z2DKDvQHTA-ldkQQfFWsl6fUQWUMlWgaRvyHEpm_pUwGBBVquY1jY2JYXYuGubrZsxh792DmlqbsN83fz6evm9GYP3-4JNRh_RzXZy2JRdveVUXNrdvSWvvY0F3z2eS_Lzy_mPs4v26tvq8uzzVWsFU3OrxQhCaD7IkWnKPFcULNVS-17x0Y_A0EvLNYq-tygVrMWaC4_aD4oPg-dL8vEwd5fTnz2W2WxDcRijnTDti6Fay55XeEk-PIK2OBt9riuHYnY5bG2-M1QpxbWAyn06cK42KbWecWF-aD9nG6KhYO4tm415smzuLRsQplqucflf_PmHl4KnhyBWWzcBsykuYNU6hly1mjGFl0b8A25CnRA
CODEN GEDMAB
CitedBy_id crossref_primary_10_2136_sssaj2013_06_0241
crossref_primary_10_3390_rs13081549
crossref_primary_10_1016_j_geoderma_2010_04_007
crossref_primary_10_1255_jnirs_716
crossref_primary_10_1111_ejss_12362
crossref_primary_10_1016_j_geoderma_2012_08_020
crossref_primary_10_1111_ejss_12485
crossref_primary_10_3390_rs8080660
crossref_primary_10_1016_j_catena_2020_104938
crossref_primary_10_1038_s41597_025_04667_9
crossref_primary_10_1016_j_geoderma_2015_06_015
crossref_primary_10_1155_2023_4155390
crossref_primary_10_1016_j_geoderma_2019_113981
crossref_primary_10_1080_15324982_2010_528153
crossref_primary_10_1016_j_compag_2019_02_003
crossref_primary_10_1016_S1002_0160_12_60022_8
crossref_primary_10_1016_j_geoderma_2014_12_011
crossref_primary_10_2136_sssaj2008_0311
crossref_primary_10_1016_j_geodrs_2020_e00333
crossref_primary_10_1111_ejss_12239
crossref_primary_10_1007_s11119_009_9123_3
crossref_primary_10_1016_j_catena_2016_12_014
crossref_primary_10_1016_j_geoderma_2009_01_025
crossref_primary_10_1016_j_catena_2013_06_013
crossref_primary_10_1016_j_geoderma_2017_02_014
crossref_primary_10_1016_j_geoderma_2022_115837
crossref_primary_10_1016_j_still_2023_105789
crossref_primary_10_3390_soilsystems6010030
crossref_primary_10_1016_j_geoderma_2018_04_017
crossref_primary_10_1111_j_1365_2389_2012_01429_x
crossref_primary_10_3390_nano10122501
crossref_primary_10_2136_sssaj2019_06_0205
crossref_primary_10_1155_2017_1375158
crossref_primary_10_1016_j_tfp_2022_100280
crossref_primary_10_1016_j_compag_2010_08_005
crossref_primary_10_2136_sssaj2014_09_0390
crossref_primary_10_1097_SS_0b013e3181906a09
crossref_primary_10_1007_s12517_016_2659_4
crossref_primary_10_1016_j_geoderma_2010_12_020
crossref_primary_10_2136_vzj2016_06_0054
crossref_primary_10_3390_life10070113
crossref_primary_10_1016_j_agrformet_2015_12_062
crossref_primary_10_1016_j_geoderma_2014_04_029
crossref_primary_10_1255_jnirs_936
crossref_primary_10_1016_j_geoderma_2007_12_009
crossref_primary_10_1016_j_geoderma_2020_114272
crossref_primary_10_1016_j_apgeochem_2012_11_005
crossref_primary_10_1255_jnirs_930
crossref_primary_10_1038_s41598_024_53210_0
crossref_primary_10_1007_s10661_012_2838_z
crossref_primary_10_1016_j_geoderma_2014_04_030
crossref_primary_10_1016_j_geoderma_2017_02_015
crossref_primary_10_3390_s110706656
crossref_primary_10_3390_s24216855
crossref_primary_10_1016_j_compag_2018_08_036
crossref_primary_10_1016_j_catena_2019_104109
crossref_primary_10_1016_j_ecolind_2009_05_001
crossref_primary_10_1016_j_geodrs_2014_08_001
crossref_primary_10_1155_2011_641328
crossref_primary_10_1255_jnirs_923
crossref_primary_10_1134_S1064229320080165
crossref_primary_10_1016_j_neucom_2020_01_008
crossref_primary_10_1016_j_biosystemseng_2016_06_011
crossref_primary_10_1016_j_envsci_2007_03_002
crossref_primary_10_2134_agronj2015_0173
crossref_primary_10_1371_journal_pone_0233242
crossref_primary_10_1016_j_biosystemseng_2016_06_007
crossref_primary_10_3390_rs14030740
crossref_primary_10_1364_BOE_531681
crossref_primary_10_1007_s11368_016_1502_6
crossref_primary_10_3390_s24165126
crossref_primary_10_1007_s12524_016_0587_0
crossref_primary_10_1016_j_chemolab_2007_06_007
crossref_primary_10_1016_j_apgeochem_2021_104909
crossref_primary_10_1016_j_geoderma_2015_07_017
crossref_primary_10_1002_ldr_3497
crossref_primary_10_1016_j_geoderma_2021_115501
crossref_primary_10_3390_heritage3020031
crossref_primary_10_1016_j_geoderma_2015_07_010
crossref_primary_10_1016_j_geoderma_2019_05_020
crossref_primary_10_1016_j_geoderma_2014_05_005
crossref_primary_10_1002_ldr_3250
crossref_primary_10_1016_j_geoderma_2022_115905
crossref_primary_10_1016_j_geodrs_2020_e00253
crossref_primary_10_1111_ejss_12272
crossref_primary_10_1109_JSTARS_2014_2371920
crossref_primary_10_1117_1_JRS_12_042803
crossref_primary_10_1590_S0100_06832010000300027
crossref_primary_10_1002_2015GB005178
crossref_primary_10_1016_j_geoderma_2014_11_011
crossref_primary_10_1080_00103624_2022_2070638
crossref_primary_10_2136_sssaj2017_09_0332
crossref_primary_10_1007_s11368_023_03691_9
crossref_primary_10_3390_soilsystems6020038
crossref_primary_10_1016_j_geoderma_2014_05_012
crossref_primary_10_1371_journal_pone_0066409
crossref_primary_10_1016_j_crte_2013_12_001
crossref_primary_10_1080_10106049_2015_1086903
crossref_primary_10_3390_min8050184
crossref_primary_10_1016_j_geoderma_2018_03_029
crossref_primary_10_1016_j_geoderma_2017_11_020
crossref_primary_10_1111_j_1365_2389_2011_01358_x
crossref_primary_10_3390_ai3020032
crossref_primary_10_1016_j_geoderma_2017_11_027
crossref_primary_10_1016_j_geoderma_2012_01_017
crossref_primary_10_1016_j_geoderma_2012_01_018
crossref_primary_10_1016_j_geodrs_2020_e00349
crossref_primary_10_1016_j_jag_2020_102094
crossref_primary_10_1016_j_geoderma_2020_114358
crossref_primary_10_1007_s10933_019_00076_2
crossref_primary_10_3390_rs9101078
crossref_primary_10_2136_sssaj2017_10_0361
crossref_primary_10_1016_j_geoderma_2013_03_018
crossref_primary_10_1109_JSTARS_2023_3269078
crossref_primary_10_1016_j_compag_2020_105710
crossref_primary_10_1111_ejss_12259
crossref_primary_10_1016_j_gsf_2024_101881
crossref_primary_10_1016_j_geoderma_2019_05_043
crossref_primary_10_1016_j_scitotenv_2013_03_093
crossref_primary_10_1590_S0100_06832013000400004
crossref_primary_10_1007_s10661_018_6898_6
crossref_primary_10_1080_00103624_2020_1729367
crossref_primary_10_1016_j_scitotenv_2018_10_106
crossref_primary_10_3390_network3040021
crossref_primary_10_1007_s00704_011_0425_9
crossref_primary_10_1016_j_geoderma_2015_06_002
crossref_primary_10_1002_jpln_200700087
crossref_primary_10_1007_s10311_008_0166_x
crossref_primary_10_1007_s11119_024_10203_3
crossref_primary_10_1016_j_apgeochem_2009_04_017
crossref_primary_10_1016_j_geoderma_2016_10_036
crossref_primary_10_5433_1679_0359_2019v40n1p99
crossref_primary_10_3390_agronomy13030935
crossref_primary_10_1080_01431161_2020_1854892
crossref_primary_10_3390_rs16173142
crossref_primary_10_1016_j_mineng_2017_08_007
crossref_primary_10_1111_ejss_12129
crossref_primary_10_1016_j_geoderma_2009_01_013
crossref_primary_10_1016_j_geoderma_2017_01_030
crossref_primary_10_1007_s10661_016_5605_8
crossref_primary_10_1016_j_geoderma_2013_04_007
crossref_primary_10_1016_j_geoderma_2013_12_007
crossref_primary_10_1080_10095020_2023_2211612
crossref_primary_10_1016_j_geoderma_2015_08_026
crossref_primary_10_1080_00103624_2024_2378158
crossref_primary_10_3390_w12010261
crossref_primary_10_1016_j_envpol_2022_120962
crossref_primary_10_3390_rs13020308
crossref_primary_10_1007_s11707_011_0175_0
crossref_primary_10_1016_j_still_2022_105439
crossref_primary_10_1016_j_clay_2011_09_010
crossref_primary_10_1016_j_catena_2016_10_001
crossref_primary_10_5424_sjar_2012104_681_11
crossref_primary_10_1016_j_geoderma_2014_06_007
crossref_primary_10_1016_j_scitotenv_2015_01_087
crossref_primary_10_3390_su12020443
crossref_primary_10_1007_s11270_013_1658_2
crossref_primary_10_1016_j_geoderma_2009_06_003
crossref_primary_10_1071_SR09005
crossref_primary_10_1016_j_geoderma_2019_04_003
crossref_primary_10_1080_01431161_2013_796097
crossref_primary_10_3390_rs8090755
crossref_primary_10_1016_S1002_0160_17_60485_5
crossref_primary_10_1016_j_geoderma_2018_10_015
crossref_primary_10_1097_ss_0b013e31804fa202
crossref_primary_10_1002_ppp_705
crossref_primary_10_1016_j_geoderma_2020_114469
crossref_primary_10_2136_sssaj2008_0025
crossref_primary_10_3390_rs13183718
crossref_primary_10_1016_j_scitotenv_2015_09_096
crossref_primary_10_1111_ejss_12986
crossref_primary_10_2136_sssaj2016_02_0052
crossref_primary_10_2136_sssaj2018_01_0014
crossref_primary_10_3390_rs9090939
crossref_primary_10_1016_j_scitotenv_2008_12_049
crossref_primary_10_1109_ACCESS_2024_3403720
crossref_primary_10_1002_clen_201400400
crossref_primary_10_1016_j_catena_2019_104185
crossref_primary_10_1080_00103624_2015_1048250
crossref_primary_10_4236_ojss_2016_69014
crossref_primary_10_29252_jgit_8_2_59
crossref_primary_10_1007_s11356_018_1217_x
crossref_primary_10_1007_s10705_015_9750_1
crossref_primary_10_1080_01431161_2012_676687
crossref_primary_10_2136_sssaj2006_0285
crossref_primary_10_1016_j_rse_2022_113166
crossref_primary_10_1590_S0006_87052011000300017
crossref_primary_10_2136_sssaj2006_0049
crossref_primary_10_2136_sssaj2008_0015
crossref_primary_10_3390_rs8040341
crossref_primary_10_1039_c2em30330b
crossref_primary_10_1016_j_geoderma_2019_07_010
crossref_primary_10_1016_j_jhydrol_2010_07_014
crossref_primary_10_1016_j_envpol_2020_115845
crossref_primary_10_19047_0136_1694_2013_71_52_64
crossref_primary_10_1016_j_catena_2014_09_004
crossref_primary_10_1016_j_earscirev_2024_104814
crossref_primary_10_3390_land12122155
crossref_primary_10_1590_01000683rbcs20140410
crossref_primary_10_3390_rs13122313
crossref_primary_10_1109_JSEN_2011_2128867
crossref_primary_10_12677_AAM_2021_1011387
crossref_primary_10_1016_j_geoderma_2018_10_038
crossref_primary_10_1155_2018_3168974
crossref_primary_10_3390_s24030849
crossref_primary_10_1080_00207233_2014_967509
crossref_primary_10_1016_j_rse_2011_02_004
crossref_primary_10_1111_j_1475_2743_2011_00337_x
crossref_primary_10_1016_j_catena_2024_108115
crossref_primary_10_1007_s12517_014_1580_y
crossref_primary_10_1016_j_geoderma_2018_11_004
crossref_primary_10_2139_ssrn_1141986
crossref_primary_10_29050_harranziraat_931045
crossref_primary_10_1016_j_geoderma_2009_07_001
crossref_primary_10_2134_jeq2009_0314
crossref_primary_10_1016_j_chemolab_2008_06_003
crossref_primary_10_1071_SR07099
crossref_primary_10_1371_journal_pone_0210235
crossref_primary_10_1016_j_jag_2020_102111
crossref_primary_10_3390_rs8090701
crossref_primary_10_1016_j_geoderma_2020_114775
crossref_primary_10_1029_2011JF001977
crossref_primary_10_33724_zm_718134
crossref_primary_10_5721_EuJRS20134601
crossref_primary_10_3390_rs6054305
crossref_primary_10_1080_05704928_2011_570837
crossref_primary_10_1111_ejss_12434
crossref_primary_10_2136_vzj2014_07_0080
crossref_primary_10_1016_j_geoderma_2017_03_012
crossref_primary_10_1016_j_geoderma_2019_07_013
crossref_primary_10_1016_S1002_0160_21_60074_7
crossref_primary_10_1255_jnirs_1184
crossref_primary_10_1016_j_soisec_2024_100145
crossref_primary_10_1007_s12524_012_0211_x
crossref_primary_10_1672_06_182_1
crossref_primary_10_1007_s11119_010_9173_6
crossref_primary_10_1016_j_geoderma_2022_116284
crossref_primary_10_1146_annurev_energy_31_020105_100307
crossref_primary_10_1016_j_chemolab_2016_02_013
crossref_primary_10_3390_rs6042699
crossref_primary_10_1016_j_geoderma_2022_116048
crossref_primary_10_1016_S1002_0160_15_60029_7
crossref_primary_10_1016_j_geoderma_2018_12_044
crossref_primary_10_1016_j_geoderma_2007_10_012
crossref_primary_10_1016_j_geoderma_2018_12_042
crossref_primary_10_1002_ppp_629
crossref_primary_10_1016_j_geoderma_2020_114306
crossref_primary_10_1016_j_clet_2022_100434
crossref_primary_10_1255_jnirs_1053
crossref_primary_10_1016_j_jag_2014_04_007
crossref_primary_10_1016_j_geoderma_2022_116294
crossref_primary_10_1590_0103_9016_2013_0365
crossref_primary_10_1672_0277_5212_2007_27_1098_PCEISU_2_0_CO_2
crossref_primary_10_2136_sssaj2013_08_0354
crossref_primary_10_1139_cjss_2018_0027
crossref_primary_10_1016_j_catena_2017_07_016
crossref_primary_10_1186_s13717_018_0138_4
crossref_primary_10_1016_j_catena_2017_07_014
crossref_primary_10_2136_sssaj2013_11_0488
crossref_primary_10_1111_j_1365_2389_2012_01495_x
crossref_primary_10_1016_j_isprsjprs_2022_04_009
crossref_primary_10_1016_j_geoderma_2012_03_011
crossref_primary_10_1590_S0100_06832014000200002
crossref_primary_10_1016_j_eswa_2021_115678
crossref_primary_10_1007_s11104_017_3418_3
crossref_primary_10_1007_s12665_012_2096_y
crossref_primary_10_1080_03650340_2017_1373185
crossref_primary_10_1016_j_catena_2020_105041
crossref_primary_10_1016_j_jag_2016_08_006
crossref_primary_10_1016_j_palaeo_2017_02_027
crossref_primary_10_1016_j_jappgeo_2016_01_015
crossref_primary_10_1109_TGRS_2018_2883311
crossref_primary_10_2136_sssaj2008_0288
crossref_primary_10_2136_sssaj2011_0053
crossref_primary_10_2136_sssaj2018_11_0440
crossref_primary_10_1016_j_geoderma_2013_05_011
crossref_primary_10_1080_10106049_2013_821175
crossref_primary_10_1111_j_1365_2389_2012_01483_x
crossref_primary_10_1016_j_geoderma_2019_114038
crossref_primary_10_1016_j_geodrs_2023_e00726
crossref_primary_10_1016_j_compag_2022_107192
crossref_primary_10_3390_f10030217
crossref_primary_10_1007_s11104_020_04775_y
crossref_primary_10_1111_j_1365_2389_2012_01456_x
crossref_primary_10_3390_rs14112599
crossref_primary_10_2136_sssaj2011_0106N
crossref_primary_10_1002_saj2_20158
crossref_primary_10_1016_j_infrared_2022_104372
crossref_primary_10_56530_spectroscopy_pj5166a9
crossref_primary_10_1016_j_still_2014_11_002
crossref_primary_10_1016_j_snb_2013_08_023
crossref_primary_10_1111_j_1365_2389_2009_01178_x
crossref_primary_10_1364_AO_52_000B82
crossref_primary_10_1088_1742_6596_1294_9_092022
crossref_primary_10_1371_journal_pone_0151536
crossref_primary_10_1016_j_compag_2017_11_029
crossref_primary_10_2136_sssaj2016_08_0253
crossref_primary_10_1016_j_biosystemseng_2011_07_002
crossref_primary_10_1016_j_meatsci_2020_108153
crossref_primary_10_1007_s11269_014_0796_7
crossref_primary_10_1255_jnirs_1132
crossref_primary_10_1016_j_proeng_2012_04_187
crossref_primary_10_1255_jnirs_1035
crossref_primary_10_1016_j_geoderma_2007_08_021
crossref_primary_10_2136_sssaj2011_0307
crossref_primary_10_1016_j_geoderma_2015_11_023
crossref_primary_10_1016_j_geoderma_2019_114133
crossref_primary_10_1016_j_geoderma_2009_04_005
crossref_primary_10_1002_ldr_3718
crossref_primary_10_1016_j_geoderma_2009_04_010
crossref_primary_10_1016_j_still_2018_11_002
crossref_primary_10_1016_j_geoderma_2011_03_010
crossref_primary_10_1002_saj2_20164
crossref_primary_10_2136_sssaj2015_10_0364
crossref_primary_10_1016_j_soisec_2021_100023
crossref_primary_10_1016_j_geoderma_2013_06_002
crossref_primary_10_1016_j_rse_2008_09_004
crossref_primary_10_1016_j_gsme_2024_05_001
crossref_primary_10_3390_rs16030565
crossref_primary_10_1016_j_saa_2016_05_026
crossref_primary_10_1007_s11368_024_03914_7
crossref_primary_10_1016_j_rsase_2024_101242
crossref_primary_10_1177_0309133312446981
crossref_primary_10_1016_j_quascirev_2014_01_011
crossref_primary_10_2136_sssaj2006_0211
crossref_primary_10_1007_s12517_014_1475_y
crossref_primary_10_1016_j_jafrearsci_2024_105457
crossref_primary_10_1016_j_geoderma_2014_01_011
crossref_primary_10_1080_2150704X_2013_767479
crossref_primary_10_2136_sssaj2012_0093
crossref_primary_10_1016_j_catena_2012_01_001
crossref_primary_10_1080_00103624_2014_954716
crossref_primary_10_1111_j_1365_2389_2011_01372_x
crossref_primary_10_14358_PERS_76_1_85
crossref_primary_10_5897_JCECT2018_0482
crossref_primary_10_1071_SR14339
crossref_primary_10_1016_j_geoderma_2019_114083
crossref_primary_10_1016_j_geodrs_2018_e00198
crossref_primary_10_15377_2409_9813_2014_01_01_3
crossref_primary_10_1016_j_geoderma_2015_01_002
crossref_primary_10_1071_SR10098
crossref_primary_10_1016_j_geoderma_2013_07_016
crossref_primary_10_1016_j_rse_2020_112223
crossref_primary_10_1007_s10812_019_00891_5
crossref_primary_10_1016_j_soilbio_2011_02_019
crossref_primary_10_4995_raet_2020_13331
crossref_primary_10_1016_j_xinn_2025_100839
crossref_primary_10_1080_05704928_2022_2128365
crossref_primary_10_1002_admt_202400038
crossref_primary_10_1016_j_geoderma_2012_11_011
crossref_primary_10_1016_j_infrared_2022_104056
crossref_primary_10_3390_rs9020134
crossref_primary_10_1016_j_compag_2018_11_006
crossref_primary_10_1016_j_scitotenv_2019_02_125
crossref_primary_10_1007_s40808_016_0259_7
crossref_primary_10_1016_j_geoderma_2008_09_019
crossref_primary_10_3390_s20236729
crossref_primary_10_3390_rs10081172
crossref_primary_10_1007_s11270_015_2442_2
crossref_primary_10_1016_j_geoderma_2023_116651
crossref_primary_10_3390_rs15174264
crossref_primary_10_3390_s22093187
crossref_primary_10_1007_s11368_009_0162_1
crossref_primary_10_1016_j_geoderma_2011_10_015
crossref_primary_10_1016_j_geoderma_2011_08_001
crossref_primary_10_1016_j_geoderma_2008_04_007
crossref_primary_10_1016_j_measurement_2013_07_007
crossref_primary_10_1007_s10661_011_2326_x
crossref_primary_10_1080_01431161_2019_1574992
crossref_primary_10_1016_j_chemolab_2024_105253
crossref_primary_10_1016_j_soilbio_2011_03_023
crossref_primary_10_3390_agronomy11091879
crossref_primary_10_1155_2012_439567
crossref_primary_10_1016_j_geoderma_2012_12_014
crossref_primary_10_1016_j_trac_2010_05_006
crossref_primary_10_18393_ejss_319208
crossref_primary_10_1016_j_geoderma_2024_116941
crossref_primary_10_1016_j_geoderma_2012_12_016
crossref_primary_10_1016_j_geoderma_2019_114163
crossref_primary_10_1016_j_geoderma_2022_116102
crossref_primary_10_2136_sssaj2013_02_0062
crossref_primary_10_1016_j_geoderma_2010_02_001
crossref_primary_10_2136_sssaj2014_11_0458
crossref_primary_10_1016_j_geoderma_2009_12_021
crossref_primary_10_1016_j_scitotenv_2023_163677
crossref_primary_10_2134_jeq2010_0183
crossref_primary_10_1016_j_geoderma_2017_05_018
crossref_primary_10_1016_j_geoderma_2009_12_025
crossref_primary_10_1109_MGRS_2024_3469069
crossref_primary_10_1016_j_saa_2018_06_018
crossref_primary_10_1016_j_biosystemseng_2008_02_007
crossref_primary_10_1590_S0100_06832014000300028
crossref_primary_10_1016_j_chemolab_2011_11_003
crossref_primary_10_1016_j_geoderma_2021_115387
crossref_primary_10_3390_rs14215627
crossref_primary_10_1007_s12665_014_3353_z
crossref_primary_10_1016_j_aca_2019_01_002
crossref_primary_10_1080_03650340_2017_1280728
crossref_primary_10_1007_s10661_016_5631_6
crossref_primary_10_1016_j_catena_2022_106288
crossref_primary_10_1016_j_chemolab_2019_03_011
crossref_primary_10_1016_j_geomorph_2010_11_008
crossref_primary_10_1080_15320383_2012_712069
crossref_primary_10_3390_rs1040971
crossref_primary_10_1002_saj2_20435
crossref_primary_10_1016_j_still_2015_07_021
crossref_primary_10_1016_j_geoderma_2015_12_014
crossref_primary_10_1016_j_geoderma_2012_06_009
crossref_primary_10_1016_j_geoderma_2024_117051
crossref_primary_10_1016_j_scitotenv_2019_134890
crossref_primary_10_1086_733661
crossref_primary_10_3390_s17102428
crossref_primary_10_5194_soil_6_89_2020
crossref_primary_10_1016_j_geoderma_2016_10_010
crossref_primary_10_3390_w14071158
crossref_primary_10_1007_s11769_019_1020_8
crossref_primary_10_1016_j_geoderma_2008_01_010
crossref_primary_10_1016_j_pacs_2019_100151
crossref_primary_10_1111_j_1365_2389_2009_01162_x
crossref_primary_10_4236_ars_2013_24040
crossref_primary_10_1111_ejss_13271
crossref_primary_10_1016_j_compag_2020_105630
crossref_primary_10_1080_10106049_2011_623792
crossref_primary_10_1590_18069657rbcs20180174
crossref_primary_10_2751_jcac_10_53
crossref_primary_10_1016_j_geoderma_2021_115163
crossref_primary_10_1007_s11270_013_1539_8
crossref_primary_10_1016_j_geoderma_2014_10_019
crossref_primary_10_1590_S0006_87052010000100020
crossref_primary_10_25130_tjas_21_1_2
crossref_primary_10_1016_j_geoderma_2019_01_021
crossref_primary_10_1016_j_geoderma_2019_01_022
crossref_primary_10_15446_esrj_v25n4_95748
crossref_primary_10_1080_01431161_2013_779045
crossref_primary_10_3390_s21010148
crossref_primary_10_1111_j_1365_2389_2008_01058_x
crossref_primary_10_1016_j_compag_2009_10_006
crossref_primary_10_1016_j_geoderma_2009_10_001
crossref_primary_10_1016_j_geoderma_2015_12_031
crossref_primary_10_1007_s11430_013_4808_x
crossref_primary_10_1016_j_geoderma_2024_117036
crossref_primary_10_1080_00103624_2014_988582
crossref_primary_10_1016_j_geodrs_2017_04_003
crossref_primary_10_1080_03650340_2022_2134565
crossref_primary_10_1016_j_soisec_2022_100061
crossref_primary_10_1080_00103624_2011_584597
crossref_primary_10_1080_00103624_2013_768263
crossref_primary_10_1016_j_biosystemseng_2013_01_005
crossref_primary_10_1016_j_geoderma_2022_115696
crossref_primary_10_1097_SS_0b013e3181b21491
crossref_primary_10_1111_j_1365_2389_2010_01305_x
crossref_primary_10_1016_j_catena_2013_03_009
crossref_primary_10_1016_j_biosystemseng_2016_04_019
crossref_primary_10_1016_j_biosystemseng_2016_04_018
crossref_primary_10_1177_0967033518799518
crossref_primary_10_1016_j_catena_2023_107649
crossref_primary_10_2136_sssaj2009_0218
crossref_primary_10_1016_j_catena_2012_10_014
crossref_primary_10_1016_j_catena_2020_104795
crossref_primary_10_3390_rs10111747
crossref_primary_10_3390_soilsystems3010011
crossref_primary_10_1007_s10661_016_5568_9
crossref_primary_10_1016_j_geoderma_2010_03_001
crossref_primary_10_1155_2013_720589
crossref_primary_10_1080_01431161_2016_1163751
crossref_primary_10_1155_2012_868090
crossref_primary_10_1016_j_jhazmat_2020_123288
crossref_primary_10_1016_j_apgeochem_2011_08_004
crossref_primary_10_1080_00380768_2013_802643
crossref_primary_10_4028_www_scientific_net_KEM_500_838
crossref_primary_10_1016_j_agrformet_2017_05_018
crossref_primary_10_1016_j_jaridenv_2009_08_011
crossref_primary_10_3390_agronomy14061150
crossref_primary_10_1177_09670335241269168
crossref_primary_10_1016_j_compag_2015_05_002
crossref_primary_10_1016_j_gexplo_2023_107243
crossref_primary_10_1080_00387010_2013_840315
crossref_primary_10_1080_05704928_2013_811081
crossref_primary_10_2136_sssaj2009_0244
crossref_primary_10_1016_j_geoderma_2011_07_015
crossref_primary_10_1016_j_geoderma_2011_05_006
crossref_primary_10_1016_j_chemolab_2009_04_005
crossref_primary_10_1016_j_geoderma_2015_03_010
crossref_primary_10_3390_soilsystems4030042
crossref_primary_10_1007_s11368_017_1766_5
crossref_primary_10_5194_soil_4_101_2018
crossref_primary_10_2136_sssaj2014_09_0355
crossref_primary_10_1080_01431161_2018_1460511
crossref_primary_10_1590_18069657rbcs20170413
crossref_primary_10_2136_sssaj2018_05_0175
crossref_primary_10_1002_saj2_20475
crossref_primary_10_1016_j_catena_2020_104609
crossref_primary_10_1080_01431160801930248
crossref_primary_10_1177_0734242X12450601
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_1016_j_proenv_2013_06_056
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1016_j_soilbio_2013_10_022
crossref_primary_10_1111_ejss_13192
crossref_primary_10_1007_s42452_020_03322_9
crossref_primary_10_1016_j_microc_2018_06_040
crossref_primary_10_1016_j_earscirev_2016_01_012
crossref_primary_10_1002_ldr_4162
crossref_primary_10_1002_ldr_3073
crossref_primary_10_1155_2011_358193
crossref_primary_10_1016_j_rse_2023_113715
crossref_primary_10_1364_JOT_83_000642
crossref_primary_10_1016_j_catena_2020_104987
crossref_primary_10_1080_15324982_2010_502917
crossref_primary_10_1134_S1064229320010111
crossref_primary_10_3390_s18020583
crossref_primary_10_2136_sssaj2015_06_0234
crossref_primary_10_1016_j_envpol_2014_03_005
crossref_primary_10_1016_j_catena_2023_107200
crossref_primary_10_1016_j_geoderma_2006_07_004
crossref_primary_10_1371_journal_pone_0142295
crossref_primary_10_2136_sssaj2009_0130
crossref_primary_10_1016_j_geoderma_2022_115776
crossref_primary_10_3390_s17102366
crossref_primary_10_1071_SR16227
crossref_primary_10_1002_xrs_1363
crossref_primary_10_1016_j_geoderma_2018_09_015
Cites_doi 10.1016/j.geoderma.2005.01.001
10.1016/0895-4356(88)90031-5
10.1016/S0065-2113(08)60672-0
10.1097/00010694-193401000-00003
10.2135/cropsci1991.0011183X003100020049x
10.2136/sssaj1981.03615995004500060031x
10.1029/JB095iB08p12653
10.2136/sssaj2002.0299
10.1255/jnirs.258
10.1255/jnirs.283
10.1016/S0167-9473(01)00065-2
10.1346/CCMN.1998.0460506
10.1080/00103620009370525
10.1071/EA97144
10.1016/0003-2670(86)80028-9
10.2136/sssaj1992.03615995005600030031x
10.13031/2013.7002
10.4141/S01-054
10.1214/aos/1176347963
10.1214/aos/1013203451
10.2136/sssaj1992.03615995005600030027x
10.1023/A:1023008322682
10.1214/aos/1016218223
10.1255/jnirs.362
10.1346/CCMN.1999.0470205
10.1006/jcss.1997.1504
10.1029/JB089iB07p06329
10.2135/cropsci1991.0011183X003100060034x
10.1071/SR02137
10.1017/S0021859602002836
10.1016/S0169-7439(01)00155-1
10.2136/sssaj2001.6551463x
10.2136/sssaj2002.0640
10.1190/1.1440721
10.1002/sim.1501
10.2136/sssaj2002.0988
10.1071/EA97158
10.2307/2346830
10.1255/jnirs.275
10.2136/sssaj1995.03615995005900020014x
10.2134/agronj2003.1442
10.1255/jnirs.248
10.1029/2002JE001847
10.1023/A:1017514802028
10.1016/S0065-2113(02)75005-0
10.1071/EA01172
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TV
C1K
F1W
H96
L.G
DOI 10.1016/j.geoderma.2005.04.025
DatabaseName CrossRef
Pascal-Francis
Pollution Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Pollution Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 290
ExternalDocumentID 17773940
10_1016_j_geoderma_2005_04_025
S0016706105001564
GeographicLocations United States
USA
British Isles, England, Lincoln
Asia
Europe
Africa
GeographicLocations_xml – name: British Isles, England, Lincoln
– name: Asia
– name: Africa
– name: USA
– name: Europe
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TV
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a427t-94d0449386d2912f3710a1969f573dfd02ef6a39e455ae670b4b34fe9f87388f3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 19:56:30 EDT 2025
Mon Jul 21 09:15:43 EDT 2025
Tue Jul 01 02:24:33 EDT 2025
Thu Apr 24 22:50:32 EDT 2025
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords PLS regression
VNIR
Diffuse reflectance spectroscopy
Boosted regression trees
Clay mineralogy
Soil characterization
Archive
tropical zone
global
Soil investigation
North America
Reflection spectrometry
diversity
America
pedons
calibration
Validation
Center
Territory
cost
Diffuse reflection
Europe
Africa
sampling
Regional scope
Property of soil
samples
Weight
Near infrared radiation
Asia
characterization
Reflectance
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a427t-94d0449386d2912f3710a1969f573dfd02ef6a39e455ae670b4b34fe9f87388f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 19965387
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_19965387
pascalfrancis_primary_17773940
crossref_citationtrail_10_1016_j_geoderma_2005_04_025
crossref_primary_10_1016_j_geoderma_2005_04_025
elsevier_sciencedirect_doi_10_1016_j_geoderma_2005_04_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Geoderma
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Friedman (bib22) 2001; 29
Moron, Cozzolino (bib40) 2003; 11
Dunn, Beecher, Batten, Ciavarella (bib16) 2002; 42
Friedman, Hastie, Tibshirani (bib19) 2000; 28
Friedman, Hastie, Tibshirani (bib20) 2000; 28
Baumgardner, Silva, Biehl, Stoner (bib2) 1985; 38
Geladi, Kowalski (bib26) 1986; 185
Cozzolino, Moron (bib14) 2003; 140
Post, Izaurralde, Mann, Bliss (bib41) 2001; 51
Brown, D.J., Bricklemyer, R.S. and Miller, P.R., in press. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma.
Freund, Schapire (bib17) 1997; 55
Agresti (bib1) 1996
Clark, King, Klejwa, Swayze, Vergo (bib11) 1990; 95
Kaufman, Rousseeuw (bib34) 1990
Stoner, Baumgardner (bib56) 1981; 45
Wold, Sjostrom, Eriksson (bib62) 2001; 58
Islam, Singh, McBratney (bib32) 2003; 41
McKenzie, Cresswell, Ryan, Grundy (bib38) 2000; 31
Reeves, McCarty, Reeves, Follet, Kimble (bib45) 2002; 223
Martin, Malley, Manning, Fuller (bib35) 2002; 82
McCarty, Reeves, Reeves, Follett, Kimble (bib37) 2002; 66
Scheinost, Chavernas, Barron, Torrent (bib48) 1998; 46
Shepherd, Walsh (bib53) 2002; 66
Shenk, Westerhaus (bib52) 1991; 31
Clark (bib10) 1999
Hunt (bib30) 1977; 42
Reeves, McCarty, Meisinger (bib43) 1999; 7
Thomasson, Sui, Cox, Al-Rajehy (bib57) 2001; 44
Hunt (bib31) 1982
Henderson, Baumgardner, Franzmeier, Stott, Coster (bib28) 1992; 56
Friedman, Meulman (bib24) 2003; 22
Ben-Dor (bib3) 2002; 75
Ben-Dor, Irons, Epema (bib5) 1999
Clark, Swayze, Livo, Kokaly, Sutley, Dalton, McDougal, Gent (bib13) 2003; 108
Scheinost, Schulze, Schwertmann (bib49) 1999; 47
Freund, Schapire (bib18) 2000; 28
Hudson (bib29) 1992; 56
Sherrod, Dunn, Peterson, Kolberg (bib54) 2002; 66
Shenk, Westerhaus (bib51) 1991; 31
Hartigan, Wong (bib27) 1979; 28
Rossel, McBratney (bib47) 1998; 38
Gauch, Hwang, Fick (bib25) 2003; 95
Janik, Merry, Skjemstad (bib33) 1998; 38
Ridgeway (bib46) 2000; 28
Whittig, Allardice (bib61) 1986
Zhu, Hudson, Burt, Lubich, Simonson (bib63) 2001; 65
Berzaghi, Shenk, Westerhaus (bib6) 2000; 8
Mehra, Jackson (bib39) 1960
R Development Core Team (bib42) 2004
Reeves, McCarty, Meisinger (bib44) 2000; 8
Walkley, Black (bib60) 1934; 37
Ben-Dor, Banin (bib4) 1995; 59
Breiman, Friedman, Olshen, Stone (bib7) 1983
Udelhoven, Emmerling, Jarmer (bib59) 2003; 251
Soil Survey Staff, 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, version 3.0, USDA-NRCS National Soil Survey Center, Washington, D.C.
Clark, Roush (bib12) 1984; 89
Schwertmann (bib50) 1993; vol. 31
Thompson, Walter (bib58) 1988; 41
Dardenne, Sinnaeve, Baeten (bib15) 2000; 8
Friedman (bib21) 1991; 19
Friedman (bib23) 2002; 38
Friedman (10.1016/j.geoderma.2005.04.025_bib21) 1991; 19
Thomasson (10.1016/j.geoderma.2005.04.025_bib57) 2001; 44
Udelhoven (10.1016/j.geoderma.2005.04.025_bib59) 2003; 251
Cozzolino (10.1016/j.geoderma.2005.04.025_bib14) 2003; 140
Mehra (10.1016/j.geoderma.2005.04.025_bib39) 1960
Martin (10.1016/j.geoderma.2005.04.025_bib35) 2002; 82
Friedman (10.1016/j.geoderma.2005.04.025_bib22) 2001; 29
Friedman (10.1016/j.geoderma.2005.04.025_bib19) 2000; 28
Sherrod (10.1016/j.geoderma.2005.04.025_bib54) 2002; 66
Dardenne (10.1016/j.geoderma.2005.04.025_bib15) 2000; 8
Clark (10.1016/j.geoderma.2005.04.025_bib10) 1999
Friedman (10.1016/j.geoderma.2005.04.025_bib20) 2000; 28
Dunn (10.1016/j.geoderma.2005.04.025_bib16) 2002; 42
Islam (10.1016/j.geoderma.2005.04.025_bib32) 2003; 41
Agresti (10.1016/j.geoderma.2005.04.025_bib1) 1996
Baumgardner (10.1016/j.geoderma.2005.04.025_bib2) 1985; 38
Geladi (10.1016/j.geoderma.2005.04.025_bib26) 1986; 185
Gauch (10.1016/j.geoderma.2005.04.025_bib25) 2003; 95
Scheinost (10.1016/j.geoderma.2005.04.025_bib49) 1999; 47
10.1016/j.geoderma.2005.04.025_bib8
Hudson (10.1016/j.geoderma.2005.04.025_bib29) 1992; 56
Ben-Dor (10.1016/j.geoderma.2005.04.025_bib3) 2002; 75
Hunt (10.1016/j.geoderma.2005.04.025_bib30) 1977; 42
Reeves (10.1016/j.geoderma.2005.04.025_bib45) 2002; 223
Hunt (10.1016/j.geoderma.2005.04.025_bib31) 1982
Post (10.1016/j.geoderma.2005.04.025_bib41) 2001; 51
Ben-Dor (10.1016/j.geoderma.2005.04.025_bib5) 1999
10.1016/j.geoderma.2005.04.025_bib55
Hartigan (10.1016/j.geoderma.2005.04.025_bib27) 1979; 28
Kaufman (10.1016/j.geoderma.2005.04.025_bib34) 1990
Stoner (10.1016/j.geoderma.2005.04.025_bib56) 1981; 45
Clark (10.1016/j.geoderma.2005.04.025_bib12) 1984; 89
Freund (10.1016/j.geoderma.2005.04.025_bib17) 1997; 55
Reeves (10.1016/j.geoderma.2005.04.025_bib43) 1999; 7
Ridgeway (10.1016/j.geoderma.2005.04.025_bib46) 2000; 28
Shenk (10.1016/j.geoderma.2005.04.025_bib52) 1991; 31
Janik (10.1016/j.geoderma.2005.04.025_bib33) 1998; 38
Ben-Dor (10.1016/j.geoderma.2005.04.025_bib4) 1995; 59
McKenzie (10.1016/j.geoderma.2005.04.025_bib38) 2000; 31
Shepherd (10.1016/j.geoderma.2005.04.025_bib53) 2002; 66
Henderson (10.1016/j.geoderma.2005.04.025_bib28) 1992; 56
Schwertmann (10.1016/j.geoderma.2005.04.025_bib50) 1993; vol. 31
Clark (10.1016/j.geoderma.2005.04.025_bib13) 2003; 108
Moron (10.1016/j.geoderma.2005.04.025_bib40) 2003; 11
Walkley (10.1016/j.geoderma.2005.04.025_bib60) 1934; 37
Zhu (10.1016/j.geoderma.2005.04.025_bib63) 2001; 65
Wold (10.1016/j.geoderma.2005.04.025_bib62) 2001; 58
Berzaghi (10.1016/j.geoderma.2005.04.025_bib6) 2000; 8
Clark (10.1016/j.geoderma.2005.04.025_bib11) 1990; 95
Shenk (10.1016/j.geoderma.2005.04.025_bib51) 1991; 31
Breiman (10.1016/j.geoderma.2005.04.025_bib7) 1983
Friedman (10.1016/j.geoderma.2005.04.025_bib24) 2003; 22
Thompson (10.1016/j.geoderma.2005.04.025_bib58) 1988; 41
Reeves (10.1016/j.geoderma.2005.04.025_bib44) 2000; 8
Scheinost (10.1016/j.geoderma.2005.04.025_bib48) 1998; 46
R Development Core Team (10.1016/j.geoderma.2005.04.025_bib42) 2004
McCarty (10.1016/j.geoderma.2005.04.025_bib37) 2002; 66
Freund (10.1016/j.geoderma.2005.04.025_bib18) 2000; 28
Rossel (10.1016/j.geoderma.2005.04.025_bib47) 1998; 38
Friedman (10.1016/j.geoderma.2005.04.025_bib23) 2002; 38
Whittig (10.1016/j.geoderma.2005.04.025_bib61) 1986
References_xml – volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bib60
  article-title: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 41
  start-page: 949
  year: 1988
  end-page: 958
  ident: bib58
  article-title: A reappraisal of the kappa-coefficient
  publication-title: J. Clin. Epidemiol.
– volume: 95
  start-page: 1442
  year: 2003
  end-page: 1446
  ident: bib25
  article-title: Model evaluation by comparison of model-based predictions and measured values
  publication-title: Agron. J.
– year: 1983
  ident: bib7
  article-title: Classification and Regression Trees
– volume: 66
  start-page: 640
  year: 2002
  end-page: 646
  ident: bib37
  article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement
  publication-title: Soil Sci. Soc. Am. J.
– volume: 28
  start-page: 393
  year: 2000
  end-page: 400
  ident: bib46
  article-title: Additive logistic regression: a statistical view of boosting—discussion
  publication-title: Ann. Stat.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bib62
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: bib23
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
– volume: 82
  start-page: 413
  year: 2002
  end-page: 422
  ident: bib35
  article-title: Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy
  publication-title: Can. J. Soil Sci.
– year: 1990
  ident: bib34
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis
– volume: 38
  start-page: 681
  year: 1998
  end-page: 696
  ident: bib33
  article-title: Can mid infrared diffuse reflectance analysis replace soil extractions?
  publication-title: Aust. J. Exp. Agric.
– volume: 45
  start-page: 1161
  year: 1981
  end-page: 1165
  ident: bib56
  article-title: Characteristic variations in reflectance of surface soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 108
  year: 2003
  ident: bib13
  article-title: Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems
  publication-title: J. Geophys. Res.,-Planets.
– volume: vol. 31
  start-page: 51
  year: 1993
  end-page: 70
  ident: bib50
  article-title: Relations between iron oxides, soil color, and soil formation
  publication-title: Soil Color
– reference: Soil Survey Staff, 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, version 3.0, USDA-NRCS National Soil Survey Center, Washington, D.C.
– volume: 65
  start-page: 1463
  year: 2001
  end-page: 1472
  ident: bib63
  article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 317
  year: 1960
  end-page: 327
  ident: bib39
  article-title: Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate
  publication-title: Clays and Clay Minerals, 7th National Conference
– volume: 28
  start-page: 400
  year: 2000
  end-page: 407
  ident: bib20
  article-title: Additive logistic regression: a statistical view of boosting—rejoinder
  publication-title: Ann. Stat.
– year: 1986
  ident: bib61
  article-title: X-ray diffraction techniques
  publication-title: Methods of Soil Analysis. Part 1
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib22
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 75
  start-page: 173
  year: 2002
  end-page: 243
  ident: bib3
  article-title: Quantitative remote sensing of soil properties
  publication-title: Adv. Agron.
– volume: 251
  start-page: 319
  year: 2003
  end-page: 329
  ident: bib59
  article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study
  publication-title: Plant Soil
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  ident: bib4
  article-title: Near infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 89
  start-page: 6329
  year: 1984
  end-page: 6340
  ident: bib12
  article-title: Reflectance spectroscopy–quantitative-analysis techniques for remote-sensing applications
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 1553
  year: 2000
  end-page: 1569
  ident: bib38
  article-title: Contemporary land resource survey requires improvements in direct soil measurement
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: bib26
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– volume: 41
  start-page: 1101
  year: 2003
  end-page: 1114
  ident: bib32
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Aust. J. Soil Res.
– volume: 56
  start-page: 865
  year: 1992
  end-page: 872
  ident: bib28
  article-title: High dimensional reflectance analysis of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
– reference: Brown, D.J., Bricklemyer, R.S. and Miller, P.R., in press. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma.
– volume: 56
  start-page: 836
  year: 1992
  end-page: 841
  ident: bib29
  article-title: The soil survey as paradigm-based science
  publication-title: Soil Sci. Soc. Am. J.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib17
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 22
  start-page: 1365
  year: 2003
  end-page: 1381
  ident: bib24
  article-title: Multiple additive regression trees with application in epidemiology
  publication-title: Stat. Med.
– volume: 38
  start-page: 1
  year: 1985
  end-page: 44
  ident: bib2
  article-title: Reflectance properties of soils
  publication-title: Adv. Agron.
– volume: 223
  start-page: U141
  year: 2002
  end-page: U142
  ident: bib45
  article-title: Mid-versus near-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials
  publication-title: Abstr. Pap. - Am. Chem. Soc.
– volume: 8
  start-page: 161
  year: 2000
  end-page: 170
  ident: bib44
  article-title: Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils
  publication-title: J. Near Infrared Spectrosc.
– year: 1996
  ident: bib1
  article-title: An Introduction to Categorical Data Analysis
– volume: 8
  start-page: 229
  year: 2000
  end-page: 237
  ident: bib15
  article-title: Multivariate calibration and chemometrics for near infrared spectroscopy: which method?
  publication-title: J. Near Infrared Spectrosc.
– volume: 66
  start-page: 299
  year: 2002
  end-page: 305
  ident: bib54
  article-title: Inorganic carbon analysis by modified pressure–calcimeter method
  publication-title: Soil Sci. Soc. Am. J.
– volume: 31
  start-page: 469
  year: 1991
  end-page: 474
  ident: bib51
  article-title: Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy
  publication-title: Crop Sci.
– volume: 28
  start-page: 337
  year: 2000
  end-page: 374
  ident: bib19
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
– start-page: 3
  year: 1999
  end-page: 52
  ident: bib10
  article-title: Spectroscopy of rocks and minerals, and principles of spectroscopy
  publication-title: Remote Sensing for the Earth Sciences: Manual of Remote Sensing
– volume: 42
  start-page: 607
  year: 2002
  end-page: 614
  ident: bib16
  article-title: The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia
  publication-title: Aust. J. Exp. Agric.
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  ident: bib53
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– year: 2004
  ident: bib42
  article-title: R: a language and environment for statistical computing
  publication-title: R Foundation for Statistical Computing, Vienna, Austria
– volume: 7
  start-page: 179
  year: 1999
  end-page: 193
  ident: bib43
  article-title: Near infrared reflectance spectroscopy for the analysis of agricultural soils
  publication-title: J. Near Infrared Spectrosc.
– volume: 31
  start-page: 1548
  year: 1991
  end-page: 1555
  ident: bib52
  article-title: Population structuring of near-infrared spectra and modified partial least-squares regression
  publication-title: Crop Sci.
– volume: 42
  start-page: 501
  year: 1977
  end-page: 513
  ident: bib30
  article-title: Spectral signatures of particulate minerals in visible and near IR
  publication-title: Geophysics
– start-page: 111
  year: 1999
  end-page: 188
  ident: bib5
  article-title: Soil reflectance
  publication-title: Remote Sensing for the Earth Sciences: Manual of Remote Sensing
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: bib21
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 11
  start-page: 145
  year: 2003
  end-page: 154
  ident: bib40
  article-title: Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils
  publication-title: J. Near Infrared Spectrosc.
– volume: 140
  start-page: 65
  year: 2003
  end-page: 71
  ident: bib14
  article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics
  publication-title: J. Agric. Sci.
– volume: 46
  start-page: 528
  year: 1998
  end-page: 536
  ident: bib48
  article-title: Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils
  publication-title: Clay Clay Miner.
– volume: 44
  start-page: 1445
  year: 2001
  end-page: 1453
  ident: bib57
  article-title: Soil reflectance sensing for determining soil properties in precision agriculture
  publication-title: Trans. ASAE
– volume: 8
  start-page: 1
  year: 2000
  end-page: 9
  ident: bib6
  article-title: LOCAL prediction with near infrared multi-product databases
  publication-title: J. Near Infrared Spectrosc.
– volume: 28
  start-page: 391
  year: 2000
  end-page: 393
  ident: bib18
  article-title: Additive logistic regression: a statistical view of boosting—discussion
  publication-title: Ann. Stat.
– volume: 38
  start-page: 765
  year: 1998
  end-page: 775
  ident: bib47
  article-title: Soil chemical analytical accuracy and costs: implications from precision agriculture
  publication-title: Aust. J. Exp. Agric.
– volume: 47
  start-page: 156
  year: 1999
  end-page: 164
  ident: bib49
  article-title: Diffuse reflectance spectra of al substituted goethite: a ligand field approach
  publication-title: Clay Clay Miner.
– start-page: 295
  year: 1982
  end-page: 385
  ident: bib31
  article-title: Spectroscopic properties of rocks and minerals
  publication-title: Handbook of Physical Properties of Rocks
– volume: 51
  start-page: 73
  year: 2001
  end-page: 99
  ident: bib41
  article-title: Monitoring and verifying changes of organic carbon in soil
  publication-title: Clim. Change
– volume: 95
  start-page: 12653
  year: 1990
  end-page: 12680
  ident: bib11
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res., -Solid Earth Planets
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: bib27
  article-title: A K-means clustering algorithm
  publication-title: Appl. Stat.
– ident: 10.1016/j.geoderma.2005.04.025_bib8
  doi: 10.1016/j.geoderma.2005.01.001
– volume: 41
  start-page: 949
  issue: 10
  year: 1988
  ident: 10.1016/j.geoderma.2005.04.025_bib58
  article-title: A reappraisal of the kappa-coefficient
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/0895-4356(88)90031-5
– volume: 38
  start-page: 1
  year: 1985
  ident: 10.1016/j.geoderma.2005.04.025_bib2
  article-title: Reflectance properties of soils
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60672-0
– start-page: 317
  year: 1960
  ident: 10.1016/j.geoderma.2005.04.025_bib39
  article-title: Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate
– volume: 28
  start-page: 393
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib46
  article-title: Additive logistic regression: a statistical view of boosting—discussion
  publication-title: Ann. Stat.
– year: 1996
  ident: 10.1016/j.geoderma.2005.04.025_bib1
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geoderma.2005.04.025_bib60
  article-title: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 31
  start-page: 469
  issue: 2
  year: 1991
  ident: 10.1016/j.geoderma.2005.04.025_bib51
  article-title: Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1991.0011183X003100020049x
– volume: 45
  start-page: 1161
  issue: 6
  year: 1981
  ident: 10.1016/j.geoderma.2005.04.025_bib56
  article-title: Characteristic variations in reflectance of surface soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500060031x
– volume: 95
  start-page: 12653
  issue: B8
  year: 1990
  ident: 10.1016/j.geoderma.2005.04.025_bib11
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res., -Solid Earth Planets
  doi: 10.1029/JB095iB08p12653
– volume: 66
  start-page: 299
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib54
  article-title: Inorganic carbon analysis by modified pressure–calcimeter method
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.0299
– year: 1986
  ident: 10.1016/j.geoderma.2005.04.025_bib61
  article-title: X-ray diffraction techniques
– volume: 8
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib6
  article-title: LOCAL prediction with near infrared multi-product databases
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.258
– volume: 8
  start-page: 229
  issue: 4
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib15
  article-title: Multivariate calibration and chemometrics for near infrared spectroscopy: which method?
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.283
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib23
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 46
  start-page: 528
  issue: 5
  year: 1998
  ident: 10.1016/j.geoderma.2005.04.025_bib48
  article-title: Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1998.0460506
– volume: 31
  start-page: 1553
  issue: 11–14
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib38
  article-title: Contemporary land resource survey requires improvements in direct soil measurement
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620009370525
– volume: 38
  start-page: 681
  issue: 7
  year: 1998
  ident: 10.1016/j.geoderma.2005.04.025_bib33
  article-title: Can mid infrared diffuse reflectance analysis replace soil extractions?
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA97144
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.geoderma.2005.04.025_bib26
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– start-page: 111
  year: 1999
  ident: 10.1016/j.geoderma.2005.04.025_bib5
  article-title: Soil reflectance
– volume: 56
  start-page: 865
  year: 1992
  ident: 10.1016/j.geoderma.2005.04.025_bib28
  article-title: High dimensional reflectance analysis of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030031x
– ident: 10.1016/j.geoderma.2005.04.025_bib55
– volume: 44
  start-page: 1445
  issue: 6
  year: 2001
  ident: 10.1016/j.geoderma.2005.04.025_bib57
  article-title: Soil reflectance sensing for determining soil properties in precision agriculture
  publication-title: Trans. ASAE
  doi: 10.13031/2013.7002
– volume: 82
  start-page: 413
  issue: 4
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib35
  article-title: Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/S01-054
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.geoderma.2005.04.025_bib21
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.geoderma.2005.04.025_bib22
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 56
  start-page: 836
  year: 1992
  ident: 10.1016/j.geoderma.2005.04.025_bib29
  article-title: The soil survey as paradigm-based science
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030027x
– volume: 251
  start-page: 319
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib59
  article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study
  publication-title: Plant Soil
  doi: 10.1023/A:1023008322682
– volume: 28
  start-page: 400
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib20
  article-title: Additive logistic regression: a statistical view of boosting—rejoinder
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– volume: 11
  start-page: 145
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib40
  article-title: Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.362
– volume: 47
  start-page: 156
  issue: 2
  year: 1999
  ident: 10.1016/j.geoderma.2005.04.025_bib49
  article-title: Diffuse reflectance spectra of al substituted goethite: a ligand field approach
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1999.0470205
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.geoderma.2005.04.025_bib17
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 89
  start-page: 6329
  issue: NB7
  year: 1984
  ident: 10.1016/j.geoderma.2005.04.025_bib12
  article-title: Reflectance spectroscopy–quantitative-analysis techniques for remote-sensing applications
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB089iB07p06329
– volume: 31
  start-page: 1548
  issue: 6
  year: 1991
  ident: 10.1016/j.geoderma.2005.04.025_bib52
  article-title: Population structuring of near-infrared spectra and modified partial least-squares regression
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1991.0011183X003100060034x
– volume: 41
  start-page: 1101
  issue: 6
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib32
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR02137
– volume: 140
  start-page: 65
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib14
  article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859602002836
– volume: 58
  start-page: 109
  year: 2001
  ident: 10.1016/j.geoderma.2005.04.025_bib62
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– year: 2004
  ident: 10.1016/j.geoderma.2005.04.025_bib42
  article-title: R: a language and environment for statistical computing
– year: 1983
  ident: 10.1016/j.geoderma.2005.04.025_bib7
– start-page: 295
  year: 1982
  ident: 10.1016/j.geoderma.2005.04.025_bib31
  article-title: Spectroscopic properties of rocks and minerals
– start-page: 3
  year: 1999
  ident: 10.1016/j.geoderma.2005.04.025_bib10
  article-title: Spectroscopy of rocks and minerals, and principles of spectroscopy
– volume: 223
  start-page: U141
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib45
  article-title: Mid-versus near-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials
  publication-title: Abstr. Pap. - Am. Chem. Soc.
– volume: 65
  start-page: 1463
  year: 2001
  ident: 10.1016/j.geoderma.2005.04.025_bib63
  article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6551463x
– volume: 66
  start-page: 640
  issue: 2
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib37
  article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.0640
– volume: 42
  start-page: 501
  issue: 3
  year: 1977
  ident: 10.1016/j.geoderma.2005.04.025_bib30
  article-title: Spectral signatures of particulate minerals in visible and near IR
  publication-title: Geophysics
  doi: 10.1190/1.1440721
– volume: 22
  start-page: 1365
  issue: 9
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib24
  article-title: Multiple additive regression trees with application in epidemiology
  publication-title: Stat. Med.
  doi: 10.1002/sim.1501
– year: 1990
  ident: 10.1016/j.geoderma.2005.04.025_bib34
– volume: 66
  start-page: 988
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib53
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.0988
– volume: 38
  start-page: 765
  issue: 7
  year: 1998
  ident: 10.1016/j.geoderma.2005.04.025_bib47
  article-title: Soil chemical analytical accuracy and costs: implications from precision agriculture
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA97158
– volume: 28
  start-page: 100
  year: 1979
  ident: 10.1016/j.geoderma.2005.04.025_bib27
  article-title: A K-means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 8
  start-page: 161
  issue: 3
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib44
  article-title: Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.275
– volume: 28
  start-page: 391
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib18
  article-title: Additive logistic regression: a statistical view of boosting—discussion
  publication-title: Ann. Stat.
– volume: 59
  start-page: 364
  year: 1995
  ident: 10.1016/j.geoderma.2005.04.025_bib4
  article-title: Near infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900020014x
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2005.04.025_bib19
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– volume: 95
  start-page: 1442
  issue: 6
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib25
  article-title: Model evaluation by comparison of model-based predictions and measured values
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.1442
– volume: 7
  start-page: 179
  issue: 3
  year: 1999
  ident: 10.1016/j.geoderma.2005.04.025_bib43
  article-title: Near infrared reflectance spectroscopy for the analysis of agricultural soils
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.248
– volume: vol. 31
  start-page: 51
  year: 1993
  ident: 10.1016/j.geoderma.2005.04.025_bib50
  article-title: Relations between iron oxides, soil color, and soil formation
– volume: 108
  issue: E12
  year: 2003
  ident: 10.1016/j.geoderma.2005.04.025_bib13
  article-title: Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems
  publication-title: J. Geophys. Res.,-Planets.
  doi: 10.1029/2002JE001847
– volume: 51
  start-page: 73
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2005.04.025_bib41
  article-title: Monitoring and verifying changes of organic carbon in soil
  publication-title: Clim. Change
  doi: 10.1023/A:1017514802028
– volume: 75
  start-page: 173
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib3
  article-title: Quantitative remote sensing of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(02)75005-0
– volume: 42
  start-page: 607
  issue: 5
  year: 2002
  ident: 10.1016/j.geoderma.2005.04.025_bib16
  article-title: The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA01172
SSID ssj0017020
Score 2.4163892
Snippet There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil characterization. In studies reported to date,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 273
SubjectTerms Agronomy. Soil science and plant productions
Biological and medical sciences
Boosted regression trees
Clay mineralogy
Diffuse reflectance spectroscopy
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
PLS regression
Soil characterization
Soils
Surficial geology
VNIR
Title Global soil characterization with VNIR diffuse reflectance spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2005.04.025
https://www.proquest.com/docview/19965387
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUqWEAI8SnKR_HAGhonTpyMVUVpQXRAFHWz7MZGRSitaDuw8Nu5S5xCBVIH1iiWo7vLnXO59x4hVypTjBmjkd8u8TjPfE-nie9BtQ0UZ1wnPuKdH_pxd8DvhtGwRtoVFgbHKl3uL3N6ka3dlaazZnM6HiPGl8UCypEfFXhg5ATlXGCUX38uxzyY8B01I4s9vPsHSvgVfISCY45_qKA8RcnsvwvUzlTNwGy21Lv4lbqLetTZI7vuIElb5bPuk5rJD8h26-XdkWmYQ3JbEvrT2WT8RkdLZuYSeEmxA0uf-71HiiIpi5mh8CzYxMc4oAUCE5kuJ9OPIzLo3Dy1u54TTvAUD8TcS8HknKdhEmdBygIbwjFCIQ-OjUSY2cwPjI1VmBoeRcqAETXXIbcmtYkAl9nwmGzkk9ycEJoxk2kNH2XgVB6HTLNIQ24dGa1CYZNRnUSVteTIsYqjuMWbrMbHXmVlZZS8jKTPJVi5TprLddOSV2PtirRyhlyJEAnJf-3axor3vrcUQqA2fJ1cVu6U8H7hTxOVm8liJnFKG4qCOP3H9mdkq-zcYPPmnGzM3xfmAs4yc90ogrVBNlu9-27_C4UR9N0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HAAhxFOMZw5cy5o2bdojQsB47YAAcYuSNUGb0Dax7cCF347dpgMEEgeuVaNEtmO7rv19AEe60JxbawjfLguEKMLA5FkYYLSNtODCZCHNO9-209aDuHpKnmbgtJ6FobZK7_srn156a_-k6aXZHHa7NOPLU4nhKEzKeWAxC_MCry_RGBy_T_s8uAw9NiNPA3r9y5hwD5VEjGMegKjEPCXO7N8j1PJQj1BuriK8-OG7y4B0vgorPpNkJ9Vh12DG9tdh6eT51aNp2A24qBD92WjQfWGdKTRzNXnJqATLHtuXd4xYUiYjy_AsVMUnQ2DlCCZBXQ6Gb5vwcH52f9oKPHNCoEUkx0GOMhcij7O0iHIeuRjzCE1AOC6RceGKMLIu1XFuRZJoi1I0wsTC2dxlEnXm4i2Y6w_6dhtYwW1hDH6VoVZFGnPDE4POtWONjqXLOg1IammpjocVJ3aLF1X3j_VULWXivExUKBRKuQHN6bphBazx54q8Vob6ZiIKvf-faw--ae9zSyklkcM34LBWp8ILRn9NdN8OJiNFbdpoVnLnH9sfwkLr_vZG3Vy2r3dhsSrjUCVnD-bGrxO7j4nN2ByUhvsBG132aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+soil+characterization+with+VNIR+diffuse+reflectance+spectroscopy&rft.jtitle=Geoderma&rft.au=Brown%2C+David+J&rft.au=Shepherd%2C+Keith+D&rft.au=Walsh%2C+Markus+G&rft.au=Mays%2C+MDewayne&rft.date=2006-06-01&rft.issn=0016-7061&rft.volume=132&rft.issue=3-4&rft.spage=273&rft.epage=290&rft_id=info:doi/10.1016%2Fj.geoderma.2005.04.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon